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Abstract

As biometrics become more prevalent in society, the rebearea is expected to address an ever
widening field of problems and conditions. Traditional bitnic modalities and approaches are reaching a
state of maturity, and their limits are clearly defined. ®8itice needs of a biometric system administrator
might extend beyond those limits, new modalities and teqles must address such concerns. The goal of
the work presented here is to explore the periocular regi@region surrounding the eye, and evaluate its
usability and limitations in addressing these concernistFa study of the periocular region was performed
to examine its feasibility in addressing problems thatdaffeaditional face- and iris-based biometric systems.
Second, the physical structure of the periocular regionamatyzed to determine the kinds of features found
there and how they influence the performance of a biometdogmeition system. Third, the use of local
appearance based approaches in periocular recognitiorexpésred. Lastly, the knowledge gained from
the previous experiments was used to develop a novel feggpresentation technique that is specific to the
periocular region. This work is significant because it pdeg a novel analysis of the features found in the
periocular region and produces a feature extraction methaickesulted in higher recognition performance

over traditional techniques.



Dedication

This dissertation is dedicated to my wife Kristen and my fgmivithout their support | would not

have had the perseverance to complete this task given thectdss| have faced.



Acknowledgments

I would like to thank all of the members of my committee foregng to serve on such short notice.
Many of you have only recently joined my committee and | apjate your contribution. | would like to
especially thank Dr. Sophie Joerg for being the chair of mymittee and for her invaluable help in making
my dissertation more accessible to those outside of theddiira research community. | would also like to
thank Dr. Damon Woodard for directing my initial researckl &elping to formulate the thesis and structure
of my dissertation. Special thanks also to the Office of thre@or of National Intelligence (ODNI), Center
for Academic Excellence (CAE) for the multi-university Genfor Advanced Studies in Identity Sciences

(CASIS), who funded the majority of this research.



Table of Contents

Page
TitlePage . . . . . o i
ADSIract . . . . i
Dedication . . . . . . . . e e iii
Acknowledgments . . . . . . . iv
Listof Tables . . . . . . . . vii
Listof Figures . . . . . . e e viii
1 Introduction . . . . . . . 1
1.1 ThePeriocular Region. . . . . . . . . . . e 6
1.2 Literature ReVIEW. . . . . . . . . . 9
1.3 Problem StatementandImpact . . . . . .. ... ... .. .. 12
1.4 DissertationOutline . . . . . . . . . 13
2 An examination of common feature extraction techniquesusing the periocular region . . .. 14
2.1 IntroducCtion. . . . . . . . 14
2.2 Data. . . .. e 16
2.3 Method . . . . . . e e 17
2.4 Baseline experiments and examination of features. . . . . . . ... ... ... L. 26
2.5 The Effectof CameraQuality. . . . . . . . . .. . . 50
26 Conclusion . . . . . . . 61
3 Thephysical structureof theperiocular region . . . . . .. ... ... ... ... ... ... 63
3.1 Introduction. . . . . .. L e e 63
3.2 Data. . . . . e 64
3.3 Method . . . . . . e e e 64
3.4 ResuUlts . . . . . e 66
3.5 Placement of blocks based on the structure of the pdaioegion. . . . . . . .. ... .. 69
3.6 Algorithm performance analysis in different sub-regio. . . . . . . ... ... ... ... 71
3.7 Discriminative ability of LABFs in differentsub-regis . . . . . . ... ... .. ..... 72
3.8 Conclusion . . . . .. 105
4 Featuresfrom MultipleScales . . . . . . . . ... 106
4.1 IntroduCtion. . . . . . . . . L 106
4.2 Data. . . . . e 107
4.3 Method . . . . . . . e 107



Table of Contents (Continued) Page

4.4 ResUltS . . . . . . e 111
45 Conclusion . . . . . . . . e 117
5 A Novel Method for Periocular Recognition . . . . . .. ... ... ... ... ......... 119
5.1 Introduction. . . . . . . . . e 119
5.2 Data. . . . o e e e 120
5.3 Method . . . . . . . e 120
5.4 Results . . . . . . e 121
5.5 Conclusionsand Future Work . . . . . . . . . . . . .. 123
AppendiCeS . . . . . 126
A Abbreviations. . . . . .. L e 127
Bibliography . . . . . . 128

Vi



List of Tables

Table
1.1

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4

51
5.2
5.3
54

Page
Jain’s seven traits of a biometric identifier for the fade, and periocular region. . . . . . 7
Performance statistics of the experiments using theG-E&periment 1 dataset.. . . . . . 28
Performance statistics of the experiments using thelEHEdRataset. . . . . . . . . . . . .. 36
Performance statistics of the masking experimentgl=RGC. . . . . . . . ... ... .. a7
Performance statistics of the masking experimentgURHRET . . . . . . . . . . ... .. 48
Focus metric differences betweenimages. . . . . . . . . . .. ..o 51
Focus metric differences betweenimages. . . . . . . . . .. ... L oL 52
Resolution differences betweenimages. . . . . . . . . . ... ... ... ... 53
Image resolution differences betweenimages.. . . . . . . ... .. ... L. 54
Rank-1 recognition rates of experiments using FRGCéwag . . . . . .. .. ... ... 71
Rank-1 recognition rates of experiments using FERETQésa. . . . . . .. ... .. ... 72
Coefficients of determination for LBP experiments. . . . . . . .. .. ... ....... 82
Left/Right feature distance . . . . . . . . . . . . . . .. . . ... 83
LBP feature footprint. . . . . . . . . . . 83
Mean D’ of LBP features . . . . . . . . . . . 85
Rank1of LBP features . . . . . . . . . . . . 85
Rank 1 of LBPfeatures . . . . . . . . . . . . e 86
HOG feature footprint . . . . . . . . . . . . . 94
Mean D' of HOG features. . . . . . . . . . . . . . e 95
Rank 1 of HOG features. . . . . . . . . . . . . . 95
LPQ feature footprint . . . . . . . . . . . 103
Mean D’ of LPQ features . . . . . . . . . . . . . e 104
Rank 1of LPQfeatures. . . . . . . . . . . . . . e 104
Rank1of LPQfeatures. . . . . . . . . . . . . . . . 105
Rank-1 results of fusion of scales experiments usingER®ages. . . . . ... ... ... 116
Rank-1 results of fusion of scales experiments usingeEEiages.. . . . . . . . ... .. 116
Contribution to the results of the fusion of scales eixpents for LBP features. . . . . . . 117
Contribution to the results of the fusion of scales eixpents for LPQ features. . . . . . . 118
Results for existing feature extraction methods froneERmages. . . . . . . . ... . .. 122
Results for proposed feature extraction methods fro@€Rnages. . . . . . . ... . .. 122
Results for existing feature extraction methods frolREE images. . . . . . . ... . .. 122
Results for proposed feature extraction methods froREFEimages . . . . . .. ... .. 122

Vii



List of Figures

Figure

11
1.2
1.3
1.4
15
1.6

21

2.2

2.3

2.4

2.5

2.6

2.7

2.8

29

2.10
211
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
231
2.32

The flow of the two biometric problems: Identification aagthentication. . . . . . . . .. 3
An example of a Cumulative Match Characteristic.. . . . . . . ... ... ... ..... 5
An example of a Detection Error Tradeoff. . . . . . . .. . ... ... ... ... ... 5
An example of a Match Score Distribution. . . . . . . . . ... ... o000 6
Examples of periocular region images obtained fromaiimage.. . . . . .. ... .. .. 7
Examples of a mask (left) and beard (right) that occlufdee. . . . . . . . . ... ... .. 8

An example recording sessionfrom FRGC [40]. . . . . . . . . . . . . ... ... ... 16
Demographics of FRGC validation partition by (a) rab¢age, and (c) sex [40]. . . . . . 17
Example images from the FERET database [41]. . . . . . . . ... ... .. .. .... 18
The flow of preprocessing steps applied to a face imagettact its periocular regions.. . 18
DET of Experiments using LBP features on the FRGC Expenirth dataset.. . . . . . . . 29
DET of Experiments using HOG features on the FRGC Expaarirh dataset. . . . . . . . 30
DET of Experiments using LPQ features on the FRGC Expesrirh dataset.. . . . . . . . 31
DET of Experiments using WLD features on the FRGC Expanimiaedataset. . . . . . . . 32
DET of Experiments using SIFT features on the FRGC Erpent 1 dataset.. . . . . . . . 33
DET of Experiments using SURF features on the FRGC Hixeat 1 dataset. . . . . . . . 34
DET of Experiments using Eigenfaces on the FRGC Experirh dataset. . . . . . . . . . 35
CMC of Experiments using LBP features onthe FERET datas. . . . . . . ... .. .. 37
CMC of Experiments using HOG featuresonthe FERET datas . . . . . . ... .. .. 37
CMC of Experiments using LPQ featuresonthe FERET datas. . . . . . ... ... .. 38
CMC of Experiments using WLD features on the FERET datase. . . . . . . ... ... 38
CMC of Experiments using SIFT features onthe FERETsg#ita. . . . . . . . .. .. .. 39
CMC of Experiments using SURF features onthe FERETsdata . . . . . . . . ... .. 39
Distribution of SIFT keypoint locations from FRGC inesgy . . . . . . ... .. ... ... 40
Distribution of SURF keypoint locations from FRGCimag . . . . ... ... ...... 41
Distribution of SIFT keypoint locations from FERET iges.. . . . . . .. ... ... ... 41
Distribution of SURF keypoint locations from FERETiges. . . . . . . . . ... ... .. 42
Performance of experiments using LBP features from @né patch in FRGC images. . . 43
Performance of experiments using HOG features frojmamé patch in FRGC images.. . 43
Performance of experiments using LPQ features frojmamé patch in FRGC images.. . 44
Performance of experiments using WLD features from onypatch in FRGC images. . 44
Performance of experiments using LBP features from @né patch in FERET images. . 45
Performance of experiments using HOG features fromamé patch in FERET images. . 45

Performance of experiments using LPQ features frojmamé patch in FERET images. . 46
Performance of experiments using WLD features from onypatch in FERET images.. 46
Masksused by Padtal. . . . . . . . . . . . . . . ... 46
A comparison of unfocused images and their focus nsetric. . . . . ... ........ 51
A comparison of down-sampled images and their pixehtou. . . . . . ... .. ... .. 53

viii



2.33
2.34
2.35
2.36
2.37
2.38

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412

51

A comparison of controlled and uncontrolled illumioatimages . . . . . ... ... ...
Recognitionresultsusing FRGCimages . . . . . . . . . . . . . . . ..
Recognition results using FRGCimages . . . . . . . . . . . . . ... . ..
Recognition results using FRGCimages . . . . . . . . . . . . ... ..
Recognitionresultsusing FRGCimages . . . . . . . . . . . . . . .. ... .. .. ...
DET of Experiments testing uncontrolled illumination. . . . . . .. ... ... .....

Example of a periocular region image divided intoblocks. . . . . . ... ... ... ..
Individual Rank-1 recognition rate for a block ateackepi. . . . .. ... ... ... ...
Individual Rank-1 recognition rate for a block ateackepi. . . . . .. ... ... .....
Different models for block placement when using LABB:Nller (b) Park (c) Proposed .
Visualization of the 59 different LBP patterns. . . . . . . .. .. ... ... ... ....
Mean occurrence and D’ of the LBP patterns found in theddfgyelid . . . . . . ... ..
Mean occurrence and D’ of the LBP patterns found in thedrdiyelid . . . . .. ... ..
Mean occurrence and D’ of the LBP patterns found inthe Desgt . . . . . .. ... ...
Mean occurrence and D’ of the LBP patterns found in the©Qorner . . . . . . ... ..
Mean occurrence and D’ of the LBP patterns found in thedEyebrow . . . . . . .. ..
Mean occurrence and D’ of the LBP patterns found in theeCleyebrow . . . . . . . . . .
Mean occurrence and D’ of the LBP patterns foundinthe Sk. . . . . . ... ... ...
Mean occurrence and D’ of the HOG patterns found in theeUgyelid. . . . . ... ...
Mean occurrence and D’ of the HOG patterns found in thedrdeyelid. . . . . . . . . ..
Mean occurrence and D’ of the HOG patterns found intlee Deict. . . . . . . . ... ..
Mean occurrence and D’ of the HOG patterns found in theiGCorner. . . . . . . . . ..
Mean occurrence and D’ of the HOG patterns found in therdikyebrow. . . . . . . . ..
Mean occurrence and D’ of the HOG patterns found in theiCeyebrow. . . . . . . . ..
Mean occurrence and D’ of the HOG patterns foundinthe Sk. . . . . ... ... ...
Mean occurrence and D’ of the LPQ patterns found in theedgyelid . . . . . . ... ..
Mean occurrence and D’ of the LPQ patterns found in thedtdeyelid . . . . . . . . . ..
Mean occurrence and D’ of the LPQ patterns found intlee Deict . . . . . . . . ... ..
Mean occurrence and D’ of the LPQ patterns found in theQCorner . . . . . . ... ..
Mean occurrence and D’ of the LPQ patterns found in thedEyebrow . . . . . . .. ..
Mean occurrence and D’ of the LPQ patterns found in theQtyebrow . . . . . . . . ..
Mean occurrence and D’ of the LPQ patterns foundinthe Sk . . . . . ... ... ...

Representation of the local neighborhood on which LBfalsulated . . . . . . .. .. ..
Pseudo-code for calculating the LBP operator at vagiabdles . . . . . . ... ... ...
AS5x5Prewittfilter. . . . . . . .
A5x5averagingfilter. . . . . . . L
Pseudo-code for calculating the HOG operator at vagistdles. . . . . . . ... ... ..
Pseudo-code for calculating the LPQ operator at vagistdles . . . . . .. ... ... ..
Rank-1 results of LBP experiments using (a) left eye dhdight eye FRGC images. . . .
Rank-1 results of LBP experiments using (a) left eye épdight eye FERET images.. . .
Rank-1 results of HOG experiments using (a) left eye Ahdght eye FRGC images.. . .
Rank-1 results of HOG experiments using (a) left eye(bhdght eye FERET images. . .
Rank-1 results of LPQ experiments using (a) left eye(bhdght eye FRGC images. . . .
Rank-1 results of LPQ experiments using (a) left eye(Bhdght eye FERET images. . .

Different models for block placement when using LABH:Naller (b) Park (c) Proposed .



Chapter 1

| ntroduction

There are three general ways to verify the identity of anviddial. These ways are based on some-
thing you have, something you know, or something you are. édoimg you have refers to a token and can
come in the form of a key or an ID badge, while something yowknefers to a password. The field of
biometrics studies the third means of identification: sdmimetyou are.

In a sense, each person has their own biometric system. Ttsmrgetimes unconsciously, people
use faces to identify each other. When a person’s back isdyreeple use anthropometrics, body measure-
ments such as height and arm length, to identify a person. Ve@hamseen person is calling out, people
use voice to identify the caller. Humans do all of these thisgbconsciously, yet researchers have a limited
understanding of how the brain processes these tasks. Tlnlauman biometric system is a vast set of
characteristics used to identify individuals; howevers iis not easily replicated by computers. Biometric
research attempts to study each characteristic sepatatielgntify individuals.

Through the years, researchers and professionals havesawplifferent modalities of biometric
identifiers, where each modality serves an original purosspecific situation. For example, Sir William
Herschel used handprints to visually distinguish betwéereimployees before paying the@d]. Alphonse
Bertillon recorded anthropometrics to discover repeaicral offenders that would give new aliases at each
arrest §2]. Fingerprints quickly replaced anthropometrics becahséncreased accuracy helped avoid cases
of mistaken identity 15]. Similarly, modern technology allows facial recognitieystems, that use data in
the form of images, to attain similar accuracy to fingerpidi@ntification while using data from a different
domain [L5]. Iris patterns, originally conceived by ophthalmolodtsank Burch, is a biometric modality that

is considered highly accurat&4]. Unlike the characteristics described here, not all huctzaracteristics



make useful biometrics.
There are a number of parameters that define whether a huragactdristic is useful at serving as

a biometric identifier. Jain et allg] suggested that any human physiological characteristidbeaused as a

biometric identifier as long as it satisfies the requiremefits

Universality: where the characteristic is present in eadividual,

Distinctiveness: where the characteristic, in any two @essis sufficiently different;

Permanence: where the characteristic is sufficiently iamato change over a period of time;

e Collectability: where the characteristic can be quarntigdy measured.

There are also practical considerations that need to ba tat@account when building a biometric

system from a human characteristic. Jain etX] pffered the following additional considerations of:

e Performance: the attainable accuracy of the system, gheenpierational requirements;
e Acceptability: the extent to which people are comfortaldang the biometric identifier;

e Circumvention: the ease at which the system can be spoofied fniaudulent methods.

Once a biometric system is built using a particular bionggttentifier, it is evaluated through the
two types of biometric problems: identification and autieatiton. Identification is the problem of choosing
the best identity match for a biometric sample from a dataledienrolled identities. A real world example
includes examining face images of unidentified people walithrough the terminals of an airport. The im-
ages are compared with biometric data from individuals on-8ynlist to ensure that there are no matches.
Authentication is the problem of verifying an identity efabf an individual within a certain degree of cer-
tainty. A real world example is when a government officiakatpts to enter a classified area by entering a
pin number into a biometric lock (identity claim). The biotme lock takes a picture of the person'’s iris and
compares it to a previously stored template, before auttaintg their identity.

Figure 1.1 shows the flow of the identification and authentication peaid and the typical com-
ponents of a biometric system. The process of setting upradiiic experiment involves enrolling known
identities into a biometric database. The first step in agt@imng this is to acquire biometric data. In the
familiar case of a face recognition system, data comes ifotine of an image of the face. In the second step,

feature extraction, a number of different types of appreaaan be used that all create a vector representation
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Figure 1.1: The flow of the two biometric problems: Identifioa and Authentication.

of the data. These first two steps are also a part of each hicrpedblem. The feature representations that
are previously enrolled in a biometric database are knowthegallery or the target set. The feature repre-
sentations that are compared to the biometric databasenavenkas probes or queries. The third step is to
compare feature representations. Typically, the compasigenerate match scores, also known as similarity

scores, by the use of a mathematical distance function suElieidean distance,

d(p,a) = \/(Pr— Q)2+ .+ (Pr— )2, (1)

where p and q are templates representing an image in the probe set andageim the gallery set that
have feature dimensionality of The resulting scores are used to make a decision in eacle dfidmetric
problems. In an authentication problem, the decision is/éeh accepting and rejecting an identity claim.
One probe is compared to one identity in the gallery — a 1:1pamson. A threshold is typically set so that
a score above the threshold gives an accept decision andeatsgow the threshold gives a reject decision.
In an identification problem, the decision is between aswpé true or false match for the system. One probe
is compared to the entire gallery — a 1:N comparison. Thesitatis made by evaluating a sorted ordering
of match scores.

There are several ways to visually and numerically evalttaeperformance of the identification
and authentication problems described above. A CumulMiatch Characteristic (CMC), the cumulative

sum of correct identifications in the topclosest matches for each image, gives a visual represamiaiti

3



the performance of an identification experiment. As seengnré 1.2, a given recognition rate (plotted on
the y-axis) at Rank (plotted on the x-axis) corresponds to the percentage adgithe true match for an
individual's identity is made in the topranked images. Rank 1 recognition rates show the succeestibf
the system at choosing the best match for an individual. Weratxample, a Detection Error Tradeoff (DET)
seen in Figurd..3 shows the performance of an authentication experimentEA plots the false reject rate
(FRR), along the y-axis, against the false accept rate (FARNg the x-axis. The FRR is the rate at which
a biometric system commits a type | error by incorrectly ¢8jgy an identity claim. The FAR is the rate
at which a biometric system commits a type Il error and inectty accepts an identity claim. The single
measure that best evaluates the performance shown in a DEF Egjual Error Rate (EER), the rate at which
the FRR and FAR are the same. A lower EER corresponds to a mauesde authentication system. A Match
Score Distribution (MSD) plot, seen in Figutes, is another way of visually representing the performance of
a biometric experiment. An MSD shows the similarity scorenaitch score (plotted on the x-axis) versus the
frequency at which the score is found (plotted on the y-asid)oth the genuine score distribution and the
imposter score distribution. Recognition errors are fouma system where the distributions overlap. Type |
errors are represented in this figure as genuine scoresjdeethe right of a threshold and type Il errors are
imposter scores (red) to the left of the threshold. A singéasure that evaluates the separation of the two

distributions is called the decidability index df

- 9°1 1.2)
whereg is the population of genuine scores arislthe population of imposter scores. The decidability inde
is a ratio of the difference of the two distributions meansravfunction of their standard deviations. A large
d value represents a system where there is little overlapd®ivihe two distributions.

The identification and authentication problems are essleotevaluating the performance of a sys-
tem using a biometric characteristic such as the face andthey unexplored characteristic. These standard
evaluation tools can be used to explore a specific area ofdlukedi biometrics as we develop new biometric

technology.
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Figure 1.4: An example of a Match Score Distribution.

1.1 ThePeriocular Region

Biometric research has existed for almost a century and esudt the research regarding early bio-
metric modalities in constrained experimental conditibas matured. The success of biometric research has
led to an increased interest in biometric systems for us¢ypical situations where the limits of constraints
are pushed. Researchers are discovering that traditiaoet &ind iris-based biometric systems may not be
suitable for all of the demands of an ever growing field, ang approaches are being considered. The
periocular region, a new biometric modality, is the focushié dissertation.

The periocular region is defined as the area situated ardwendrbit of the eye, the bony cavity in
which the eyeball sits together with its associated musblesd vessels, and nerves. In practice this includes
two separate, bordering, rectangular regions centereddeeytes that may or may not include the eyebrows.
Figure1.5shows an example of two periocular region images besideaiteeifnage from which they were
extracted.

As seen in Tabld.1, the periocular region is very similar, in regards to certaaits, to the face and

iris biometric modalities. Tabl&.1lists Jain’s seven traits of a biometric identifier and sfieally evaluates



left

right

Figure 1.5: Examples of periocular region images obtainewh fa face image.

Face Iris Periocular

Universality High High High
Distinctiveness| High High Undetermined
Permanence | Medium Very High Undetermined
Collectability High High High
Performance High Very High  Undetermined
Acceptability | Medium  Medium Medium
Circumvention Low Low Low

Table 1.1: Jain’s seven traits of a biometric identifier fug face, iris, and periocular region.

the face, iris, and periocular modalities in their idealditions. The periocular region is a sub-region of the

face that is present in all faces; therefore, it has a measfuneiversality similar to the face biometric. |

hypothesize that the periocular region also has simildectalbility, acceptability, and circumvention to the

face biometric because it is found within the same image.

The face and iris biometrics offer high performance. Manynoeercial biometric systems that

employ these modalities boast of almost 100% accuracy.higisperformance is attributed to the modalities

working extremely well in constrained experimental coiodis. As a result of the success of face and iris,

researchers are attempting to use these modalities iraisiagdy non-ideal situations. Through such research,

many are discovering that traditional face and iris biomedystems are not meeting the new tasks as well as



Figure 1.6: Examples of a mask (left) and beard (right) tleatude a face.

needed.

There are a few examples where face and iris biometric sygsteight fail. First among them is
occlusion. Common causes for occlusion in biometric dathude a beard on a man, makeup on a woman,
sunglasses, or a mask covering the face, as seen in RiguirEhese obstructive elements prevent the full face
from being useful. Similarly, failure can occur in an iriaged system that attempts to read a dilated pupil.
The enlarged pupil will subsequently reduce the area ofriedausing distortion of the area of interest,
and result in a failure to confidently make a positive idecdifion. Another problem in iris-based biometric
systems is the need for up-close, high-resolution datas iBhinot usually a problem when the subject is
cooperative, but it severely limits the effectiveness @&fitis when data is captured from a distance, on the
move, or from a non-cooperative source.

Recent research hypothesizes that the periocular regigrbmable to address some of the failings
of face and iris biometric systems. For example, the difficaf occlusion of a person’s face by a beard may
be addressed by a new biometic system that utilizes thequégioregion when the original face biometric
system fails. The periocular region might also be able tistgs the failed iris recognition scenario. If
a new biometric system were created that fused the periofadtures with the iris features from the non-
ideal scenario, the person with the dilated pupils mightheotalsely rejected. The periocular region has the
potential to handle some situations that would otherwiseltén failure in traditional biometric systems. The
periocular region would not be of any help if the person isnvgpsunglasses, of course, which illustrates
the point that the periocular region is not intended to bemaatete solution to all of the issues found in other

biometric systems.



1.2 Literature Review

The periocular region is a relatively new area of study, o ffeferences were made to it before
2009. This fact does not mean that its proposed usefulnés®inetrics research is without origin. The
notion that the periocular region could be useful in the aslvesituations described earlier grew from four
existing works with the face biometric.

The periocular region first appeared in the literature witiie context of partial face recognition.
Satoet al.[46] were interested in discovering if a certain region of theefperformed better than others within
their biometric system. They considered the partial fageores of the nose, eyes, and ear and collected the
data of these partial face regions themselves. In total, Wk utilized 720 images per partial face region
from 120 subjects and the size of the eye images was 12x8piXéke number of images and their size are
low relative to experimental expectations of today. Thénard used raw pixels as features to build a radial
basis function (RBF) network. The RBF network was used aassifler to determine if a query was enrolled
in the system. Using eye images, the system achieved a ‘mémograte” of 92%. “Recognition rate” was
defined as the rate at which the system correctly determireegiery is enrolled in the system and is not
required to identify the individual. Though the experirmaitn was not rigorous, the periocular region was
studied and yielded higher performance that the other nsgidhe performance of the periocular region was
also comparable to the full face. This early work suggedstedl the periocular region could be a valuable
region of the face, containing significant discriminatiever.

Another work, by Kamgar-Parsi al.[22], looked at synthetic images to aid facial recognition sys-
tems. This work was motivated by the poor performance oesysiwhen limited training data per subject was
available. The authors proposed a system where synthetgeigwere created to capture variations in appear-
ances. Their hypothesis was that the variations in theshetjo images would help improve performance.
Each of the synthetic images was created by manipulatingytbeegion of face images to approximate vary-
ing appearances. To do so, they created a number of opettsddrgould produce a desired appearance when
applied to an image. These operators were named “Lower ey&biRaise eyebrow”, “Tilt eyebrow”, “Arch
eyebrow”, “Lower Upper eyelid”, “Raise Upper eyelid”, “Ra Lower eyelid”, “Lower Lower eyelid”, and
“Cast Shadows”. The authors used face images from the Hae@bgnition Technology (FERET) dataset
[41] as well as images they personally collected. Images wargaced by taking the sum of squared differ-
ences of the raw pixels. When the synthetic images were usattaded members of the biometric database,

recognition performance reached 100% accuracy in all.t&sis authors report that their work “suggests that



the eye is rich in discriminative information”.

The work of Savvidegt al.[47] also looked at partial face recognition and its fusion withistic
face recognition as part of a larger work. Three equal sizezbntal segments of the face (eyes, nose, and
mouth) were considered and results showed much higherpaaf@e when using the eye region images than
the nose or mouth images. The authors explained that thegeigd this work was to “observe which parts of
the face provide the best discrimination information”. Nifitthe context of this approach the eye region has
the most discriminating information. One interesting raftthis work is that it utilized the Facial Recognition
Grand Challenge (FRGC) Experiment 4 dataset which coraidt®, 776 images from 222 people for training
and 24,042 images from 466 people for testid@][ This dataset is both public and much larger than others
before it. Many different holistic subspace projection hoets were applied to the partial face images such as
Principle Component Analysis (PCA) or eigenfaces, Gramnr8dt Linear Discriminant Analysis (GSLDA),
class-dependence feature analysis (CFA), and Kernel appes. This work was much more experimentally
rigorous than previous works that used the periocular regitherefore, it offered the best support that the
periocular region has high discriminative power within thee compared to any previous work.

Teoet al. [51] also looked at partial face recognition, highlighting #age region, and gave com-
parisons to full face recognition. This work had a very semoncept to Savvidest al.[47], but with two
interesting additions. First, Test al. [51] used non-negative matrix factorization (NMF)-based téghes
to extract features from the data. Using this technique estggl that the periocular region’s discriminative
power is not found only in the context of a single type of ajggln Second, it motivated the use of the eye
region by discussing how non-cooperative subjects caredaes occlusion and posited that the occlusion is
least likely to occur in the eye region. This work used thelem&aces-94 Essex University Face Database
which contains only 3060 images from 153 subjedd].|

Although there was little reference to the periocular ragio the literature, there is much to be
learned from previous work. These works suggest a numbeiffefeht techniques that may be used to ex-
tract features from the periocular region. Among these pugtwere RBF networks, eigenfaces, GSLDA,
CFA, kernel approaches, and NMF. These are all examplesobbyhppearance-based approaches which
were frequently used at the time of publication. The use ohea# these techniques is significant, as not
every technique works well with every modality. The resoltshese experiments suggest that many of the
techniques that are used with great effect in conjunctidh faice recognition can also be used with the peri-
ocular region. The previous works also used a wide varietyatd for their experiments. For the most part,

the corpus used in each work was a small collection of cdettomages created by the authors of the work.
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These small collections, especially in subject count, oaibe said to represent a real world environment but
do provide enough variability to suggest that the periacidgion is worth further investigation.

Though periocular recognition is a new field of study, reseortks have addressed many interesting
aspects of it. Parlet al. studied the effects, on a periocular based recognitioresysthat different seg-
mentation techniques have, as well as comparisons of peafoze with the face3[7, 38]. They provided
a feasibility study and the first attempt at a solely periactiased recognition system. The method in this
research implemented Local Binary Patterns and Gradigah@ition Historgrams as feature extraction tech-
niques for the periocular region data. These local appeardased approaches became the most widely used
feature representation in periocular research. M#keal. provided similar analysis with a different dataset
and different feature extraction methodolo@i].

Lyle et al. and Merkowet al. both studied the use of the periocular region in soft bioimeg&cogni-
tion [27, 28, 29]. Both works showed that the periocular region was capafidéassifying a periocular image
based on gender and/or ethnicity in their experiments.hgeitvork offered anything new in terms of feature
extraction as Lyleet al. followed Miller et al's approach and Merkowt al. do not explain how they use
Local Binary Patterns (though it can be inferred from theriégtthat they are using Ojala’s original technique
[34)).

Woodardet al,, Santos and Hoyle, and Ta al. explored the fusion of iris and periocular features
[45, 50, 53, 54]. The fusion of the periocular region with the iris was expld soon after the periocular
region was introduced as it offers a natural way of boostirgggerformance of an iris recognition system
that would fail due to poor quality data. Each of these woli@nged a significant performance increase in
their experiments as a result of fusing periocular regi@iuees to iris features. Woodaed al's approach
to extracting periocular features was based on the appitoabfiller et al. while both Santos and Hoyle and
Tanet al. borrowed from Parlet al’s approach.

Miller et al. considered the effects of data quality in a periocular bivimesystem BQ]. This
research used Milleet al’s approach to feature extraction and analyzed the perfocmaf a biometric
system when the data varied in terms of camera focus, imageasiillumination pattern. For the experiments
in this research, the periocular region greatly outpertémthe face when the difference in data quality

between gallery and probe images was high.
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1.3 Problem Statement and Impact

There are many conditions in which traditional biometricdalities might fail or provide poor
discriminative performance. Some of these conditionsdfiatt the biometric data were listed in Sectiot.
Sometimes these conditions can not be overcome or avoidkthariometric system must make use of the
data at hand.

The goal of this dissertation is to explore the usefulnesh@periocular region in addressing these
shortcomings. To accomplish this goal a detailed study@ptriocular region will be performed that exam-
ines the performance of a periocular-based biometric systehe presence of facial occlusion, various poor
quality iris data scenarios, and other data quality coreeglated to image acquisition.

Through the lessons learned while experimenting with th@pelar region, a novel approach for
periocular feature representation will be proposed. Ndribetechniques for periocular feature extraction
consider how each subregion of the periocular region affpetrformance or whether there is a specific
physical feature, like the pattern of the eyelashes or Memln the corners of the eye, that contributes
the most discriminative information. Periocular-basecbgmition is still relatively new and many of the
approaches used for it are very simple adaptations front bibmetric modalities. A more detailed study of
the periocular region is needed in order to develop algmstepecific to the periocular region.

This work is significant in a number of ways. No previous wods ltiried to use physical aspects of
the periocular region to optimize performance. In each efdievious works, features are extracted from the
periocular region using traditional approaches that givepecial consideration to whether the features come
from the skin around the eye, the eyebrow, or any other sgiomeof the periocular region. | hypothesize
that if the physical aspects of the periocular region a@aadt to influence the feature selection, the overall
performance will increase. Additionally, no previous weskplores the performance of multiple approaches
in sub-parts of the periocular region. Addressing theseatpavill give the biometric research community
a better understanding of the periocular region by contiriguto a model for the most discriminative sub-
regions of the periocular region. This knowledge may heljglgduture research in part-based periocular

biometric algorithms as well as aid in optimization efforts

12



1.4 Dissertation Outline

This dissertation is organized as follows. Chagtevill introduce a basic approach to periocular
recognition to use it to examine some basic aspects of thequéar region such as the performance of
sub-regions of the periocular region, the effect of the dnsperformance, and the affect the quality of the
biometric image has on a periocular-based biometric sys@mapter3 will analyze the physical structure of
the periocular region and take a closer look at its sub-regjio order to determine what kinds of features are
present in each. Chaptéwill take a look at local appearance based approaches amditigein periocular
recognition with the intent of modifying them for optimaleus periocular recognition. The lessons learned
from the two previous chapters will be combined to developweehperiocular feature extraction algorithm

in Chapterb.
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Chapter 2

An examination of common feature
extraction techniques using the

periocular region

2.1 Introduction

As mentioned in Sectiod.], traditional face and iris biometric systems can fail in gresence

of non-ideal data. The periocular region may be able to additee failings of these biometric systems by
allowing otherwise non-ideal data to be used within an aét&r protocol. Occlusion is a common cause of
failure in face- and iris-based biometric systems. Somengkas of occlusion in facial images include facial
hair, cosmetics, and closed eyelids. These obstructi@vept typical face- and iris-based biometric systems
from being able to collect discriminative features from émgire biometric image. The presence of a beard
or closed eyelids does not occlude the periocular regiorugh it is likely that using only the periocular
region will result in lower recognition performance tharngsthe whole face, because the periocular region
uses inherently less information, the whole face is notlalbg in the presence of facial occlusion. In this
scenario, the usefulness of the periocular region is déteanin comparison to the complete failure of the
facial recognition system. Similarly, the periocular @gmay also be used when an iris recognition system
is hampered by images with closed eyelids. The periocutaonds collected with the iris and can be used

as a substitute when the iris is obviously obscured.
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The periocular region can be seen as a sub-region of theTaegefore, one could expect common
facial feature extraction algorithms to produce discriative feature sets from the periocular region as they
do from the face. However, the degree of discrimination afqoeilar features remains to be seen. The
early works described in Sectidh?2 indicate that the periocular region is the most discrimveategion
of the face. They also suggest that the periocular regiorhinbg nearly as discriminative as the entire
face. Unfortunately, the experiments performed in thoseksvaere rudimentary. Even if a periocular-based
biometric experiment can be shown to have similar perfogada a face-based biometric experiment, there
is still reason to explore why this would be the case. An esitenlook into the features themselves and the
patterns they produce in the face and periocular region tele performed.

The quality of data plays an influential role in the performauwof biometric recognition systems.
Early research of popular modalities, such as the face &)dige high quality data in constrained environ-
ments. As expected, techniques tested under these cotstyald higher performance than when using
low quality data. Scenarios exist where high quality datalmaacquired reliably in real-world applications;
however, many others exist where reliable data collecgamot possible. Reacquiring biometric data when
the first acquisition yields poor quality data is not alwagsgible, therefore research is needed to make non-
ideal data useful. Non-ideal data can be characterizedtbgresubject-influence or environment-influence.
Occlusion, pose variation, facial expression and pupdtiih are causes of non-ideal data influenced by the
subject. Environmental influences include uncontrollgthting, image focus, and image resolution (pixel
count) variation.

The periocular region has been introduced as a biometrigsticapable of addressing some subject-
influenced concerns. For example, in the case of partiatiuded face images, the periocular region may be
used to identify individuals. Also, when iris recogniticail§ due to pupil dilation, the periocular region may
be used to increase performance. The periocular region magéd in these situations because it is captured
along with the face or iris without the need for additiongdtteie equipment or procedures. However, subject-
influenced concerns are not independent of environmenteinfled concerns; environment-influenced con-
cerns will likely appear in certain subject-influenced ndeal data. If a subject is actively trying to avoid
biometric recognition by hiding their face or running awayr the camera then the environment-influenced
concerns of blur and inconsistent image resolution wiklijkbe present.

The goals of this chapter are as follows: (1) to examine comfacial recognition data and common
facial feature extraction algorithms as they are implemeénn a periocular-based biometric system, (2)

to determine where in the face and periocular region the misstiminative features are extracted, and
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Figure 2.1: An example recording session from FR@Q}.[

(3) to assess the robustness of the periocular region wstert to the environment-influenced concerns a

periocular-based biometric system will likely encounter.

2.2 Data

Two different datasets were selected for use in this chaptex Facial Recognition Grand Challenge
(FRGC) Database and The Facial Recognition Technology EHE®atabase.

The FRGC database(] consists of high resolution color images of a large numbesubjects
mostly between ages 18 and 22, collected over a two yeardpEdm multiple recording sessions involving
controlled and uncontrolled lighting conditions, and wath expression and without. A recording session is
the set of all images of a subject taken each time the subjeicimetric data is collected. A typical FRGC
recording session consists of four frontal face, contddlighting still images, two frontal face, uncontrolled
lighting still images, and one three-dimensional imagguFeé2.1 shows a set of controlled lighting images
for one recording session. The controlled lighting imagesanaken in a studio setting (two or three studio
lights) and with two facial expressions (smiling and neljitrin controlled conditions, the distance between
the subject and the camera is approximately the same. Thenstijes were taken with a 4 Megapixel Canon
PowerShot G2 and have a pixel resolution of either ¢@272 or 1200« 1600 pixels. The images are stored
in JPEG format with storage sizes ranging from 1.2 Mbytes 1d\vBytes.

FRGC Experiment 1 is an experimental protocol and data subaeis widely used to compare
different biometric recognition methods. FRGC Experimerg a set of 16,029 still, high resolution, frontal
face images taken under controlled lighting conditiongds chosen for this work because the large face im-

ages will lead to relatively large periocular region imageRGC Experiment 1 measures performance on the
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Figure 2.2: Demographics of FRGC validation partition byrgece, (b) age, and (c) se4(].

classic face recognition problem: recognition from fromaaial images taken under controlled illumination.
FRGC Experiment 1 data is divided into training and valiolagpartitions. Images in the validation partition
were collected during the 2003-2004 academic year and d@@subjects from 4,007 subject sessions. The
demographics of the validation partition are given in FegRr2 The training set consists of an additional
12,776 images taken from 226 of the same subjects in a siagieding session in the Spring 2003 semester
and is only used with feature extraction algorithms thatinexja trained model.

This work also uses the FRGC Experiment 4 data subset, actiolleof images taken under un-
controlled lighting situations. Experiment 4 is a set ofi8l&till, high resolution, frontal face images taken
from the same 466 subjects as Experiment 1. Images were &dtkem in an indoor hallway with only the
overhead ceiling lights, or outside with only the sun illmaiing the face. The Experiment 4 protocol calls
for using the Experiment 1 dataset as the gallery set andxpertnent 4 set as the probe set.

The FERET databasd]] consists of gray-scale and color images of faces captuetdden 1993
and 1997. The mission of FERET was to assist researcherg idetfelopment of early facial recognition
systems by providing the best set of test data availablesdirtte. Many of the subjects present in the FERET
dataset were photographed in many different poses and vfiéneiht facial expressions. The experiments
of this chapter only make use of frontal face images. Thissubonsists of 1,980 frontal face images taken

from 990 subjects. An example of some of the FERET images ea®én in Figur@.3,

2.3 Method

The basic biometric experiment template followed by allexkpents in this chapter is composed
of the following steps: data preprocessing, testing/ingjrpartitioning, gallery/probe partitioning, feature

extraction, feature comparison, and computation of peréorce statistics.
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Figure 2.3: Example images from the FERET databdsk [

Left Eve Pertocular Region

Right Eve Penocular Region

Figure 2.4: The flow of preprocessing steps applied to a faegé to extract its periocular regions.

2.3.1 DataPreprocessing

Image preprocessing is an important step in the operati@enbadmetric system. All images from
each subset discussed in Sectib@undergo the same process described below. These standerdased
biometric data preprocessing steps convert a raw colaglfanage into the preprocessed periocular images

used in the experiments of this section. FigRréshows the flow of the preprocessing steps.

2.3.1.1 Geometric Normalization

The first step in preprocessing a facial biometric image aweEric normalization, which aligns all
of the images in the dataset to the same spacial coordinatesnage of a face can be rotated along three
axes: an axis from the face to the observer (in-plane ratgteovertical axis dissecting the face (out-of-plane
rotation), and a horizontal axis dissecting the face (dtgtane rotation). The most commonly used points

to correct in-plane rotation in facial images are the eyg¢eran Therefore the location of the eye centers must
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be known to perform correction. Eye center locations for ERd FERET were provided by the curators
of the databases.
Using the eye centers, a rotation matRxwas generated as follows and applied to an image to
correct in-place rotation
cog6) sin(0)
—sin(6) cog6)

0 — tan . ry—lyl
[lx— 1]

| is the pixel location of the left eye, amds the pixel location of the right eye.

where

2.3.1.2 Periocular Region Extraction

The next preprocessing step is to extract periocular regiages from normalized and equalized
facial images. This is accomplished by placing a square diagrbox around each eye, centered on the post
geometric normalization eye center locations. The lenf@the sides of this square bounding box is equal
to the distance between the two eye center coordinateskiadsen as the interocular distance. In an average
face, a single bounding box will cover the region from theteenf the face to the ear and from the bottom of
the nose to the middle of the forehead. The resulting pelaoémages are then re-sized to 20Q00 pixels
for use in the experiments of this chapter. 20R00 pixels was chosen because it is the size of the smallest

periocular region extracted from the face images used sxctmapter.

2.3.1.3 Histogram Equalization

The last step is histogram equalization, where the contfatite image is enhanced. This step
normalizes the relative illumination levels between inglgg changing pixel intensity values. The bins of a
histogram of an image that has been equalized will contgimagmately the same number of pixels. This
process ensures that images that are darker or lighter thanteal image are altered so that they appear to
have been taken under the same lighting conditions.

Histogram equalization is comprised of the following theteps: calculating the histogram of an
image, calculating the cumulative distribution functidritee histogram, and modifying the necessary pixels.

The histogram of an image is defined as the sum of the occwsasfeach intensity value and is calculated

by

19



H(1K = w h 1 ifl(i,j) =k
_i;]ZO 0 otherwise

wherel is an image ofv x h pixels andk is an intensity value. The cumulative distribution funat{@DF) of
a histogram is defined as the cumulative sum of the valuesediitis of a histogram. A transform is created
that will produce a new image such that the CDF of that new aniagpproximately linear. The application

of this transform to the original image results in an imagéan equalized histogram.

2.3.2 Dataset Partitioning

As mentioned in Sectio®.2, the FRGC dataset comes with images designated for tralmimgetric
systems that require a training set. Therefore, no speciaiderations were needed to partition the dataset
into training and testing subsets. The FERET dataset wasargtlarge, so a decision was made not to
perform any experiments that required a training set wighRERET data.

There is also no need for a probe/gallery partition in FRG@eExnent 1 due to the suggested
experimental protocol given by the organizers of the FRGG@s. FRGC Experiment 1 is intended to
compare every image to every other image. For experimeintg tiee FRGC Experiment 4 data, the images
in Experiment 4 are used as the probe set while images frorstperiment 1 set are used as the gallery
set. For FERET experiments, the earliest collected imagsyigect was chosen as the gallery and the other

image chosen as the probe.

2.3.3 Feature Extraction

The feature extraction step in the basic biometric expartrisehe main point of distinction between
any two different experiments in this dissertation. Fezdware extracted from each image in the dataset and
from each partition in the set. Each feature extractionriggle transforms a two dimensional image into a 1
dimensional feature vector through its own unique process.

The periocular region is essentially a sub-part of the faberefore, it should be expected that
common facial feature representations would provide auliseéans of classifying individuals using the
periocular region. Classes of facial feature represemtatinclude local appearance, keypoint-based, and
holistic. The experiments in this chapter will use basicrapphes from each class of feature representa-

tions in an attempt to provide comparisons between thetahifithe classes of feature representations to
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produce discriminating features from the periocular regitone. Among the local appearance-based fea-
ture representations are Local Binary Patterns (LBP),ddistm of Oriented Gradients (HOG), Local Phase
Quantization (LPQ), and Weber Local Descriptor (WLD). Scaleariant Feature Transform (SIFT) and
Speeded Up Robust Features (SURF) were chosen as the kelppsét representations. For the holistic
approach, Eigenfaces was chosen. Each technique is dasoiow.

Each of these algorithms represents the basis for theis difeature representation techniques.
While other, more sophisticated, methods might exist thatlevprovide better performance, the purpose of
these experiments is not to find the best performance foremgiet of data but instead to discover how each
class might respond to the problem of occlusion in facialgesa This knowledge will guide later work with

the periocular region in how to best develop an algorithntsjedo the periocular regions’ needs.

2.3.3.1 Local Appearance-Based Approaches

Local Appearance-Based Feature Extraction Methods arass cif feature extraction techniques
that accumulate statistics within local neighborhoodsiadoeach pixel of an image. These statistics include
the occurrences of certain textures, patterns, and infiemand are typically stored in a one-dimensional
feature vector. These experiments make use of four loca&aappce-based feature extraction methods: Local
Binary Patterns, Histogram of Oriented Gradients, LocaldehQuantization, and Weber Local Descriptors.

There are some differences in the way these types of feadueassed in biometric applications, as
opposed to texture classification. Typical data used inutextlassification experiments contain a single tex-
ture that is uniform and repeated across the image, howievages of the face used in biometric experiments
do not fit this description. Since the face and other biorogimodalities have more physical variability than
texture patterns, these features are extracted from didgrseof the image, called patches, so that there is a
distinction between the textures present in differentgafta biometric modality. The feature vectors from
each patch are concatenated together to form the final é&atator.

Letl be a preprocessed image that is divided Mtoon-overlapping rectangular patchedwpixels
each. The overall feature representation of the image &nddy a vector7 (1) = {T<1>,...,T<N>}, where
T, ..., TN are the feature vectors computed from tgpatches. In this work, all patches are 2@0
pixels and are placed in a non-overlapping pattern staitiniige top left corner of the image. 2020 pixel
patches were chosen because this is the smallest size pasiblp. Some of the methods detailed below

require that the local neighborhoods around a pixel havesat la 9 pixel radius.

21



Local Binary Patterns Local binary patterns (LBP) is a texture classification rdtthat was developed
by Ojalaet al. [33]. LBP accumulates texture information from an image inteattire vector. This is accom-
plished by labeling pixels with a binary number that is a tiortof placing a threshold on the neighborhood
around each pixel. A histogram of these values becomes tpetdeature vector. Due to the success of LBP
as a texture classification method, it has been used exédnsor both facial recognitionZ, 57, 43, 7, 48]
and periocular recognitior8B, 31, 30, 53, 5, 55, 54, 37, 20, 17, 19, 21, 27, 29, 28, 45].

A local binary pattern is a numerical representation of alpilkat encodes intensity changes of a
local neighborhood o pixels found on a circle of radiuR around a pixel of interest. A pixel of interest is
any single pixel in an imagkfor which a texture representation is desired. The LBP sabtkat pixel is a
function of the changes of intensity patterns in the loc&jmeorhood. Let a pixel of interest be represented

by x¢. Then the LBP score at this location is given by

P-1
LBP(x) = $ s(1(xj) —1(x)) 2!, (2.1)
k J; j
where
1, x>0
s(x) = , (2.2)
0, x<0

Xj is a pixel on the circle arourxik, andl (x;) is the intensity value of the pixel af.

The occurrences of each LBP score are accumulated into anS8iibgram izeT (1)) = P(P —
1) + 3, whereP = 8) which collects uniform patterns, as they are called by memet al. [1]. Ahonenet
al. defines a uniform local binary pattern as one that contaimsost two bitwise transitions in the binary
string. In this work, all LBP calculations are made from 8gtéxalong a circle with a radius of 1 pixel.
These parameters were used because the original works LBRP\gised these parameters. The purpose of
the experiments presented in this chapter is not to find tlimepLBP parameters, so there was no reason to

change the parameters.

Histogram of Oriented Gradients Histogram of Oriented Gradients (HOG) is an edge and grabtesed

feature descriptor originally developed by Dalal and Tsi¢¢] to detect humans in images. HOG is a local
appearance-based approach that counts the occurrendfereid gradient orientations in localized portions
of an image. Even though HOG was originally intended for obiketection, it has been used for both facial

and periocular recognitior8B, 37, 44, 28, 48, 11]. HOG is a simple technique that, with the exception of
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object orientation, is invariant to geometric and photaimeatansformation.
A modified HOG algorithm is used for extracting features fribva periocular region. The first step
is computing the gradient of the image using a Prewitt carti@h kernel. The gradient magnitud8mag,

and gradient angl&sang, are computed from the image gradie@j,in the horizontal direction an@, in the

Gmag: \/G>2<+G§a (2.3)

vertical direction, as defined by

In the next step, the values GfagandGang at each pixel location are accumulated into a histogramh Barc
of the histogram represents an evenly spaced segment dblgogsadient orientations. A 12 bin histogram
is used in the experiments in this dissertation, so a pix#l &Gmag between 0 andr/6 would correspond
to the first histogram bin. For each pixel, P, the orientaboncorresponding t@ang(P) is incremented by

Gmag(P)-

Local Phase Quantization Local Phase Quantization (LPQ) is a texture descriptormdc@resented by
Ojansivuet al. [35]. This method quantizes the phase information of a disdfeteier transform (DFT) in
patch-sized neighborhoods of an image. The main strengtiioofocal appearance-based feature extraction
method is that it is proposed to be robust to image blurrifgpuh originally used for texture classification
in the presence of blur, LPQ has also been used for faciagreton [3]. Like LBP and HOG, the resulting
LPQ codes are compiled into a histogram. The final LPQ codes6abin histogram where the quantized
DFT phase coefficients are accumulated after binary coding.

In LPQ the local spectra at a pixeis computed from a short-term Fourier transform defined as

Flux) = f(x—y)e i2u'y, (2.5)
) yer(

wherePR is a pixel in aM x M neighborhood around. The local Fourier coefficients are computed at

frequency pointsy = [a,0]", u; =[0,a]", us = [a,a]", us = [a,—a]", whereais 1/M. The phase portion of
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the Fourier coefficients is defined as the sign of the real aragjinary components &f(u, x) given by

1, ifg(x)>0
q(x) = . (2.6)
0, otherwise

The LPQ score is the binary coding of the eight binary coeffitsg;(x). In this dissertation, all LPQ

calculations were made on a® pixel window.

Weber Local Descriptor Weber Local Descriptor (WLD) is a texture descriptor develbpy Cheret al.
[8]. It was inspired by Weber’s Law, a psychological law thdere to the perception of change in a signal.
The law states that the change in a signal that will be justeable is proportional to the magnitude of
the original signal. WLD is concerned with the ratio betwelea intensity value of a pixel and the relative
intensity differences of the pixel to its neighbors, alstiechthe differential excitation, and the gradient
orientation of a pixel. Chest al. initially used it for texture classification and human faegattion. Like
each of the feature extraction techniques discussed irs&igon, the WLD feature vector is a histogram of
the occurrences of each excitation and orientation.

Let the differential excitation at a pixety, be defined as

o = arctan [:(Xi ;axaﬂ , (2.7)

wherex; corresponds to thigh neighbor ofx; and p is the number of neighboring pixels. Let the orientation

of a pixel, x(i, j), be defined as

X("”LJ)*X(I*LJ)
6arCtan<x(i,j—1)—x(i,j+1)>' (2.8)

The WLD descriptor for an image is defined as

n m . 180 . — . 180 . —
wioeo =3 5 L [(0-50)/360-¢] =c && [(6-5)/360-£] =t 29)
i=0j=0 10 otherwise

bl

wherec is the excitation variablep is the maximum number of excitatiortss the orientation variabl€, is
the maximum number of orientationjs the rows of pixels in an image, andis the columns of pixels in an

image. In this dissertation, all WLD calculations were masliag 14 excitation and 14 orientation levels, so
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the WLD feature vector would be comprised of 196 elements.

2.3.3.2 Keypoint-Based Approaches

Keypoint-Based Approaches are the class of feature eidratgchniques that find interest points
within an image. These interest points are typically maxonaninima of filter responses applied to the
image. Two different keypoint-based approaches are us#usrissertation. These approaches are Scale

Invariant Feature Transform (SIFT) and Speeded Up RobugtiFes (SURF).

Scalelnvariant FeatureTransform Lowe [25], the developer of Scale Invariant Feature Transform (§IFT
states that SIFT is an approach for detecting and extraldoej feature descriptors that are reasonably in-
variant to changes in illumination, image noise, rotatiscaling and small changes in viewpoint. Interest
points generated by the SIFT technique correspond to latedraa of Difference of Gaussians (DoG) filters
at varying scales. It was originally developed to be usedniage matching problems and is reported to be
invariant to uniform scaling, orientation, and partialiariant to affine distortion and illumination changes.
For each keypoint location, the keypoint descriptor is a&fias a histogram of orientations weighted by the
gradient magnitude computed from a local window of 8 pixels around the keypoint location. SIFT has

been used numerous times for facial recognit®r2p, 23] and periocular recognitior8B, 37, 39, 44, 45, 50.

Speeded Up Robust Features Originally inspired by SIFT, Speeded Up Robust Feature (B)Jdescrip-
tors are also a popular keypoint-based method. It was deedlby Bayet al. [4] and claims to be faster
and more robust to different transforms of an image than SEJRF keypoints are found from maxima in
the determinant of the Hessian matrix of images, a matrixemgof the convolution of the Gaussian sec-
ond order derivatives with the image. Along with the keypsitocations, an orientation is assigned to the
point and the descriptor is based on the sum of Haar wavelporses. SURF was originally used for object

recognition and has also been used in facial recognitiotegtsover the yeardp, 13, 56].

2.3.3.3 Holistic Approaches

Eigenfaces is perhaps the most commonly known facial reiogralgorithm p2]. It uses the
mathematical procedure of principle component analysiréaluce a low-dimensional representation of a
face from a set of higher-dimensional training images. kinthe other algorithms, Eigenfaces is a holistic

approach to feature representation because it considevgtble face at once.
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2.34 Feature Comparison and Computation of Performance Statistics

The FRGC experimental protocol suggests the use of distaeesurement to determine the simi-
larity between two feature vectors. Two different featugeters with the closest measure of difference within
a set of vectors are said to be the closest match. In an idexitifin experiment the feature vector of a probe
image is compared to every feature vector in the galleryrsgtlae Top-N results are returned. In a verifica-
tion experiment the feature vector of a probe image is coatptr every feature vector in the gallery set and
those that are above a threshold are declared to be a matehlre3iits reported for each experiment in this

dissertation are generated using the cityblock distandgane

d(p,q) =_;|pi —Gil, (2.10)

wherep andq are feature vectors extracted from two images that havetaréedimensionality of.

There are other ways of comparing features that would likebywide better performance, such as
using a trained classifier like a Support Vector Machine (§VMained classifiers have restrictions that make
them unusable with the FRGC and FERET data that is availabtéése experiments. SVMs work best when
there are multiple images per subject in the gallery setain ton. The FERET data only has 1 image per
subject available in the gallery set. The FRGC experimentatbcol calls for each image to be compared to
every other image. With SVMs there must be a clear distindietween gallery and probe because training
the classifier on test data results in unrealistically higtffgrmance.

Performance statistics for the experiments presenteddrissertation can be given in the form of
a Detection Error Trade-off (DET) as well as Rank-1 recdgnitate, Equal Error Rate (EER), Verification

Rate (VR) at 0.1% False Accept Rate (FAR), and D’, all of whach discussed in Chaptér

2.4 Basdline experiments and examination of features

The first step that must be performed is to establish a basefiperformance for a periocular-
based biometric experiment. The FRGC Experiment 1 protpamlides an excellent means of establishing
that baseline. Using the Experiment 1 protocol, a compargn be made between face and periocular
performance and from there the feature sets can be evaluated

The authors of the FRGC protocol suggest that the verifioatite at 0.1% false accept rate be used

to compare the performance between two experiments usingxperiment 1 protocol. This is mostly due
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to the structure of the experiment where there are typi&ilimages per subject. Rank-1 recognition results
are usually greater than 99% for experiments using Experitheegardless of how well the biometric system
does in other tasks because only 1 of 30 possible true mateleels to have the best match score. Therefore,
the Rank-1 recognition rate of this experiment is a pooredéftiator of performance. In analyzing the
performance of FRGC experiments presented in this chaptegttainable rate of true matches, given a low
rate of false matches, will be presented as opposed to thkhlilod that a true match will have the highest
match score for a given query. Equal Error Rate can also ket asé is a more commonly used extension
of the same measure of performance. Additionally, D’ shdvesdeparability between the similarity score
distributions of the set of true matches and false matches.

A total of 21 baseline experiments, seven feature extractiethods applied to three image seg-
ments, were conducted using the FRGC Experiment 1 datasatpErformance metrics were given for each
of the experiments. Tabt2.1 shows the performance statistics for the experiments ubm§RGC Experi-
ment 1 dataset. Rank-1, EER, VR at 0.1% FAR, and D’ are giveadoh feature extraction method used on
left eye, right eye, and face images. Figu2es- 2.11show the DET of the same experiments.

The results indicate that the experiments using featumen the face perform better than experi-
ments using features from the periocular region in mostsashis is somewhat intuitive, regardless of the
feature extraction algorithm or the dataset used, becégse is more information available in the face than
there is in the periocular region, and the face containsfaleperiocular region. In the experiment that use
HOG features, the right eye periocular images produce abéR @ 0.1% FAR than the face images. Al-
though the periocular region produces a better performeeseét in this specific experiment, it is not the best
performer overall. The best performance comes from using féatures taken from the face images. The
point of emphasis of these experiments is not whether theqeéar region performed better than the face
but to observe if any particular feature extraction techaigroduces greatly different performance results. If
s0, this could indicate that the periocular region and tie fo not produce similarly discriminative features
using a particular feature representation. For these FR@E€renents, the greatest decrease in performance
when comparing face and periocular images is seen with S@Riifes, where the decrease is 4.8237%.
There were three feature extraction techniques that esbirtgreater performance for the periocular region:
HOG, WLD, and Eigenfaces. Even though WLD and Eigenfaces mmtetter performance results when
using periocular region images as opposed to face imageis,pbtential usefulness is diminished by the
relatively low performance compared to other feature exiwa methods. The algorithm with the best over-

all performance for both modalities was LPQ and it showed @eadese in performance of 3.2634% when
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| Rank-1| EER [VR@O0.1%FAR|[ D’
LBP
Left Eye | 99.7068| 8.8323 64.8841 2.7331
Right Eye | 99.7005| 8.2016 69.7151 2.8250
Face 99.9189| 7.0848 69.9886 2.9429
HOG
Left Eye | 99.6069| 8.0829 69.6951 2.8350
Right Eye | 99.6444| 7.5245 72.2473 2.9378
Face 99.8815| 6.7912 70.3877 2.9692
LPQ
Left Eye | 99.7692| 7.1183 75.9181 2.8654
Right Eye | 99.7816| 6.7227 76.6574 2.9439
Face 99.9438| 5.4146 79.9208 2.9912
WLD
Left Eye | 99.3699| 10.5697 56.5907 2.5122
Right Eye | 99.4010| 9.3778 61.5161 2.6390
Face 99.6007 | 14.5565 41.9101 2.1189
SIFT
Left Eye | 99.7567| 8.9744 63.9085 2.3810
Right Eye | 99.7255| 8.4396 64.5694 2.3822
Face 99.9314| 7.9453 68.2645 2.4639
SURF
Left Eye | 99.6506| 9.6860 60.4454 2.2050
Right Eye | 99.5383| 9.4569 59.8147 2.2189
Face 99.9314| 7.6792 64.6384 2.5892
Eigenfaces
Left Eye | 98.9893| 15.1419 48.4156 2.0179
Right Eye | 99.0766| 13.8010 51.0956 2.1237
Face 99.6194| 13.0819 47.7257 2.1642

Table 2.1: Performance statistics of the experiments ubiegFRGC Experiment 1 dataset.

comparing face and periocular images.

In most cases, the different performance metrics agreeaaith other as to which feature extraction
method performs the best for each image segment. For irestBRE) features produce the best performance
result when extracted from face images for each of the @iffemeasures. Though there is some difference,
it mostly occurs at the bottom of the list of best performiegtires.

Baseline experiments were also performed with images freERET dataset. The setup of the
FERET database is different than the FRGC database andsidtaverification rate at 0.1% false accept rate
is not the best performance measure to compare two expdsmienhe FERET experiments there are two
images per subject. One image is in the gallery and the atledésoin the probe set. Rank-1 recognition rate

is the best measure of performance for experiments of this@aHowever, other measures of performance
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Figure 2.5: DET of Experiments using LBP features on the FRE3@eriment 1 dataset.
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Figure 2.6: DET of Experiments using HOG features on the FRER@eriment 1 dataset.
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Figure 2.8: DET of Experiments using WLD features on the FRG@eEiment 1 dataset.
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Figure 2.9: DET of Experiments using SIFT features on the EFERperiment 1 dataset.
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[Rank-1] EER [ VR@O0.1% FAR| D’

LBP

Left Eye | 90.2020] 4.9208 80.7071 | 3.2319

Right Eye | 87.2727| 5.2477 773737 | 32113

Face | 96.4646] 3.3375 87.7778 | 3.8307
HOG

Left Eye | 87.1717] 5.0597 80.6061 | 3.3462

Right Eye | 86.6667 | 5.3547 78.6869 | 3.3305

Face | 96.8687| 1.6138 924242 | 4.3129
LPQ

Left Eye | 92.0202] 4.6486 83.9394 | 3.2062

Right Eye | 92.2222| 4.8796 83.4343 | 3.1487

Face | 98.1818] 1.1050 96.1616 | 4.1220
WLD

Left Eye | 85.0505] 5.0035 774747 | 3.4546

Right Eye | 84.0404 4.8389 754545 | 3.3978

Face | 96.2626 1.6915 92.4242 | 4.4010
SIFT

Left Eye | 95.0505] 3.1806 91.1111 | 4.2568

Right Eye | 94.6465| 2.8910 914141 | 42725

Face | 97.2727] 1.2118 96.9697 | 4.6119
SURF

Left Eye | 92.0202] 3.9936 89.1919 | 4.1111

Right Eye | 91.7172] 3.6010 88.2828 | 4.1298

Face | 96.1616] 1.9630 95.6566 | 4.4745

Table 2.2: Performance statistics of the experiments ubi@gFERET dataset.

are included in the results.

A total of 18 baseline experiments were conducted using BRHET dataset. Four performance
metrics were computed for each experiment. T2shows the performance statistics for these experiments.
Rank-1, EER, VR at 0.1% FAR, and D’ are given for each featuteaetion method used on left eye, right
eye, and face images. Figur242- 2.17show the CMC of those experiments.

The results of the experiments using FERET images displastlynthe same trends as the FRGC
experiments. The face experiments perform better thangheqular region ones, though the separation in
performance between the two is slightly larger for FERETegkpents than FRGC experiments. LPQ is
still the top performing feature extraction method. Oneigeatble difference between FERET and FRGC
experiments is the relatively better performance of thepkéy-based methods in FERET experiments. This
phenomenon will be explored later in this section.

Given that a baseline performance difference between teegfad periocular region is quantified in

these experiment sets, possible reasons for the scale différence and explanations for why the periocular
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Figure 2.12: CMC of Experiments using LBP features on the EERataset.
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Figure 2.13: CMC of Experiments using HOG features on the EERataset.
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Figure 2.14: CMC of Experiments using LPQ features on the EFERataset.
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Figure 2.15: CMC of Experiments using WLD features on the FER&taset.
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(@) (b)

Figure 2.18: Distribution of SIFT keypoint locations frorR6C images.

region is a highly discriminative part of the face are exgtbr

The small difference in recognition performance betwegrearments using face features and exper-
iments using periocular features suggests that the pésioggion contains much of the face’s discriminative
information. Some examples of discriminative physicatdess present in the periocular region are the shape
of the eyelid, the shape of the fold above the eyelid, thegmes of wrinkles around the eye, the shape of
the eyebrow, the thickness of the eyebrow, the texture oéytedrow, and the texture of the skin. Both the
keypoint-based approaches and the local appearance-#pgezhches have ways of quantifying the extent
to which the physical features of the periocular region hesmost discriminative in the face.

Figure2.18 shows the distribution of SIFT keypoints found in FRGC inmgEigure2.19 shows
the same for SURF keypoints. Figur220and2.21show SIFT and SURF keypoints for FERET images. In
each figure, (a) is the mean of allimages used in the expetsdescribed above, (b) shows the percentage of
keypoints found at every pixel location, with white corresging to the maximum number of keypoints for a
single pixel location and black representing zero keyiand (c) shows the absolute number of keypoints
at each pixel location represented as a heat map. It can I gen in both figures where the majority of
keypoints are found. Most keypoints are concentrated aktl eye, in either the iris, eye corners, or eye
lids. The area around the eye often contains most of the iinée face. The effect of this concentration of
keypoints around the eye is seen in the performance of theriexents using FRGC periocular images and
their similarity to the experiments using the face images.

Figures2.22- 2.25and2.26- 2.29show the performance of experiments using local appearance

based features from only one patch in FRGC images and in FEREJes, respectively. These experiments
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(b)

Figure 2.19: Distribution of SURF keypoint locations froRGC images.

(b)

Figure 2.20: Distribution of SIFT keypoint locations frorBERET images.
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(@) (b)
.

Figure 2.21: Distribution of SURF keypoint locations froBRET images.

follow the same method as all of the others in this chaptdr thie exception that feature vectors from multiple
patches are not concatenated together to form a singleéeatator for an image. Instead, the features from
only one patch are compared between all images. Each fageiwas sub-divided into 120 patches through
the method described in Secti@3.3.1 The patches were arranged as seen in Fi@Qu22 As in the
previous figures, (a) is the mean of all images used in thergrpats, (b) shows the relative performance of
each patch, with white corresponding to the highest VR &00-AR in FRGC images and the highest Rank
1in FERET images and black representing the lowest perfocmaand (c) shows the absolute value of the
performance of the experiment, performed with only feairem each patch, represented as a heat map.
The figures shown here display the same trend as those usipgikebased feature extraction methods. The
best performing patches are found around the eye, with aXeeptions. The pattern of the results seen in
these figures supports the hypothesis that the periocidaréas intrinsic discriminatory power observed
through the fact that two different types of methods gemesanilar observations.

At first glance it might appear that most of the keypoints aenfl within the iris and, given the
known high performance of most iris recognition systemat those keypoints are causing the high perfor-
mance of the periocular region. The same can be said for tia¢ dppearance-based approaches and the fact
that regions closest to the eye perform the best. Bag. investigated this claim in their worl3f]. In
it, they performed multiple experiments using a constahbsdata and feature extraction techniques. The
difference between each experiment was the presence ofkeamaasp of the (a) iris and (b) entire eye region.
Figure2.30is the figure seen in their paper that shows the portion of énegular region that was masked.

Park et al. used two different local appearance-based feature methodsone keypoint-based
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(@) (b) (€) i

Figure 2.22: Performance of experiments using LBP featiuoss only one patch in FRGC images.

(@) (b) (c) i
Figure 2.23: Performance of experiments using HOG feafuoes only one patch in FRGC images.
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(@) (b) (€) i

Figure 2.24: Performance of experiments using LPQ feafuoes only one patch in FRGC images.

(@) (b) (€) &

Figure 2.25: Performance of experiments using WLD featu@®s bnly one patch in FRGC images.
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Figure 2.26: Performance of experiments using LBP featiuo®s only one patch in FERET images.
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Figure 2.27: Performance of experiments using HOG feafuoes only one patch in FERET images.
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Figure 2.28: Performance of experiments using LPQ feafuooes only one patch in FERET images.

(@) (b) (©)

Figure 2.29: Performance of experiments using WLD featwa@s bnly one patch in FERET images.

(a) (b)

Figure 2.30: Masks used by Pagkal.
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| Without mask] Iris mask | Eye Region mask

LBP

Left Eye 64.8841 65.2177 65.4859

Right Eye 69.7151 69.9823 70.0687
HOG

Left Eye 69.6951 69.4327 68.9206

RightEye |  72.2473 | 72.0297 71.6228
LPQ

Left Eye 75.9181 75.7238 75.6111

Right Eye 76.6574 76.3947 76.3221
WLD

Left Eye 56.5907 56.5090 56.3560

Right Eye 61.5161 61.3175 61.1875
SIFT

Left Eye 63.9085 63.4849 59.7951

Right Eye 64.5694 64.7299 59.6715
SURF

Left Eye 60.4454 61.2750 58.8559

Right Eye 59.8147 61.6970 56.9514

Eigenfaces
Left Eye 48.4156 48.2977 48.8258
Right Eye | 51.0956 | 51.2759 52.2109

Table 2.3: Performance statistics (VR @ 0.1% FAR) of the rimaséxperiments using the FRGC Experiment
1 dataset.

method. For the two local appearance-based methods, penfice accuracy decreased only slightly by
masking only the iris. Masking the entire eye resulted inra@what lower performance score. The keypoint-
based method showed greater change between masking tbalyriand the entire eye. These experiments
used only a portion of the FRGC Experiment 1 images. It is wogpeating these experiments on a larger
scale with more data and more feature extraction techniques

Table2.3shows the VR @ 0.1% FAR results of experiments performed kskimg the iris, masking
the eye region, and without masking in FRGC images. Tableshows the Rank 1 recognition rates of
experiments on FERET images. The masking procedure folldive procedure performed by Pakal. in
their experiments.

The results of the experiments presented here differ oty from the experiments of Pawt
al.. For FRGC experiments, there is a negligible differencesiriggmance between data with the iris masked
and data without a mask and there is a slight decrease inrpefice when masking the entire eye region.
There is no difference in performance in the FERET expertméerhe distribution of SIFT keypoints within

the different regions might shed some light on this obs@wmat22.47% of all SIFT keypoints in FRGC
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| Without mask] Iris mask | Eye Region mask

LBP

Left Eye 90.2020 90.2020 90.2020

Right Eye 87.2727 87.2727 87.2727
HOG

Left Eye 87.1717 87.1717 87.1717

Right Eye 86.6667 86.6667 86.6667
LPQ

Left Eye 92.0202 92.0202 92.0202

Right Eye 92.2222 92.2222 92.2222
WLD

Left Eye 85.0505 85.0505 85.0505

Right Eye| 84.0404 | 84.0404 84.0404
SIFT

Left Eye 95.0505 95.0505 95.0505

Right Eye 94.6465 94.6465 94.6465
SURF

Left Eye 92.0202 92.0202 92.0202

Right Eye 91.7172 91.7172 91.7172

Table 2.4: Performance statistics (Rank-1) of the maskxpgements using the FERET dataset.

images fell within the periocular region of the experimentsse performance scores are given in Téble
Using 22% of the keypoints space, SIFT only saw an approxinat% decrease in performance. This
would suggest that the keypoints in the periocular regi@enparticularly discriminative. 2.35% of all SIFT
keypoints from the face in FRGC images fell within the irisgkaThis is not a lot of information to lose, so it
seems reasonable that the performance would not decreabefrthe iris was masked. Additionally, FRGC
and FERET images are not ideal data for iris recognitionesgst so you can expect the few keypoints that
are found in the iris will not be particularly discriminagiv6.29% of SIFT keypoints from the face in FRGC
images fell within the eye mask. This represea0% of the keypoints found in the periocular region. This
loss of keypoints contributes to the decrease in performarien masking the eye region. It is not a large
decrease though, being similar to the decrease seen betwaanthe entire face and just the periocular
region. This result suggests that the remaining physigibns found in the periocular region, the shape
of the eyelid, the shape of the fold above the eyelid, thegmes of wrinkles around the eye, the shape of
the eyebrow, the thickness of the eyebrow, the texture oéstedrow, and the texture of the skin, are very
discriminative. This assumption is supported by the figstesving the performance of individual patches
using the local appearance-based methods. Many of thegza#rbund the eye, but not those in the center,

provide high performance relative to the rest of the face.

48



While the performance results using FRGC images shown ineTaBlchange very little based
on the masking, the results produced from using FERET imabew in Table2.4 do not change at all.
This is not an unexpected result for two reasons. First, #iekRL performance metric used to quantify the
performance of the experiments using FERET images is oplgrtimg the relationship between the query
image and its top match. The ranking of any number of matcké&sibthe top match can change without
affecting the Rank-1 as long as the top match is still the tapcin This is not so with VR @ 0.1% FAR,
which is influenced by every match. Second, there are muchrfenages in the FERET dataset compared
to the FRGC dataset. Notice that in Tall&, some of the performance metrics changed by fractions of a
percent. The performance measurements of experimenty BERET images will not change in such small
amounts because of the smaller number of images.

It remains to be explored why any particular feature eximactechnique performs better than the
others when using periocular region images. The analysithi® question will be presented in Secti8ré
where it will contribute to a novel method for periocular ogaition.

The analysis of the experiments presented in this sectiofirots the works that test the perfor-
mance of the periocular region in the context of partial feesgnition that were discussed in Sectib@

The work presented here adds additional experimental ev&® the assertion that the periocular region
is the most discriminative region of the face. It also seteeaddress the first two goals of this chapter as
outlined in Sectior?2.1: (1) to examine common facial recognition data and commoiaféeature extraction
algorithms as they are implemented in a periocular basaddiiic system and (2) to determine where in the
face and periocular region the most discriminative featare extracted.

The previous work performed by Paek al. explored the effect that different segmentation tech-
nigues have on periocular recognition. It also used tweekffit local appearance based approaches as fea-
ture extraction techniques. The work presented in this tehgpovides additional insight in the form of
much more test data and many more feature extraction tasbsidt provides evidence that features gener-
ated using multiple classes of feature representatiomigabs from the periocular region are discriminative
within the same set of test data. Additional experimentsvparformed and analysis given as to what sub-
parts of the periocular region give the whole its discrintivepower using both local appearance-based and

keypoint-based approaches.
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2.5 TheEffect of Camera Quality

The experiments conducted in this section test the effedetdriorated image focus, image resolu-
tion change, and uncontrolled illumination between théegglnd probe images. The experiments involving
the first two conditions are further segmented into expenisieshere the image quality deterioration comes
from natural means (environment influenced) and experisnehere it comes from artificial means (post-
processing to simulate deterioration). Experiments treatanducted using the unmodified periocular images
serve as a baseline and follow the basic biometric expetipretocol explained above.

The biometric experiments performed in this section moflpw the same steps as laid out in
Section2.3 data preprocessing, testing/training partitioninglegglprobe partitioning, feature extraction,
feature comparison, and computation of performance 8tatiData preprocessing remains the same. Test-
ing/training partitioning and gallery/probe partitiogiof the dataset for experiments involving image focus
and image resolution change follow the FRGC Experiment fopmd defined in Sectio.3. The partitioning
of the experiment testing uncontrolled illumination felle the Experiment 4 protocol described above. The
feature extraction techniques used in Secfighare used here as well. The process of feature comparison is
different and explained in the corresponding sectionsviheRerformance statistics are given in the form of
verification rate at 0.1% false accept rate and equal erter ra

The experiments that test artificially deteriorated imagssa different set of data. For the experi-
ment testing image focus, the two images with the highessaoreaof focus were selected from each subject
in the Experiment 1 dataset. For the experiment testing émagolution change, the two highest resolution
periocular images were selected from each subject. Theauetio deteriorate an image and the effects they

have on the periocular feature extraction are describe@dticé2.5.1

2.5.1 Performance Evaluation Consider ations
2511 Image Focus

A number of factors can lead to an unfocused image. The guafithe image will suffer if the
camera is unsteady when the image is captured, the subjeesnooit of the focus area of the camera, or
the subject is moving faster than the camera’s shutter saé®ds. An important aspect in any biometric
recognition system is robustness to variable focus. Ther@xgnts in this chapter evaluate focus in the
following way.

The Fourier energy spectrum can be used to quantify the tévelcus of an imagel0]. Images
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Table 2.5: Focus metric differences between images.

Focus difference range true matches false matches
0-4.96 592,762 135,590,852
4.97-9.92 156,376 79,650,906
9.93-14.88 36,890 29,765,650
14.89-19.84 9,068 8,333,278
19.85-24.80 2,486 2,087,510
24.81 -29.76 734 526,754
29.77 - 34.72 296 110,328
34.73 - 39.69 64 15,212
39.70 - 44.65 0 1,412
44.66 - 49.61 0 178

Figure 2.31: A comparison of unfocused images and theirdocetrics. From left to right: Un-deteriorated
Image (171.46), one convolution (167.25), five convolwi¢h61.36), ten convolutions (156.83).

from the FRGC dataset have focus metrics ranging from 18@rBtbcus) to 141.25 (out of focus). The
distribution of focus metrics is approximately normal watimean of 163.87 and a standard deviation of 5.26.

Experiments were designed with the goal of evaluating tfecebn recognition performance of
the natural deterioration of image focus. The absolutedsfice in focus metric between each image in the
FRGC Experiment 1 dataset was calculated. Image comparisere sorted into 10 evenly spaced focus
metric difference ranges. Tak®5 shows the difference in focus metric between every imagepeoison in
the dataset. It also shows the number of true matches amdfaches in that range. Results will be reported
for experiments using the image comparisons in each of ttaiffedent focus metric ranges.

Utilizing artificial defocus allows the periocular regioa be evaluated at lower levels of focus
and also provides a uniform distribution of images acrokkeedls of focus. An input image is artificially
unfocused by convolving the image with a Gaussian filter éeffioy a kernel size of 5 and a sigma of 1.0. An
image is repeatedly convolved with the Gaussian filter tintildesired focus metric is reached. Gaussian blur
does not change the number of pixels in the image, therefoohanges are needed in the feature extraction
methods that have been used so far. FiguBd gives an example of successively defocused images compared

to the original.
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Table 2.6: Focus metric differences between images.

Number of convolutions true matcheg false matches
0 932 866,760
1 932 866,760
3 932 866,760
5 932 866,760
10 932 866,760
15 932 866,760
20 932 866,760
30 932 866,760
40 932 866,760

Nine experiments were conducted using artificially defecusnages. The gallery set of images
remains unaltered while a duplicate set of probe imagesareotved with the Gaussian filter. Tab2e6

shows the number of convolutions and the number of true dsd faatches associated with each experiment.

25.1.2 Image Resolution Change

Two images taken of the same subject for the purpose of bitamwetognition are unlikely to have
the same number of pixels between eye centers (or any ottesuresof image size). In uncontrolled settings,
achieving the desired resolution (image size) becomes legsrlikely. Provided that an algorithm has the
means to compensate for changes in resolution, the bianmatrdality must have comparable information
across resolution sizes. Resolution change in the pedocegion is evaluated in the following way.

Since all images used in this section are square, a simplecroépixel count is used to quantify
the resolution of the image. Images from the FRGC datased pixel counts ranging from 116,281 (large
image) to 36,481 (small image). The distribution of imaga®ss resolutions is approximately normal with
a mean of 69,122 and a standard deviation of 9,698.

The pixel resolution difference of the image comparison$efFRGC Experiment 1 dataset were
calculated, in the same way as the image focus experimeatsle 2.7 shows the difference in resolution
between every image comparison in the dataset. It also sth@asumber of true matches and false matches
in each range. Results for these experiments will be reparseg the image comparisons in each of the 10
different pixel count difference ranges.

Artificial resolution change is performed by down-samplargimage from its original size. This

method can be used for whatever percentage of original sidesired. Modifications to the experimental
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Table 2.7: Resolution differences between images.

Resolution difference range true matches false matchesg

0-7,980 588,860 114,263,582
7,981 - 15,959 183,232 80,202,500
15,960 - 23,939 25,106 40,934,850
23,940 - 31,919 1,434 14,982,054
31,920 - 39,900 44 4,401,082

39,901 - 47,880 0 1,060,138
47,881 - 55,860 0 202,302

55,861 - 63,840 0 32,580
0
0

63,841 - 71,820 2,882
71,821 - 79,800 110

Figure 2.32: A comparison of down-sampled images and thgel gounts. From left to right: Un-
deteriorated Image (80,089), down-sampled to 80% (64,@c)yn-sampled to 40% (32,035).

setup described in Sectidh5 are made for experiments using local appearance-basaddeattraction
techniques because down-sampling reduces the number &g pixthe image. To accommodate for the
reduction in data in each block, the size of the local blodle@uced relative to the size of the image. This
accommodation results in a uniform number and placemenbeokb across image sizes. The feature vector
calculated from each block is normalized by dividing itsneémts by the sum of the vector. This normalized
feature vector maintains the same size and relative rangaloés across images of different sizes. This
procedure allows for a comparison to be made between a gaiteige and a smaller probe image. Figure
2.32shows an example image next to its down-sampled versions.

Seven experiments were conducted using down-sampled gm&ge gallery set of images remains
unaltered while a duplicate set of probe images are dowrpkeahas prescribed. Tab®8 shows the per-

centage total pixel change and the number of true and falsehemassociated with each experiment.

2.5.1.3 Uncontrolled Illumination

Uncontrolled illumination is a variable that has been haraddress through traditional means, when

compared to controlled illumination. Feature extractiogtinods that intend to be useful in this uncontrolled
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Table 2.8: Image resolution differences between images.

Percent of size true matcheg false matches
100% 932 866,760
90% 932 866,760
80% 932 866,760
70% 932 866,760
60% 932 866,760
50% 932 866,760
40% 932 866,760

Figure 2.33: A comparison of a controlled illumination inea@eft) and an uncontrolled illumination image
(right).

setting must be constant across varying lighting conditidine FRGC Experiment 4 dataset contains frontal

face images of subjects captured in uncontrolled lightinghese images, the uneven lighting casts shadows
that are not present in controlled illumination images asithe face of subjects. Figu2e83shows an image

of a subject from the FRGC dataset under controlled illutidmebeside an image of the same subject under

uncontrolled illumination.

252 Resultsand Discussion
25.21 Image Focus

A total of 28 experiments were conducted using images franRRGC Experiment 1 dataset for
the purpose of evaluating the effect of changing image facua periocular-based biometric recognition
system. Seven experiments were performed using imagesdaaim eye and for both natural and artificial
image deterioration.

Section2.5.1.1explains how focus is quantified in an image and how it occatsinally in the
images of the FRGC Experiment 1 dataset. It is reasonabkstowe that comparisons made between images
over a small range of focus difference will have a differeattagnition performance than comparisons made

between images over a large range of focus. To observe teatext this difference, experiments were
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Figure 2.34: VR at 0.1% FAR from experiments using right pemiar images from the FRGC dataset across
difference ranges of natural focus.

conducted where each image comparison was placed into aea diifferent intervals based on the focus
value difference between the two images as explained inddezi5.1.1and seen in Tablg.5. Figure2.34
plots the VR at 0.1% FAR results of these experiments usiegitiht periocular images from the FRGC
Experiment 1 dataset. Left periocular image results areshotvn because the results are similar and offer
no additional insight on the observations of this experimen

One thing that should be noted initially is that the numbetroé and false comparisons decreases
at each interval of focus range. It was previously mentiothed the focus metric distribution is skewed to
the largest value which explains this observation. Thiseawertain ranges to not have valuable information
because of the lack of true comparisons. Even though teresangre evaluated, only eight ranges are shown
in the figures presented here. The two remaining ranges RawéRfor all features.

A decline in VR at 0.1% FAR can be seen for the first three focesimranges. This is in line with
the expectation that the difference in focus would causeceedse in performance. At this point the results
become unexpected. The verification rate begins to incieefeee decreasing again. The fourth focus metric
range has only 1.5% of the true matches of the first range efdrey, these results are much less representative
of the true performance of this focus difference range. Rigss, some interesting observations can be made.
This experiment is comparable to the FRGC Experiment 1 pmaed in Sectior2.4, which includes the same

image set. The LPQ feature experiments performed best iexjeriments from Sectioh 4 with a right eye
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Figure 2.35: VR at 0.1% FAR from experiments using right pemlar images from the FRGC Experiment 1
dataset across difference ranges of natural focus.

periocular region system performance of 76.6574% VR at (FAR. An experiment performed with those
same images and presented in this section that only countagarisons between the most similar images
in focus metric showed a VR at 0.1% FAR of 78.7271%, which espnts an increase of approximately
2%. The performance of experiments using HOG, SIFT, and SBIR& increases while LBP, WLD, and
Eigenfaces decreases. HOG, SIFT, and SURF all either ctaba partially invariant to blur or convolve the
data with a Gaussian filter as part of the algorithm.

One drawback of the experiments described above is thatuimder of comparisons decreases as
the range of focus difference increases. This changinghigrican be accounted for by starting with a set of
images that have a small difference in focus and introduaitifjcial defocus to each image, so the number
of comparisons stay the same as the focus range increases.thietarget set of images remains the same
across all the experiments. Artificial defocus is introduizeincrements to the same set and the new images
serve as the query set. A set of images that have a smallatifferin focus was chosen by selecting the two
images from each subject that have the highest focus métris.method has two advantages. First, the two
images with the highest focus metric always have a smaéwdifice. Second, a higher focus metric will allow
a greater amount of artificial defocus to be introduced.

Section2.5.1.1explains how artificial defocus is applied to an image. FéguB5shows the VR at

0.1% FAR results using only right periocular images fromRRGC Experiment 1 dataset.

56



The results seen here show a noticeable separation in perfice between the different feature
representation techniques as the number of convolutiamease. HOG, LPQ, and WLD features show the
least amount of performance decrease. The performanceBRf2IFT, and SURF appear to decrease at a
similar rate. Only Eigenfaces immediately decreases denably in performance.

HOG features show the best VR at 0.1% FAR at the highest nuofi@rnvolutions. One step in
HOG is convolving the image with a Prewitt filter. This filtertraditionally used in edge detection. It is not
an uncommon step in edge detection problems to perform @awisisir on an image before detecting edges.
This step is used to reduce noise. Therefore, the perforenasing HOG features in this experiment does
not suffer greatly from defocus.

The fact that WLD features perform well at a high degree of bampared to the unblurred image
can be expected based on the nature of the algorithm. Theaws @f the WLD algorithm are the relative
intensity of a pixel compared to its neighbors and the gradiéentation of each pixel. Convolving an image
with a Gaussian filter has little effect on either of these ponents.

The developers of LPQ claim that “The phase can be shown tolber anvariant property under
certain commonly fulfilled conditions.”. In their work onehrecognition of blurred faces, the authors assert
that “The experimental results on CMU PIE and FRGC 1.0.4s#dsashow that the LPQ descriptor is highly
tolerant to blur but still very descriptive outperformin@B both with blurred and sharp images3].[ The

experiments performed in this section provide a similatysisof both LPQ and LBP.

2.5.2.2 Image Resolution Change

A total of 28 experiments were also conducted to show theedferesolution change. The number
of images and comparisons per experiment were given in@e2%.1.2 As with focus, we hypothesize that
comparisons made between images in the same range of insgjetien will have a different performance
measure than comparisons made between images with a ldifgegrce in image resolution. Given the di-
verse nature of the feature representation techniquessdied thus far, the expectation is that certain features
will perform better than others when being used to compaigges with a large difference in resolution.
To observe this difference, EER and VR at 0.1% FAR are medsusing comparisons within ten different
equally spaced ranges (from minimum to maximum) of imagelpigunt difference. Figur2.36shows the
VR at 0.1% FAR results using right periocular images fromRR&C Experiment 1 dataset. Here again, left
periocular image results are not shown because the resealtsrailar and offer no additional insight on the

observations of this experiment.

57



OO+

Qs

x
<
w
S
—
=]
—
©
x
>
—HOG
L P N,
20 WLD
—SIFT
IO QURF [N
—— Eigenface
I—————— L L L L
7979 15959 23939 31919 39900

Maximum Pixel Count of Range

Figure 2.36: VR at 0.1% FAR from experiments using right pemiar images from the FRGC dataset across
ranges of natural resolution difference.

As with the experiments involving changes in focus, the nemtif true and false comparisons
decreases at each interval of pixel count range. Even thimmtanges were evaluated, ranges with zero true
matches are not shown in the figures of this work.

A decline in VR at 0.1% FAR can be seen for the first three pixalnt ranges for all feature
extraction techniques. This is in line with the expectatioat the difference in pixel count would cause a
decrease in performance. The features show the same ragerefading performance with the exception of
SIFT and SURF. These two methods decrease at a slower ratee Aigh pixel count ranges SURF show an
increase in performance while all other methods continudetdine. However, the results from these ranges
are less reliable.

SIFT and SURF features both claim to be scale-invariants Trivariance is achieved through the
use of a difference of Gaussians approach where keypomtsand at the minima/maxima of the difference
of a pyramid of images (the image in question is sub-samplaayrtimes and analyzed at many scales).

One drawback of the experiments described above is thatuimber of comparisons decreases as
the difference in pixel count increases. This changingaldei can be accounted for by starting with a set of
images that have a small difference in pixel count and doamgding each image so that as the pixel count
difference range increases the number of comparisonstetaame. In all of these experiments the target set

of images remains the same while the query set is down-sdmplatervals of 10%. A set of images that
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Figure 2.37: VR at 0.1% FAR from experiments using right pemlar images from the FRGC Experiment 1
dataset across ranges of artificial resolution difference.

have a small difference in pixel count was chosen to servheatatget and query sets by choosing the two
images from each subject that have the highest pixel count.

Section2.5.1.2explains how down-sampling is applied to an image. Figu8¥ shows the VR at
0.1% FAR results using right periocular images from the FREX@eriment 1 dataset.

The results seen here suggest that, for a small amount of-dampling, the performance of the
biometric recognition experiment with no difference in gearesolution is the best predictor of the perfor-
mance of the experiment with greater image resolution iffee. It isn’t until there is a great difference in

image resolution that a method like SIFT shows it usefulness

2.5.2.3 Uncontrolled [llumination

An additional 14 experiments were conducted to show thesfigf uncontrolled illumination. An
explanation of the data and the experiment was given in@e2tb.1.3 The data used for this quality concern
only allows for testing the natural occurrence of the uniaalgd illumination. The presentation of results for
these experiments differs from the previous quality come@nd instead resembles the FRGC Experiment 1
results from Sectio2.4. Figure2.38shows the DET of the experiments using right periocular iesafgom
the FRGC Experiment 4 dataset.

It should be noted that the uncontrolled illumination vhkais not independent from the other
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variables. The images used in the probe set have focus medriging from 80.98 to 149.66 with a mean of
113.54, where the gallery set focus metrics range from I5@682.00 with a mean of 166.57. The probe
set also has pixel counts ranging from 11,025 to 40,401 witlean of 21,275, as opposed to the gallery set
with pixel counts ranging from 37,249 to 114,921 with a mea6%323. The affect of focus and resolution
change on performance has already been discussed and th&rofied illumination images come from a
very large range of those metrics. All three of these facffect the experimentation of this section, not just
the factor of uncontrolled illumination. Therefore, poecognition results can be expected.

All of the feature representation techniques performedamlp at this task that nothing can be
determined based on these results. However, this is notpeated; of all the submissions to the FRGC
the minimum performing algorithm performed slightly wotban the HOG implementation (5.10% VR at
0.1% FAR) presented here. The median performer was aroud\@® at 0.1% FAR. The best performing
algorithm had a verification rate just below 80%. This altjori performed this well on Experiment 4 only,
which suggests it was particularly tuned to this problemfddmnately, it is a proprietary algorithm and it is

not open for inspectiorsp].

2.6 Conclusion

The work presented in this chapter aimed to address thrds.gdae first goal was to examine
common facial recognition data and common facial featuteetion algorithms as they are implemented in a
periocular based biometric system. Experiments were aadwvith seven different feature representations
from three different classes of feature extraction meth&adsh of the classes of feature extraction methods
have a long history of use in facial recognition systems.ng/shese methods, the performance of a facial
recognition system and a periocular recognition systenewempared.

Establishing this baseline performance result allowedafigressing the second goal, the further
exploration of where in the face the most discriminativedess were found. The experiments presented in
this chapter supported previous research on this questatnte periocular region is the most discriminative
region of the face. Some examples of discriminative phydeatures present in the periocular region are
the shape of the eyelid, the shape of the fold above the eybédoresence of wrinkles around the eye, the
shape of the eyebrow, the thickness of the eyebrow, thertextiuthe eyebrow, and the texture of the skin.
The Keypoint-based feature methods found keypoints heawihcentrated around the eye corners and eye

lid. The local appearance-based approaches found disaiivie patches around the eyebrow, eye corners,
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and the skin under the eye.

The third goal of this chapter was to assess the robustnee gferiocular region with respect
to the environment-influenced concerns a periocular-basmdetric system will likely encounter. It was
suggested that a periocular-based recognition systemdwiely encounter environment-influenced data
quality concerns such as blur, image resolution changesuaoontrolled illumination. Experiments were
conducted to examine the extent of the performance degoadimicurred by these factors when using a
number of different types of features extracted from théogetar region. These experiments largely upheld
the claims of the originators of each feature, such as LP@gadevariant to blur or SIFT being invariant to
scale.

In later parts of this dissertation these observationsheilised to develop a novel method of extract-
ing features from the periocular region for the purpose ofdéasing the performance of a periocular-based
biometric system over the baseline performance found mgusiethods originally designed for facial recog-

nition systems.
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Chapter 3

The physical structure of the periocular

region

3.1 Introduction

As discussed in Sectioh.2, the periocular region was first explored within the coniaixpartial
face recognition. Each of these studies discovered thapehiecular region held the most discriminative
information in their experimentation, which led researshe focus on the periocular region.

Though periocular recognition is a new field of study, receagarch has addressed many interesting
aspects of it. Absent from the list of explored aspects ofpgocular region is the motivation behind the
original concept of partial face recognition. None of thereuat periocular studies have looked at how each
sub-region of the periocular region affects performance/toether there is a specific physical feature, like
the pattern of the eyelashes or wrinkles in the corners oktfee that contribute the most discriminative
information. Periocular-based recognition is still relay new and many of the approaches used with it are
very simple adaptations from other biometric modalitiesmére detailed study of the periocular region is
needed in order to develop algorithms that leverage spetifictural aspects of the periocular region.

In addition to these early studies, a more recent invesbigéty Hollingsworthet al. explored useful
physical locations of the periocular region, according tonln participantslf6, 17]. Human participants
were presented with periocular region images and asked:tdel# two images came from the same subject.

During this process, the study participants were askedetatify how helpful a number of different aspects
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of the periocular region were in making a decision. Theseetspncluded “Eye shape”, “Tear Duct”, “Outer
Corner”, “Eyelashes”, “Skin”, “Eyebrow”, “Eyelid”, “Cold’, “Blood vessels”, and “Other”. This type of
research is a step in the right direction, but there are maegtipns left unresolved in regard to automatic
(machine) biometric recognition.

The experiments in this chapter are designed to addressltbeihg questions:

e Are there sub-regions within the periocular region thawjzte more discriminative information than

others?
e Are these sub-regions similarly discriminative usingetiént feature representation methods?

e Could the knowledge gained here be used to adapt the locadagipes to use the physical structure of

the periocular region?

The answers to these questions will give the biometric reseeommunity a better understanding
of the periocular region by contributing to a model for thestndiscriminative sub-regions of the periocular
region. This knowledge may help guide future research ittlpa@sed periocular biometric algorithms, as well

as aid in optimization efforts.

3.2 Data

The experimentation in this section used a subset of the FRG@riment 1 data set. Two images
(one probe, one gallery) were used from 466 subjects in tlg&C-Bata set, for a total of 932 images. The two
selected images were chosen for each subject from the fagahle recording session in order to minimize
the time lapse between images, as time lapse is not the afeausf in this section. Only images with a
neutral facial expression were selected, as the impactcad!faxpression was not the focus in this section.

The set of FERET images detailed in Secttb2was also used.

3.3 Method

The nature of local appearance-based approaches canlgeidietermination of discriminative areas
of the periocular region. This class of local features dbssran input image by generating a histogram of
predefined statistics, where the count of the occurrencéisest statistics has great discriminative power.

However, there are some drawbacks to using local featumégin@ly, most of these features were conceived
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Figure 3.1: Example of a periocular region image divided inlibcks.

to be used in pattern detection where a window containingnatent or repetitive pattern is compared to
another window with a pattern. The local nature of theseufeatis not well suited to describe a surface of
variable structure, like the human face. Computing somefea on an entire biometric image also removes
spatial information. For example, the statistics of thelidgemight be different from the statistics of the
skin on the cheek, yet the values are accumulated into ormgriitioned data set. This method prevents
differentiation between a particular statistic that corinem one region or the other.

A simple approach was introduced to combat these drawbagkisiometric image can be sub-
divided into regions called blocks, seen in FigBr& The local features can be computed in each block and
the results can be concatenated together to form the featater. An early study that used this approach in
face recognition, formatted the blocks in a non-overlaggiattern that covered the imadd.[

Performance measures can be given for each block indilydasiwell as for the entire collection.
The individual blocks that perform the best may likely be fecks that have the most discriminative infor-
mation. To this end, a biometric experiment was conductegutmtify the performance of a single 220
pixel block from each image for blocks centered at everylpgixéhe image. Blocks centered on the border
of the image consider only pixels within the image. 40,000egiments were conducted, one for each pixel
in the 200x 200 pixel periocular image.

The biometric experiment performed in this chapter follonestly the same steps as the one laid out
in Section2.3: data preprocessing, testing/training partitioninglegslprobe partitioning, feature extraction,
feature comparison, and computation of performance statisAll data is used in the test set as there are
no local appearance-based feature extraction technigaessuire a training set. There are two images per
subject in the dataset and 1 image from each is used in thergphrtition and the other in the probe partition.
LBP, HOG, and LPQ features are used in this work. WLD featuresevleft out as they have consistently

underperformed in all previous work and would not add amgho the experiments conducted here. Feature
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comparison is performed as in Sect@3. Performance statistics are given in the form of Rank-1gaitmn

rate.

3.4 Reaults

Following the method described in SectiBr8, figures were created to show the relative perfor-
mances of blocks centered on each pixel in the image. Fig@shows the Rank-1 recognition rate for a
block centered at each pixel using local appearance-basddrés (LABF) extracted from FRGC images.
Figure3.3shows the same for FERET images. As a means of anchoringshksr& physical structures of
the periocular region, mean images are displayed abovelilee figures. There were 12 different combina-
tions of feature representations, periocular images, atabdts. Counting each of the experiments separately,

these figures represent the results of 480,000 biometrierarpnts.

Iris Some initial periocular studies were concerned with thedicbpf the iris in periocular recognitioB],
37]. It was reasonable to assume that the performance of thecp&r region could be greatly influenced
by the iris because the iris has already been shown to be al @sef accurate biometric modality. Some
research has shown that there was minimal change in penficertzetween experiments where the iris had
been masked and experiments where the iris had not been dnaBlgure 3.2 supports these results. In
these experiments, there was very low performance on bloaki®red near the iris when using LABF. One
possible reason for this is that the visible light spectrurt small iris diameter of images from FRGC were
not well suited to extract texture information from the jifieence the inclusion or exclusion of the iris had
little impact on the performance of the periocular regiorewlising LABF in these experiments. It should
be noted that there are many preprocessing steps in a tyggcedcognition system that were not followed
in this method. It is not surprising that without these stiasiris will not produce high performance using

LABF.

Skin  The skin underneath the eye is a much larger area than anypatteof the periocular region, yet it
seems to be the least discriminative, regardless of thedlyfgature used. The results show no points of high
performance when using LABF. Additionally, there does rpgiear to be any pattern to the performances in
this area. To expand on this thought, the skin has the mafstcguarea with which to find unique textures,
moles, scars, or other facial features, and we expect therpadf high performance and high key-point

concentration to vary with the data to a greater degree tharther physical area of the periocular region.
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MEAN

Figure 3.2: Individual Rank-1 recognition rate for a blotlkeach pixel. Results are displayed for each feature
representation method in an experiment using FRGC pedodulages. Results for right periocular images
are shown on the left and vice-versa.
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MEAN

HOG

LPQ

Figure 3.3: Individual Rank-1 recognition rate for a blotkeach pixel. Results are displayed for each feature
representation method in an experiment using FERET pdedptuages. Results for right periocular images
are shown on the left and vice-versa.
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Although any one pixel location does not appear to be vemyridisnative relative to other locations, the skin
underneath the eye is a very large region and, when takenlasla,would provide much better discriminative

power than any one smaller portion of it.

EyeCorners The corners of the eye, particularly the inner corner, apelae the most discriminative area
of the periocular region. The eye corners have propertigsabuld explain its discriminative power. First,
the location of the eye corner relative to the center of treeleys a high degree of variability, which provides
useful inter-class variability. Second, the eye cornex@cthe smallest amount of area within the periocular
region, which leads to high performance for blocks centetdtie few pixels in the eye corners. Third, there
is a high density of both shape and texture information preisethe eye corners which all the feature types

utilized in this work use.

Eyelids The eyelids have perhaps the most variance in discrimm@idwer across different feature types
using FRGC and FERET images. Both LBP and LPQ features peodutistinct eyelid shape while HOG
features do not, as seen in FiguB2and3.3. The observation that HOG features do not find eyelids very
distinctive may seem counter-intuitive at first because He@adures, in part, utilize something similar to an
edge detection algorithm, and the eyelids are perhaps tlsé visible edges in the periocular region. This
may indicate that the textures found by LBP and LPQ are matindtive than the edges or contours of the

eyelid.

Eyebrows Eyebrows appear to have a high degree of discriminative posrapared to other physical areas
of the periocular region when using LABF, perhaps secong tmthe eye corners. With that said, it also
appears that the outer half of the eyebrow contains the magirthe eyebrow’s discriminative power. This

observation is slightly stronger in the FRGC experimenasttihne FERET ones.

3.5 Placement of blocks based on the structure of the periocular re-
gion

Previous research involving the periocular region has tisedame basic block placement method
as the original LBP implementation of face recogniti@h [The blocks have all been rectangular regions of

the same size that border each other in a grid pattern andtdeedap. While this is a suitable approach for a
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basic biometric system, it does not appropriately modesthecture of the periocular region as evidenced by
the results in Sectio8.4. The periocular region is not uniformly discriminativeetiefore, a block placement
strategy that treats it as so is unlikely to achieve optineaiggmance.

Section3.4described five sub-regions of the periocular region thatiegsesent the different struc-
tural areas within the periocular region. After discovgrihe relatively poor performance of the iris and
the difference between the inner and outer portions of tlebmw, a new model is presented. The block
placement in the new model intends to cover seven sub-regibtie periocular region: upper eyelid, lower
eyelid, tear duct, outer corner, inner eyebrow, outer eygband the skin under the eye.

Figure 3.4 shows the proposed block arrangement. There are two inmtdaetors in the novelty
of this block arrangement. First, the blocks are not placealgrid pattern like previous approaches. Blocks
are placed so that they correspond to the sub-regions list8dction3.4. The purpose of this arrangement
is to focus the feature extraction on structural elementl@periocular region. It is expected that these sub-
regions will be more discriminative than previous standgpgroaches. Second, the blocks are of variable
size, because not all structural elements of the periocetpon are the same size. For instance, the eyebrow
is much wider than the eyelid. The size of the each block isrd@hed so that a particular sub-region of the
periocular region and only that sub-region is containedvanlilock. The location of the blocks that cover a
sub-region of the periocular region as placed so that thegrabe physical feature they are intended to cover

based on the mean images shown in Fig@@and3.3
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Left Right
Sub-region LBP HOG LPQ LBP HOG LPQ
upper eyelid || 71.2446| 53.6481| 69.0987| 70.8155| 52.5751| 68.8841
lower eyelid || 59.2275| 36.0515| 57.2961| 60.9442| 42.7039| 59.4421
tear duct 70.3863| 47.6395| 59.8712| 68.6695| 45.4936| 58.7983
outer corner || 81.9742| 59.4421| 74.4635| 82.8326| 58.7983| 75.1073
inner eyebrow|| 77.8970| 71.4592| 87.3391| 78.3262| 69.9571| 84.9785
outer eyebrow|| 81.3305| 72.7468| 87.3391| 80.4721| 74.4635| 88.6266
skin 90.9871| 90.1288| 93.7768| 91.4163| 91.8455| 95.7082

Table 3.1: Rank-1 recognition rates of experiments usinGERmages and only features from certain sub-
regions of the periocular region.

3.6 Algorithm performance analysisin different sub-regions

As seen in SectioB.4, not all LABF perform equally in each sub-region within theperiments.
Each feature extraction method has types of patterns tisahiended to quantify, and these patterns express
themselves differently in the different sub-regions ofjpleeiocular region. Experiments should be conducted
to test the relative performance of each of the LABF withia tfifferent sub-regions. If the performance of
each LABF is significantly different within the sub-regiomisen an algorithm could be developed, using the
proposed periocular structure based block arrangementake the best use of the specific patterns found
in each sub-region, instead of treating the whole perigaelgion the same. This approach has the potential
to improve the performance of periocular-based biometritesns by using a method fitted to the unique
aspects of the periocular region.

To perform an analysis of the algorithmic performance ofedént LABF within different sub-
regions of the periocular region, 42 basic biometric experits were conducted as previously described in
Section3.3. In these experiments, features extracted from only oneagibn of the periocular region are
considered so that the performance of each sub-region canadgzed individually. These experiments use
the same parameters as those listed in Se@&i8n The results presented here are different than those in
Section3.4. In Section3.4, results are presented for a block placed around an arpjiieel. The results in
this section are from biometric experiments using coneaezhfeature vectors of multiple blocks from the
same sub-region. Tab&1shows the Rank-1 recognition rates of these experimentgrpgsd using images
from the FRGC dataset. TabBe2 shows the same using FERET images.

For the upper eyelid, lower eyelid, tear duct, and outer @grbhBP features give the best perfor-
mance in these experiments using both left and right peldogegion images and using both FRGC and

FERET images. These results point to the observation thBtfeBtures are more discriminate in this region
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Left Right
Sub-region LBP HOG LPQ LBP HOG LPQ
upper eyelid || 45.4545| 27.9798| 44.1414| 47.4747| 28.6869| 46.2626
lower eyelid || 34.9495| 20.3030| 30.8081| 34.2424| 18.4848| 32.0202
tear duct 53.5354| 32.7273| 48.4848| 52.1212| 32.5253| 49.0909
outer corner || 54.1414| 34.0404| 45.7576| 53.6364 | 35.5556| 47.7778
inner eyebrow|| 69.6970| 62.8283| 78.4848| 69.3939| 62.3232| 80.0000
outer eyebrow|| 63.9394| 56.8687| 73.2323| 64.5455| 54.8485| 73.0303
skin 73.4343| 71.3131| 75.2525| 71.0101| 68.5859| 73.4343

Table 3.2: Rank-1 recognition rates of experiments usinREE images and only features from certain
sub-regions of the periocular region.

than other feature types.

For the inner eyebrow, outer eyebrow, and skin, LPQ featgiesthe best performance in these
experiments using both left and right periocular regiongesmand using both FRGC and FERET images.
This would suggest that LPQ features are more discrimimetiegse regions than other feature types.

The performance numbers seen within a single feature ¢ixtnramethod do not seem to correspond
to the figures from SectioB.4 at first glance. In most cases the skin under the eye arealiegt@erforming
sub-region, but Figure3.2 and 3.3 do not show patches in the skin area to be very high performirg
figures are showing the performance of a single patch, whée¢sults shown here come from a concate-
nation of the features from 40 patches. In fact, the skin acgdains the most patches while other areas,
like the eyebrow, contain less patches and do not see adldastiease in performance compared to the skin.
One explanation for this behavior would be that the featfwaad in the eyebrow, for instance, are more
discriminative than the features found in the skin, and thatperformance of the skin sub-region is due in

large part to the large number of patches.

3.7 Discriminative ability of LABFsin different sub-regions

To explore the discriminative nature of each feature wittdnh physical sub-region of the periocular
region, further analysis is performed on the feature vecextracted in SectioB.6. It is likely that an
individual element within a feature vector, e.g., featuffed the 59 feature length LBP feature vector, will
present a different range of values when derived from diffesub-regions of a periocular image. As an
example, assume that a particular element in a feature vegicesents a line. Extracting features from the

eyelid might cause this element to have a high value becdubke presence of lines in the eyelid. Extracting
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features from smooth skin might cause a low value for thimel&. The mean value of this element in the
feature vector corresponds to the average presence ofancérature. D’ can also be calculated for an
individual element to show the separability of this elem@hen comparing images from the same subject
and images from different subjects.

The method for attaining these metrics follows. For the expents in SectiorB.6, features were
extracted from 7 different sub-regions of the perioculgiagr. The sub-regions are comprised of a variable
number of patches. For instance, the tear duct sub-regittaios 4 patches, as seen in Fig8ré& The com-
plete feature vector from the tear duct sub-region would the the concatenation of the features extracted
from the 4 patches. As discussed previously in Sec?@13.1 an LBP feature vector is 59 features long,
a HOG feature vector contains 12 elements, and a LPQ featatervconsists of 256 elements. All of the
feature vectors for a single image, extracted from patchisnreach sub-region were summed to get a count
of each feature extracted from the different sub-regiorikiwa single image. So, after this step there would
be 7 feature vectors for each image per feature extractidghade The feature vector computed from the
tear duct sub-region of an image using the LBP feature eidramethod would contain 59 elements. Each
element within that 59 element feature vector would be the efithat element taken from the 4 patches
found in the tear duct sub-region. This would apply to all-se@ions and all feature extraction methods.
Now that each image has a mean feature vector for each sidnréige feature vectors are summed across
all images. So for LBP features, the result is a feature vegith 59 elements where each element in the
feature vector represents the sum of the average numberglé ®lement features that were extracted from
allimages. The standard deviation of this population was ehlculated.

D’ was also calculated for each individual element in theudeavector. This is done by finding
the difference in number of individual feature element®asrevery image comparison in the dataset. These
comparisons were then split into two groups: comparisohsdsn images of the same subject and compar-
isons between images of different subjects. D’ is then ¢aled to show the separability of this single feature

element with the particular periocular sub-region.

3.7.1 Local Binary Patterns

The 59 different elements in the LBP feature vector corredpm 59 different patterns of pixel
intensity difference relative to the center pixel. Fig8i& shows each pattern. A black circle represents a
pixel that is darker than the center pixel while a white @nepresents a pixel that is lighter than or equal to

the center pixel. The last pattern represents all the oenoes of patterns not specified by the first 58. As
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Figure 3.5: Visualization of the 59 different LBP patterns

an example, pattern 44 would represent a part of a line foutfteabottom of a dark area, pattern 57 would
represent a bright spot within a dark area, etc..

Figure3.6 shows the mean occurrence of each of the 59 LBP features #ratextracted from the
Upper Eyelid as a percent of the total number of features. érhar bars around the mean point represent
one standard deviation above and below the mean. Additipnlaé D’ value for each individual feature is
displayed. A pattern is immediately apparent across alpégyof images. The mean values are very similar
across each. Using a single-tailed t-test, it is possibléetermine which features occur at a statistically
significant higher rate than the mean of all features at p 5.0F/fom the four different data sets (left eye
FRGC images, right eye FRGC images, left eye FERET imagegjgint eye FERET images), the following
features were extracted at a statistically significant éighte in all four data sets: 6, 10, 13, 14, 15, 24, 26,
37, 39, 43, 47, 48, 57, and 58. Only two other features weradai a significantly higher rate than average
in less than three of the data sets. This level of similaritygests that the occurrences of certain LBP features
within the Upper Eyelid are universal and likely to be founather datasets as well. Even though TaBlds
and3.2 show a great difference in Rank-1 recognition rates betvik®@C and FERET images, the pattern
of features found in the Upper Eyelid are mostly constanbsscthe four datasets. This pattern of highly

occurring features could be viewed as an LBP feature fautfor the Upper Eyelid.
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(a) Upper Eyelid, FRGC, left eye

NNm
338
— T 1
S |
|l
o N
P

i
o
)
@

1
o
D’ of Feature

,_‘
5
T
i
o
»
N

b4
e
R
s
-

Mean Num of Feature (%)

L1 1 1
012345678 91011121314151617 1819202122 2324252627 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Feature
(b) Upper Eyelid, FRGC, right eye

S O —1.25
S

2 -{1.04
g

(0]
B 2O {083 5
()] =
LL 55}
o BB B g {063 @
o L
—
g wop 042 O
z E . H . [a]
c p .
I x° ES . % N % % EE
1} g.&%x:t*;xﬁlxﬁ: ““““ _)@i‘@(—?mx# I%I%II I%Ii ““““ iﬂj&)@% 0
E | I TN T T T N T N N N N N N | I I L L L L L 1 1.1 I
0123456 78 910111213141516171819 2021 222324252627 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
Feature
(c) Upper Eyelid, FERET, left eye
B0 —1.25
26 ~{1.04

N
S
T
i
4
0
@

1
o
D’ of Feature

Hﬁﬂ
, P
el

Mean Num of Feature (%)

= = ES £l

[ B SVE SV el T MIII:X.# IIQI;K@M I e T IX#;,(;C% o

L L L Ll I I L L L1 1.1 I I L L L L 1 1.1 I

0123456 78 91011121314151617 18192021 222324252627 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Feature
(d) Upper Eyelid, FERET, right eye

B0 125
2B -1.04
20 -0.83

1
o
D’ of Feature

B
o B
st
M
@a
T;

Mean Num of Feature (%)

| T T T T I |
0123456 7 8 91011121314151617 1819202122 2324252627 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Feature

Figure 3.6: Mean occurrence and D’ of the LBP patterns founthé Upper Eyelid. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Lower Eyelid, FRGC, left eye
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Figure 3.7: Mean occurrence and D’ of the LBP patterns founthé L ower Eyelid. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Tear Duct, FRGC, left eye
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Figure 3.8: Mean occurrence and D’ of the LBP patterns fourttié Tear Duct. Features extracted from
(a) left eyeimages of the FRGC dataset (b) right eyeimages of the FRGC dataset (c) left eye images of
the FERET dataset (d) right eye images of the FERET dataset
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(a) Outer Corner, FRGC, left eye
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(b) Outer Corner, FRGC, right eye
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Figure 3.9: Mean occurrence and D’ of the LBP patterns founithé Outer Corner. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Inner Eyebrow, FRGC, left eye
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(b) Inner Eyebrow, FRGC, right eye
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Figure 3.10: Mean occurrence and D’ of the LBP patterns fanride | nner Eyebrow. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Outer Eyebrow, FRGC, left eye
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(b) Outer Eyebrow, FRGC, right eye
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Figure 3.11: Mean occurrence and D’ of the LBP patterns fanrikde Outer Eyebrow. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Skin, FRGC, left eye
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(d) Skin, FERET, right eye
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Figure 3.12: Mean occurrence and D’ of the LBP patterns faariie Skin. Features extracted from (a)
left eyeimages of the FRGC dataset (b) right eyeimages of the FRGC dataset (c) left eye images of the
FERET dataset (d) right eyeimages of the FERET dataset

81



Sub-region | FRGC Left Eye| FRGC Right Eye| FERET Left Eye| FERET Right Eye
upper eyelid 0.3708 0.4054 0.2833 0.3152
lower eyelid 0.4264 0.4369 0.3859 0.2366
tear duct 0.4034 0.3872 0.4800 0.4727
outer corner 0.4070 0.3894 0.2818 0.2692
inner eyebrow 0.2162 0.2164 0.2080 0.2206
outer eyebrow 0.2605 0.2637 0.1702 0.2029
skin 0.1767 0.1598 0.0293 0.0366

Table 3.3: Coefficients of determination from a fitted regi@s line of mean and D’ values for LBP experi-
ments

There is not a strong correlation between the mean valueshenD’ values. Table8.3 displays
the coefficients of determinatioiR{) for a fitted regression line to a scatter plot of mean and Mies for
each of the experiments analyzed in this section. The agd®ags 0.2897. To explain this low correlation
it would be helpful to review the formula for computing D’. &hrelative difference of the mean and the
standard deviation influences the separability of the featwhile the pattern of means can tell us what an
Upper Eyelid looks like in terms of LBP features, the D’ exptahow useful each feature is in identifying a
subject.

Figures3.7 - 3.12show the results for the remaining sub-regions of the patiwaegion. It might
not be immediately apparent in the figures, but some of theragions produce feature footprints that are
slightly different when the features are extracted fromiéfieeye versus the right eye. We can determine the
extent of this difference by computing the sum of the abgdliifference between features extracted from the
left eye and features extracted from the right eye. Talshows the distance calculated for each sub-region.
The numbers in this table are a unitless representationeadiifference between the occurrence of features
from the right eye images and the left eye images, where @idargmber represents a larger difference.
Notice that the four largest distance sub-regions are thiesob-regions that have inner/outer counter-parts.
These results show two important aspects of the periocatgon. First, the upper and lower eyelids have
a high degree of symmetry. This high symmetry is seen evemwlieraging the left features from both
FRGC and FERET before comparing them to the right featums the same datasets. Second, features
extracted from regions such as the tear duct are differeehvelomparing features from the left eye and the
right eye. The shape of the tear duct from the left eye mirtleegear duct on the right eye. This results in a
different feature footprint and suggests that it would rehklpful to talk about the feature footprint of these
sub-regions without distinguishing which side of the faoeytcame from.

Table3.5 shows the LBP feature footprint for all of the sub-regionsefie are only three features
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Sub-region | left/right distance

16.1167
8.2918

34.7406
40.0833
49.4215
42.9436
22.8981

upper eyelid
lower eyelid
tear duct
outer corner
inner eyebrow
outer eyebrow|
skin

Table 3.4: Distance between the features extracted fronetheye and features extracted from the right eye
per sub-region

Sub-region Feature Footprint

upper eyelid 6, 10, 13, 14, 15, 24, 26, 37, 39, 43, 47, 48,57, 58
lower eyelid 10, 14, 15, 24, 25, 26, 37, 38, 43, 44, 47, 48, 51, 57, 58
left tear duct 13, 14, 19, 20, 24, 25, 26, 37, 38, 39, 43, 47, 48, 55, 57
right tear duct 6, 10, 15, 19, 24, 25, 26, 32, 37, 39, 43, 47, 48, 50, 57,

left outer corner
right outer corner
left inner eyebrow
right inner eyebrow
left outer eyebrow
right outer eyebrow|
skin

6, 10, 15, 24, 26, 32, 37, 39, 43, 47, 48, 50, 57, 58
13, 14, 15, 19, 24, 26, 37, 39, 43, 47, 48, 55, 57, 58
10, 13, 14, 15, 19, 20, 21, 24, 26, 28, 43, 48, 57, 58
6, 10, 14, 15, 32, 33, 37, 39, 41, 47, 48, 57, 58
6,10, 13, 15, 24, 25, 26, 43, 47, 48,57, 58

6, 10, 13, 14, 15, 37, 38, 39, 43, 47, 48, 50, 57, 58
6, 13, 15, 24, 26, 32, 37, 39, 48, 57, 58

, 58
68

Table 3.5: LBP feature footprint for each sub-region
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that are seen in every sub-region, 48, 57, and 58. Theseftatees are only a few of the total number of
features found in the different LBP feature footprints. fénhis a lot of variable information with which to
distinguish between the different sub-regions.

The Upper Eyelid and the Lower Eyelid share eleven of the daateres in their feature footprint.
This large overlap is to be expected considering both sgimmns are looking at eyelids. The Upper Eyelid’s
feature footprint has three features that are not foundenLttwer Eyelid and there are four features vice
versa. One possible reason for the differences, small gsatteg is the presence of the upper eye fold that
is often caught with the Upper Eyelid. This physical aspét¢he periocular region adds more and different
information to discriminate when extracting LBP features.

The right tear duct and the left tear duct also share eleveheofame features in their feature
footprint. However, the right tear duct’s feature footptias five features that are not found in the left tear
duct and five features vice versa. There is more to diffesémtihe left and right feature footprints of the
same physical aspect, in this case, than there is to ditfiaterbetween two different physical aspects in the
upper and lower eyelid. This supports the need to treat thard right sides of these particular sub-regions
separately when discussing the feature footprint.

Table3.6shows the mean D’ of the LBP features extracted from eachiegibn. Table3.7 displays
the Rank-1 recognition results from Secti8i® in a format that mirrors Tabl8.6 for easy comparison. It
might appear that Tablek6 and3.7 show inconsistent results. For instance, the mean D’ valtise skin
in FERET experiments is much higher than the mean D’ of thie skFRGC experiments while the Rank-1
recognition rates do not show the same relationship. Thesadts are not inconsistent, they just cannot be
directly compared to each other. Tal3® shows the mean D’ of 59 features which are themselves the sum
of all features extracted from a particular sub-region efpleriocular region. The Rank-1 recognition rates
shown in Table3.7 are computed from the comparison of the unmodified, raw featector. The more
patches in the sub-region, the less related the mean D’ anikl-Raesults become; the skin has the largest
number of patches of all sub-regions of the periocular regio

It is possible that there are some features in the LBP featotor that, by being included in com-
puting the similarity of biometric feature vectors, redtice recognition performance of a biometric system.
This hypothesis comes from the observations about cerdimidual features having a higher mean occur-
rence or D’ value when compared to all of the features. Unfately, testing all 2 possible feature vector
configurations to find the best performing set of featureommutationally infeasible. Using a genetic al-

gorithm to address this problem would produce an optimakarfoptimal set of features that performs best
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Sub-region || Left Eye FRGC| Right Eye FRGC| Left Eye FERET| Right Eye FERET
upper eyelid 0.4619 0.4707 0.4019 0.4121
lower eyelid 0.3393 0.3471 0.2976 0.2996
tear duct 0.3732 0.3729 0.4027 0.4130
outer corner 0.5519 0.5672 0.5499 0.5326
inner eyebrow 0.7168 0.7334 0.7793 0.7516
outer eyebrow 0.6645 0.6638 0.7367 0.7350
skin 0.6243 0.6264 0.8526 0.8482

Table 3.6: Mean D’ of LBP features extracted from each suginre

Sub-region || Left Eye FRGC| Right Eye FRGC| Left Eye FERET| Right Eye FERET
upper eyelid 71.2446 70.8155 45.4545 47.4747
lower eyelid 59.2275 60.9442 34.9495 34.2424
tear duct 70.3863 68.6695 53.5354 52.1212
outer corner 81.9742 82.8326 54.1414 53.6364
inner eyebrow 77.8970 78.3262 69.6970 69.3939
outer eyebrow 81.3305 80.4721 63.9394 64.5455
skin 90.9871 91.4163 73.4343 71.0101

Table 3.7: Rank 1 recognition rate of LBP features extrafriau each sub-region

with many less computations.

Genetic algorithms (GA), inspired by the natural procesawolution, seek to approach an optimal
solution to a problem through iterative changes to a grouganflidate solutions. The GA used in this work
is comprised of six steps. The first step is to initialize acdetandidate solutions. The problem of selecting
a subset of the 59 LBP features can be interpreted as pragacd® bit mask where 1 represents a feature
being used and O represents a feature not being used. Saiahcandidate solution would be a 59 bit
vector where the values at each bit were randomly selectadnifial population of 32 candidate solutions
was produced by randomly generating bit masks. The sizeegptipulation can be any power of 2 where
a larger population allows for better possible candidatatiems at a greater computational expense. The
second step is to compute the performance of each candidlatiios. This is done for each of the sub-
regions of the periocular region in each of the datasetse&on patch within a sub-region, the elements of
the LBP feature vector are either included or excluded basetthe values in the candidate solution mask.
The masked feature vectors are then used in the standarattoiorexperiment as performed everywhere
else in this dissertation. The third step is to place theemppulation of candidate solutions into a binary
tournament where the candidate solution with the best pagoce score moves on to each successive round

of the tournament until there are two remaining candidakgtisms. These two winning candidate solutions

85



All Features| Candidate Solution
Left Eye FRGC 71.2446 73.8197
Right Eye FRGC 70.8155 73.1760
Left Eye FERET 45.4545 48.0808
Right Eye FERET|| 47.4747 49.6970

Table 3.8: Rank 1 recognition rate of LBP features extrafraa the upper eyelid

are used in step four, uniform crossover. In this step, alatdindidate solution is created by randomly
selecting the value of each bit from one of the two parent ickatel solutions. The fifth step is random
mutation. Each bit of the child candidate solution is eitfipped to the opposite value or remains the same
based on a rate of mutation variable. A mutation rate of 10% weed here. The sixth step is to replace the
worst scored candidate solution with the newly createddatdindidate solution. Steps three through six are
then repeated 100,000 times. At the end of this process thetigealgorithm will produce a population of
candidate solutions that have been tuned to solve the pnodidnand.

This approach was used to produce an optimal selection afrEsafrom the LBP feature vectors
of each sub-region of the periocular region. TaBl@ shows the Rank-1 recognition rate of features taken
from the upper eyelid of each dataset as well as the Rankefnéton rate of the best performing candidate
solution. These results show that the approach of usingnaifiti selected features is capable of producing
better results than using all features. In addition it shthvas there are some features that, when used, lower
the recognition performance of the biometric system. Eliengh the results of LBP features from the upper
eyelid only are shown in Tabl&.8, a candidate solution from every other sub-region prodiegtér results

than all features as well.

3.7.2 Histogram of Oriented Gradients

The 12 different elements in the HOG feature vector cormedgo 30 degree segments of a cir-
cle in which the magnitude of the gradient of the biometriagm at each pixel is applied to the segment
representing the gradient angle of the pixel.

Figures3.13- 3.19show the mean occurrence of each of the 12 HOG features an®thieat were
extracted from each sub-region of the periocular regiororgt patterns are visible in these figures as in the
LBP figures, though the difference between left and rightufiess seems more pronounced. Tah@shows
the HOG feature footprint for all of the sub-regions.

Like the feature footprints from LBP features, the HOG featfootprints show a lot of variety.
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(a) Upper Eyelid, FRGC, left eye
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(c) Upper Eyelid, FERET, left eye
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(d) Upper Eyelid, FERET, right eye
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Figure 3.13: Mean occurrence and D’ of the HOG patterns fanride Upper Eyelid. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Lower Eyelid, FRGC, left eye
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(b) Lower Eyelid, FRGC, right eye

Mean Num of Feature (%)
T
=
=
i
of Feature

w
S
1
]
I
N
@

n
)
T
i
g
=}
=

N
S
T
i
4
o
@

L0fm PRSP PSP PR PP PPPRPPN PP N R ERREREE SERRRRTRS -0.42
] o E a

?:eaturee

(c) Lower Eyelid, FERET, left eye
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(d) Lower Eyelid, FERET, right eye
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Figure 3.14: Mean occurrence and D’ of the HOG patterns fanrtde L ower Eyelid. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset

88



(a) Tear Duct, FRGC, left eye
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(b) Tear Duct, FRGC, right eye
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(c) Tear Duct, FERET, left eye
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(d) Tear Duct, FERET, right eye
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Figure 3.15: Mean occurrence and D’ of the HOG patterns famitioke Tear Duct. Featuresextracted from
(a) left eyeimages of the FRGC dataset (b) right eyeimages of the FRGC dataset (c) left eye images of
the FERET dataset (d) Fright eyeimages of the FERET dataset

89



(a) Outer Corner, FRGC, left eye
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(b) Outer Corner, FRGC, right eye
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(c) Outer Corner, FERET, left eye
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(d) Outer Corner, FERET, right eye
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Figure 3.16: Mean occurrence and D’ of the HOG patterns fanrke Outer Corner. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Inner Eyebrow, FRGC, left eye
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(b) Inner Eyebrow, FRGC, right eye
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(c) Inner Eyebrow, FERET, left eye
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Figure 3.17: Mean occurrence and D’ of the HOG patterns fantioe | nner Eyebrow. Featuresextracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Outer Eyebrow, FRGC, left eye
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(b) Outer Eyebrow, FRGC, right eye
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(c) Outer Eyebrow, FERET, left eye
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(d) Outer Eyebrow, FERET, right eye
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Figure 3.18: Mean occurrence and D’ of the HOG patterns fouitiee Outer Eyebrow. Featuresextracted
from (a) left eyeimages of the FRGC dataset (b) right eyeimagesof the FRGC dataset (c) left eyeimages
of the FERET dataset (d) right eye images of the FERET dataset
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(a) Skin, FRGC, left eye
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(b) Skin, FRGC, right eye
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(c) Skin, FERET, left eye
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(d) Skin, FERET, right eye
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Figure 3.19: Mean occurrence and D’ of the HOG patterns fonrtde Skin. Features extracted from (a)
left eyeimages of the FRGC dataset (b) right eyeimages of the FRGC dataset (c) left eye images of the
FERET dataset (d) right eyeimages of the FERET dataset
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Sub-region

Feature Footprint

upper eyelid 4,5,6,7

lower eyelid 0,1,10,11

left tear duct ,1,4,7,10

right tear duct ,1,4,7,10
left outer corner ,1,4,10,11
right outer corner 6,7,10,11

left inner eyebrow

right inner eyebrow

left outer eyebrow

right outer eyebrow|

~N| o o o
P~ oo
[y
o

skin

Table 3.9: HOG feature footprint for each sub-region

None of the features appear in all sub-regions at a signtfichigher than average rate.

One noticeable difference between LBP and HOG featuregisetationship between the upper and
lower eyelids. In LBP, the feature footprints shared 11uesg. In HOG, they share none. Note that the
upper eyelid has features 4, 5, 6, and 7, while the lower @yls features 0, 1, 10, and 11. The upper eyelid
feature footprint consists of the segments of the circlsedb torr, while the lower eyelid consists of the
segments closest to 0 and.ZThis seems to indicate that there is a direction to the gradif the upper and
lower eyelid and that the directions are orthogonal to edletro

The left and right tear duct and outer corner feature footpare similar in both LBP and HOG
features. Many of the same features are shared betweenfttanderight side with a smaller number of
features that are different. The feature footprints of #iednd right parts of both eyebrow sub-regions have
very little in common.

Table 3.10 shows the mean D’ of the HOG features extracted from eaclregibn. Table3.11
displays the Rank-1 recognition results from Sectofin a format that mirrors Tabl8.10for easy com-
parison. Note that the average D’ values of HOG features aighrhigher than their LBP counter-parts yet
the Rank-1 recognition rates are much lower. This is caugatiédifference in feature vector length. The
shorter feature vector length of HOG leads to each indiviteaure having a higher measure of separability.

HOG features are shorter than LBP features, having a felsnigéh of 12 instead of 59. This aspect
makes generating an optimal usage of certain feature in @@ Feature vector through genetic algorithms
mostly fruitless. The candidate solution of HOG featureat foroduces the best results is the candidate
solution that includes all of the features for every suliee@f the periocular region and for every dataset.

The small number of features in a HOG feature vector leadeoyeeature contributing positively to the total
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Sub-region || Left Eye FRGC| Right Eye FRGC| Left Eye FERET| Right Eye FERET
upper eyelid 0.6469 0.6784 0.4726 0.4927
lower eyelid 0.5009 0.4942 0.3916 0.3821
tear duct 0.6154 0.6367 0.5667 0.6090
outer corner 0.8286 0.7920 0.6336 0.6010
inner eyebrow 0.9575 0.9613 0.9239 0.9118
outer eyebrow 0.9559 0.9745 0.8922 0.8734
skin 0.9583 0.9773 0.8594 0.8475

Table 3.10: Mean D’ of HOG features extracted from each sgjien

Sub-region || Left Eye FRGC| Right Eye FRGC| Left Eye FERET| Right Eye FERET
upper eyelid 53.6481 52.5751 27.9798 28.6869
lower eyelid 36.0515 42.7039 20.3030 18.4848
tear duct 47.6395 45.4936 32.7273 32.5253
outer corner 59.4421 58.7983 34.0404 35.5556
inner eyebrow 71.4592 69.9571 62.8283 62.3232
outer eyebrow 72.7468 74.4635 56.8687 54.8485
skin 90.1288 91.8455 71.3131 68.5859

Table 3.11: Rank 1 recognition rate of HOG features extchfitan each sub-region

biometric system performance.

3.7.3 Local Phase Quantization

The 256 different elements in the LPQ feature vector comegpo the phase information of a
discrete Fourier transform (DFT) in patch-sized neighbods of the biometric image.

Figures3.20- 3.26 show the mean occurrence of each of the 256 LPQ features amdXththat
were extracted from each sub-region of the periocular regibhe large feature vector makes visualizing
this feature extraction method difficult, yet the figures stitt shown for completeness. The LPQ feature
footprint shown in Tabl&.12will better illuminate any patterns.

There is much variability in the feature footprints of theQ Reatures. One feature, 143, is found in
all sub-regions at a significantly higher than average rate.

The upper and lower eyelids share 22 features from the LP@ri&ootprint. This is out of 48
upper eyelid features and 62 lower eyelid features. LPQufeatextracted from the upper and lower eyelids
have much fewer features in common from their feature faotinan LBP features; however, the number of
features in common is not as low as HOG’s zero common features

The left and right tear duct share 29 features from the LPQfedootprint out of 74 features in
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(a) Upper Eyelid, FRGC, left eye
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Figure 3.20: Mean occurrence and D’ of the LPQ patterns fanrde Upper Eyelid. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Lower Eyelid, FRGC, left eye
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Figure 3.21: Mean occurrence and D’ of the LPQ patterns fonride L ower Eyelid. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Tear Duct, FRGC, left eye
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Figure 3.22: Mean occurrence and D’ of the LPQ patterns fontide Tear Duct. Featuresextracted from
(a) left eyeimages of the FRGC dataset (b) right eyeimages of the FRGC dataset (c) left eye images of
the FERET dataset (d) right eye images of the FERET dataset
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(a) Outer Corner, FRGC, left eye

w
S

25

D’ of Feature

Mean Num of Feature (%)

Feature
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Figure 3.23: Mean occurrence and D’ of the LPQ patterns fanride Outer Corner. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Inner Eyebrow, FRGC, left eye
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(c) Inner Eyebrow, FERET, left eye
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Figure 3.24: Mean occurrence and D’ of the LPQ patterns foniioe | nner Eyebrow. Features extracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Outer Eyebrow, FRGC, left eye
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(c) Outer Eyebrow, FERET, left eye
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Figure 3.25: Mean occurrence and D’ of the LPQ patterns fontide Outer Eyebrow. Featuresextracted
from (a) left eye images of the FRGC dataset (b) right eye images of the FRGC dataset (c) left eye
images of the FERET dataset (d) right eye images of the FERET dataset
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(a) Skin, FRGC, left eye
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Figure 3.26: Mean occurrence and D’ of the LPQ patterns fanride Skin. Features extracted from (a)
left eyeimages of the FRGC dataset (b) right eyeimages of the FRGC dataset (c) left eye images of the
FERET dataset (d) right eyeimages of the FERET dataset
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Sub-region

Feature Footprint

upper eyelid 5,12, 37,38, 44, 47, 48, 49, 57, 69, 70, 76, 79, 80, 88, 89,104, 112, 113,
120, 121, 134, 143, 150, 159, 164, 165, 166, 172, 173, 179,185 197, 204,
205, 207, 208, 217, 218, 228, 229, 236, 237, 240, 245, 249

lower eyelid 3, 6,10, 15, 18, 19, 22, 26, 27, 31, 38, 44, 47, 49, 51, 56, 5K5%&H3, 69,

70, 79, 80, 81, 82, 83, 86, 88, 90, 131, 134, 135, 138, 142,1413,150, 151,
154, 155, 158, 159, 166, 167, 172, 174, 175, 179, 182, 186,188 199, 206,
207, 211, 218, 229, 231, 236, 238

left tear duct

6,10, 12, 14, 15, 18, 22, 26, 27, 28, 30, 31, 34, 38, 44, 46,8/ 5 54, 58,
59, 60, 62, 63, 76, 78, 79, 80, 82, 90, 92, 98, 99, 107, 108,111,124, 128,
130, 134, 140, 142, 143, 144, 146, 150, 155, 158, 159, 162,115 174, 176,
178,179, 182, 187, 188, 190, 192, 197, 198, 199, 206, 207,248 226, 236,
238, 252

right tear duct

3,5,6,7,15,18,19, 21, 22, 23, 26, 27, 31, 37, 38, 53, 57,%9(@, 71,
75,79, 82, 83, 85, 86, 87, 90, 91, 98, 101, 102, 103, 106, 107, 1133, 134,
135,137, 139, 143, 146, 150, 151, 153, 155, 159, 165, 166,18%7 174, 182,
185,197, 198, 199, 203, 207, 210, 213, 214, 215, 217, 218,211 229, 231,
245, 247, 252

left outer corner

3,5,6,7,11, 15, 18, 19, 22, 23, 26, 27, 31, 37, 38, 39, 57, 5&%%, 70, 71,
73,75,77,79, 82, 83, 86, 87, 89, 90, 91, 95, 101, 102, 105,121, 133, 134,
135, 139, 143, 146, 147, 150, 151, 154, 155, 159, 165, 166,189/ 173, 185,
186, 197, 198, 199, 201, 203, 205, 207, 215, 217, 218, 219,228 233, 237,
245, 249, 250

right outer corner

2,6,10,12, 14, 15, 18, 19, 22, 26, 27, 30, 31, 32, 34, 38, 44@1447, 48,
50, 51, 54, 58, 59, 62, 63, 76, 79, 80, 83, 96, 108, 112, 130,134, 135, 138,
140, 142, 143, 146, 147, 150, 154, 155, 158, 159, 160, 162,188} 172, 174,
175,176, 178, 179, 182, 186, 190, 192, 196, 199, 204, 206,208 211, 224,
228, 236, 240, 243, 252

left inner eyebrow

0, 4,8, 12,15, 16, 19, 20, 24, 28, 32, 36, 38, 40, 44, 46, 4&6X%0, 64,

68, 76, 79, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 12Q,1124, 128, 132,
134,136, 140, 142, 143, 144, 148, 152, 156, 160, 164, 166,118 174, 176,
178, 180, 184, 188, 192, 196, 197, 200, 204, 207, 208, 212,216 224, 228,
229, 232, 236, 240, 244, 248, 252

right inner eyebrow|

1,5,6,7,9,6 13,17, 21, 25, 29, 33, 37, 38, 41, 45, 49, 53, 55169,
70,71,73,77,81, 85,89, 93,97, 101, 105, 109, 112, 113,11217,125, 129,
133, 134, 135, 137, 141, 143, 145, 149, 153, 157, 165, 166,119 173, 177,
181, 185, 189, 193, 197, 199, 201, 205, 207, 209, 213, 217,219 225, 229,
233, 236, 237, 241, 245, 249, 253

left outer eyebrow

5,6, 18, 22, 26, 34, 36, 37, 38, 42, 44, 46, 49, 50, 53, 54, 568 7K9, 70,

78, 82, 85, 86, 88, 89, 90, 100, 101, 102, 112,117, 118, 120,122, 134, 137
142,143, 146, 150, 153, 154, 164, 165, 166, 168, 169, 170,172 174, 178,
182, 184, 185, 186, 197, 198, 199, 205, 206, 207, 210, 216,287 228, 229,
232, 233, 234, 236, 237, 245, 248, 249, 250, 252

right outer eyebrow

3,7,12,15, 19, 27, 31, 39, 44, 47, 48, 49, 51, 59, 60, 63, 67755, 76,
77,79, 80, 81, 83, 88, 91, 92, 95, 99, 108, 109, 111, 112, 111,121, 124,
127,128, 131, 134, 135, 143, 144, 147, 155, 159, 164, 166,11&% 174, 175,
176, 177,179, 187,192, 193, 195, 196, 197, 199, 203, 204,28005 208, 209,
211, 215, 219, 223, 224, 225, 227, 228, 229, 236, 237, 239,240 243, 245,
252

skin

3,7,10, 14,18, 19, 26, 27, 32, 46, 48, 50, 58, 71, 73, 83, §9®1105,
131, 135, 142, 143, 146, 147, 155, 178, 201, 211, 217, 219

Table 3.12: LPQ feature footprint for each sub-region
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Sub-region || Left Eye FRGC| Right Eye FRGC| Left Eye FERET| Right Eye FERET
upper eyelid 0.2662 0.2707 0.2003 0.1954
lower eyelid 0.1975 0.2079 0.1309 0.1301
tear duct 0.2148 0.2140 0.1850 0.1853
outer corner 0.3543 0.3624 0.2881 0.2909
inner eyebrow 0.4831 0.4813 0.4954 0.4760
outer eyebrow 0.4796 0.4765 0.4403 0.4463
skin 0.3919 0.3852 0.3627 0.3648

Table 3.13: Mean D’ of LPQ features extracted from each sgjien

Sub-region || Left Eye FRGC| Right Eye FRGC| Left Eye FERET| Right Eye FERET
upper eyelid 69.0987 68.8841 44.1414 46.2626
lower eyelid 57.2961 59.4421 30.8081 32.0202
tear duct 59.8712 58.7983 48.4848 49.0909
outer corner 74.4635 75.1073 45.7576 47.7778
inner eyebrow 87.3391 84.9785 78.4848 80.0000
outer eyebrow 87.3391 88.6266 73.2323 73.0303
skin 93.7768 95.7082 75.2525 73.4343

Table 3.14: Rank 1 recognition rate of LPQ features extchfrtan each sub-region

each feature footprint. This is a much lower rate of featimglarity between left and right sides of a sub-
region than either LBP or HOG produced. The left and righeoabrner showed the same pattern by sharing
26 features from the LPQ feature footprint out of the 76 fesgtin the left outer corner and 77 features in the
right outer corner.

There is a lower rate of similarity between left and righténand outer eyebrow feature footprints.
The left and right inner eyebrow feature footprints shareoflthe same features. The left and right outer
eyebrow feature footprints share 22 of their features. Tvislevel of similarity corresponds with the trend
seen when comparing LBP and HOG feature footprints.

Table3.13shows the mean D’ of the LPQ features extracted from eachegibn. Table3.14dis-
plays the Rank-1 recognition results from Secoin a format that mirrors Tabl8.13for easy comparison.
Note that the average D’ values of LPQ features are much Itheer either LBP or HOG, yet the Rank-1
recognition rates are much higher. As discussed with therdtho feature extraction methods, the longer
feature vector allows for higher recognition rates with éowgingle feature separability.

A GA approach was used to produce an optimal selection ofifestfrom the LPQ feature vectors
of each sub-region of the periocular region as well. T&l&shows the Rank-1 recognition rate of features

taken from the upper eyelid of each dataset as well as the-Raakognition rate of the best performing
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All Features| Candidate Solution
Left Eye FRGC 69.0987 73.3906
Right Eye FRGC 68.8841 72.5322
Left Eye FERET 44.1414 45,5556
Right Eye FERET|| 46.2626 47.8788

Table 3.15: Rank 1 recognition rate of LPQ features extchfttam the upper eyelid

candidate solution. As with the LBP experiments, this GArapph produced better results than using all

features for each sub-region of the periocular region ant dataset.

3.8 Conclusion

The goal of this chapter was to address the following questiére there sub-regions within the
periocular region that provide more discriminative infation than others? Are these sub-regions similarly
discriminative using different feature representatiorthnds? Could the knowledge gained here be used to
adapt the local approaches to use the physical structuhegfdriocular region? The experiments presented
in Section3.4 suggest that the most discriminative sub-regions of thiopelar region are near the eyebrows
and eye corners, while the irises provided comparablg litiscriminative information. Using this knowledge,

a novel block placement method for LABFs is proposed in $a@i5. This block placement method is based
on the location of the structural sub-regions of the pedexaegion. When using only features extracted from
each individual sub-region, the results of biometric ekpents presented in this chapter suggest that LBP
features are most discriminative in the upper eyelid, loeyelid, tear duct, and outer corner, while LPQ
features are most discriminative in the inner eyebrow, roeyebrow, and skin.

The knowledge gained from these experiments will contahot new method for periocular feature
extraction that leverages the physical structure of thépelar region. We hypothesize that taking these
structural elements into consideration will result in acr@ase in total system accuracy in a baseline biometric
experiment. This method could also be applied to more difffmwblems, such as recognition over a large

time-lapse.
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Chapter 4

Features from Multiple Scales

4.1 Introduction

When extracting LABFs from periocular biometric data, therent body of research utilizes these
features from a single scale. The scale, in this contexypially determined by the size of the window
over which the LABF performs its primary computation. In LB& instance, the binary pattern for a pixel
is computed over a local neighborhood of pixels. Previossaech that uses LABFs with periocular region
data extracts features from a single sc&elfr, 20, 27, 29, 30, 31, 54, 53, 55] or simply does not mention
this aspect of their methodolog21, 28, 37, 38, 44, 45].

LABFs are intended to be local and were designed, in partivio@counter perspective to global,
holistic approaches. To this end, LABFs typically use thaléest possible scale from which to execute their
algorithms. The intent of this use of small scales is to g@attie relationship between the closest of the
neighboring pixels with the expectation that these clogelpelationships will provide more discriminative
information than an overall view in specific situations.

While LABFs have been successful in specific situations etlieipotential for further useful and
discriminative information to be extracted from using nplé scales. When using a single (typically small)
scale, the algorithm can only describe the relationshigveen pixels that are close together. Quantifying
the relationship between pixels in multiple scales coutijote additional discriminative information. This
information could lead to an increase in performance thalccoutweigh the offsetting increase in necessary
computations.

The goals of this Chapter are as follows:
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e Modify the LABF algorithms to extract features from mulgcales.

e Determine if there is a scale or set of scales that providebéist performance when used with each of

the LABFs.

e Determine if these scales show different performance sreawioss each of the sub-regions of the

periocular region.

This work is a much needed exploration of an unexplored ddrABF extraction algorithms. We
hypothesize that these modified LABF methods will provideremease in performance over methods used

so far in a typical biometric experiment.

4.2 Data

The experimentation in this section uses a subset of the FREriment 1 data set. Two images
(one probe, one gallery) were used from 466 subjects in tlg&C-Bata set, for a total of 932 images. The two
selected images were chosen for each subject from the fagahle recording session in order to minimize
the time lapse between images, as time lapse was not the fdi@aus in this section. Only images with a
neutral facial expression were selected, as the impactcad|faxpression was not the focus in this section.
This subset is the same subset that was described in S&#orThe set of FERET images detailed in

Section2.2is also used.

43 Method

The experimental method of this chapter follows the desigsgnted in SectioB.6. Features are
extracted from the seven sub-regions of the perioculaoredetailed in SectioB.5.

To test the performance of LABFs across multiple scalesaldparithms must be modified to accept
a new scale parameter. The means to accomplish this motifidat each of the feature extraction methods

is detailed below.

431 LBP

The LBP algorithm is typically visualized as a variable n&@nbf points along the circumference

of a circle placed around a center point. The pattern of tfferdince in grayscale intensity between each
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Figure 4.1: Representation of the local neighborhood orclwhBP is calculated

point on the circle and the center point is used to calculetd BP value at a pixel. In Figur&1, the white
circles have pixel intensities less than the center pixdleathe black pixels have pixel intensities greater
than the center pixel. This circular pattern is unwrappetl teanslated into a string of ones and zeros, such
as 01110001, if the top pixel is the first in the string and werendockwise.

The ability to vary the radius of the circle on which the p&eéside is the predicate for allowing
LBP to be computed from multiple scales. However, simply pating the LBP operator using pixels that
are far apart does not correctly account for a change in .st&® is meant to be a measurement of local
features and using pixels that are farther apart would reatlrén measuring a local pattern. Therefore, the
value of each pixel on the circle is represented by the aedragnsity of all the pixels contained in a window
of variable size around the focus pixel. The pseudo-codéh®proposed approach to compute the LBP for
a given pixel is listed in Figurd.2 with red text to signify differences from the original impientations.
The R and W variables are set equal to each other, so as tleecdthk algorithm increases, both R and W

increase equally together.

432 HOG

The HOG algorithm is a function of the gradient magnitude gratlient angle of the input data.
The HOG descriptor is a histogram of the values of the gradiagle of an image convolved with ax33
Prewitt filter and scaled by the value of the gradient magleitrhis is a simple algorithm that has the ability
to quantify small lines within an image. These lines are \erg details that only represent one small scale
of the images.

Like LBP, the HOG algorithm can be expanded to quantify mlétscales with a few simple steps.
The Prewitt filter that is convolved with the input image candxpanded to different sizes. A<b Prewitt

filter, for example, would look like Figuré.3. Such a filter and larger ones serve to highlight longer lthas
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# of neighbor pixels on the circle around center pixel
radius of the circle around center pixel
size of w ndow around a pi xel

location of the neighboring pixels

location of center pixel

= value of the LBP operator

-
COors®Zz
[T L LT

T

A=2m/ N
for i = 0 to N-1

L[] = [FR =*sin(i *A) Rxcos(i *A)]
end

LBP =0
for i 0 to N-1
X = average intensity value of a wi ndow of size Waround C
Y = average intensity value of a wi ndow of size Waround L[i]
IF X>Y THEN D =1 ELSE D =0
LBP = LBP + 27
end

Figure 4.2: Pseudo-code for calculating the LBP operateaidable scales

[elielNellg
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Figure 4.3: A 5x 5 Preuwitt filter.

are farther apart. Similar to the multiscale LBP algoritithe modified HOG algorithm needs to quantify
lines from pixels that represent that average value of iyepikels. To accomplish this quantification, the
image is first convolved with an averaging filter. An examgdla 6 x 5 averaging filter can be seen in Figure
4.4. The pseudo-code for the proposed approach to compute HO&hfimnage is listed in Figuréd.5 with

red text to signify differences from the original implematin.

433 LPQ

The LPQ descriptor quantifies phase information computedstiding window over the image. In
this algorithm the four low-frequency coefficients of theuRer transform on each window are decorrelated
and uniformly quantized in an eight-dimensional space.Adgram of this data is used as the feature vector.

This phase information is reported to be useful for clagsgfplurred texture image$6).
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Figure 4.4: A 5x 5 averaging filter.

G = gradient

| = input image

N = # of bins

W= size of filter

AVG = Averaging filter of size W
PRE = Prewitt filter of size W

I = 1**xAVG
G x =1 * PRE
Gy =1 * PRE
G mag = /GX2 + Gy?2
G_ang = ATAN2(G_y,G_x)
for i = 0 to N-1
find all indexes (x) where floor(G_ang(x) / (2 TN)) = i
HOG[x] = Y G_mag[x]
end

Figure 4.5: Pseudo-code for calculating the HOG operatea@@ble scales
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In the same manner as the other LABFs, LPQ can be expandeahalbscale. The sliding window
from which the phase information is computed can be adjustechultiple sizes. As a requirement for this
adjustment, some preprocessing steps are applied to theimpge and changes to other parameters are
made. The pseudo-code for the proposed approach to comp@éddr an image is listed in Figude6, with

red text to signify differences from the original implemaitidn.

4.4 Results

Biometric experiments were conducted to quantify the perémce of LABFs extracted from sub-
regions of the periocular region at multiple scales. As titerition of the proposed approach is to extract
features from multiple scales, it must first be determingtefe are particular scales that are more discrimi-
native than others with certain LABFs. From this, an appedprand advantageous weighting can be selected
for each scale. In the modified LBP algorithm (see Figu, the scale is represented by the R and W vari-
ables. In the modified HOG algorithm (see Figdr®), the scale is represented by the W variable. These
scales can be any odd integer and their size is limited byiteeas the input data. The Rank-1 recognition
rates of 504 different experiments are given in Figutds 4.12 Each experiment is performed in the same
manner as other experiments in this dissertation with thegimg variables displayed in the tables. Note that
there are no values for LBP at a scale of 9 or 11. This absenecalwés is because the size of the images
used in these experiments limits LBP to a scale of 7.

The best LBP performance in these experiments is seen iereiitale 1 or Scale 3. In non-top
performing Scale 1 and Scale 3, the results show a margieetase in performance. There is a much more
substantial drop in performance for Scales 5 and 7. The fattltBP performs best at small scale values
in these experiments is expected given that the originalreilgn was developed to identify textures such as
spots, line ends, and other small texturg3 [ In the LBP experiments there is a strong relationship betw
the best performing scale and the sub-region of the pedocegion across all four types of data: FRGC left
eye, FRGC right eye, FERET left eye, and FERET right eye. Tgmeuand lower eyelids perform best at
Scale 1, while the remaining perform best at Scale 3. The goeption is the tear duct where the FRGC
experiments show Scale 3 as having the best performancie, thbiFERET experiments indicate the highest
Rank-1 results at Scale 1. A possible reason for the uppeloarmt eyelids performing well in Scale 1 is that
the features extracted from these regions are the smallestlines that make up the upper and lower eyelid

are distinct at the lowest scale. As you increase the raditleccircle that the samples are taken from and

111



| = input image

W= size of w ndow

R = radi us of the w ndow
p = 0.9

a = 1/W

x = array of length Wwith values -Rto R
= array of 1s of length W

wl = €0 + (—2x1mxXxxQ)i

w2 = complex conjugate of wl

)

/I Compute the freqgency response at 4 points
frequency response = 3D matrix of size (W,W,8)
filter response = (I *» W0') o+ wl
frequency response(1l) = real(filter response)
frequency response(2) = imag(filter response)
filter response = (I x»  Wl1l') o+ w0
frequency response(3) real(filter response)
frequency response(4) imag(filter response)
filter response = (I #»*  wl') o+ wl
frequency response(5) real(filter response)
frequency response(6) imag(filter response)
filter response = (I *  Wl') e w2
frequency response(7) real(filter response)
frequency response(8) imag(filter response)

/I Decorrelation
C = matrix of covariances between each pixel position

gl = w0 *wl
g2 = wl w0
g3 = wl »wl
g4 = wl »w2

M = [real(ql); imag(ql); real(q2); imag(q2);
real(g3); imag(g3); real(g4); imag(g4);]

D =MGW
A = [1.000007 1.000006 1.000005 1.000004 1.000003 1.000002
V = singular value decomposition(A * Dr A)

freqResp = (V' * freqResp’)’
fori =1 to 8

LPQIi] = LPQIi] + if(freqResp(i) > 0) (27°(i-1));
end

LPQ = 256 bin histogram of LPQ;

1.000001 1]

Figure 4.6: Pseudo-code for calculating the LPQ operateai@ble scales
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Figure 4.7: Rank-1 results of LBP experiments using (a)dgé and (b) right eye FRGC images.
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Figure 4.8: Rank-1 results of LBP experiments using (a)dgé and (b) right eye FERET images.

100F

90

80

Rank-1 (%)

Scale

(@)

100
———\/—d QO I e e,
80
70
\o\i 60
—_\\—’—\ —
L ,’/\/\ & 50 e
[
©
3 - e @ 40 N
—— Upper Eyelid 30K — Upper Eyelid
—— Lower Eyelid —— Lower Eyelid
—— Tear Duct 20 — Tear Duct
Outer Corner Outer Corner
Inner Eyebrow Inner Eyebrow
—— Outer Eyebrow 10l — outer Eyebrow
—— Skin —— Skin
1 3 9 11 1 3 5 7 9 11

Scale

(b)

Figure 4.9: Rank-1 results of HOG experiments using (a)eeétand (b) right eye FRGC images.
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Figure 4.10: Rank-1 results of HOG experiments using (aeld and (b) right eye FERET images.
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Figure 4.11: Rank-1 results of LPQ experiments using (aekaf and (b) right eye FRGC images.
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Figure 4.12: Rank-1 results of LPQ experiments using (aeld and (b) right eye FERET images.
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increase the averaging of the pixels in the window, therlisitieness of the lines decrease. They come to a
point at Scale 7 where they report single digit Rank-1 regagnrates. The other sub-regions maintain at
least some measure of successful performance at that 3teeshapes, spots, and patterns quantified from
the eye corners and the eyebrow are larger and can be seenparformance increase from Scale 1 to Scale
3.

The performance of the modified HOG algorithm is interestinthat it does not appear to show a
strong pattern between the different sources of data. Apmr$brming experiment can be found in nearly
every scale from Scale 1 to Scale 9 for at least one of the egib#rs of the periocular region. There are
some sub-regions where the best performing scale is botle $@nd Scale 11, such as the skin from the
FRGC images where the best performing scale is Scale 1 fayefimages and Scale 11 for left eye images.
Unlike LBP, there is no steep drop in performance as you mexgy drom the best performing scale. All
scales perform similarly in HOG experiments. This obséovatan be explained by the properties of the
modified HOG algorithm. The HOG algorithm evaluates grawieri the biometric image. Evaluating the
image at different scales does not greatly influence thegmad

The best performing LPQ scales appear more uniform than HB&y are similar to the LBP results
but have their best performance at higher scales. The peaftze metrics of experiments using LPQ do not
decrease as quickly as the scales go further from the bdetimémng scale. The best performing scale is Scale
7 for almost all sub-regions in both FRGC and FERET expertmemhe high performance at high scales
is not surprising in these experiments since LPQ has beepa@u to LBP for the purpose of recognizing
blurred faces and performed extremely well in compariseenén the base cas8]|

Knowing that features taken from different scales produfferént performance results, an investi-
gation into whether a fusion of different scales could resuan increase in performance is conducted. To
determine the optimal weighting for each scale, a weightedeslevel fusion is performed across all scales,
where a score level fusion is defined as a weighted sum funotier the computed distance matrices from
the experiments for each scale. The weights applied to datdnde matrix are a variable fraction where the
sum of all weights equals 1. The optimum weight for each scafebe found by iterating over all possible
scales. The optimum weights found with this data can be uséxhiming for future experiments to test the
final proposed algorithm with the current methods.

Table4.1 shows the Rank-1 of experiments using a weighted fusion dfipfeiscales where the
weights were determined by the method described above foerements using images from the FRGC

dataset. Tabld.2lists the same results for FERET images. These results arparable to the results from
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Left Right
Sub-region LBP HOG LPQ LBP HOG LPQ
upper eyelid || 77.2532| 59.6567| 72.7468| 76.6094 | 59.0129| 71.4592
lower eyelid || 71.0300| 45.2790| 62.4464| 69.5279| 48.4979| 64.8069
tear duct 76.6094| 57.7253| 67.3820| 77.6824| 53.4335| 69.3133
outer corner || 85.8369| 64.5923| 81.1159| 84.9785| 63.7339| 81.1159
inner eyebrow|| 83.4764| 74.8927| 87.9828| 83.0472| 74.2489| 88.8412
outer eyebrow|| 84.7639| 76.6094| 89.4850| 87.1245| 78.7554| 90.1288
skin 93.7768| 91.6309| 95.2790| 94.2060| 92.7039| 95.9227

Table 4.1: Rank-1 results of fusion of scales experimeritggylsSRGC images.

Left Right

Sub-region LBP HOG LPQ LBP HOG LPQ
upper eyelid || 55.4545| 41.8182| 47.3737| 57.0707| 38.0808| 49.2929
lower eyelid || 43.4343| 27.1717| 36.2626| 42.1212| 26.2626| 34.9495
tear duct 63.2323| 43.8384| 55.3535| 61.6162| 44.5455| 55.5556
outer corner || 63.4343| 42.9293| 57.0707| 60.2020| 42.4242| 54.8485
inner eyebrow|| 77.7778| 66.0606| 79.6970| 77.4747| 66.3636| 80.0000
outer eyebrow|| 72.4242| 61.7172| 76.5657| 72.2222| 60.0000| 75.6566
skin 78.9899| 74.9495| 80.2020| 77.3737| 72.3232| 79.5960

Table 4.2: Rank-1 results of fusion of scales experimentguUsERET images.

Tables3.1and3.2 It can be seen that in every case the weighted fusion of pheilsicales results in higher
performance than when using the single smallest scale. iZhe&the difference in performance is related
to the usefulness of features from multiple scales. Theskripcrease in performance using FRGC images
was 29.8574 and the smallest was 5.5725. For FERET imagesi2®1962 and 4.9785.

The optimal scales and the amount they contributed to thdtseshown in Tablel.3, can offer
some insight into the different sub-regions of the periacuégion. For instance, the optimal scales for LBP
features extracted from the upper and lower eyelid are Scaled Scale 3. The eyelids consist of small
lines; the features extracted from the smallest scales as¢ discriminative. The tear duct has a more equal
distribution between Scale 1 and Scale 3 when using LBP riestd’he outer corner of the eye has a higher
contribution for Scale 1 features. However, more scalesnamdved. The results of experiments using LBP
features extracted from the corners of the eye show an iser@acontribution from higher scales. The eye
corners do not have the small lines that are present in tHelsye/hich is reflected in the resulting optimal
scales. The eyebrows have similar levels of contributionragrscales than the eye corners, but with slightly
higher weights for the higher scales. Skin has similar weigbults to the eyebrow and eye corners.

It has already been discussed how HOG features are invdaaattanges in resolution and blur.
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Sub-region || Scale 1| Scale 3| Scale 5| Scale 7
upper eyelid || 60-80 | 20-40
lower eyelid 60-80 | 20-40
tear duct 50-55 45 0-5 0-5
outer corner || 55-60 | 15-30 10 0-10
inner eyebrow|| 35-70 | 30-50 | 0-30 0-10
outer eyebrow|| 35-45 | 30-50 | 10-40 0-10
skin 25-75 | 15-40 | 5-20 0-10

Table 4.3: Contribution in percent of each scale to the tesaflthe fusion of scales experiments for LBP
features. A range is shown from the Left Eye FRGC, Right Ey&ERLeft Eye FERET, and Right Eye
FERET experiments.

This invariance to change is related to the idea of changesate, so it is expected that HOG features
would be similarly discriminative regardless of the scdlesn which they were extracted. The optimal
scales presented by HOG features extracted from diffetdntagions of the periocular region do not offer
the same level of insight as the LBP features. Almost allescal all sets of data are found to contribute
to the optimal weighted fusion of scales. In most cases alesccontribute equally. Despite no one scale
being clearly more discriminative than another, the fusibacales still produces much greater performance
results than the baseline. The seemingly patternlessilbotitm of the scales limits the effectiveness of this
approach because the contribution of scales cannot be etbdel

The analysis of the LPQ features shares similarities with &P and HOG. The results are dis-
played in Table4.4. Like HOG, most scales of LPQ features contribute to thenogltifusion of scales for
each sub-region of the periocular region in most of the @#sad ike LBP, not all scales contribute equally
and the scales that contribute the most and the degree tdwieg contribute change with the sub-region.
The upper and lower eyelids have the highest contributiom fihe lower scales and the contribution becomes
smaller as the scale increases. The contributions of thelted and the outer corner of the eye is where the
results from LPQ features differ from the results using LBBtfires. Scale 3 has the highest weight. The

eyebrow and skin sub-regions show a similar pattern to teeceyners.

45 Conclusion

The goals of Chaptetwere to modify the LABF algorithms to extract features fromltiple scales,
to determine if the single small scale used in previous rebegarovided the best performance in a typical

biometric experiment, and to investigate if multiple sealsed in conjunction could provide an increase in
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Sub-region || Scale 1| Scale 3| Scale 5| Scale 7| Scale 9| Scale 11
upper eyelid || 35-50 | 10-30 | 15-30 10 0-10 0-5
lower eyelid 25 30 30-35 | 0-10 0-5 0-5
tear duct 0-5 30-60 | 25-30 | 10-30 | 0-10 0
outer corner || 20-45 5-10 10 10-15 | 10-15 10-15
inner eyebrow|| 0-25 25-45 | 10-15 | 25-45 0-15 0
outer eyebrow|| 15-40 | 15-35 5-15 15-35 0-15 0-15
skin 0-50 0-25 0-10 20-35 | 5-35 5

Table 4.4: Contribution in percent of each scale to the tesflthe fusion of scales experiments for LPQ
features. A range is shown from the Left Eye FRGC, Right Ey&ERLeft Eye FERET, and Right Eye
FERET experiments.

performance. The modified LABF algorithms were used in erpents to show that the best performing
scale was not always the smallest scale. Scale 1 was typibalbest performing scale for LBP experiments,
but Scale 1 and Scale 9 were similar in performance for HO@ifea and Scale 7 was typically the best for
the LPQ experiments. Experiments that used a weightedrfugiscales were also performed and resulted in
increased performance. The largest increase in Rank-fj #R&C images was 29.8574% and the smallest
was 5.5725%. For FERET images, it was 29.1962% and 4.9785%mEthod developed in this chapter can
be used in conjunction with the method developed in Chapterproduce a novel algorithm for periocular

feature extraction that incorporates the discriminatio@er of features from multiple scales.
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Chapter 5

A Novel Method for Periocular

Recognition

5.1 Introduction

The structure of the periocular region and how it influendes fgerformance of an LABF-based
periocular recognition system was examined in Chapitéfhe experiments presented in ChafBeauggest
that some sub-regions of the periocular region are moreidiswative than others. Using this knowledge,
a novel block placement method for LABFs was proposed. Whergumly features extracted from each
individual sub-region, the results of biometric experitsguresented in this chapter suggest that LBP features
are most discriminative in the upper eyelid, lower eyekdrtduct, and outer corner, while LPQ features are
most discriminative in the inner eyebrow, outer eyebrowd skin. The experimentation of Chaptcould
serve as preliminary or training data for a biometric systhat considers the structure of the periocular
region in determining recognition accuracy.

The performance of LABFs at multiple scales was examinecdiap@r4. Previous research looked
at only a single, commonly the smallest, scale and discapdéentially useful information. The modi-
fications made to the original LABF algorithms resulted itldi increase in computation complexity, yet
demonstrated a significant difference in performance irsiciaometric experiment. The method developed
in Chapterd can be used in conjunction with the method developed in @n8pb produce a novel algorithm

for periocular feature extraction that incorporates thseidininative power of features from multiple scales.
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These two areas of exploration are specific to the periocaffion and can be used in conjunction
to form the basis of a biometric feature extraction algonitfThis algorithm utilizes unique properties of the
periocular region to provide a boost to recognition systarigsgmance over existing and more generalized
methods.

The goals of this Chapter are as follows:

e Detail a novel feature extraction method for use with periacregion data that takes into consideration

the structure of the periocular region as well as informmafiom multiple scales.

e Perform experimentation to compare the performance of ¢émemethod to existing methods of peri-

ocular feature extraction.

5.2 Data

The experiments reported in this chapter use the experahdatasets detailed in Chapt&r the
FRGC Experiment 1 subset and the FERET database. As exglbafere, these datasets are commonly
used within the biometric research community to comparedlaive performance of two methods. The new

method detailed in this chapter can be compared to the bahoais presented in Chapter

5.3 Method

A novel feature extraction method is presented in this drafotr use with periocular region data.
This method is the logical fusion of the methods detailed m@er3 and Chapted. Both methods have
the potential to work together in such a way that the proposethod will offer an increase in performance
over existing periocular feature extraction methods. Asgrainder, the basic components of a biometric
recognition algorithm are image preprocessing, featuteaetton, feature comparison, and classification.
Both elements of the proposed approach influence the feattnaction.

The first part of the proposed approach comes from the nevk lolmafiguration method of Section
3.5. As areminder, Figurb.1shows the proposed block arrangement beside the most coammamgyements.
Note that the blocks are not placed in a grid pattern like ipressapproaches. Instead, blocks are placed so
that they correspond to physical sub-regions of the peldoaegion. These sub-regions of the periocular

region are the upper eyelid, the lower eyelid, tear ducterocorner, inner eyebrow, outer eyebrow, and the

120



pal”™ [ =] |
BELE e
(©

[ | [ Ll | [
EELET e
()

Figure 5.1: Different models for block placement when udiA@®F: (a) Miller (b) Park (c) Proposed

skin. The suggested feature extraction method used vagsiton the sub-region. Based on the results from
Section3.6, LBP features are extracted from the upper eyelid, loweliggytear duct, and outer corner. LPQ
features are extracted from the inner eyebrow, outer eyelanad skin.

The second part of the proposed approach involves usingfimdiBAFs to extract features from
multiple scales. The details of the algorithms can be fouarfldctior4.3.1, Sectiord4.3.2 and Sectio.3.3
The experimental results presented in Secfighused a weighted fusion of features from multiple scales to
present the optimal results for those experiments. Therawpats in this chapter will use the same scheme
of weighted fusion. In this sense, the experiments of Seectid serve as training data for this chapter’s

experiments.

54 Reaults

The experiments presented in this chapter follow the basioétric experiment guidelines detailed
in Section2.3. Results are reported for experiments using the methodpeapbin Sectio®.3in comparison
to the methods from Milleet al. [31] and Parket al. [3§].

Table5.1 shows the Rank-1 recognition rate, equal error rate, vatifio rate at 0.1% false accept
rate, and D’ for the three different LABF methods on FRGC Eipent 1 using both the Milleet al.
and Parket al. methods. Tabl&.2 shows the same performance metrics for the proposed mefraides
5.3and5.4show the same results for the FERET experiments, resphctivean be seen that the proposed
approach provides better performance results than ang afttter approaches. The reasons to expect superior
performance have been discussed in the previous chapthis dissertation. The results shown here validate

the theoretical assumptions given in previous chapters.
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\ Left Periocular \ Right Periocular
LBP
Rank-1| EER | VRat0.1% FAR| D’ Rank-1| EER | VRat0.1% FAR| D’
Miller | 99.7068| 8.8323 64.8841 2.7331| 99.7005| 8.2016 69.7151 2.4401
Park | 98.6960| 10.8464 46.2132 2.8250| 98.8520| 10.4823 48.6871 2.5137
HOG
Rank-1| EER | VRat0.1% FAR| D’ Rank-1| EER | VRat0.1% FAR| D’
Miller | 99.6069| 8.0829 69.6951 2.8350| 99.6444| 7.5245 72.2473 2.9378
Park | 98.7834| 10.3863 61.3708 2.5107| 98.8208| 9.9537 62.6322 2.5849
LPQ
Rank-1| EER | VRat0.1% FAR| D’ Rank-1| EER | VRat0.1% FAR| D’
Miller | 99.7692| 7.1183 75.9181 2.8654 | 99.7816| 6.7227 76.6574 2.9439
Park | 98.9706| 11.0274 47.7062 2.4111| 99.0454| 10.5711 49.4899 2.4872

Table 5.1: Results of experiments using existing featuteaetton methods on images from the FRGC Ex-
periment 1 dataset

Left Periocular Right Periocular
Rank-1 | EER | VRat0.1% FAR| D’ Rank-1 | EER | VRat0.1% FAR| D’
Proposed| 99.9321| 6.9887 78.1764 2.9854 | 99.9798| 6.6785 79.5894 3.1154

Table 5.2: Results of experiments using the proposed methadages from the FRGC Experiment 1 dataset

Left Periocular Right Periocular
LBP
Rank-1| EER | VRat0.1% FAR| D’ Rank-1| EER | VRat0.1% FAR| D’
Miller | 90.2020| 4.9208 80.7071 3.2319| 87.2727| 5.2477 77.3737 3.2113
Park | 72.7273| 15.7522 47.4747 1.9316 | 72.8283| 16.0677 45.2525 1.9190
HOG
Rank-1| EER | VRat0.1% FAR| D’ Rank-1| EER | VRat0.1% FAR| D’
Miller | 87.1717| 5.0597 80.6061 3.3462| 86.6667| 5.3547 78.6869 3.3305
Park | 70.6061| 9.1828 62.3232 2.7286 | 70.0000| 9.4609 61.3131 2.6758
LPQ
Rank-1| EER | VRat0.1% FAR| D’ Rank-1| EER | VRat0.1% FAR| D’
Miller | 92.0202| 4.6486 83.9394 3.2062 | 92.2222| 4.8796 83.4343 3.1487
Park | 77.1717| 15.5542 56.8687 1.9655| 77.2727| 16.2383 55.9596 1.9133

Table 5.3: Results of experiments using existing featuteaetion methods on images from the FERET
dataset

Left Periocular Right Periocular
Rank-1 | EER | VRat0.1% FAR| D’ Rank-1 | EER | VRat0.1% FAR| D’
Proposed| 94.0667 | 4.0462 85.1113 3.5005| 93.8887| 4.3232 84.9190 3.8682

Table 5.4: Results of experiments using the proposed methasages from the FERET dataset
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In experiments using both FRGC and FERET images, the prdpos¢hod produced a higher VR
@ 0.1% FAR than either of the commonly used methods. The asersvas between 1% and 3%. This
performance comparison is given in regard to experimerasibke periocular images only. A comparison
to experiments that use face images would be an inapprefamhparison because the proposed method is
intended to be used with periocular region images only. poissible to conduct similar analysis on features
extracted from the full face and produce a method similahédne proposed in this chapter but such work
falls outside of the scope of this dissertation. Also, weraresuggesting that the periocular region be used

to replace the face when face data is available and colléctdeal settings.

5.5 Conclusionsand Future Work

In Chapterl, the periocular region was proposed as a useful biometritality in response to the
failure of traditional biometric modalities, such as facel dis, in non-ideal situations, e.g. the presence of
occlusion or closed eyelids. The periocular region was ssamseful because it is captured alongside face
and iris data during the standard biometric data collegbimtess. The biometric system that saw a failure
in the face or iris would immediately be able to use the petecregion to supplement the identification
process.

Chapter2 offered an examination of the periocular region by addrestiree aspects of biometric
recognition using the periocular region. First, commoridiaecognition data and common facial feature
extraction algorithms were examined as they are implendeinta periocular based biometric system. The
experimentation in Chapt& showed similar levels of performance between the face aridquéar region
for all of the features. Second, sub-regions of the face wragnined to investigate if some produce more
discriminative features than others. These experimeiriforeed the claims from the literature review that
the periocular region is the most discriminative regionhef face. Third, environment-influenced concerns
of biometric data were examined in the context of perioctdgognition. These experiments showed that
certain feature extraction methods stand up to non-ideaditions better than others, and this information
can be used to influence algorithms targeted at periocutagrétion.

To further explore aspects of the periocular region thathtniigfluence the creation of a periocular
specific biometric recognition algorithm, Chap8looked at the structure of the periocular region. The ex-
periments presented in this chapter suggest that the nezstrdinative sub-regions of the periocular region

are near the eyebrows and eye corners. This observation a@es oy examining experimental results from
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two different biometric datasets and three different femxtraction algorithms. The extent of the experi-
mentation, which is large in comparison to any of the redearentioned in the literature review, supports
the notion that the high performance of certain sub-regafnthe periocular region is a universal trait of
biometric images taken of the periocular region. A novethlplacement method for LABFs was proposed
in response to this discovery. This block placement methasl lmased on the location of the structural sub-
regions of the periocular region. When using only featurégsaeted from each individual sub-region, the
results of biometric experiments presented in this chaqtggested that LBP features are most discrimina-
tive in the upper eyelid, lower eyelid, tear duct, and outener, while LPQ features are most discriminative
in the inner eyebrow, outer eyebrow, and skin.

One aspect of the use of LABFs in the literature is that theytypically used in the smallest scale
possible. The work of Chaptdrmodifies the LABF methods to work in multiple scales and digcs that
each algorithm has a different optimal performance scalgs &xperimentation was also performed using
two biometric datasets and three feature extraction dtyos.

All of the knowledge of the periocular region that was disa@d up to this point was used to pro-
duce a biometric recognition algorithm that is designecajoally to be used with the periocular region. The
experimental results of that algorithm are presented & ¢hapter in comparison to two different methods
in the literature and using two different biometric datasethe theoretic and experimental efforts of this
dissertation, in addition to producing a better understandf the periocular region, lead to the creation of
an algorithm that performed better at the task of recogmitien presented with two different commonly
used biometric datasets.

One shortcoming of the method developed in this dissertasidhat a portion of the data used in
the experiments of this chapter is used in the experimen@hapter3 and Chapted. So, data, from which
the observations about the feature extraction methodgp#rédrm best in each sub-region of the periocular
region, is used in part to conduct experiments that supperctaim that the novel method for periocular
recognition presented in this chapter produces bettegretion performance than previous methods. The
biometrics research community does not typically find thigetof shortcoming to be significant. It is un-
avoidable in most cases because of the lack of high-qualitiglicly available biometric data. There is no
perfect biometric database and all research must work wlitht vg available.

Some research will collect their own set of biometric datae§e datasets are typically much smaller
than either FERET or FRGC and not publicly available. Cdiferour own set of biometric data for the

experimentation of this dissertation was infeasible. Betssuch as the FRGC took over three years and
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many researchers to compile. Datasets to the scale of FR&EHected for the sake of collecting the data
and not with specific scientific research in mind becauseefithe investment required.

Even though the data used to explore aspects of the periaegi@n and the data used to test the
proposed method overlap, the observations made in eackecltane from using more than one dataset and
using more than one feature extraction algorithm. Many efahservations are consistent across these vari-
ables which suggests that the observations would likely ddearirom experimentation with any periocular
data. One suggested area of future work would be to test thigoped method on a new and larger set of
periocular data.

This dissertation is focused on how the periocular regiahthae proposed method perform in the
basic biometric experiments, e.g. frontal face images undetrolled lighting conditions. This method
could be tested in other, more difficult problems such as tfiregeof a subject. Aging is a difficult problem
in biometrics research and it would be interesting to see thewproposed method could be used to address
the problem of aging.

The observations about the types of features extracted therperiocular region could be used in
many unforeseen ways. The observations and the methodsougederate them can be used to inform future
research into all areas of biometrics, not just periociéangnition. The contributions of this dissertation to
the state of biometrics research is much more significamt éhmethod that provides improved performance

in one biometric problem.
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Appendix A Abbreviations

CMC: Cumulative Match Characteristic
DET: Detection Error Tradeoff

MSD: Match Score Distribution

FRR: False Reject Rate

FAR: False Accept Rate

EER: Equal Error Rate

VR: Verification Rate

FERET: Facial Recognition Techology
FRGC: Facial Recognition Grand Challenge
PCA: Principle Component Analysis
LBP: Local Binary Patterns

HOG: Histogram of Oriented Gradients
LPQ: Local Phase Quantization

WLD: Webber Local Descriptor

SIFT: Scale Invariant Feature Transform
SURF: Speeded Up Robust Features

LABF: Local Appearance Based Features
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