946,283 research outputs found

    Patrolling a Street Network is Strongly NP-Complete but in P for Tree Structures

    Full text link
    We consider the following problem: Given a finite set of straight line segments in the plane, determine the positions of a minimal number of points on the segments, from which guards can see all segments. This problem can be interpreted as looking for a minimal number of locations of policemen, guards, cameras or other sensors, that can observe a network of streets, corridors, tunnels, tubes, etc. We show that the problem is strongly NP-complete even for a set of segments with a cubic graph structure, but in P for tree structures

    Approximation Algorithm for Line Segment Coverage for Wireless Sensor Network

    Full text link
    The coverage problem in wireless sensor networks deals with the problem of covering a region or parts of it with sensors. In this paper, we address the problem of covering a set of line segments in sensor networks. A line segment ` is said to be covered if it intersects the sensing regions of at least one sensor distributed in that region. We show that the problem of finding the minimum number of sensors needed to cover each member in a given set of line segments in a rectangular area is NP-hard. Next, we propose a constant factor approximation algorithm for the problem of covering a set of axis-parallel line segments. We also show that a PTAS exists for this problem.Comment: 16 pages, 5 figures

    New results on stabbing segments with a polygon

    Get PDF
    We consider a natural variation of the concept of stabbing a set of segments with a simple polygon: a segment s is stabbed by a simple polygon P if at least one endpoint of s is contained in P, and a segment set S is stabbed by P if P stabs every element of S. Given a segment set S, we study the problem of finding a simple polygon P stabbing S in a way that some measure of P (such as area or perimeter) is optimized. We show that if the elements of S are pairwise disjoint, the problem can be solved in polynomial time. In particular, this solves an open problem posed by Loftier and van Kreveld [Algorithmica 56(2), 236-269 (2010)] [16] about finding a maximum perimeter convex hull for a set of imprecise points modeled as line segments. Our algorithm can also be extended to work for a more general problem, in which instead of segments, the set S consists of a collection of point sets with pairwise disjoint convex hulls. We also prove that for general segments our stabbing problem is NP-hard. (C) 2014 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    UTwente does Brave New Tasks for MediaEval 2012: Searching and Hyperlinking

    Get PDF
    In this paper we report our experiments and results for the brave new searching and hyperlinking tasks for the MediaEval Benchmark Initiative 2012. The searching task involves nding target video segments based on a short natural language sentence query and the hyperlinking task involves nding links from the target video segments to other related video segments in the collection using a set of anchor segments in the videos that correspond to the textual search queries. To nd the starting points in the video, we only used speech transcripts and metadata as evidence source, however, other visual features (for e.g., faces, shots and keyframes) might also aect results for a query. We indexed speech transcripts and metadata, furthermore, the speech transcripts were indexed at speech segment level and at sentence level to improve the likelihood of nding jump-in-points. For linking video segments, we computed k-nearest neighbours of video segments using euclidean distance

    On Covering Segments with Unit Intervals

    Get PDF
    We study the problem of covering a set of segments on a line with the minimum number of unit-length intervals, where an interval covers a segment if at least one of the two endpoints of the segment falls in the unit interval. We also study several variants of this problem. We show that the restrictions of the aforementioned problems to the set of instances in which all the segments have the same length are NP-hard. This result implies several NP-hardness results in the literature for variants and generalizations of the problems under consideration. We then study the parameterized complexity of the aforementioned problems. We provide tight results for most of them by showing that they are fixed-parameter tractable for the restrictions in which all the segments have the same length, and are W[1]-complete otherwise
    • …
    corecore