1,299 research outputs found

    Managerial Segmentation of Service Offerings in Work Commuting, MTI Report WP 12-02

    Get PDF
    Methodology to efficiently segment markets for public transportation offerings has been introduced and exemplified in an application to an urban travel corridor in which high tech companies predominate. The principal objective has been to introduce and apply multivariate methodology to efficiently identify segments of work commuters and their demographic identifiers. A set of attributes in terms of which service offerings could be defined was derived from background studies and focus groups of work commuters in the county. Adaptive choice conjoint analysis was used to derive the importance weights of these attributes in available service offering to these commuters. A two-stage clustering procedure was then used to explore the grouping of individual’s subsets into homogeneous sub-groups of the sample. These subsets are commonly a basis for differentiation in service offerings that can increase total ridership in public transportation while approximating cost neutrality in service delivery. Recursive partitioning identified interactions between demographic predictors that significantly contributed to the discrimination of segments in demographics. Implementation of the results is discussed

    Trail Analyst Extension: Multidimensional Segmentation of Transportation Networks to Support Multimodal Travel

    Get PDF
    Transportation planners have usually disregarded unimproved roads and trails. However, in applications such as disaster relief, emergency evacuations, and recreational hiking and treks there is a need to consider all possible paths on a transportation network. These previously ignored travel routes differ from paved roads in their increased susceptibility to the effects of weather and limits on particular transportation modes. The transportation planning system used by the client was upgraded from one that considered only paved roads to one showing an integration of roads, off-road vehicular trails, and footpaths. The Trail Analyst Extension was developed as an extension to a commercial GIS software package to provide a suite of tools to: 1) augment the location of trails with additional attributes, such as, elevation, water hazards, and meteorological events to better facilitate seasonal planning; 2) construct a transportation network that includes the trails and unimproved roads, as well as paved roads; and 3) segment the transportation network edges according to user-defined constraints. The Trail Analyst Extension provides planners a means to tailor routes based on recent meteorological conditions and varying modes of transport

    Map++: A Crowd-sensing System for Automatic Map Semantics Identification

    Full text link
    Digital maps have become a part of our daily life with a number of commercial and free map services. These services have still a huge potential for enhancement with rich semantic information to support a large class of mapping applications. In this paper, we present Map++, a system that leverages standard cell-phone sensors in a crowdsensing approach to automatically enrich digital maps with different road semantics like tunnels, bumps, bridges, footbridges, crosswalks, road capacity, among others. Our analysis shows that cell-phones sensors with humans in vehicles or walking get affected by the different road features, which can be mined to extend the features of both free and commercial mapping services. We present the design and implementation of Map++ and evaluate it in a large city. Our evaluation shows that we can detect the different semantics accurately with at most 3% false positive rate and 6% false negative rate for both vehicle and pedestrian-based features. Moreover, we show that Map++ has a small energy footprint on the cell-phones, highlighting its promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (IEEE SECON 2014

    Exploiting low-cost 3D imagery for the purposes of detecting and analyzing pavement distresses

    Get PDF
    Road pavement conditions have significant impacts on safety, travel times, costs, and environmental effects. It is the responsibility of road agencies to ensure these conditions are kept in an acceptable state. To this end, agencies are tasked with implementing pavement management systems (PMSs) which effectively allocate resources towards maintenance and rehabilitation. These systems, however, require accurate data. Currently, most agencies rely on manual distress surveys and as a result, there is significant research into quick and low-cost pavement distress identification methods. Recent proposals have included the use of structure-from-motion techniques based on datasets from unmanned aerial vehicles (UAVs) and cameras, producing accurate 3D models and associated point clouds. The challenge with these datasets is then identifying and describing distresses. This paper focuses on utilizing images of pavement distresses in the city of Palermo, Italy produced by mobile phone cameras. The work aims at assessing the accuracy of using mobile phones for these surveys and also identifying strategies to segment generated 3D imagery by considering the use of algorithms for 3D Image segmentation to detect shapes from point clouds to enable measurement of physical parameters and severity assessment. Case studies are considered for pavement distresses defined by the measurement of the area affected such as different types of cracking and depressions. The use of mobile phones and the identification of these patterns on the 3D models provide further steps towards low-cost data acquisition and analysis for a PMS

    Assessment of Driver Behavior Based on Machine Learning Approaches in a Social Gaming Scenario

    Get PDF
    The estimation of user performance analytics in the area of car driver performance was carried out in this paper. The main focus relies on the descriptive analysis with our approaches emphasizing on educational serious games, in order to improvise the driver\u2019s behavior (specifically green driving) in a pleasant and challenging way. We also propose a general Internet of the Things (IoT) social gaming platform (SGP) concept that could be adaptable and deployable to any kind of application domain. The social gaming scenario in this application enables the users to compete with peers based on their physical location. The efficient drivers will be awarded with virtual coins and gained virtual coins can be used in real world applications (such as purchasing travel tickets, reservation of parking lots, etc.). This research work is part of TEAM project co-funded within the EU FP7 ICT research program

    INSPIRE Newsletter Spring 2021

    Get PDF
    https://scholarsmine.mst.edu/inspire-newsletters/1008/thumbnail.jp

    Automated Extraction of Road Information from Mobile Laser Scanning Data

    Get PDF
    Effective planning and management of transportation infrastructure requires adequate geospatial data. Existing geospatial data acquisition techniques based on conventional route surveys are very time consuming, labor intensive, and costly. Mobile laser scanning (MLS) technology enables a rapid collection of enormous volumes of highly dense, irregularly distributed, accurate geo-referenced point cloud data in the format of three-dimensional (3D) point clouds. Today, more and more commercial MLS systems are available for transportation applications. However, many transportation engineers have neither interest in the 3D point cloud data nor know how to transform such data into their computer-aided model (CAD) formatted geometric road information. Therefore, automated methods and software tools for rapid and accurate extraction of 2D/3D road information from the MLS data are urgently needed. This doctoral dissertation deals with the development and implementation aspects of a novel strategy for the automated extraction of road information from the MLS data. The main features of this strategy include: (1) the extraction of road surfaces from large volumes of MLS point clouds, (2) the generation of 2D geo-referenced feature (GRF) images from the road-surface data, (3) the exploration of point density and intensity of MLS data for road-marking extraction, and (4) the extension of tensor voting (TV) for curvilinear pavement crack extraction. In accordance with this strategy, a RoadModeler prototype with three computerized algorithms was developed. They are: (1) road-surface extraction, (2) road-marking extraction, and (3) pavement-crack extraction. Four main contributions of this development can be summarized as follows. Firstly, a curb-based approach to road surface extraction with assistance of the vehicle’s trajectory is proposed and implemented. The vehicle’s trajectory and the function of curbs that separate road surfaces from sidewalks are used to efficiently separate road-surface points from large volume of MLS data. The accuracy of extracted road surfaces is validated with manually selected reference points. Secondly, the extracted road enables accurate detection of road markings and cracks for transportation-related applications in road traffic safety. To further improve computational efficiency, the extracted 3D road data are converted into 2D image data, termed as a GRF image. The GRF image of the extracted road enables an automated road-marking extraction algorithm and an automated crack detection algorithm, respectively. Thirdly, the automated road-marking extraction algorithm applies a point-density-dependent, multi-thresholding segmentation to the GRF image to overcome unevenly distributed intensity caused by the scanning range, the incidence angle, and the surface characteristics of an illuminated object. The morphological operation is then implemented to deal with the presence of noise and incompleteness of the extracted road markings. Fourthly, the automated crack extraction algorithm applies an iterative tensor voting (ITV) algorithm to the GRF image for crack enhancement. The tensor voting, a perceptual organization method that is capable of extracting curvilinear structures from the noisy and corrupted background, is explored and extended into the field of crack detection. The successful development of three algorithms suggests that the RoadModeler strategy offers a solution to the automated extraction of road information from the MLS data. Recommendations are given for future research and development to be conducted to ensure that this progress goes beyond the prototype stage and towards everyday use

    Comprehensive Survey and Analysis of Techniques, Advancements, and Challenges in Video-Based Traffic Surveillance Systems

    Get PDF
    The challenges inherent in video surveillance are compounded by a several factors, like dynamic lighting conditions, the coordination of object matching, diverse environmental scenarios, the tracking of heterogeneous objects, and coping with fluctuations in object poses, occlusions, and motion blur. This research endeavor aims to undertake a rigorous and in-depth analysis of deep learning- oriented models utilized for object identification and tracking. Emphasizing the development of effective model design methodologies, this study intends to furnish a exhaustive and in-depth analysis of object tracking and identification models within the specific domain of video surveillance
    • …
    corecore