1,725 research outputs found

    Robust correlated and individual component analysis

    Get PDF
    © 1979-2012 IEEE.Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) thetemporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methodson these application domains, outperforming other state-of-the-art methods in the field

    Statistical region based active contour using a fractional entropy descriptor: Application to nuclei cell segmentation in confocal microscopy images

    Get PDF
    We propose an unsupervised statistical region based active contour approach integrating an original fractional entropy measure for image segmentation with a particular application to single channel actin tagged fluorescence confocal microscopy image segmentation. Following description of statistical based active contour segmentation and the mathematical definition of the proposed fractional entropy descriptor, we demonstrate comparative segmentation results between the proposed approach and standard Shannon’s entropy on synthetic and natural images. We also show that the proposed unsupervised statistical based approach, integrating the fractional entropy measure, leads to very satisfactory segmentation of the cell nuclei from which shape characterization can be calculated

    Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging

    Full text link
    Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure

    Sparse Representation-Based Framework for Preprocessing Brain MRI

    Get PDF
    This thesis addresses the use of sparse representations, specifically Dictionary Learning and Sparse Coding, for pre-processing brain MRI, so that the processed image retains the fine details of the original image, to improve the segmentation of brain structures, to assess whether there is any relationship between alterations in brain structures and the behavior of young offenders. Denoising an MRI while keeping fine details is a difficult task; however, the proposed method, based on sparse representations, NLM, and SVD can filter noise while prevents blurring, artifacts, and residual noise. Segmenting an MRI is a non-trivial task; because normally the limits between regions in these images may be neither clear nor well defined, due to the problems which affect MRI. However, this method, from both the label matrix of the segmented MRI and the original image, yields a new improved label matrix in which improves the limits among regions.DoctoradoDoctor en IngenierĂ­a de Sistemas y ComputaciĂł

    Improved detection of small atom numbers through image processing

    Get PDF
    We demonstrate improved detection of small trapped atomic ensembles through advanced post-processing and optimal analysis of absorption images. A fringe removal algorithm reduces imaging noise to the fundamental photon-shot-noise level and proves beneficial even in the absence of fringes. A maximum-likelihood estimator is then derived for optimal atom-number estimation and is applied to real experimental data to measure the population differences and intrinsic atom shot-noise between spatially separated ensembles each comprising between 10 and 2000 atoms. The combined techniques improve our signal-to-noise by a factor of 3, to a minimum resolvable population difference of 17 atoms, close to our ultimate detection limit.Comment: 4 pages, 3 figure

    Fractional Entropy Based Active Contour Segmentation of Cell Nuclei in Actin-Tagged Confocal Microscopy Images

    Get PDF
    In the framework of cell structure characterization for predictive oncology, we propose in this paper an unsupervised statistical region based active contour approach integrating an original fractional entropy measure for single channel actin tagged fluorescence confocal microscopy image segmentation. Following description of statistical based active contour segmentation and the mathematical definition of the proposed fractional entropy descriptor, we demonstrate comparative segmentation results between the proposed approach and standard Shannon’s entropy obtained for nuclei segmentation. We show that the unsupervised proposed statistical based approach integrating the fractional entropy measure leads to very satisfactory segmentation of the cell nuclei from which shape characterization can be subsequently used for the therapy progress assessment

    General automated flaw detection scheme for NDE X-ray images

    Get PDF
    This paper presents an approach to automated flaw detection (AFD) in an arbitrary X-ray image. The intensities in the digitized radiographic image are modeled as piecewise-smooth surface functions corrupted by noise and flaws. It has been observed that radiographs generated for NDE purposes containing flaws also have a combination of three unwanted features; background trends, geometrical structures, and noise. These features inhibit the performance of automated flaw detection algorithms. The proposed general processing scheme reduces the unwanted features in such a way that candidate flaws within the image can be identified. The proposed scheme is robust and is applicable to a wide variety of NDE imaging applications
    • …
    corecore