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Abstract 

Effective planning and management of transportation infrastructure requires 

adequate geospatial data. Existing geospatial data acquisition techniques based on 

conventional route surveys are very time consuming, labor intensive, and costly. Mobile 

laser scanning (MLS) technology enables a rapid collection of enormous volumes of 

highly dense, irregularly distributed, accurate geo-referenced point cloud data in the 

format of three-dimensional (3D) point clouds. Today, more and more commercial MLS 

systems are available for transportation applications. However, many transportation 

engineers have neither interest in the 3D point cloud data nor know how to transform 

such data into their computer-aided model (CAD) formatted geometric road information. 

Therefore, automated methods and software tools for rapid and accurate extraction of 

2D/3D road information from the MLS data are urgently needed. 

This doctoral dissertation deals with the development and implementation aspects 

of a novel strategy for the automated extraction of road information from the MLS data. 

The main features of this strategy include: (1) the extraction of road surfaces from large 

volumes of MLS point clouds, (2) the generation of 2D geo-referenced feature (GRF) 

images from the road-surface data, (3) the exploration of point density and intensity of 

MLS data for road-marking extraction, and (4) the extension of tensor voting (TV) for 

curvilinear pavement crack extraction. In accordance with this strategy, a RoadModeler 

prototype with three computerized algorithms was developed. They are: (1) road-surface 

extraction, (2) road-marking extraction, and (3) pavement-crack extraction. Four main 

contributions of this development can be summarized as follows. 

Firstly, a curb-based approach to road surface extraction with assistance of the 

vehicle’s trajectory is proposed and implemented. The vehicle’s trajectory and the 
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function of curbs that separate road surfaces from sidewalks are used to efficiently 

separate road-surface points from large volume of MLS data. The accuracy of extracted 

road surfaces is validated with manually selected reference points.  

Secondly, the extracted road enables accurate detection of road markings and 

cracks for transportation-related applications in road traffic safety.  To further improve 

computational efficiency, the extracted 3D road data are converted into 2D image data, 

termed as a GRF image. The GRF image of the extracted road enables an automated 

road-marking extraction algorithm and an automated crack detection algorithm, 

respectively. 

Thirdly, the automated road-marking extraction algorithm applies a point-density-

dependent, multi-thresholding segmentation to the GRF image to overcome unevenly 

distributed intensity caused by the scanning range, the incidence angle, and the surface 

characteristics of an illuminated object. The morphological operation is then implemented 

to deal with the presence of noise and incompleteness of the extracted road markings.  

Fourthly, the automated crack extraction algorithm applies an iterative tensor 

voting (ITV) algorithm to the GRF image for crack enhancement. The tensor voting, a 

perceptual organization method that is capable of extracting curvilinear structures from 

the noisy and corrupted background, is explored and extended into the field of crack 

detection.  

The successful development of three algorithms suggests that the RoadModeler 

strategy offers a solution to the automated extraction of road information from the MLS 

data. Recommendations are given for future research and development to be conducted to 

ensure that this progress goes beyond the prototype stage and towards everyday use.  
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Chapter 1 Introduction 

1.1 Background 

Road transportation plays a vital role in people’s daily lives in all countries 

because it brings people together for business or pleasure by connecting small and large 

cities, urban and rural communities, as well as connecting a country with its neighbors to 

enable the safe movement of goods, people, and services. To safely keep people on the 

move, transportation departments in cities or countries have to periodically perform road 

surveys. The documentation of road infrastructure includes both road surface geometry 

(e.g., lane width, number of lanes, longitudinal slopes, and transverse slopes) and road 

environment (e.g., road markings, pavement cracks, street signs, trees, vegetation, and 

traffic light poles). The surveyed data are used not only for transportation departments to 

maintain, rehabilitate, and reconstruct the current roadways and bridges, and to manage 

traffic and parking infrastructure, but also for administration to assess policies and 

practices affecting roadways. However, transportation-related road features are manually 

collected by involving an engineer annotating a digital map or manually classified based 

on spatially referenced videos (Kumar et al., 2010). These methods for inspecting 

transportation-related road features on a large scale are very time consuming, labor 

intensive, and costly. 

Transportation infrastructure, an important component of land use, is constantly 

evolving with social and economic developments. The road network is a large part of 

transportation infrastructure in urban areas, making a critical contribution to population 

growth and increasing mobility of our society. A transportation agency needs road geo-
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spatial information for a variety of applications, such as regular road maintenance (e.g., 

crack sealing, patching, edge repairing, surface dressing, and spot rehabilitating), driver-

assistance systems, and road safety analysis. The significance of road information for 

planning, building and maintaining road infrastructure has stimulated an increase in 

producers of specialized technologies and software for road asset inventory (McCarthy et 

al., 2007).  

The recent two decades have witnessed a technically transformative change for 

transportation agencies over the world. The change is from 2D paper-based world to 3D 

digital technology. Compared to 2D road information, semantically-tagged 3D models of 

urban road environments are crucial to understand the complete structure of a city and 

provide contextual cues for recognizing small street-scene objects such as overpasses, 

bridges, traffic signs, and even roadside high power lines. With proper practices, 3D road 

models can link a variety of other data such as traffic or crash data for transportation 

management. Traditionally, to collect 3D road data, a design project needs lane closures, 

leading to an enormous safety risk for surveyors working along the road and a high 

degree of low production rates. Efficient and inexpensive techniques for data acquisition 

in the field of remote sensing have been gaining popularity in the extraction of roads and 

street-scene objects. 

MLS, a widely used technology since 2003 when the first commercial MLS 

system was developed, has attracted much attention to mainly transportation-related 

surveys (Jacobs, 2005; Toth, 2009). It is a data revolution. With a MLS system, mobile 

mapping crew can drive on a highway, rural road, and railroad, by a river or lake, or 

along a shoreline. Along the way, the system captures trees, bridges, streetlights, 
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buildings, power lines, other street-scene small objects (e.g., pavement cracks, road 

markings), virtually anything visible to the eyes in 3D. The collected data are a totally 

immersive 3D view of objects and surroundings (Rybka, 2011). 

Today's major trend in mapping and GIS is an increasing demand for not only 

accuracy of geospatial data but efficiency and low cost. MLS systems can meet this 

demand and provide the end results with increased productivity (Hutton, 2008). Moreover, 

MLS is a much safer mapping technique than traditional highway survey methods, where 

surveyors wearing orange vests measure the land boundaries and understand the terrain 

via total stations, TMLS, and so on, as well as the requirement of extensive traffic 

management or road closures.  

Given MLS advantages including improved safety, faster turnaround, and more 

complete and accurate survey data, a growing number of transportation agencies have 

considered MLS for road inventory and outlined guidelines for transportation 

applications. For example, according to the latest figures published by the U.S. Bureau of 

Statistics in 2010, the U.S. national transportation network consists of 601,392 highway 

bridges and overpasses intermittently placed within 46,934 miles of interstate highway 

and 116,837 miles of national highway system roads. To maintain and manage the 

national transportation network, a few states Department of Transportation (DOT), such 

as Tennessee DOT, Hawaii DOT, Nevada DOT, Ohio DOT, and Texas DOT, have 

contracted with MLS service providers for road asset management.  

Note that MLS certainly will not replace more conventional methods of 

topographic data collection. The MLS data, in most cases, may need to be supplemented 

by data collected from the existing methods such as conventional surveying, GPS, 



4 
 

photogrammetry, and ALS (Gordon, 2010). MLS, integrated a navigation solution, laser 

scanners, and a number of high-resolution cameras with even more powerful computer 

systems, is still in its infancy and has only been commercially available for five years 

(Stauth and Olsen, 2013). Thus, studies on MLS as a reliable and cost-effective 

alternative, is worthwhile for carrying out road inspections along the route corridor.  

However, the data collected by MLS systems are very large and require upgrading 

not only the entire computing infrastructure (software, workstations, servers, data storage, 

and network backbone) but also data post-processing packages for road-information 

extraction. Manually processing the significant volumes of MLS data for road-

information extraction are very time consuming. Current software packages are incapable 

of modelling and utilizing point clouds for design. Thus, advanced sensor technologies 

and current data-processing situations provide the underlying motivations for this thesis 

to research automated road-information extraction algorithms. 

1.2 Motivations 

Data post-processing is the key to a complete solution for the end-users. Hardware 

manufactures continue to build advanced MLS systems. For example, RIEGL VMX-250 

system that can collect 0.5 million points per second was developed into the current 

RIEGL VMX-450 system that collects 1.1 million points per second.  Data post-

processing software capabilities need to catch up with the hardware development for 

transforming the significant volumes of data into the deliverables, such as DEM and 

contour maps. However, managing such massive points has presented a new challenge to 

software industries.  
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Although post-processing methods for laser scanning data, particularly ALS data, 

have made great progress a few short years ago, no reliable, robust, and stable theoretical 

frames exist for MLS data processing, and most algorithms or methods still stay at the 

stage of research and development. Several well-known companies provide companion 

software packages along with their laser scanning systems, such as Riegl’s Ri-SCAN 

PRO for TLS data and Ri-PROCESS for MLS data. However, these packages are 

focusing on some fundamental operations, such as data control, calibration, adjustment, 

registration, and visualization. As for road-information extraction and 3D road modelling, 

most companies allow exporting multiple file format types or providing an interface to 

further post-processing tools to execute data classification, triangulation or 3D modelling 

by third-party software packages.  

Currently, the advanced third-party point-cloud post-processing software includes 

Leica Cyclone®, InnovMetric PolyWorks®, GeoCue software suite, TerraSolid software 

suite, PHOCAD PHIDIAS®, Bentley Pointools, and Virtual Geomatics software suite 

(Yen et al., 2011). Most third-party software packages can deal with only small volumes 

of 3D points. The Terrasolid
®
 software suite that includes TerraScan, TerraModeler, 

TerraMatch, TerraPhoto, TerraControl, and TerraOffice modules, is suited for processing 

large volumes of points in a reasonable time based on the platform of Microsation
®
. 

However, the Terrasolid
®
 software suite was originally developed for ALS data, whose 

data size for each strip probably is at megabyte levels. The Terrasolid
®
 software suite is 

sometimes limited to MLS data at gigabyte or terabyte levels.  

Academic research on road features using MLS data is now motivated by the 

increasing demands for road network update and 3D city modelling. Most current studies 

http://www.bentley.com/en-US/Products/Bentley+Pointools/
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on road extraction applied geometrical models such as RANSAC, Hough Transform, and 

Least Square Linear fitting to MLS data. However, these mathematical estimation 

algorithms are limited to large volumes of MLS data because of their intensive 

computation. Some studies extracted road points in an object-classification way, where 

both road and data characteristics such as road width, intensity information, were used. 

These algorithms are efficient, but not very reliable because of occlusion. Extensive work 

is required for radiometric calibration. 

The extraction of road marking and crack has been widely researched on digital 

images. However, precise geometrical information is limited by the following 

environmental factors: (1) road surface materials, such as light pavement, dark pavement, 

or a combination of different pavements, (2) weather conditions and time of day that can 

have a great impact on the visibility of road surfaces, and (3) complex shadowing from 

trees and moving vehicles.  

Given the rapid development of MLS hardware and the urgent need for software 

tools that can handle huge volumes of 3D point clouds, this research aims to develop an 

automated road information extraction system by taking advantage of the MLS data. 

1.3 Objectives of the Study 

The specific objectives of this thesis can be described as follows: 

The first objective is to develop an automated algorithm for extracting road edges 

from MLS data. Separating road points from off-road points is a difficult task for 

gigabyte-level MLS data. The purpose of this study is to make use of the vehicle 

trajectory for partitioning MLS data and detect curbs for extracting road edges without 

any data management structures being involved. 
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The second objective is to develop an automated algorithm for identifying road 

markings. Although road markings are painted by high-reflective materials, the 

magnitudes of the reflected data highly depend on the scanning distance from a scanner 

to illuminated objects, the incident angle of a laser pulse, and the material properties of 

road surfaces.  The purpose of this study is to explore point density to segment road 

markings and further extract road markings via a morphological operation. 

The third objective is to explore the potential of MLS data for pavement-crack 

extraction. To simplify post-processing procedures, the classified road points are 

interpolated into 2D GRF images similar to range images for ALS. The purpose of this 

study is to explore the applicability of tensor voting for pavement-crack extraction from 

noisy 2D GRF images.  

1.4 Structure of the Thesis 

The thesis consists the following six chapters. Chapter 2 reviews fundamental 

knowledge of the MLS technology and a variety of previous studies on the extraction of 

road surfaces, road markings, and pavement cracks using MLS data. Chapter 3 explains 

the designed method framework of road-information extraction, describes RIEGL VMX-

450 system, analyzes the collected MLS data, and presents the study area. Chapters 4, 5, 

and 6 detail the road-information extraction algorithms developed for the automated 

extraction of road surfaces, road markings, and pavement cracks, respectively. Chapter 7 

concludes this research with a summary of four contributions and details future research 

directions. 
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Chapter 2 Literature Review 

2.1 Description of MLS  

2.1.1 Introduction 

MMS refers to a means of collecting 3D geospatial data using mapping sensors 

that are mounted on a land-based vehicle for corridor mapping (Schwarz and El-Sheimy, 

2007; GIM 2013; Lemmens, 2011). In terms of sensors, MMS is normally categorized as: 

image-based and laser-based.  

Image-based MMS has a major impact on conventional transportation surveying 

and mapping, such as modelling and estimation of road boundaries in road safety 

assistance (Tao and Li, 2007; Dickmanns and Mysliwetz, 1992; Bertozzi, et al., 1997; 

Pomerleau and Jochem, 1996). This significant impact is because images contain rich 

color and texture information which benefits road extraction. Commercial image-based 

road extraction systems have been widely available (Liu et al., 2013). However, image-

based MMSs are incapable of dealing with situations where road features such as lane 

markings are missing / ambiguous and visibly restricted due to weather conditions 

(Tsogas et al., 2011).  The technology of 3D laser scanning has emerged and further been 

fuelled to a wide variety of transportation applications, such as model-based road design 

and automated machine guidance. 

Laser scanning systems that use a laser beam to scan a visible surface and record 

the beam travelling time and the reflected energy from the surface to obtain its geometry 

and intensity information, have been used for a broad spectrum of applications, such as 

route planning and preliminary highway design (Road Talk, 2013). Compared to 
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photogrammetry and field surveys, laser scanners capture very highly accurate 3D point 

clouds with a high point density in a relatively short amount of time (Haala et al., 2008; 

Chehata et al., 2009; Ussyshkin, 2009). Note that MLS systems emerged from 2003 can 

collect topographic data more accurately with a higher resolution than the data collected 

by their counterparts, such as airborne laser scanning systems. More terms, such as 

TMLS, land-based MLS, or mobile LiDAR, are interchangeably used in the field of laser 

scanning. The feasibility of MLS for transportation-related road surveys continues to be 

proven in safety, cost, efficiency, and data confidence. Besides collecting explicit highly-

accurate elevation information, MLS systems also provide other implicit information, 

such as intensity, vehicle trajectory, scanning patterns, and pulse information, all of 

which contribute to road-information extraction.  

Compared to traditional survey methods, such as conventional surveying (using 

total stations), global positioning system (GPS), and photogrammetry, MLS offers many 

advantages: high accuracy, high point density, rapid data collection, and unprecedented 

details (Babic et al., 2012). For example, for a Trimble MX-8, the data accuracy is within 

4-5 cm in planimetric and within 2-3 cm in elevation (Guan et al., 2013). The Trimble 

MX-8 MLS system integrates two Riegl VQ-250 laser scanners that can produce 600,000 

points per second. As a result, the system can collect data up to 35 Gigabytes within 

twenty minutes, plus images from four high-resolution cameras, at the speed of around 

30~50 km/h. Therefore, MLS is a more feasible 3D measurement technology for large-

scale mapping projects than the legacy methods (Schrock, 2013). Specifically speaking, a 

10-km-long highway would have taken at least 20 nights to survey and a week to process 

the resultant measurements by a traditional highway survey method, while the highway, 
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would take, from start to finish, less than a week using a MLS system, (LiDAR News, 

2013).  

2.1.2 System Components 

Most MLS systems are composed of four major components: (1) laser scanner(s), 

(2) camera(s), (3) a navigation system that integrates a Global Navigation Satellite 

System (GNSS), an Inertial Measurement Unit (IMU), and a wheel-mounted Distance 

Measurement Indicator (DMI), and (4) a control system that synchronizes all sensors and 

manages data storages and communication. 

(1) A navigation solution- an integration of GNSS, IMU, and DMI.  

Rather than one of these components alone, an integration of an IMU, more than 

one GNSS antenna, and a DMI allows exploiting the complementary nature of those 

sensors. GNSS receivers provide three primary observations: time, position, and velocity 

(speed and direction) measurements. Position and velocity are used for logging to 

computers and IMU. 

Although GNSS receivers can provide highly accurate positional information in 

an open environment, it suffers when satellite signals are blocked by high-rise buildings, 

vegetation, tunnels, and other obstacles. On the other hand, IMU provides attitude 

information of the vehicle (roll, pitch, and heading), and does not require satellite signals 

to sense 3-axis accelerations and 3-axis angular rotations; however, the accuracy of 

position and orientation degrades with the time. Thus, GNSS and IMU are integrated to 

provide precisely positioning information. GNSS positions are augmented by IMU in 

periods of poor satellite conditions, while GNSS provides updated positioning 

information to IMU. Compared to ALS and TLS systems, MLS systems have DMIs that 
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can constrain the error drift, especially during vehicle stoppages in areas of intermittent 

GNSS coverage. 

DMI is placed on one of the vehicle wheels to measure tire rotation, directly 

estimating a travelled distance. DMI is referred to as the Instrumented Wheel. Its output 

pulses represent fractional revolutions of the Instrumented Wheel. These pulses are 

converted into incremental distance, providing a measure of the distance travelled by the 

vehicle. The measure, termed as DMI scale factor, can be calculated by the following two 

formulas: (1) Pulse and Direction DMI (Type 1): dnS / , and (2) Quadrature DMI 

(Type 2): dnS /4 . Where, n is the number of DMI pulses per revolution, and d is the 

Instrumented Wheel diameter in metres. The number of DMI pulses per revolution is 

typically stamped on a DMI nameplate. DMI usually supplements GNSS and IMU with 

additional positioning information. Wheel rotation data constrain drift, especially during 

vehicle stoppages in areas of intermittent GNSS coverage.  

A Kalman Filter compares the inertial solution with the corresponding data from 

the primary GNSS receiver, GPS Azimuth Measurement Subsystem (GAMS), and DMI, 

estimating inertial navigation errors. A tightly coupled ambiguity resolution algorithm is 

in use when real-time GNSS corrections data are available. The navigation software then 

adjusts the inertial navigation solution by the estimated navigation errors. This process of 

inertial navigation, navigation error estimation, and error correction forms a closed error 

regulation loop that requires the inertial navigation data to be consistent with the aiding 

sensor data (Petri, 2010; Zarchan and Musoff, 2009). When Real Time Kinematic (RTK) 

corrections are provided to the system, errors are regulated to centimetre-level accuracy, 

while velocity and attitude errors are controlled to similarly small values. Based on aided 
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inertial technology, the system provides continuous and accurate vehicle positional and 

orientation information when it runs through areas of poor or no satellite service, such as 

urban canyons, full tree canopy, tunnels, and bridges.  

In order to obtain highly accurate GNSS data, approximately 5-min of static 

GNSS logging at the beginning and end of each survey is required for calculation of the 

Best Estimate Trajectory (BET) of the vehicle. The trajectory is then used to transform 

laser scanning data into geo-referenced point clouds. Thus, the main function of the 

navigation solution is to provide real-time navigation data, including position (latitude, 

longitude, and altitude); geographic velocity - North, East and Down (NED); attitude (roll, 

pitch, and heading); acceleration (xyz in reference frame); angular rate; distance travelled; 

and RMSE measures (position, velocity, attitude, angular rates). Those data can be also 

applied to other user-supplied sensors (e.g., cameras). 

 (2) Digital camera(s)  

Most MLS systems incorporate camera(s) to provide ancillary information. For 

example, for visualization, points collected by laser scanners can be colored by true-color 

information in the real world. Different MLS systems configure different number of 

digital cameras in many deployed patterns. The specific deployment of cameras is 

customized by users and projects. This additional color information contributes to road-

information extraction because it provides a great level of details of features. 

(3) Laser scanner(s)  

Similar to digital cameras, the number and the arrangement pattern of laser 

scanners vary with different MLS systems. Laser scanners emit continuous waves/ pulses 

at a fixed or user-defined angular increment to measure the ranges to objects.  In current 
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MLS systems, two techniques are mainly used for range measurements: time-of-flight 

and phase shift (Lichti, 2010). Time-of-flight (TOF) scanners send a short laser pulse to 

the illuminated target, and the time difference between the emitted and received pulses 

determines the range. The time-of-flight mode is commonly used for the majority of 

current commercially-available MLS systems. In contrast, phase shift based laser 

scanners use phase difference between the emitted and received backscattered signals of 

an amplitude modulated continuous wave (AMCW) to determine the range. Phase shift 

laser scanners are more accurate, but their measurement range is relatively shorter, 

smaller than ~ 100 m (Petrie and Toth, 2008; Beraldin et al., 2010).  

Moreover, there are two kinds of modes in terms of scanning head: 

(a) Fixed scanning head laser scanners: some MLS systems configure a number of 

fixed scanning head laser scanners with internal rotating mirrors. Those fixed scanning 

head laser scanners are normally used in TLS. In order to obtain 360°scanning coverage, 

multiple laser scanners are typically deployed into a MLS system. For example, Topcon 

IP-s2 compact+ system consists of five SICK LMS 291 laser sensors, each of which has 

180°horizontal field of view (FOV) and 90°vertical FOV. 

(b) Rotating scanning head laser scanners: some MLS systems such as Trimble 

MX-8, RIEGL VMX-250 and VMX-450, have a fixed number of rotating scanning head 

laser scanners which are deployed slightly tilted. For example, in Trimble MX-8 system, 

two RIEGL VQ-250 laser scanners are symmetrically configured on the left and right 

sides, pointing toward the rear of the vehicle at an angle heading of approximately 145º. 

Such a configuration is called “Butterfly” or “X” pattern. Each RIEGL VQ-250 scanner 

generates its own 360°“full circle” profile scan owing to the motorized mirror scanning 
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mechanism, as shown in Figure 2.1(a). Thus, the scanned data of two scanners form a 

slant grid-like pattern, as shown in Figure 2.1(b).  

 

(a)                                                                               (b) 

Figure 2.1: An example of scanning pattern of a mobile laser scanning: (a) an illustration 

of two rotating scanning head laser scanners, and (b) the scanned data. 

The quality of laser scanners is determined by the following factors: eye safety, 

accuracy, field-of-view, resolution, and scan rate (Iavarone, 2007). Laser scanners use 

Class 1 eye safety rating, that is, the beam is invisible and safe to the human eyes in both 

aided and unaided conditions. The accuracy of MLS systems directly determines the 

accuracy of final deliverable products. A field-of-view dictates the extent of area that can 

be covered in a single pass of the collection vehicle. The resolution of MLS data depends 

on several factors, including vehicle speed, laser mirror scanning speed, beam width, and 

system measurement rate. 

(4) A control unit  

A control unit is a synchronizer that integrates all data from sensors such as 

cameras, laser scanners, and the navigation solution. 

(5) Rigid platform  
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The set of rigid platform is a device firmly attaching laser scanners, digital 

cameras, GNSS receivers, IMU, and other ancillary devices into a compact unit. The 

offsets between each sensor have to be strictly measured to remain stable for MLS 

systems. Usually, these offset parameters are provided by manufacturers, no concerns of 

users are needed. 

2.1.3 Commercial MLS Systems 

More recently, a number of MLS systems have been developed and appeared in 

the market because laser scanning-related component technologies (e.g., scanning, 

imaging, and positioning devices) continued to advance. This section covers only several 

main MLS suppliers that integrate major components and offer a complete solution for 

sale to users. Table 2.1 lists the current commercially-available MLS systems, and Figure 

2.2 shows their configurations. The MLS system suppliers list in the table have been 

well-established as suppliers of surveying instrument, ALS, TLS, or laser scanners to the 

surveying and mapping industries. For example, Leica, a well-known surveying supplier 

that produces numerous surveying instruments, released its newest MLS solution: Leica 

Pegasus: One.  
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Table 2.1: Commercially-available MLS systems. 

Company RIEGL RIEGL Trimble Optech TOPCON 3D laser mapping 

Ltd.& IGI mbH 

Dynascan SITECO 

MLS system VMX-250 VMX-450 MX8 

 

Lynx –M1 IP-S2 

Compact+ 

StreetMapper S250 ROAD 

SCANNER 

Laser 

Scanner 

Laser Type RIEGL 

VQ-250 (2) 

RIEGL 

VQ-450 (2) 

RIEGL VQ-

250 (2) 

Lynx laser 

scanner (2) 

SICK LMS 

291(5) 

VQ180 or VQ250 MDL 

scanner 

Faro Focus 3D 

(3) 

Measuring 

Principle 

Time-of-flight measurement; 

Echo signal digitalization; 

Online waveform processing; 

Time-of-flight Time-of-flight 

measurement; 

Echo signal 

digitalization; 

Online waveform 

processing; 

Time-of-

flight 

Phase 

difference 

Maximum 

range 

500 m (to 

80% 

reflectivity 

target ) 

800 m (to 

80% 

reflectivity 

target) 

500 m (to 

80% 

reflectivity 

target ) 

200 m (to 

20% 

reflectivity 

target) 

80 m (to 10% 

reflectivity 

target) 

500 m (to 80% 

reflectivity target ) 

250 m 120 m  

(to 90% 

reflectivity 

target) 

Minimum 

range 

1.5 m 1.5 m 1.5 m  0.7 m 1.5 m   

Measure 

precision 

5 mm (1 

sigma) 

5 mm (1 

sigma) 

5 mm (1 

sigma) 

8 mm (1 

sigma) 

10 mm at range 

of 1 to 10 

5 mm (1 sigma) ±1 cm (1 

sigma) 

1 mm ( at 25 

m) 

Absolute 

accuracy 

10 mm 8 mm 10 mm 5 cm (at 

100 km/h at 

good GPS 

data) 

± 35 mm 10 mm ± 5 mm ±2 mm (at25 

m) 

Field of view 360° 360° 360° 360° 180°/90° 360° 360° H360° 

V320° 

Scan rate Up to 100 

Hz 

Up to  200 

Hz 

80-200 Hz 100 Hz 75-100 Hz 100 Hz Up to 30 

Hz 

48 Hz 

Measurement 

rate / pulse 

repetition rate 

(PRR) 

50-300 

KHz 

Up to 550 

KHz 

50-300 KHz 75-500 

KHz 

40 KHz 50-300 KHz 36 KHz 122-976 kHz 

Echoes per 

pulse 

Practically unlimited Up to 4 

echoes 

 Practically 

unlimited 
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Angle 

measurement 

resolution 

0.001° 0.001° 0.001° 0.001° 0.667° 0.001° 0.01° H0.00076° 

V0.009° 

 Laser 

wavelength 

near infrared 1550 nm 

(near 

infrared) 

905 nm (near 

infrared) 

Near infrared 785 nm (near 

infrared) 

Navigation 

solution 

 LV-510 LV-510 LV-510 LV-410 40 channels, 

dual 

constellation, 

dual frequency 

GPS + 

GLONASS 

L1/L2;  

Fiber Optic 

Gyro 

IGI’s 

TERRAcontrol : 

NovAtel GNSS 

receiver +IGI’s 

IMU-IId fiber 

optic gyro IMu 

Dual 

GNSS 

LANDINGS 

navigation 

system & 

IXSEA 

inertial 

system 

Roll/Pitch < 5 cm < 5 cm < 5 cm ± 5 cm (@ 

30 m) 

0.5 m -2 m 5 cm 2 cm 7 cm 

Heading < 5 cm < 5 cm < 5 cm   5 cm  5 cm 

Camera 

subsystem 

 500 MP (4 

or 6) 

500 MP (4 

or 6) 

Point Gray 

Grasshopper  

®  GRAS - 

50S5C (4) 

200 / 500 

MP (2) 

Sony 

progressive 

scan color 

CCDs (6) 

12 MP SLR 

(single-lens reflex) 

 BASLER 

Scout cameras 

(8) 

Lens Size 2/3"  CCD 2/3"  CCD 2/3"  CCD 1/1.8" or 

2/3"  CCD 

1/3"  CCD    

Lens types 5 mm 5 mm 4 mm F 1.8/ 4.8 

mm 

2.5 mm    

Field of view 80°× 65° 80°× 65°  57°× 47° >80% of full 

sphere, 360° 

Panorama 

   

Exposure (#/s) 8 8 4 3 15 2  Max. 30 

Reference  (RIEGL 

VMX-250, 

2013) 

(RIEGL  

VMX-450, 

2013) 

(Trimble 

MX-8, 2013) 

(Optech 

Lynx –M1, 

2013) 

(Topcon IP-S2, 

2013) 

(StreetMapper, 

2013) 

(Dynascan 

S250, 

2013) 

(Road 

Scanner, 

2013) 
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Figure 2.2: Current commercially-available MLS systems: (a) RIEGL VMX-450, (b) 

Trimble MX 8, (c) Optech Lynx, (d) Topcon IP-S2 Compact+, (e) StreetMapper, (f) 

Dynascan S250, (g) Leica Pegasus: One (Leica Pegasus: One, 2013), and (h) Road 

Scanner. 
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Among the MLS systems listed in Table 2.1 and Figure 2.2, FARO PHOTON 120 

scanner in Road Scanner is the most accurate system because it uses the phase shift 

measuring technology, while the SICK and MDL scanners show the worst accuracies. 

However, due to with time-of-flight measuring technology, RIEGL, MDL and LYNX 

scanners can achieve measurement ranges greater than 200 m. RIEGL VQ-450 scanner 

even can reach up to 800 m.  

VQ-250/450, MDL and LYNX scanners provide full 360° coverage, but the 

FARO and SICK scanners do not. To the quick inventory and inspection of road features 

Topcon IPS2 uses three SICK LMS291 scanners, and the new generation of SITECO is 

equipped with three FARO scanners. 

As for system portability, as Topcon and MDL systems are very compact and 

highly integrated without extra control unit, they are easily moved from one platform to 

another. Although RIEGL, StreetMapper and Optech systems have a portable control unit 

normally placed at the rear of the vehicle, they are relatively easily moved; however, 

SITECO and Trimble systems are the less portable because of the large size of the control 

unit. 

Point density is important for a number of applications including road inspections, 

asset management, landside assessment, and maintenance of bridges, vegetation, power 

lines, and drainages. For some scanners such as VQ-250/450 and LYNX, point density 

can be changed by the selectable scan rate pertain to parameters of scan line incremental, 

and driving speed. Puente et al. (2013) illustrated the relationships of point density with 

scan rate and driving speed. 
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Point density varies with measurement range. All MLS systems produce very high 

cloud densities and a huge amount of data for short scanning distances, such as the 

distance to the road pavement. Comparably, the Road Scanner, Optech LYNX Mobile 

Mapper, VMX-250/450, MX8, and StreetMapper produce higher point densities than the 

Topcon and MDL mobile systems. Different MLS systems are configured with different 

number of laser scanners. For example, VMX-250/450, StreetMapper, and MX8 employ 

two VQ-250 laser scanners each; Optech LYNX Mobile Mapper employs two LYNX 

scanners; the Topcon’s IP-S2 employs three SICK laser scanners; and Road Scanner uses 

a single FARO Photon120, and MDL employs a single Dynascan scanner.  

Driving speed is a key factor to determine point density during a survey.  As a 

result, users can adjust the driving speed and incremental angle (scan rate) to determine 

data volumes with a desired measurement resolution. For example, for Optech LYNX 

Mobile Mapper, the scan rate is up to 200 rotations per second, the scan-line-to-scan-line 

spacing ranges 3-17 cm with the ground speed of 20 - 120 km/h. Compared to Optech 

LYNX Mobile Mapper, VQ-450 scanner from RIEGL can achieve the best specifications 

of point density. Thus, such high point density enables the use of this laser scanner for 

evaluating conditions of pavements (potholes, ruts and cracks) during road inspections. 

However, Dynascan with the scan-line-to-scan-line spacing of 1.1 m at a driving speed of 

120 km/h, clearly represents the worst option.  

Other than these well-established MLS suppliers for the mapping industry, there 

are numerous small and large companies in the more highly developed countries that 

operate individual mobile mapping vehicles, offering their services especially to those 

agencies that are concerned with highway management and maintenance. Those 
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companies include Tele Atlas (s-Hertogenbosch, Netherlands), NAVTEQ (Chicago, 

USA), Google (Mountain View, USA), Immersive Media (Calgary, Canada), Earthmine 

(Berkeley, USA), TerraPoint (Ottawa, Canada), and Mandli Communications (Madison, 

USA) (Gordon, 2010a).  

2.1.4 Geo-referencing and Scanning Parameters 

Calculation of ground coordinates for illuminated objects, termed as “geo-

referencing”, from a MLS system can be found in the literature (Glennie, 2007). The 

laser scanner is referenced when its position and orientation relative to the mapping 

coordinate system is known by a set of navigation system. The navigation data must be 

precisely time stamped for sensor integration and determination of the exact coordinates 

of mapping points (Barber et al., 2008).  

The coordinates of a target P can be calculated by: 
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(2.1) 

where, parameters in Eq. (2.1) and their descriptions are listed in Table 2.1. 

Table 2.2: Parameters of the geo-referencing equation. 

Parameters Description 

PPP ZYX ,,  
The location of the target P in the mapping frame. 

GPSGPSGPS ZYX ,,  
The location of GNSS antenna in the mapping frame. 
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)( drS

P   
Relative position vector of Point P in the laser scanner coordinate system, 

  and d  for scan angle and range measured and returned by the laser 

scanner. 

ZYX LLL ,,  
The lever arm offsets from the navigation origin (IMU origin) to the 

measurement origin of the laser scanner. These values must be determined 

by system calibration or measurement. 

IG

Z

IG

Y

IG

X LLL /// ,,  
The lever arm offsets from the IMU origin to the GPS origin. These 

values must be determined by system calibration or measurement. 

),,( M

IMUR  
Rotation matrix between IMU and mapping frame, (  ,, ) are the roll, 

pitch and yaw of the sensor with respect to the local mapping frame. 

These values are given by the IMU system. 

),,(  IMU

SR  
Rotation matrix between the laser scanner and IMU, (   ,, ) are 

the boresight angles which align the scanner frame with IMU’s body 

frame. Those values must be determined by a system calibration. 
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Figure 2.3: An illustration of Geo-referencing. 
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For a laser scanner, the following parameters can be calculated: 

360

][[deg]
]/[

HzPRRL
slinesS increment

s


                                                 (2.2) 

    
]/[

]/[
]/[

slinesS

smS
linemL

s

G
Dist                                                                    (2.3) 

][[deg])tan(][ mTLmP DistIncrementDist                                                   (2.4) 

][][

1
]/[ 2

mLmP
mptsP

DistDist
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

                                                    (2.5) 

where, parameters in the equations  and their descriptions are listed in the Table 

2.3. 

Table 2.3: Scanning parameters. 

sS  Scan speed/scan rate 

GS  vehicle speed 

DistL  scan-line-to-scan-line spacing 

DistP  point-to-point spacing 

DistT  Target distance 

incrementL  Scan line incremental 

DensityP  Average point density 

 

From Eqs. (2.2) - (2.5), the average point density of the collected data depends on 

the scan speed sS  , vehicle speed 
GS , and system effective measurement rate /pulse 

repetition rate (PRR). Scan speed sS is determined by PRR and scan line incremental. 

Scan-line-to-scan-line spacing DistL is proportional to 
GS  and inversely proportional to 

sS , indicating that the higher the vehicle speed related, the lower the scan-line-to-scan-
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line spacing in the running direction, while the higher the scan speed related, the higher 

the scan-line-to-scan-line spacing. For example, for a RIEGL VMX-450 system, the 

minimum scan-line-to-scan-line spacing of 8 cm can be observed with a vehicle speed of 

50 km/h, a scan angular increment of 0.1143◦, and a system effective measurement rate 

of 550 KHz. However, point-to-point spacing DistP in a single scan line varies much with 

scan angles and scan counts but very little with vehicle speeds. The point density within 

the scans varies greatly with both the vertical orientation of the features being scanned 

and the distance from the scanner (Lim et al., 2013). Puente et al. (2013) illustrated the 

relationships of point density with scan rate and driving speed. Although the maximum 

range of the scanner is approximately 800 m for RIEGL VMX-450, in the scans the point 

density dropped significantly beyond 30 m because of the flatness of the terrain and lack 

of tall vertical features. 

2.1.5 Error Analysis 

Eq. (2.1) defines the relationship among all seventeen observation parameters for 

producing geo-referenced point clouds.  To examine final point accuracy, we discuss 

typical errors of those observations.  

1) IMU attitude errors: The IMU component of a MLS system provides roll, pitch 

and heading angles that represent the rotation relationship between IMU and 

mapping frames. An IMU consists of two main parts: (1) three orthogonal 

accelerometers, each of which measures the acceleration along a specific axis, and 

(2) three orthogonal gyroscopes, each of which measures and maintains 

orientation, based on the principles of conservation of angular momentum. 

Accordingly, systematic errors of the sensor include accelerometer biases and 
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gyro drifts. Typically, as IMU components are supplied by 2 or 3 different system 

manufacturers, their accuracies can be examined from the manufactures’ technical 

specifications. For example, RIEGL VMX-450 is configured a set of Applanix® 

POS LV 510, whose typical accuracy can be found on the manufacturer’s 

technical specification (www.applanix.com). Applanix® POS LV 510 can deliver 

0.005° in roll and pitch and 0.015° in heading (at 1 sigma). 

2) Positioning errors: The positioning accuracy of a GNSS subsystem is influenced 

by the following factors: multipath, atmospheric errors, baseline length, poor 

satellite geometry, and loss of lock; therefore, the absolute level of the positioning 

accuracy for MLS survey is difficult to quantify. Ideally, the positioning accuracy 

is expected 1cm +1 ppm horizontally and 2cm +1 ppm vertically within a 

relatively short kinematic baseline (< 30 km) (Bruton, 2000). 

3) Laser scanner errors: Most laser producers provide two main error components: 

errors in distance and errors in angles. The error in distance is caused by the 

internal accuracy of the clock that measures the time of flight and the width of the 

output laser pulse; the error in angle is due to the angular resolution of the laser 

scanner angle encoder and the uncertainty of beam divergence. For example, 

REIGL VQ-450 scanner delivers the ranging and angular measurement accuracies 

of 5 mm and 0.044°, respectively. 

4) Boresight errors: The boresight errors result from the misalignments between 

IMU and laser scanner measurement axes. To process laser scanning data, the 

location of the scanner and its orientation in relation to IMU must be precisely 

known because alignment errors will be propagated over the distance between the 

http://www.applanix.com/
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sensor and the object being scanned. Boresighting is a very precise measurement 

process that attempts to correct any mounting misalignments between IMU and 

laser scanners (Rieger et al., 2010; Lim et al., 2013). 

5) Lever-arm offset errors: Usually, the origins of laser scanners and IMU cannot be 

collocated; the lever-arm offsets thus must be known in order to obtain accurately 

geo-referenced MLS point clouds. There are two methods to measure the lever-

arm offsets: calibration and physical measurement. The second one is widely used 

because it is simple to implement. Accordingly, the measurement errors are also 

introduced because of the assumption of the alignment of two sensors ’axes. 

The above discussion of error sources for a MLS system demonstrates that the 

accuracy of MLS point clouds depends on the underlying accuracy of GNSS/IMU 

navigation solution and laser scanners. Among those errors, two possible error sources 

(boresight and lever-arm) can be recovered by system calibration. In fact, the overall 

accuracy of MLS point clouds is mainly affected by the navigation solution because 

multi-path effects and signal shading that are caused by high-rise buildings and trees 

along the street deteriorate GNSS conditions in a moving vehicle (Haala et al., 2008; 

Barber et al., 2008). Compared to a long distance from an aircraft to the ground in ALS, 

GNSS positioning errors of a MLS system have a much greater impact on the overall 

error budget, owing to a short distance between a laser scanner and a scanned object, 

even about several to ten metres. To improve MLS data accuracy, a post-processing 

procedure of navigation trajectory is indispensable. For example, a post-processing 

package of Applanix POS LV 510 is used to process GNSS/IMU data for RIEGL VMX-

450 data. 
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2.2 Road Information Extraction Techniques: An Overview  

2.2.1 Road-surface Extraction  

Researchers have developed a variety of methods to extract roads from satellite and 

aerial images based on geometrical, radiometric, topological, functional and contextual 

characteristics (Vosselman and Knecht, 1995). Normally, common strategies are grouped 

into two categories: semi-automatic and automatic road extraction algorithms. The 

former mainly includes least squares matching (Vosselman and Knecht, 1995; Kim et al., 

2004), dynamic programming (Gruen and Li, 1997; Dal Poz and Do Vale, 2003), and 

active contours (Peng et al., 2010). Mena (2003) summarized several automatic road 

extraction methods, including road tracking methods, morphological analysis, dynamic 

programming and snakes, multi-scale and multi-resolution analysis, stereoscopic analysis, 

multi-temporal analysis, and other knowledge representation and fuzzy modeling 

techniques for road extraction. Although road extraction from satellite and aerial images 

has been researched over four decades, good and stable performance has not been 

achieved due to image sources, image resolution, and landscape complexity. Meanwhile, 

bad situations, such as poor illumination and bad weather, cause limitations to compute 

vision and image interpretation. 

Although much effort has been made to extract road features from MLS data, 

efficient interpretation methods are still in a state of early development. Most algorithms 

roughly follow the common steps when interpreting MLS point clouds: (1) detection of 

planar or smooth surfaces, and (2) classification of points or point clusters using data 

features such as local point patterns, intensity, and pulse return information (Pu et al., 

2011; Darmawati, 2008).  
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In the first category, Takashi and Kiyokazu (2006) directly identified road lanes with 

curvature, yaw angles, and offsets derived from point clouds by Hough Transform. 

However, applying Hough Transform to large volumes of MLS data is time consuming. 

Yuan et al. (2010) detected roads by employing a fuzzy cluster method based on 

maximum entropy theory to segment points and a weighted least-square linear fitting 

algorithm to differentiate linear and nonlinear distributed point segments. Similarly, any 

computational methods for extracting roads from MLS data are time consuming. 

Smadja et al. (2010) suggested a two-step road-surface extraction algorithm based on 

local road shape. RANSAC is first applied to each scan line individually for roughly 

estimating road sides. And then, the curb candidates are selected for road extraction by a 

multi-frame accumulated map. Yang et al. (2013) also classified road points by detecting 

curbs scan-line by scan-line. Although processing MLS data scan-line by scan-line could 

improve computational efficiency, classifying roads by detecting curbs from single scan-

lines may fail or be inaccurate when curbs are hidden behind other cars on the road or 

parked cars. 

In the second category, Zhao and Shibasaki (2002) conducted a scan-line based 

classification, where points on the scan lines are first segmented into linear patches by a 

height variance, and then the linear patches are classified as the groups of vertical 

building surface, road surface, other surface, window, tree and others, and unknown 

objects by comparing with other neighboring linear segments. 

Moreover, Manandhar and Shibasaki (2001) used point-density histogram analysis to 

extract road surfaces from MLS data, as a result of road surfaces near to the laser scanner. 

Li et al. (2004) also introduced a point-density criterion for road extraction by calculating 
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the density of projected points (DOPP). However, these methods may fail when 

erroneous points exist in MLS data.  

Recently, intensity is another factor considered in road-information extraction (Chen 

et al., 2009). Clode et al. (2007) presented a progressive classification method for 

separating road from off-road points regarding intensity and elevation information. 

However, intensity values are faded towards two edges of a road because of the longer 

scanning distance from the laser scanner and the larger incidence angle. Calibrated 

intensity could give added values for laser scanning data processing in object recognition 

and classification. 

As curbs represent boundaries of roads in an urban environment, some researchers 

detected curbs to identify road regions and calculate obstacle-free areas (Liu et al., 2013). 

Zhou and Vosselman (2012) extracted curbstones for separating the road surface from the 

adjacent pavement. Zhang (2010) combined a prior knowledge about the minimal width 

of roads with elevation information for classifying road regions and edges. These 

methods are time saving; however, the quality of curbs to be detected could be unreliable 

because of occlusion.  

To compensate for the limitations of MLS data, some researchers integrated MLS 

data with other data sources. Yu et al. (2007) studied the integration of laser scanning 

data, video data, and scanning profiles to create detailed models of road surfaces. Some 

researchers merged ALS data with MLS/TLS data for road extraction (Boyko and 

Funkhouser, 2011; Zhou and Vosselman, 2012). Although fusing different data sources 

with MLS data can improve the accuracies and correctness of road extraction, registering 

these data sources into a uniform coordinate system requires much work. 



31 
 

Most reviewed methods which use mathematical estimations for such large volumes 

of MLS data, are time consuming and computationally intensive. As reviewed, detecting 

curbs from MLS data is efficient for separating road points from off-road points. In 

addition, most urban roads are designed with curbs for separating them from pedestrian 

sidewalks. As a result, there is a need to develop a road extraction algorithm which will 

provide an accurate estimation of road edges based on road features such as curbs and 

other implicit MLS data characteristics. Besides geometric information, other implicit 

MLS data information such as trajectory can be obtained from MLS systems. However, 

little research has been carried out to extract roads based on the trajectory that record 

precise and real-time positioning information of the vehicle.  

2.2.2 Road-marking Extraction  

Road markings on paved roadways, as critical features in traffic management 

systems, have important functions in providing guidance and information to drivers and 

pedestrians. For example, driver-assistance systems require reliable environmental 

perception to improve traffic safety by informing motorists and preventing accidents. 

Along with pavement condition and road topography, the visibility of road markings is a 

key element in accidents where the road itself is the cause. Especially, in highly 

populated urban environments, high accident rates are caused by the absence of clearly-

presented road signals (Carnaby, 2005). In order to maintain high technical standards for 

perfect visibility, highway maintenance departments need a practical system for 

monitoring road markings.  

Generally, road markings are highly retro-reflective surfaces capable of reflecting the 

incident light back to its energy source. Based on this retro-reflectivity, many studies 
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have been conducted to distinguish road markings from digital images or videos 

(Charbonnier et al., 1997; Rebut et al., 2004; McCall and Trivedi, 2006; Li et al., 2007; 

Wang et al., 2009; Kheyrollahi and Breckon, 2010; Danescu and Nedevschi, 2010). Most 

algorithms commonly consist of the following two steps: candidate extraction and road-

marking classification. Regarding the highly retro-reflective property of road markings, 

many methods, such as multi-level-threshold segmentation (Kheyrollahi and Breckon, 

2010), scan line (Charbonnier et al., 1997), and histogram analysis (Wang et al., 2009), 

first identify road-marking candidates. To recognize road markings, the candidates are 

classified by fuzzy reasoning (Li et al., 1997), K-Nearest Neighbor (Rebut et al., 2004), 

support vector machines (Wang et al., 2009), artificial neural network (Kheyrollahi and 

Breckon, 2010), and decision tree (Danescu and Nedevschi, 2010). 

When it comes to road-marking extraction from either digital photographs or videos, 

precise geometrical information is limited by the following environmental factors: (1) the 

shape and type of road markings, such as solid continuous lines , arrows, and words, (2) 

the road surface material, such as light pavement, dark pavement, or a combination of 

different pavements, (3) weather conditions and the time of day that has the greatest 

impact on the visibility of road surface, and (4) complex shadowing from trees and 

moving vehicles (McCall and Trivedi, 2006).  Although work on road-marking extraction 

from digital photographs and videos has been pursued for years, fully automated road-

marking extraction has remained a challenge. 

To extract road markings from MLS data, the first step is to identify points belonging 

to the road surfaces. On the road surfaces, road markings are highly retro-reflective 

surfaces painted on roads; as a result, the reflectance of the target in the form of intensity 
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can be used to identify road markings (Chen et al., 2009). Based on intensity differences 

between road surfaces and pavement markings, Toth et al., (2008) extracted road 

markings as the ground control for quality assessment (QA) or quality control (QC) of the 

image data. Smadja et al. (2010) applied a simple threshold to intensity data for 

extracting road markings. Yang et al. (2012) outlined solid-edge-line and broken-lane-

line markings by first applying an interpolation method to MLS points, and then 

segmenting the GRF image using intensity and elevation-difference information. Finally, 

road markings were estimated by integrating their semantic knowledge (e.g., shape, size). 

However, as most of these algorithms have applied a global threshold-based 

segmentation algorithm to the intensity data of MLS point clouds, much noise is 

introduced, making this method less effective in road-marking extraction. The intensity 

data highly depend on the ranges from the scanner to objects, the incidence angles of 

laser pulses, and the material properties of road surfaces. Thus, the intensity data need to 

be normalized prior to segmentation.  

Jaakkola et al. (2008) modeled road markings from the intensity data acquired from 

an FGI Roamer system. The method is composed of (1) radiometric correction and 

segmentation of the intensity data, (2) performing morphological operations to obtain a 

set of segments, and (3) classifying these segments as crosswalks and other lines 

regarding their properties. However, the algorithm can be only used for parking space 

lines and zebra crossings. The radiometric calibration fitted a second-order curve that was 

performed between the peaks on both sides of the scanning centre.  

Chen et al. (2009) located road-marking candidates using adaptive thresholding, 

where thresholds were invariant to absolute values of laser beam returns, and road 
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markings were extracted with Hough transform clustering, followed by a refinement step 

with trajectory constraint and geometry check. The use of Hough transformation for road-

marking extraction is weakened by specifying the number of road markings to be 

detected, which is a limiting factor for complex types of road markings such as hatching 

and words.  

Vosselman (2009) introduced distance-dependent intensity normalization and 

connected component analysis for identifying road markings. Although several types of 

road markings are identified, a close-up view of a bicycle marking shows that the 

extracted markings are incomplete with distinguishable noise. The pre-defined shapes 

used for fitting road-marking segments are considered to be the cause. 

Aside from road markings, other high-reflective urban elements (e.g., traffic signs, 

retro-reflectors, tree, and grass) and their distortion effects (e.g., saturation and blooming) 

may have a negative effect on road-marking extraction. Some measures, such as height 

information and shape criteria, need to be taken into consideration to refine the extracted 

road markings (Yang et al., 2012). Moreover, besides of intensity information, other 

implicit information, such as scanning data pattern, where MLS point density nominally 

drops perpendicular to the vehicle running direction, will facilitate to extract road 

markings efficiently. 

2.2.3 Pavement-crack Extraction  

Research on asphalt concrete-surfaced pavement distress measurement is an 

indispensable part of pavement management systems to cost-effectively maintain and 

rehabilitate roads. Cracking, as the most common type of the asphalt concrete-surfaced 

pavement distress, is caused by fracture due to excessive loading, fatigue, thermal 
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changes, moisture damage, slippage or contraction. Usually, cracking is grouped into: 

fatigue, longitudinal, alligator, edge, reflection, block, and transverse types, regarding 

shape and position (Lee, 1992; McGhee, 2004). In the early period, the inspection and 

evaluation of cracks was involved high degrees of subjectivity and hazardous exposure 

and low production rates. Currently, visual measurement techniques have been mostly 

explored to inspect and evaluate pavements on videos or digital images collected from a 

specially equipped vehicle. 

The growing demand for transportation service motivates to cost-effectively 

maintain a modern transportation system as safe, secure and supportive road networks. It 

is indisputable to develop an automated pavement inspection system that provides an 

intelligent strategy for pavement management. To this end, it is significantly important to 

obtain accurate and reliable crack extraction results. Over the years, much effort has been 

made on this subject. Most existing algorithms of crack extraction are intuitively based 

on digital images and videos.  

Tsai et al. (2010) summarized six common segmentation and classification 

methods for pavement distress, and quantitatively compared those six methods with the 

ground-truth cracks visually identified by pavement engineers. The reviewed 

segmentation methods include regression/relaxation thresholding, Canny edge detection, 

crack seed verification, multi-scale wavelets, iterative clipping method, and dynamic 

optimization-based method. 

Koutsopoulos et al. (1993) stated that the statistical thresholding is the best 

thresholding method for pavement distress segmentation in terms of efficiency and 
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insensitivity to segmentation parameters, compared to other thresholding methods such as 

Otsu’s method (Otsu, 1979) and the Kittler method (Kittler and IUingworth, 1986). 

However, thresholding-based segmentation methods have difficulties in gaining a stable 

performance owing to a diversity of pavement environments and materials. In contrast 

with the gray-scale similarity based thresholding methods, gray-scale discontinuity based 

edge detection techniques segment cracks by outlining their edges. Ayenu-Prah and 

Attoh-Okine (2008) used a sobel edge operator to detect cracks, in which a bi-

dimensional empirical mode decomposition was applied to smooth crack images and 

remove salt and pepper  noise Among conventional edge detection algorithms, the Canny 

edge operator is capable of detecting weak edge and is robust to the presence of noise 

(Canny, 1986). Unfortunately, this advantage is weakened by a problem that the optimum 

parameters used in the algorithm vary with each image. Accordingly, false edges or 

boundaries can be generated, resulting in poor effectiveness in crack extraction (Tsai et 

al., 2010). Aiming to automatically find a threshold value, Yoshida and Tanaka (2009) 

used a fractal dimension to evaluate the fitness of binarized images, locally and globally. 

Rather than the use of fixed thresholds, fuzzy logic was introduced for the determination 

of the segmentation threshold by the brightness membership function (Cheng et al., 1999). 

The wavelet transform is another common technique for crack extraction, which 

decomposes a pavement image into sub-bands for separating noise from the background, 

based on the statistical criteria derived from wavelet coefficients (Cuhadar et al., 2002; 

Zhou et al., 2006). According to Mallat and Zhong (1992), wavelet transform-based 

algorithms can detect irregular structures; thus, they are feasible for crack extraction. To 

overcome the difficulties of crack extraction at different scales, multi-scale wavelet 

http://en.wikipedia.org/wiki/Salt_and_pepper_noise
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transform methods were subsequently presented to deal with pavement images with 

various spatial and spectral resolutions (Subirats et al., 2006). However, due to the 

anisotropic characteristic of wavelets, wavelet-based approaches often fail to process 

cracks with high curvature or poor continuity. Similarly, other transform-based methods, 

such as Beamlet transform (Ying and Salari, 2009; Wei et al., 2010) and Contourlet 

transform (Shu and Guo, 2010), were proposed for crack extraction. 

The dynamic optimization-based method uses global properties of cracks such as 

elongated shapes to effectively handle pavement images with low Signal-to-Noise Ratio 

(SNR). This method has a good performance, but it is computationally intensive (Tsai et 

al., 2010). Nguyen et al. (2011) proposed a method that considered both spectral and 

shape features for segmenting cracks from a noisy background using conditional texture 

anisotropy. Experiments on real cracks in pavement images demonstrated that this 

method can achieve a good performance by 93.6% extraction rate and 13.7% false alarms. 

Similar to dynamic programming, an F* Seed-growing approach was presented for crack 

extraction (Li et al., 2011). This approach comprises the seed-aggregating using 

neighbouring difference histogram method and the F* seed-growing algorithm. 

Other classical image processing algorithms such as mathematical morphology 

were employed to detect cracks in road surface images (Tanaka, 1998). Although a part 

of success has achieved, the mathematical morphology-based method is limited to the 

three structure elements (e.g., disk, line, and square) and the choice of parameters. A 

number of efforts on crack extraction have been made from artificial intelligence, data 

mining, machine learning, and neural network. Oliveira and Correia (2008) used 

Bayesian classification techniques to obtain tree types of cracks (e.g., longitudinal, 
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transversal, and miscellaneous). First, a series of training samples are interactively 

selected, and then a feature space that includes the average and the standard deviation of 

pixel intensities is defined. Finally, a Bayesian quadratic classifier is applied over the 

normalized feature space to label the pixels. In Gavilán et al. (2011), a linear Support 

Vector Machine (SVM) based classification method was employed to identify cracks 

based on textural-related gray-level co-occurrence matrix (GLSM) measures. It is noted 

that it is difficult to determine two parameters of SVM-based classifiers, in terms of 

variations of cracks and the quality of pavement images. Similarly, neural network 

techniques were applied for the automatic classification of road cracks (Bray et al., 2006; 

Saar and Talvik, 2010). The main drawback of those approaches is to spend much time in 

training considerable samples that have a good representation of real cracks. 

Yu et al. (2007) inspected pavement distresses from raw MLS data using accurate 

depth information and concluded that the proposed two-stage automation procedure has a 

significant improvement over contemporary commercial video-based vision systems. 

However, in practice, it is challenging to process such large volumes of 3D MLS data to 

obtain readable and comprehensive crack information. The intensity information of MLS 

data is an alternative. Compared to highly-spectral-resolution digital images, a crack 

intensity image has a low contrast with its surroundings, low SNR owing to particle 

materials of asphalt concrete-surfaced roads. This results in most existing algorithms 

ineffective to crack extraction. 

Most methods have been developed for identifying cracks based on digital images 

or videos, field work, and specific laser scanning equipment. Little and no research has 

been carried out to extract cracks from MLS data, because some researchers claim that it 
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is questionable whether it can support the detailed task of crack extraction since the 

widths of most cracks are at millimeter level, but MLS data seems too sparse for the 

crack extraction task. However, there is a need to develop a method that will extract 

cracks efficiently and accurately from MLS data because MLS technologies continue to 

advance for providing much denser MLS data for cracks at millimeter level in the 

foreseeable future. For example, laser scanners have been developed with measurement 

rates of up to 550 kHz and scanning rate at up to 200 Hz in the past five years. Thus, 

MLS data need to be thoroughly explored for crack extraction. 

2.3 Fundamental Algorithms 

Three automated algorithms will be developed in this research for extracting road 

features, such as the road surfaces, road markings, and pavement cracks, from MLS data. 

In order to improve computational efficiency, all 3D road data will be converted into 2D 

raster image data using intensity information for extracting road markings and pavement 

cracks. Thus, some fundamental image processing algorithms will be used in the research. 

Specifically, these image processing algorithms include Otsu’s method, morphological 

operation, and tensor voting. Otsu’s method will be used to segment road-markings from 

road data because road-markings are painted on the road surfaces with highly reflective 

materials and produces intensities with high values. Morphological operation will be used 

for road-markings. Tensor voting, a perceptual grouping method in computer vision, will 

be applied to the extraction of pavement cracks. The following subsections will detail the 

three algorithms. The usage of these algorithms in this thesis will be described in 

Chapters 5 and 6. 
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2.3.1 Otsu’s Method 

Otsu’s method, proposed by Otsu (1979), is widely implemented as the default 

approach to image thresholding in some commercial or free software such as Matlab. 

Assume that an image contains N pixels, and can be represented in gray levels  . The 

number of pixels at level i can be denoted as if . As a result, the pixel number N  of the 

image can be represented as:  

fffffN i  ......321                                           (2.6) 

For a given gray-level image, the occurrence probability of gray level i is 

calculated by: 
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If an image can be divided into two classes: 
1C  and 

2C , that is, foreground (e.g., 

road markings) and background, at level t , where 
1C  contains gray level from 0 to t, and 

2C  contains gray level from t+1 to  . Their cumulative probabilities (
1w  and 

2w ) and 

mean levels (
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2 ) are calculated, respectively.  
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and 
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The mean gray-level value over the whole image is: 
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The variance of classes 
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The variance of the whole image is: 
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The variance can be also written as: 
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Where, )(2 tW is denoted as the within-class variance, and )(2 tB is denoted as the 

between-class variance. 
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Otsu’s method selects an optimal threshold (t) that maximizes the between-class 

variance )(2 tB  based on the discriminant analysis. 
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As a result, an optimum bi-modal threshold can be readily selected by the 

discriminant criterion proposed by Otsu’s method by maximizing the separability of the 

two classes in gray levels. 

2.3.2 Morphological Operation 

Morphology is a broad set of image processing operations applied on images 

(originally binary images, and later extended to gray-scale functions and images) 

(Dougherty and Lotufo, 2011). Morphological operations, by applying a structuring 

element to an input image and creating an output image of the same size, affect the form, 

structure or shape of an object to be processed.  In a morphological operation, there are 

two important elements: a binary image and a structuring element. The structuring 

element is also a binary array, with an origin, size, and shape, as shown in Figure 2.4. A 

morphological operation compares the structuring element to the neighborhood of each 

pixel in the input binary image, and then determines its output. By choosing the size and 

shape of the structuring element, a morphological operation sensitive to specific shapes 

can be constructed in the input image. The morphological operations are widely used in 

http://en.wikipedia.org/wiki/Binary_image
http://en.wikipedia.org/wiki/Grayscale
http://en.wikipedia.org/wiki/Function_(mathematics)
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image pre- or post-processes (e.g., filtering, thinning, and pruning) for representing or 

describing the shapes of objects such as boundaries or skeletons. The most basic 

morphological operations are dilation and erosion. Dilation adds pixels to the boundaries 

of objects in an image, while erosion removes pixels on object boundaries.  

 

Figure 2.4: Several examples of the structuring element with different shapes (yellow 

cells means origins): (a) 5×5 square shaped, (b) 5×5 cross shaped, (c) 5×5 diamond 

shaped, (d) 1×5 horizontal linear shaped with direction  =0°, and (e) 5×1 vertical linear 

shaped (or 1 ×5 horizontal linear shaped with direction  =90°). 

2.3.3 Tensor Voting 

Perceptual grouping, introduced in Lowe (1985), is a well-known tool that 

extracts significant image relations from lower-level primitive image features and groups 

them to obtain meaningful higher-level structures (Medioni et al., 2000). According to the 

Gestalt Laws of perceptual grouping, grouping principles, such as proximity, similarity, 

good continuation, closure, and symmetry, are combined into a cost function called 

saliency and employed to infer salient structures from data. Perceptual grouping 

approaches have been evolved from symbolic methods, clustering, and local interactions 

to human visual system.  Perceptual grouping became attractive in the human vision 

system because it reduces the complexity of the object recognition task, as well as the 

necessity for prior knowledge when inferring salient structures.   

http://psychlopedia.wikispaces.com/Gestalt+Laws+of+Perceptual+Grouping
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As an approach to perceptual grouping, tensor voting is capable of inferring 

salient features (such as curves, regions, junctions, endpoints, and boundaries in 2D) 

based on proximity and continuation constraints. Input data are first encoded as 

elementary tensors. The support information of the proximity and continuation 

constraints propagates from tensor to tensor in a neighbourhood through a voting process, 

by which the saliencies of perceptual structures can be estimated from noisy and 

corrupted data in the form of votes. The more votes received at each tensor, the stronger 

the probability of a salient feature being present at a certain location (Guy and Medioni  

1996, 1997; Tang and Medioni , 1998, 2002; Tong and Tang, 2005; Park et al., 2012; 

Dinh et al., 2010). 

The tensor voting framework comprises two elements: a tensor representation, 

which is expressed by means of a symmetric, non-negative definite matrix, and a linear 

tensor voting mechanism, which is similar to linear convolution. Oriented and unoriented 

input is encoded into tensor-form representations and exchanges their information with 

their neighbours through pre-calculated tensor voting fields. Afterwards, according to the 

prevailing orientation, a generic second order, symmetric, non-negative definite tensor is 

produced to encode the local orientation of features (tensor orientation) and magnitude 

(tensor saliency). It can be decomposed into stick and ball tensors. Finally, geometric 

features are inferred after tensor analysis. 

(1) Tensor Representation 

A second order symmetric tensor is equivalent to a 2×2 matrix in 2D. Through 

eigenvalue decomposition, the 2×2 matrix is decomposed into two eigenvalues (
1 ,

2 (
1 >
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2 )) and their associated eigenvectors (
1e ,

2e ). Therefore, an arbitrary second order, 

symmetric, non-negative definite tensor can be described as: 

)()( 221121121

TTT eeeeeeT   .                                 (2.16) 

The first term in Eq. (2.16) corresponds to a 2D stick tensor that indicates an elementary 

curve element with 
1e  as its curve normal. The second term corresponds to a ball tensor 

which indicates that a perceptual structure has no orientation preference. The second 

order tensor is graphically represented as an ellipse in 2D, where eigenvectors 
1e  and 

2e

give the ellipse orientation, and eigenvalues
1 ,

2  give its shape and size. As for the 

curve element, the size of the stick tensor (
1 -

2 ) thus indicates the curve saliency.  

(2) Voting in 2D 

Based on the tensor representation in 2D, an input is first encoded with tensors. If 

the input has no orientation, it is encoded as a ball tensor with eigenvalues of 
1 =

2 =1, 

as a form of an 2 ×2 identity matrix 









10

01
T . If the input has an orientation ),( yx nnn , 

it is encoded as a stick tensor with eigenvalues of 
1 =1 and 

2 =0, as a form of a 2 ×2 

symmetric matrix 









yyyx

yxxx

nnnn

nnnn
T . 

After the input has been encoded with tensors, it information is propagated to 

their neighbors following the Gestalt principles of smoothness, proximity, and good 

continuation, which is termed as tensor voting. As presented in Figure 2.5, two tensors, 

positioned at O with an orientation N


 parallel to the y-axis and P , are named as the 

voter and receiver, respectively. The arc length s and the curvature   are given by 
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)sin(/ Ls   and L/)sin(2   , respectively. Thus, the path from O to P, defined by 

an osculating circle, is the most likely smooth path since it maintains constant curvature 

given the assumption of the voter and the receiver belonging to the same perceptual 

structure. Thus, the vote at position P cast from position O is defined as: 

T

PPNNsDFPV ),,()(                                                     (2.17) 

where, 

)(
2

22

),,( 




cs

esDF




 ,                                               (2.18) 

where ),,( sDF  is the saliency decay function, 
PN is the normal vector perpendicular 

to the tangent of the same osculating circle at position P, which is given by 

T

OP NN )]2cos(),2sin([                                      (2.19) 

          The scale parameter  is viewed as a measure of smoothness, and is the only free 

parameter for users. c  controls the degree of decay with curvature, which is defined as: 

2

)1()1.0log(16



 
c  .                                         (2.20) 

A notion of voting field is introduced to store pre-computed votes cast from stick 

or ball voters to receivers at various distances and angles. A voting field is used to look 

up the orientation and magnitude of the votes cast. The tensor voting framework provides 

two forms of voting fields: stick voting field (see Figure 2.5 (b)) and ball voting field (see 

Figure 2.5 (c)). The extension of the voting field is controlled by the scale parameter  . 

A small   corresponds to small voting neighborhoods, and makes the voting process 

local, susceptible to outlier corruption and preserving details, while a large   
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corresponds to large voting neighborhoods and enforces a higher degree of smoothness, 

thus assisting in noise removal. Note that the stick field is limited to exist only at 

 45|| , and   is also called the field aperture. Beyond the angle scope, the smoothest 

path from O to P cannot be represented by the osculating circle formed by the tensors at 

O and P. To compute a vote cast from a tensor, first, the voting field is aligned to the 

tensor. Second, the magnitude and orientation of the receiver can be looked up from the 

voting field. 

 

Figure 2.5: Tensor vote generation, (a) Design of fundamental 2D stick voting field, (b) 

magnitude (saliency) of the fundamental 2D stick voting field, (c) magnitude (saliency) 

of the 2D ball voting field.  

 (3) Voting Analysis 

Each input collects all the votes cast from the tensors in its neighborhood and 

integrates them into a new tensor, eventually revealing behavioral coherence among 

image primitives. Vote accumulation is performed by tensor addition, a summation of 

2x2 matrices in 2D. For example, the resulting tensor at P can be represented by 

  )(PVTT OP                                                         (2.21)  
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where 
PT  is the summation tensor by accumulating all the votes )(PV from its neighbors 

OT at  location O. Thus, after votes cast from tensor to tensor and being accumulated by 

tensor addition, the new tensor at P is generated for structure extraction. Then the tensor 

can be decomposed into the stick and ball components, as represented in Eq. (2.16). If 

221   , this indicates certainty of one normal orientation, therefore the token most 

likely belongs to a curve which has the estimated normal at that location. If 021   , 

the dominant component is the ball tensor and there is no preference of orientation, either 

because all orientations are equally likely, or because multiple orientations coexist at the 

location. This indicates either a token that belongs to a region, which is surrounded by 

neighbors from the same region from all directions, or a junction where two or more 

curves intersect and multiple curve orientations are present simultaneously. Junctions can 

be discriminated from region tokens since their saliency is a distinct, local maximum of 

2 , whereas the saliency of region inliers is more evenly distributed. An outlier receives 

only inconsistent votes, so both eigenvalues are small. 

Regarding the receiver containing a token or not, there are two terms: sparse 

voting, which describes a pass of voting where votes are cast to locations that contain 

tokens only, and dense voting, which describes a pass of voting from the tokens to all 

locations within the neighbourhood regardless of the presence of tokens. Receivers 

accumulate the votes cast to them by tensor addition. 

2.4 Chapter Summary 

This chapter first reviewed MLS technology, including a description of main 

components of a typical MLS system, a statement of current commercial MLS systems, 
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an analysis of geo-referencing and scanning parameters, a discussion of systematic and 

random error analysis.  

A variety of current existing methods developed for extracting road surfaces, road 

markings, and cracks from MLS data were reviewed and analyzed, respectively. Through 

literature review, road and data characteristics for road-surface extraction would be 

explored in the next chapter; MLS intensity data will be used for the extraction of road 

markings in Chapter 5; the geometric and intensity information of MLS data will be 

combined for crack extraction in Chapter 6. 

A description of the fundamental algorithms (i.e., Otsu’s method, morphological 

operation, and tensor voting) for extracting road markings and pavement cracks was 

detailed. These algorithms will be developed into the algorithms to be developed for 

road-information extraction in the following three chapters. 
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Chapter 3 Methodology of Road Information Extraction 

This chapter provides an overview of three algorithms for the automated 

extraction of road surfaces, road markings, and pavement cracks from MLS data in 

Section 3.1. A RIEGL VMX-450 system and its MLS data are described in Sections 3.2 

and 3.3. Section 3.4 provides a summary of this chapter. 

3.1 Method Framework 

 

Figure 3.1: An overview of the method framework. 

In this research the following three road information extraction algorithms are 

developed for road surfaces, road markings, and pavement cracks, as shown in Figure 3.1. 

The input to the developed road information algorithms is unorganized MLS point clouds 
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and trajectory data. The output includes groups of road surface points, road markings, and 

pavement cracks. The processes of road information are applied as follows: 

 Curb-based road-surface extraction (Chapter 4) 

 GRF image Generation (Chapter 5.1.2) 

 Road-marking extraction (Chapter 5) 

 ITV-based crack extraction (Chapter 6) 

The stepwise road-surface extraction algorithm includes data profiling, pseudo 

scan-line generation, curb detection, and road-edge spline interpolation. The aim of the 

algorithm is to separate road-surface points from off-road points using the trajectory data. 

Vehicle trajectory data are first used to partition MLS data into a number of data blocks 

with a certain block length. Next, a thin profile is sliced for each block, within which all 

points are projected on the plane perpendicular to the line of travel to form a profile 

image. To detect curbs, each profile image is resampled and a pseudo scan-line is 

generated with a given point space. Based on slope and elevation difference, curbs are 

subsequently detected for finally cubic spline interpolation. With smoothed road edges, 

road points are separated from non-road points. 

The GRF image generation algorithm aims to interpolate the extracted road-

surface points into 2D GRF images, which facilitate the following road-marking and 

crack extraction algorithms. 

The road-marking extraction algorithm involves curb-based road-surface 

extraction, GRF image generation, point-density-dependent multi-thresholding 

segmentation, and morphological closing operation. Based on the generated GRF image 

of road surface points, a point-density-dependent, multi-thresholding segmentation 
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algorithm is proposed to dynamically obtain multiple, optimal thresholds for segmenting 

road markings, followed by morphological operations for extracting road markings. 

The ITV-based crack extraction algorithm is still based on the 2D GRF image. 

The ITV algorithm is developed to enhance cracks from the noisy GRF image. After that, 

a morphological thinning is used to extract the enhanced cracks. 

3.2 RIEGL VMX-450 System 

This research uses the data collected by a RIEGL VMX-450 system. The system 

comprises two Riegl VQ-450 laser scanners, four CCD cameras, and a set of Applanix 

POS LV 520 processing system containing two GNSS antennas, an IMU, and a DMI. 

Integrated with POS Computer System (PCS), these components are integrated and fixed 

within a case and mounted on the roof of a vehicle, as shown in Figure 3.2. The accuracy 

of the resultant position and orientation information largely determines the overall 

performance of RIEGL VMX-450. 

The navigation solution in RIEGL VMX-450 uses two dual-frequency GNSS 

antennas, referred to as a primary receiver and a secondary receiver. Both receivers 

provide raw GNSS satellite observable information to POS LV computer system. The 

secondary receiver is used by the GAMS for heading aiding. Its data are used in 

conjunction with the information from the primary receiver for GAMS heading 

calculations.  

In Figure 3.3, RIEGL VMX-450 uses two rotating scanning head laser scanners; 

thus, the scanned data of two scanners are slant grid-like pattern. The scanned data are 

complemented by the camera system that includes four color digital cameras. According 
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to the pulse per second (PPS) from the primary GNSS receiver, the scanned data and 

image data are synchronized with position and orientation information by POS LV 520 

system. 

 

Figure 3.2: RIEGL VMX-450 system with an inset picture of the laser scanning and 

navigation system mounted on the roof rack. 

 

Figure 3.3: The scanning pattern. 
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3.3 Study Area and MLS Data 

The surveyed area is within Xiamen Island (longitude 118° 04' 04" E, latitude 24° 26' 

46" N), a part of the City of Xiamen, which is a major city on the southeast coast of 

China (see Figure 3.4). Besides of Xiamen Island, Xiamen City includes Gulang Islet, 

and part of the rugged mainland coastal region from the left bank of the Jiulong River in 

the west to the islands of Xiang'an in the northeast. On Xiamen Island, there are two 

districts: Huli and Siming (encompassing Gulang Islet). A complete survey was carried 

out back and forth on Huandao Road from Xiamen University to International 

Conference and Exhibition Center (ICEC). The total distance for one direction survey 

was around 10 km. This is a two-side, four-lane road with a greenbelt in the middle. 

Many high buildings, big trees (e.g., Sago cycas, palm) and shafts (e.g., light poles and 

traffic poles) are along the sides of the road. A part of the surveyed data were selected 

with straight and curve roads as the test dataset for examining the proposed algorithms. 

The surveyed Huandao Road, called a golden costal line, is a busy seaside green-corridor 

for tourism, sightseeing, leisure and recreation; as a result, moisture weather and 

excessive loading cause a number of cracks spreading along the road. 

http://en.wikipedia.org/wiki/Gulangyu_Island
http://en.wikipedia.org/wiki/Jiulong_River
http://en.wikipedia.org/wiki/Xiang%27an
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Figure 3.4: Study areas, located in Xiamen, Fujian, China. 

The data were acquired on 23 April 2012 by a RIEGL VMX-450 system. As 

mentioned in the previous sections, the vehicle trajectory immediately affects the quality 

of the collected MLS point clouds. However, for a MLS system, a navigation solution has 

to be even more sophisticated because various obstacles on the ground, such as trees, 

high-rise buildings, and bridges, create periods of GPS, when satellite signals are not 

available to aid the navigation solution. In general, at least four satellites in view with the 

Positional Dilution of Precision (PDOP) = 6 or lower are required for the standard 

positioning service (Langley, 1999).  

Actually, GPS accuracy varies with locations and the time of day. Especially in 

urban canyon, we may in fact not even have four satellites in view and the PDOP values 

may be greater than 6. The variability of actual GPS accuracy from place to place and 

time to time is dominated by the effects of DOP. In Figure 3.5 (a), the PDOP values 

during the survey are mainly under 4, and fluctuate around the value of 2.5. The 

corresponding number of satellites ranges from 6 to 10, as seen in Figure 3.5 (b). When 

the number of satellites is 5 at the GPS time of 374 000, the PDOP value is up to 6, and 
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the positioning accuracy decreases from 1.0 cm to 2.1 cm. While at the GPS time of 380 

000, the vehicle was driving through an overhanging bridge,  leading that the PDOP 

values could not be calculated, and the corresponding positioning accuracy also decreases 

dramatically, as shown in Figure 3.5 (c). Particularly, heading positioning errors increase 

by 2.0 cm and reach up to 3.8 cm. Although the positioning accuracy drops down about 2 

cm when satellite signals are completely blocked, the GPS accuracy still can meet the 

positioning requirements for urban surveying. This is because of Applanix POS LV 520, 

a special solution to employ auxiliary sensors and advanced data processing solution to 

maintain accuracy during periods of GPS outages.   

This complete survey was carried out once in a forward direction and once in a 

backward direction along Huandao road, thus the collected data are an integration of the 

data collected from four scanners (Forward direction- two RIEGL VQ-450 scanners; 

backward direction- two RIEGL VQ-450 scanners). Due to the existing errors analyzed 

in Section 2.4, there are discrepancies between the data collected from four scanners. To 

ensure the collected data suitable for road-information extraction, the data accuracy of the 

integrated point clouds is investigated.  
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Figure 3.5: The accuracy plots of the Navigation solution: (a) the number of satellites in 

view, (b) the PDOP value, and (c) accuracy of GPS data in roll, pitch, and heading. 

 

Assuming that a road within a small local area is flat, road data within a small 

rectangle are selected to calculate the elevation precision. The local precision can be 

determined by evaluating the residuals following a least square of the MLS points to the 

plane. For example, the yellow points shown in Figure 3.6 (a) are fitted to a plane and 

individually calculated the distance to the plane based on the plane parameters. As shown 

in Figure 3.6 (a), the minimum standard deviation is 1.477 mm, and the maximum 

standard deviation is close to 2 mm.  
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(a) 

 

(b) 

Figure 3.6: Precision of the collected MLS point clouds, (a) vertical, and (b) planimetric. 
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Similarly, the data on a vertical advertising board attached to a light pole are selected 

for the assessment of planimetric precision of the collected point clouds, as shown by the 

yellow points in Figure 3.6 (b). Compared to the elevation precision, the planimetric 

precision is a little lower; the standard deviation ranges from around 7 - 11 mm. For 

common transportation applications, the 3D accuracy at 95% confidence generally 

requires a range of 1 cm (e.g., engineering survey, DEM, pavement survey, and slope 

stability) to 10 cm (e.g., urban modeling and roadway condition assessment) based on the 

information from literature review, questionnaire, and project team experience. Thus, the 

data collected by a RIEGL VMX-450 system are sufficient for the transportation-related 

road features in both horizontal and vertical precision. 

To evaluate the overall performance of RIEGL VMX-450, a set of reference data that 

are at least one level more accurate than the system being tested was newly collected. For 

example, aerial photography is often used to assess the accuracy of maps made from 

moderate-resolution satellite imagery (Congalton and Green, 2009). 30 reference 

coordinates were measured by RTK GPS at corner points of white road markings by 

Leica, Xiamen Staff. With those points, the performance of RIEGL VMX-450 was 

assessed. Most cases select corner points of objects on the street and white road markings 

that could be conveniently identified in the point clouds for accuracy assessment. Those 

points were post-processed regarding a base station with a mean base-line length of less 

than 6.0 km. 

As shown in Table 3.1, the mean standard deviation of planimetric accuracy for the 

left and right laser scanners is 4.2 cm and 3.3 cm respectively. The mean standard 

deviation of vertical accuracy for two laser scanners is 1.7 cm and 2.1 cm, respectively.  
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Notice that the minimum standard deviation appears at the check points measured near 

the base station with a good GPS coverage. In spite of errors of check points, the 

accuracy of MLS points is still consistent to the accuracy of the navigation system and 

even outperforms the Applanix’s specification. The errors are lower than ±5 cm, and 

meet the requirements of data accuracy for urban surveying.   

Table 3.1: Positional accuracy of Laser Scanners. 

 

Mean standard deviation 
Minimum standard 

deviation 

Maximum standard 

deviation 

Left laser 

scanner 

Right laser 

scanner 

Left laser 

scanner 

Right laser 

scanner 

Left laser 

scanner 

Right laser 

scanner 

Elevation 

accuracy (cm) 
1.7 2.1 0.8 0.7 1.9 2.5 

Planimetric 

accuracy (cm) 
4.2 3.3 2.5 2.3 5.7 4.9 

 

During this survey, two types of parameters are pre-defined, which include mission 

and scanner parameters.  The mission parameter category includes target distance and 

ground speed. The surveyed Huandao road was pretty busy, the average driving speed 

ranged from 30 ~50 km/h. The buildings (e.g., high-rise residential apartments and 

commercial buildings) are located along this typical urban road. Thus, this survey kept 30 

m and 30 km/h for the target distance and ground speed. As for scanner parameters, this 

survey used the default values for all parameters, such as the scan mode (line), scan-line 

start, end and increment angles (0°, 360°, 0.1143°). Thus, according to Eqs.(2.2) - (2.5), 

at the vehicle speed of 50 km/h, the scan speed, line distance, point distance, and average 

point density are estimated as 200 lines/s, 0.0583 m, 0.0598 m, and  286.44 points/m
2
 , 

respectively. The point density for MLS data strongly relies on the nominal distance to 

the target where the point spacing is measured as well as the incidence angle. The point 
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density can be also determined by dividing the number of MLS points on the plane by the 

total area. For example, a RIEGL VMX-450 system, at the driving speed of 30 km/h, can 

collect ~7,000 points/m
2
 on the road surface within the range of 2.5 m, a much lower 

point density of 1,600 points/m
2
 on the pavements 20 m away from the scanning centre, 

as shown in Figure 3.7.  Such high point density can meet the requirement of road-

information extraction for transportation applications. 

 

                 Figure 3.7: Point density distribution of RIEGL VMX-450 data. 

3.4 Chapter Summary 

This chapter first provided an overview of road information extraction algorithms. 

Second, a RIEGL VMX-450 system used in this research was introduced. Finally, MLS 

data collected from RIEGL VMX-450 were subsequently discussed in accuracies of the 

navigation solution and laser scanner. 
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Chapter 4 Curb-based Road Surface Extraction
1
 

This chapter presents the algorithm for the automated extraction of road surface 

from the MLS data. Validation is presented in Section 4.2. The conducted tests are 

described and analyzed in Section 4.3. Discussions are presented in Section 4.4, and 

Section 4.5 provides a summary of this chapter. 

4.1 Algorithm Description 

Based on the assumption that curbs are road boundaries that separate pedestrian 

pavements or other green spaces from road surfaces, a curb-based road-surface extraction 

algorithm is designed with the assistance of vehicle trajectory. The vehicle trajectory that 

records the real-time positioning information of the vehicle facilitates road-surface 

detection. The proposed road-surface extraction algorithm is composed of four steps, as 

shown in Figure 4.1:  

(1) “Data profiling”- based on the trajectory, MLS data are partitioned into a 

number of data blocks, in each of which a thin profile is sliced.  

(2) “Pseudo scan-line generation”- all points in the profile are projected onto the 

plane perpendicular to the line of travel as a profile image. The profile image is then 

gridded and a principal point is selected for each grid to form a pseudo scan-line. 

 

                                                           
1
 The main work presented in this chapter has been submitted by: Guan, H., Li, J., Yu, Y., Chapman, M., 

and Wang, C. 2013. Automatic Road Information Extraction Using Mobile Laser Scanning Data.  IEEE 

Transactions on Intelligent Transportation Systems (Submitted Nov. 04, 2013, under the 2
nd

 round review). 
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Figure 4.1: An overview of the proposed road extraction algorithm. 
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(3) “Curb detection”- curbs are detected from each pseudo scan-line using the 

elevation difference and slope criteria. 

(4) “Road edge fitting”- Curbs detected from all pseudo scan-lines are further 

fitted into two smooth road edges via a cubic spline interpolation to separate road points 

from off-road points. 

4.1.1 Trajectory-based Data Profiling 

 

Figure 4.2: An illustration of trajectory-based data profiling. 

A vehicle trajectory, a path that a moving vehicle follows along the road as a 

function of time, is recorded by the integrated navigation solution while flight-of-time 

measurements are performed by two laser scanners. The GPS base station observations, 

together with the raw GNSS and inertial data are then processed in the Applanix 

POSPac
TM

 MMS software. Applanix’s unique post mission aided inertial processing 

package produces the Smoothed Best Estimate of Trajectory (SBET, hereafter referred to 
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as trajectory). The vehicle trajectory and the predetermined calibration parameters are 

then used to produce geo-referenced point clouds. 

 
Figure 4.3: A set of profiles sliced from their corresponding data blocks: (a) a profiling 

process demonstrated on the real MLS data sample, and (b) a number of profiles. 

Perpendicular to the vehicle trajectory, the scanned point clouds are first 

partitioned into a number of data blocks with a given length ( gR ). A profile is then sliced 

for each data block with a given width ( gS ). Hence, each profile has points pertaining to 

road surfaces and points pertaining to objects beyond the road surfaces, such as trees, cars, 
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and curbs. As shown in Figure 4.2, red rectangles represent profiles. Two parameters, the 

profile width and the block length, will be discussed in Section 4.3. Figure 4.3 (a) shows 

a part of real RIEGL VMX-450 data with several profiles, represented by blue rectangles. 

Figure 4.3 (b) shows the profile images, on which all points for each profile are projected 

onto the plane perpendicular to the line of travel. A close-up view demonstrates that the 

curb is clearly presented on the profile image. 

4.1.2 Pseudo Scan-line Generation 

For RIEGL VMX-450 system in this research, the vehicle frame is defined as the 

right-handed orthogonal coordinate system with its origin at an arbitrary, user-defined 

point. The orientation of the vehicle frame is fixed so that the x-axis is towards the front 

of the vehicle, the y-axis is towards the right of the vehicle, and the z-axis is towards the 

bottom of the vehicle. Figure 4.4 shows a profile image by projecting all points within the 

profile onto the YoZ-plane in the vehicle frame. Two close-up views demonstrate that the 

curbs, vertical or nearly vertical to the road surface, are sharp height jumps; therefore, 

curbs can be estimated by slope and elevation-difference thresholds, and road points can 

be finally separated from off-road points. 

To this end, each profile is first gridded to form a pseudo scan-line with a cell size 

of pS , also termed as point spacing. The point spacing of a pseudo scan line ( pS ) depends 

on the point density of MLS data within the experiments. For example, RIEGL VMX-

450 has an average point density of about 300 points/m². Each cell has over 4 points 

when the proposed algorithm keeps the profile width gS = 25 cm and the cell size of pS = 

5 cm.  
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Second, a sampling is taken for each grid cell to select a principal point, as shown 

in Figure 4.5. To determine the principal point within a grid cell, a Quick Sort algorithm 

is used to sort all the points within the grid cell in elevation. Next, from the lowest point, 

the elevation differences ),...,3,2,1( NjL j  of two consecutive points are calculated to 

group them into different layers. N  is the number of the points in a grid cell. The two 

consecutive points are labelled into a same layer if only if the elevation difference lies 

below a pre-defined threshold, that is, Tj LL  .  Otherwise, a new layer is created to 

separate these two points. Usually, 
TL  is given 5 cm. Assume that points belonging to 

road surface are within the lowest layer. With this assumption, principal points within 

each grid are determined by selecting the point with the highest elevation within the 

lowest layer, as shown in Figure 4.6. With this scheme, most outliers such as tree points 

over the road can be removed. Those extracted points are then re-organized into a pseudo 

scan-line which maintains road points and critical road features with fewer disruptive 

noises, as shown in Figure 4.7.   

 

Figure 4.4: Curb observation in a profile image-all points projected onto the YoZ-plane. 
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Figure 4.5:  A profile sample gridded to find principal points. 

 

 

Figure 4.6: Selection of principal points: (a) Three grid cells of a profile, (b) layered 

points (different colours represent different layers), and (c) selected principal points. 
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Figure 4.7: A pseudo scan-line generated from a profile image. 

 
(c) 

Figure 4.8: A pseudo scan-line presented by slope. 
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4.1.3 Curb Detection 

In this study, the algorithm for curb detection is based on both slope and elevation 

evaluation and implemented at the scanning center in two opposing ways, as shown in 

Figure 4.7. The proposed curb-based road extraction algorithm mathematically defines 

the slope between two consecutive points in a generated pseudo scan-line (See Figure 4.8) 

and the elevation difference of a point relative to its neighborhood in the scan-line.  

Assume that slopes at the border of pavement and roadway are usually larger than those 

of the continuous points on the roadway. Moreover, pavement points have larger 

elevations than road points in the neighborhood. These two criteria are used to detect 

whether or not a point is a curb. First, the slope criterion detects off-road points, such as 

car and curb points. Second, the elevation difference criterion detects the curb corners 

from the off-road points. According to street design and construction manuals in many 

countries, heights of curbs generally range between 10 cm and 20 cm. These two 

observations are mathematically defined as: 










int,

))(&(
:

maxmin

pocurbnonotherwise

candidatecurbGGGSSif
p

iTslope

i                (4.1) 

where,  slopeS denotes the slope of two consecutive points. 
TS  is a given slope 

threshold. iG denotes the elevation difference of a point and its neighbor. Gmin and Gmax 

are the minimum and maximum thresholds. slopeS  can be defined using the following 

equation:  
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where, (
iX ,

iY ,
iZ ) and (

1iX ,
1iY ,

1iZ ) are the coordinates of two consecutive 

points in a pseudo scan-line with Z coordinate pointing to the elevation direction, and X 

and Y coordinates lying on the YoZ-plane.  

According to Figure 4.7, Eq.(4.2) is represented as:,  
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Note that Eq. (4.3) can take both positive and negative signs. A positive slope 

means point sequence entering a off-road point from road at the curb boundary while a 

negative slope represents point sequence leaving a off-road point to road at the curb 

boundary. The proposed algorithm starts the labelling processing from the vehicle 

position that is definitely located on the road surface. In other words, the initial labelling 

is entering from the road into curb. Therefore, once a point ip gets a slope slopeS  greater 

than the given slope threshold 
TS , it means the point reaches a possible curb. It will be 

labelled as a curb candidate. From all the curb candidates that include curbs or some 

other objects like cars over the road, their elevations are calculated to detect real curbs. If 

a curb candidate’s elevation difference ig at its vicinity is within the range of [Gmin ,Gmax], 

the curb candidate is labelled as a curb; otherwise, it will be labelled as a non-curb point. 

As the survey vehicle moves along the road, with a priori knowledge of the road, the curb 

candidates closest to the scanning centre are selected as curbs.  

4.1.4 Road Edge Fitting 

All curbs detected from the profiles are sparse because MLS data are partitioned 

along the vehicle trajectory into a number of data blocks at a certain length. Therefore, an 

interpolation method is needed to generate two smooth road edges from those curb points, 
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and finally separate road from off-road points. The developed algorithm uses cubic spline 

to obtain smooth curves (road edges) using a number of extracted curb points. 

Cubic spline interpolation consists of weights attached to a flat surface at the 

points to be connected. A flexible strip is then bent across each of these weights, resulting 

in a pleasingly smooth curve. Splines tend to be more stable than fitting a polynomial 

with the extracted curb points, with less possibility of wild oscillations between the points. 

Mathematically, the essential idea is to fit a piecewise function of the form: 





















 nnn xxxifxf

xxxifxf

xxxifxf

xF

11

322

211

)(

)(

)(

)(


                                       (4.4) 

where, 
if  is a third degree polynomial defined by 
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for .1,,2,1  ni   

The first and second derivatives of these n-1 equations are fundamental to this 

process, and they are 

iiiiii cxxbxxaxf  )(2)(3)( 2'                                      (4.6) 

iiii bxxaxf 2)(6)(''                                                           (4.7) 

 

4.2 Validation  

For validation, a total of 45 points were measured as references using a Leica 

TS15i-1/GS15 smart station that integrates a GNSS to provide the measurement accuracy 

at millimeter level.  Positional accuracy assessment is performed in a form of root-mean 
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square errors (RMSE) to evaluate the performance of the developed road extraction 

algorithm by calculating the distances of the reference points to the extracted curb edges. 

For other test data, the reference points were manually selected and the distances to the 

extracted curb edges were calculated using the Terrasolid software suit, terrascan.  

4.3 Experiments  

Several parameters, values, and thresholds used in the extraction of road surfaces are 

listed in Table 4.1. The developed algorithm uses six parameters for road extraction. The 

length of a block gR and the width of a profile gS are used at the stage of profiling; pS

and jL at the stage of the generation of a pseudo scan-line; iG and slopeS  at the stage of 

curb detection.  Thus, the automation of the road extraction algorithm is required a 

detailed analysis of all input parameters and their influences. According to the prior 

knowledge about the road, the algorithm pre-defines four thresholds TL , minG , maxG , and 

TS , all of which have a slight impact on the performance of the proposed algorithm. 

Table 4.1: Parameters in the proposed road-surface extraction algorithm. 

Name  Definition Value  Threshold 

 Sg The width of a profile To be discussed in 

experiments 

no 

 Rg The length of a block To be discussed in 

experiments 

no 

 Sp The point spacing of a 

pseudo scan line 

To be discussed in 

experiments 

no 

jL  The elevation difference 

for selecting of principal 

points  

 
TL : 5 cm. 

iG  The elevation difference 

for detecting curbs 

 Gmin(the minimum height difference of 

the curb) : 8 cm, a prior knowledge; 

Gmax (the mini maximum mum height 

difference of the curb) : 30 cm, a prior 
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knowledge; 

slopeS  The slope threshold for 

detecting curbs 

 
TS : π/3 

 

Parameter gR , the length of a block, has an impact on the performance of the 

road-surface extraction algorithm because it controls the size of a data block to be 

partitioned. That is, it decides how many blocks can be obtained for curb extraction, and 

how many curb points can be used for cubic spline interpolation.  Parameter gS is also 

critical to the proposed algorithm because it determines how many points are included for 

the generation of pseudo scan-lines and the presentence of curbs. Parameter pS   that 

controls the point spacing of the pseudo scan-lines decides the precise position of the 

detected curbs and the accuracy of the detected roads. Thus, three groups of experiments 

are designed by varying the values of parameters gR , gS  , and pS . 

Five datasets are selected from the 2012-04-23-survey for testing the sensitivity of 

these parameters. The first three datasets are 25-m-long, and the other two are 50-m-long. 

Figure 4.9 shows the raw MLS datasets and their road extraction results. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.9: Five datasets used for the automated selection of input parameters, (a) Road 1 

& its road extraction results, (b) Road 2, (c) Road 3, (d) Road 4, and (e) Road 5. 
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4.3.1 Analysis of Block Length 

This group of experiments keep gS  = 25 cm and pS = 5 cm, and vary gR  from 0.5 m 

to 5 m at six levels (0.5 m, 1.0 m, 2.0 m, 3.0 m, 4.0 m, and 5.0 m). Figure 4.10 shows the 

values of RMSE in horizontal and vertical accuracies at the six lengths of blocks for five 

test datasets. Note that the horizontal accuracies of the extracted roads are pretty stable 

with the block length ranging from 0.5 m to 3.0 m. However, the horizontal accuracies 

tend to decrease with the block length over 3.0 m. The vertical accuracies of the extracted 

roads have a similar tendency to the horizontal accuracies. The reason behind this 

phenomenon might be that with an increase of the block length, the interval of the 

profiles goes to be larger, and the number of the detected curbs decrease, indicating that 

the changes of the road could not precisely presented. Among the five datasets, the 

proposed curb-based road-surface algorithm achieves the worst performance for road 4 

because a large curvature is presented in Road 4, which means, for a road with a large 

curvature, the shorter the block length is, the better the accuracy of the extracted road 

using the proposed algorithm. However, a straight road would be less sensitive to the 

block length. As seen from these five datasets, the best road could be obtained at gR = 3.0 

m. gR = 3.0 m is used as a standard for all roads. If some roads contain turns, the 

algorithm can adjust the block length according to the curvature of the vehicle trajectory. 

For example, if a road has sharp bends, curves or turns, Rg  = 1.0 m will be used to collect 

more curbs for preserving road features. 
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Figure 4.10: Accuracies of extracted roads at six block lengths. 
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4.3.2 Analysis of Profile Width 

This group of experiments keep gR  = 3.0 m and pS = 5 cm, and vary gS  from 10 

cm to 100 cm at six levels (10 cm, 20 cm, 30 cm, 40 cm, 50 cm, and 100 cm).  Figure 

4.11 demonstrate the extracted results in horizontal and vertical accuracies. 

As show in Figure 4.10, when gS  is 20 cm, the proposed curb-based road-surface 

algorithm achieves a stable performance with the horizontal accuracy of 7 cm and the 

vertical accuracy of an average of 15 cm. The accuracies decrease quickly with gS

increasing from 40 cm to 100 cm. This is because that, the thicker the profile, the more 

points are included to detect curbs. Too many points included for the extraction of curbs 

could play a negative effect on the performance of the algorithm because of the following 

two reasons: (1) road shape and (2) the selection of principal points at the stage of 

generating pseudo scan-lines. If a road is a little winded, not strictly straight, even with a 

smaller-angle, curbs in the thicker profile could contain more deformed points, 

decreasing the precise positions of curbs. Second, the thicker profile could include more 

points in a gridded cell for generating a pseudo scan-line, indicating that the selection of 

principal points for each grid could be interfered. The analysis of the five datasets shows 

that the best performance of the proposed extraction algorithm could be achieved at gS = 

20~ 30 cm. 
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Figure 4.11: Accuracies of extracted roads at six profile widths. 
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4.3.3 Analysis of Grid Size 

This group of experiments keep Sg = 25 cm and gR  = 3.0 m, and vary pS  from 3 

to 10 cm at seven levels (3 cm, 4 cm, 5 cm, 6 cm, 7 cm, and 10 cm).  The point spacing 

pS  determines the point resolution of the generated pseudo scan-lines. The smaller the 

point resolution is, the higher the accuracy of the extracted road surfaces is. However, the 

point density of the pseudo scan-line depends on the scanning parameters and the vehicle 

speed, according to the analysis in Chapter 3. For example, the scan-line-to-scan-line 

spacing for RIEGL VMX-450 is about 4 - 6 cm at the speed of 30 - 50 km/h. Thus, the 

test for the point spacing starts off 3 cm. Figure 4.12 show the horizontal and vertical 

accuracies of the extracted roads at seven point spacing levels.  As shown in Figure 4.12, 

the horizontal and vertical accuracies for all roads grow with the increase of the point 

spacing pS , and the algorithm shows a  stable performance when pS varies from 3 - 6 cm. 

The philosophy behind this phenomenon is that larger grid cells have enough points for 

detecting curbs. However, the horizontal and vertical accuracies quickly decrease when

pS is over 6 cm, indicating that a larger  pS  can be counterproductive. Although there are 

adequate points for searching curbs, excessive point spacing pS would produce a less 

precise positioning estimation of curbs. For this study, the developed algorithm achieves 

a good performance of road extraction at pS = 4 - 5 cm. 
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Figure 4.12: Accuracies of extracted roads at seven point spacing. 
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4.3.4 Computational Complexity 

To further evaluate the performance of the proposed curb-based road extraction 

algorithm, computational efficiency is tested with the five datasets through the use of PC 

with a 3.30 Ghz Intel(R) Core(TM) i3-2120 CPU. According to the discussed sensitivity 

of parameters, the algorithm keeps Sg = 25 cm, gR  = 3.0 m, and pS = 5 cm.  The proposed 

road-surface algorithm comprises four steps: trajectory-based profiling, pseudo scan-line 

generation, curb detection, and road edge fitting. Thus, the average running time for the 

five datasets is about 30-40 seconds. The processing time of the proposed algorithm is 

highly dependent on the reading-and-writing speed of the hard disk due to frequent data-

interaction operations. Although extracting operations for roads are mostly performed on 

3D data, the processing is computationally efficient because of no data indexing 

structures being involved for data querying and searching. Thus, the proposed algorithm 

is a feasible means for transportation agencies to detect road in real time and provides a 

strong support to inspect road features efficiently. 

4.3.5 Overall Performance 

The developed algorithm is tested on two datasets: Huandao and ICEC, as shown 

in Figures 4.13 (a) and 4.14 (a). Due to no sharp turnings and curves on the roads, Rg = 

3.0 m is used in this study. As a result, ICEC and Huandao datasets comprise 35 and 21 

blocks, respectively. Each profile is sliced from each data block.  Correspondingly, with a 

profile width Sg of 25 cm, there are 35 profiles for the ICEC dataset, and 21 profiles for 

Huandao dataset, respectively. Through experimentation, a profile is segmented into a 

number of grids, with each grid containing about 40 points and having a grid width Sp of 

5 cm. Finally the profile is converted into a pseudo scan line using the principal points 
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estimated from the grid cells by the layering approach. Furthermore, the prior knowledge 

of curbs allows us to keep the curb height range between 8 cm and 30 cm.  With those 

pre-defined thresholds, the curbs are extracted from the profiles and fitted into two 

smooth edges of the roads using the cubic B-Spline interpolation. A visual inspection 

demonstrates the good extraction results of the roads, as shown in Figures 4.13 (b) and 

4.14 (b). 20 and 15 reference points are used for validating Huandao and IECE datasets, 

respectively. The following table shows that the positional accuracies of the extracted 

road surfaces are 8 cm and 2 cm in horizontal and vertical, respectively.   

Table 4.2: Horizontal and vertical accuracies for two test datasets. 

Point No. HuanDao Dataset (cm) ICEC Dataset (cm) 

Horizontal Vertical Horizontal Vertical 

1 8.2 1.2 5.4 1.5 

2 13.7 2.5 5.7 2.8 

3 8.8 1.6 6.4 1.6 

4 7.3 1.1 10.4 1.3 

5 9.1 1.6 8.5 1.9 

6 8.6 2.8 10.3 2.4 

7 5.1 2.5 4.9 2.1 

8 5.5 2.3 5.7 1.3 

9 7 1.8 5.3 1.8 

10 1.1 1.3 5.9 3.5 

11 12.1 2.4 11.1 2.2 

12 7.8 2.3 9.0 2.7 

13 7.2 1.9 6.8 1.1 

14 9.5 2.1 6.7 1.7 

15 9.1 2.5 7.5 2.3 

16 10.1 1.7   

17 4.3 2.4   

18 13.4 2.3   

19 6.4 2.2   

20 6.7 2.4   

RMSE 8.6 2.1 7.6 2.1 
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  Figure 4.13: Huandao dataset and extracted results.  

 

 

 

 

        Figure 4.14: ICEC dataset and extracted results.
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4.4 Discussion 

The curb-based road-surface extraction method is presented with an assistance of 

the vehicle trajectory. The proposed algorithm was based the assumption that curb is a 

road boundary that separates a road from a sidewalk or a green space with a certain 

height. Thus, it is straightforward to detect curbs for separating road points from off-road 

points. Three challenges were considered for developing the algorithm. 

The first challenge is how to deal with a large volume of MLS data collected by a 

newest RIEGL VMX-450 system. Normally, most established approaches to laser 

scanning data processing were developed for ALS data, whose point density is about 10-

20 points per square meter. The current ALS data are at Megabyte level, while MLS data 

are at Gigabyte or even Terabyte level.  Thus, the proposed algorithm partitioned the 

whole MLS data into a number of data blocks, on each of which curbs were detected 

without any data indexing structures involved, indicating that the developed algorithm is 

computationally efficient. 

The second challenge is how to detect curbs from the profiles sliced from each 

data block. On each profile image, the curbs are clearly presented. All points within a 

profile were projected onto a plane perpendicular to the line of travel. However, the 

profile image just contains a number of irregular points. To detect curbs, those points 

were re-organized to a scan-line alike pattern, called pseudo scan-line, by sampling them 

with a given point spacing. Based on the re-organized pseudo scan-line, two criteria such 

as slope and elevation difference were used to detect curbs. 

The third challenge is to detect curbs from pseudo scan-lines. Not only curbs but 

also other objects over the roads would show height jumps. To eliminate non-curb points, 
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two mathematical definitions were defined: (1) slope and (2) elevation difference. 

Specifically, the slope between two consecutive points in a pseudo scan-line and the 

elevation difference of a laser point relative to its neighbors in the pseudo scan-line are 

defined to search curbs. Basically, the curbs were completely detected from each profile 

with these two criteria. 

The developed algorithm for road extraction was analyzed for automated selection 

of the input parameters. There are three parameters - the length of a block gR , the width 

of a profile gS , and the point spacing pS -having a great impact on the performance of 

the proposed curb-based road-surface algorithm. The experimental results demonstrated 

that choosing a too large block length will decrease the horizontal and vertical accuracies. 

The 3.0 m block length was recommended as the most applicable value which normally 

produces the best performance. The experimental results also showed that choosing a too 

small profile width will reduce the horizontal and vertical accuracies, while choosing a 

too large profile width will also decrease the accuracies. The optimal value for the profile 

width is between 20 and 30 cm which will achieve better accuracies. The experimental 

results also demonstrated that choosing too large point spacing will produce a decreasing 

accuracies in horizontal and vertical. The optimal value is 4 or 5 cm for generating 

pseudo scan-lines and detecting curbs. The selected parameters were tested on two 

datasets: Huandao including 8.4 million points in a road length of 105 m and ICEC 

containing 5.4 million points covering the road length of 63 m. The average horizontal 

accuracies for these two datasets are 8.1 cm and 7.3 cm, the average vertical accuracies 

are 2.1 cm and 2 cm, respectively.  
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The proposed approach has a few distinctions. First, it is computationally efficient 

as the calculation is performed within pseudo scan-lines generated from large volumes of 

MLS data via a profiling strategy. Curbs are detected from a number of pseudo scan-lines 

instead of the whole MLS data. By taking advantage of the pseudo scan-lines, the 

proposed algorithm does not require a special data structure, such as triangular irregular 

network (TIN) and quad-tree, to facilitate the road-surface extraction process. It needs no 

searching or calculation within the whole MLS data.  

Moreover, for the slope calculation in Eq. (4.2), only two consecutive points are 

needed. The local elevation and slope are updated every time a curb candidate is 

encountered along the profile. Because points in the pseudo scan-line are at regular 

interval and stored as a sequence of sampling points, the required calculations are 

reduced to the minimum by comparing two consecutive points along a profile. Therefore, 

profiling MLS data along the trajectory and detecting curbs on pseudo scan-lines 

substantially increase the efficiency in handling large-volume MLS data for practical 

applications. 

Third, a combination of slope and elevation criteria can consider the complex 

surroundings of roads. As addressed earlier, the slope criterion essentially detects the 

abrupt road edge candidates while the elevation criterion identifies the curbs from objects 

on the roads. The selection of the local ground elevation threshold usually ranges from 10 

to 30 cm according to conventional road design manuals. Each time a curb is encountered 

when its elevation is within the elevation range. In this way, the approach is adaptive to 

the complexity of road surroundings. 
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4.5 Chapter Summary 

This chapter presented a curb-based road extraction algorithm, which was based 

on the vehicle trajectory, for detecting roads from MLS data. To detect roads, a stepwise 

procedure is proposed: (1) MLS data profiling, (2) generation of pseudo scan-lines, (3) 

curb detection from each pseudo scan-line based on the elevation difference and slope 

criteria, and (4) road edge Spline interpolation. 

The automated selection of the optimal values for input parameters were 

discussed. The algorithm performance was evaluated on Huandao and ICEC datasets. 

The average horizontal and vertical accuracies for the two datasets are 8.1 cm and 2 cm, 

respectively. The low positioning accuracy in horizontal is partially determined by the 

original density of sampling points of MLS data. The denser the MLS data are, the higher 

the horizontal accuracies of the extracted roads. Overall, the accuracies of the detected 

roads meet the requirements of transportation-related road applications, such as natural 

terrain mapping, roadway condition assessment, GIS road inventory, and urban traffic 

modelling. 
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Chapter 5 Road-marking Extraction
2
 

This chapter details the algorithm for the automated extraction of road markings 

from MLS data. The proposed road-surface extraction algorithm has been described in 

Chapter 4 for extracting road points from MLS data. After that, the classified road points 

are interpolated into a GRF image. Next, to reduce noise and improve road-marking 

completeness, a point-density-dependent, multi-threshold segmentation method is applied 

to the GRF image for identifying road markings using a morphological operation. 

Validation is described in Section 5.2. The conducted tests are described and analyzed in 

Section 5.3. Discussions are presented in Section 5.4. Section 5.5 provides a summary of 

this chapter. 

5.1 Algorithm Description 

This chapter presents a recognition framework for road markings used in a mobile 

mapping system, and analyzes its performance on a variety of road-marking types 

selected from RIEGL VMX-450 data. The road-marking extraction method can be seen 

as a stepwise procedure of interpreting MLS data, as shown in Figure 5.1. The method 

mainly includes the following four steps: 

                                                           
2
 The main work presented in this chapter has been published by, Guan, H., Li, J.,Yu, Y., Wang, C.,  

Chapman, M., and Yang, B. 2014. Using mobile laser scanning data for automated extraction of road 

markings.  ISPRS Journal of Photogrammetry & Remote Sensing, 87 (2014): 93-107. 
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Figure 5.1: An overview of the proposed road-marking extraction algorithm. 

. 
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(1) Curb-based road-surface extraction: the raw MLS data are partitioned, based 

on the vehicle trajectory, into blocks and their corresponding profiles, by which pseudo 

scan-lines are formed to detect small height jumps caused by road curbs. 

(2) GRF image generation: the segmented road points are interpolated into a GRF 

image via an extended inverse distance weighted (IDW) method that combines local-

global elevation and intensity data. 

(3) Point-density-dependent thresholding: the GRF image is dynamically 

segmented to recognize road markings by the point-density-dependent multi-thresholds. 

(4) Morphological operations: To remove noise and fill in holes for the extracted 

road markings, morphological operations are used to achieve final results. 

5.1.1 Extraction of Road Surfaces  

According to the vehicle trajectory, the raw MLS data are partitioned into a 

number of blocks and profiles, on each of which a pseudo scan-line is generated and 

curbs are detected based on elevation-difference and slope criteria. The principle behind 

this is that curb, as a nearly vertical surface, is a boundary of road surface and sidewalk 

with a certain height. Finally, a cubic spline interpolation fits the extracted curb points 

into smooth road edges with the constraint of the vehicle trajectory. The algorithm for 

automated road extraction was detailed in Chapter 4. Figure 5.2 shows two results of road 

extraction. A close-up view demonstrates that the road surfaces are well extracted along 

the bottoms of the curbs. 
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Figure 5.2: Two samples of the road extraction results, (a) Huandao dataset, and (b) 

ICEC dataset. 

 
Figure 5.3: An illustration of the determination of gray values. 
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5.1.2 Generation of GRF Images 

After extracting road points from MLS data, the extracted road points are rasterized 

into a GRF image, in which the gray value of a pixel is interpolated from its nearest 

neighbours using IDW interpolation. Although the interpolation might cause a loss of 

accuracy, it is computationally efficient for processing a substantially large volume of 

MLS data using established image processing algorithms. The IDW interpolation stated 

in Yang et al. (2012) is extended to generate a GRF image. The image resolution (rg) can 

be referred to by point density, as shown in Figure 5.3. 

In Yang et al. (2012), there are the following two rules for generating a geo-

referenced intensity image:  

Rule 1: a point with higher reflectivity has a greater weight;  

Rule 2: a point farther away from the central point has a smaller weight.  

According to the two rules, the gray value of a grid cell is calculated by: 
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where, ij

kW is the weight of the k-th point within the grid cell (i, j), ij

kI is the 

reflectivity of the k-th point, and nij is the total number of data points within the grid 

cell (i, j).  and  are the weight coefficients, 
I

ijkW , and 
D

ijkW ,  are the weights 

representing Rules 1 and 2, respectively.  The two weights are calculated by the 

following Eqs. (5.3) and (5.4): 
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where, 
2 2 2

, , , , ,( ) ( )
k ij o ij k ij o ijk ij p p p pD x x y y     , ( ,k ijpx , ,k ijpy ) are the coordinates of the 

k-th point within the grid cell (i,j), ( ,o ijpx , ,o ijpy ) are the coordinates of the central point 

within the grid cell (i,j), ijkD , is the distance between points ( ,k ijpx , ,k ijpy ) and ( ,o ijpx , ,o ijpy ). 

Eq. (5.2) defines the range of the weight ,

D

k ijW  within [0,1]. The weight ,

D

k ijW  = 1 when 

ijkD , =0, that is, point ( ,k ijpx , ,k ijpy ) is at the central point ( ,o ijpx , ,o ijpy ) of the grid cell, 

indicating point ( ,k ijpx , ,k ijpy ) has the greatest contribution to the weight 
D

ijkW , . On the 

contrary, The weight ,

D

k ijW  = 0 when ijkD , = 2/gr  (a half of the diagonal of the grid 

cell), that is, point ( ,k ijpx , ,k ijpy ) is far most from point ( ,o ijpx , ,o ijpy ), indicating point ( ,k ijpx ,

,k ijpy ) has barely contribution to the weight 
D

ijkW , . 

2

,

1

,,

I

ijk

I

ijk

I

ijk WWW                                                                              (5.3) 

                         





































min,,

min,,

2

,

2

minmax

2

minmax

2

,

2

,

2

minmax

2

minmax

1

,

)1
)(1

)(1
(

)(

1

)1
)(1

)(1
(

)(

1

III

gII

L

II

II
W

L

gg

gg
W

ijp

G

ijk

ij

ijp

L

ijk

G

ijk

I

ijk

L

ijk

ijij

ijij

I

ijk

k

k

 ,            

where, ij

kI is the intensity value of the k-th point, 
1

,

I

ijkW  and 
2

,

I

ijkW  are the weights for 

the local and global information, ijgmax and ijgmin
are local maximal and minimal intensities 

within the grid (i,j), maxI and 
minI are the global maximal and minimal intensities of the 

entire road points, and
L

ijkI , and
G

ijkI , are the local and global intensity differences, 

respectively. Unlike the distance weight 
D

ijkW , , the intensity weight 
I

ijkW , is divided into the 
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following two parts: a local weight 
1

,

I

ijkW and a global weight 
2

,

I

ijkW  in order to equalize the 

calculated pixel values of the GRF image. Similar to histogram equalization - a method in 

image processing for contrast adjustment using the image's histogram - the local weight 

1

,

I

ijkW  is combined with the global weight 
2

,

I

ijkW  to increase the global contrast of the GRF 

image. Through this adjustment, the intensities can be consistently distributed on the 

histogram, as shown in Figure 5.4. 

 

(a) 

http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Contrast_(vision)
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Image_histogram
http://en.wikipedia.org/wiki/Contrast_(vision)
http://en.wikipedia.org/wiki/Luminous_intensity
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(b) 

Figure 5.4: GRF images generated from MLS data: (a) Huandao dataset, and (b) ICEC 

dataset. 

5.1.3 Determination of Multi-thresholds  

In the generated GRF image, a threshold-based segmentation algorithm is normally 

carried out to obtain the road markings. However, although the proposed equalization 

strategy lessens the intensity imbalance caused by point-density differences, the intensity 

values of road markings are not consistent but gradually fade from the scanning center to 

its two sides, as shown in Figure 5.5(a). This variation is because of the reflected 

intensity values that depend on (1) the scanning range from the laser sensor to the target, 

(2) the incidence angle of the laser beam, and (3) the material properties of the target. 

Spontaneously, a dynamic multi-threshold segmentation algorithm is proposed based on 

the scanning distance change. Within different ranges of scanning distances, local 

optimal segmentation thresholds are adaptively estimated. 

Due to the variation of the vehicle trajectory, MLS data are still processed block by 

block. As mentioned in Chapter 4, each block iBlock has a corresponding profile iprofile . 

The point density for each iprofile   is statistically analyzed, as green bars shown in 

Figure 5.5 (b). Note that the point density approximates normality. Thus, a Gaussian 
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normal distribution (red line) can be fitted to obtain two estimated parameters: mean 

and standard deviation . Inspired by the “68-95-99.7” rule of a normal distribution that 

says about 68% of values within one standard deviation σ away from the mean, about 95% 

of the values within two standard deviations, and about 99.7% within three standard 

deviations, intensity variations of the generated GRF image follows this rule. Thus, 

according to the three-sigma rule, the corresponding range can be determined to 

vertically section data into a number of bins, on each of which an optimal threshold is 

calculated for segmentation.  

 

Figure 5.5: Point-density-dependent multi-threshold segmentation: (a) Sample data I (b) 

statistical analysis of sample data I, (c) Sample data II, and (d) statistical analysis of 

Sample data II. 
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First, according to the vehicle trajectory and the estimated road width (W ) from the 

extracted road data, the width of the right side ( RW ) and the width of the left side ( LW ) 

of the vehicle trajectory are calculated. Then, the range ( r ) for one sigma of the fitted 

Gaussian normal distribution function is calculated by the estimated mean  and 

standard deviation .  Finally, the number of the bins is calculated as: 

1)/(

1)/(





rWINTN

rWINTN

Ll

Rr                                                   (5.4) 

As a result, the number of ( rN + lN ) bins is obtained for each iB . The number of 

bins varies with the vehicle trajectory. For example, the data block would have six bins if 

the vehicle was driving close to the center line of the road (see Figures 5.5(a) and (b)), 

while the data block would have 5 bins if the vehicle was driving along the left lane of 

the road (see Figures 5.5(c) and (d)). With vehicle trajectory, the fitted normal 

distribution of the point density determines how many bins can be sliced. 

5.1.4 Multi-threshold-based Segmentation 

In each bin ))(,...,2,1( lri NNiB  , potential road markings are segmented by 

Otsu’s method, proposed by Otsu (1979), which is widely implemented as the default 

approach to image thresholding. The principle of Otsu’s method was detailed in Chapter 

3. Otsu’s method assumes that an image to be divided contains two classes: C1 and C2, 

that is, foreground (e.g., road markings) and background, and then calculates their 

cumulative probabilities and mean levels, respectively. As a result, Otsu’s method can 

select an optimal threshold (t) that maximizes the between-class variance based on the 

discriminant analysis. Figure 5.6 shows the results of multi-threshold segmentation. 



100 
 

 

Figure 5.6: Road-marking segmentation results for (a) Huandao dataset, and (b) ICEC 

dataset. 
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Figure 5.7: Road-marking extraction results for (a) Huandao dataset, and (b) ICEC 

dataset. 
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5.1.5 Morphological Operation  

In spite of the use of the proposed segmentation algorithm, the extracted road 

markings still contain noise and are incomplete. By knowing the form and the structure of 

the road markings, a morphological operation is used to remove noises and extract 

complete road markings. The morphological operations rely only on the relative ordering 

of pixel values, rather than on their numerical values, and therefore are especially suited 

to process binary images. The morphological operation to be use is closing, that is, 

dilation and erosion. A dilation operation is first employed to remove noises and fill out 

holes in the extracted road markings. Subsequently, an erosion operation is used to shrink 

the image from both the inner and outer boundaries of the road markings.  

The morphological techniques probe the road markings with a small shape or 

template called a structuring element; the structuring element is a small binary image, 

that is, a small matrix of pixels. The structuring element is related to the size (T), origin, 

and shape. The structuring element examples include square, cross, diamond, horizontal 

and vertical shaped. A common practice is to have odd dimensions of the structuring 

matrix and the origin defined as the centre of the matrix. Although there are many types 

of road markings such as crosswalks, characters, words, symbols, and arrows, most of 

them are linearly shaped. To simplify convolution, a horizontally linear shaped 

structuring element is used to dilate and erode the road markings. The linear structure 

with length l and direction   is denoted by )(lKline . The direction   is determined by 

the vehicle trajectory, that is, the direction in which the vehicle is moving. A range of the 

length l from 3 to 11 is researched to determine )(lKline  
for the road markings. This 
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thesis picks up l = 3 pixels for extracting road markings. Figure 5.7 shows the results of 

road-marking extraction for Huandao and ICEC datasets by the morphological operations. 

5.2 Validation  

By comparing the extracted road markings with the manually interpreted ground-

truth, the results of the road markings were quantitatively evaluated with the following 

three measures: completeness (cpt), correctness (crt), and F-measure. cpt describes how 

complete the extracted road markings are, while crt means to what percentage the 

extracted road markings are valid. The cpt is expressed as RfCcpt p  and crt is defined 

as pp ECcpt  , where pC  denotes the number of pixels belonging to the actual road 

markings, Rf  is the ground-truth collected by the manual interpretation method, and pE

represents the number of pixels extracted by the proposed algorithm. F-measure is an 

overall score, defined as 
)(

)(
2

crtcpt

crtcpt
F




 . 

5.3 Experiments  

From the generation of the GRF image to the extraction of the road markings, there 

are several parameters involved, such as (1) the weight coefficients ( and  ), (2) the 

image resolution (rg), (3) the number of bins to be sliced (Ns), (4) segmentation 

thresholds (Ti , i=1,2, 3, …, Ns ), (5) the kernel size (l), and (6) the direction ( ). These 

parameters are detailed in Table 5.1. Among these parameters, the number of bins is 

determined by the point density, and the segmentation thresholds (Ti) are automatically 

calculated by Otsu’s method; the direction ( ) of the linear structuring element depends 

on the trajectory. 
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Table 5.1: Parameters used in the road-marking extraction method. 

Stage Name  Definition Value  

The generation of the GRF 

image 

  Distance weight 0.5 

  Intensity weight 0.5 

rg Image resolution To be decided 

The extraction of the road 

markings 

Ns Number of bins Automatically determined by the 

point density 

Ti Segmentation 

thresholds 

Automatically determined by Otsu’s 

method 

l Structuring element 

size 

To be decided 

  Structuring element 

direction 

Automatically determined by the 

trajectory  

 

5.3.1 Generation of GRF Images 

The weight coefficients
 
  and   are used to control the contributions of both the 

distance and intensity to the gray value of a grid cell during implementation of the 

extended IDW interpolation. The following different groups were tested on weight 

coefficients   and   : (0.0,1.0), (0.2, 0.8), (0.4,0.6), (0.6,0.4), (0.8,0.2), and (1.0, 0.0). 

Accordingly, Figure 5.8 shows the generated six GRF images, ranging from A1 to A6.  

For example, the comparative results of B1 (Image A1 minus Image A2) and C1 (Image 

A5 minus Image A6) show that both the intensity and distance information contribute to 

the gray values of the GRF image. In Figure 5.8, Images A2 to A5 (see row 1) and 

Images B1 to B4 (see  row 2) demonstrate that the quality of the GRF images is relatively 

stable when the weight coefficient
 
  changes from 0.2 to 0.8, and the weight coefficient

 

 from 0.8 to 0.2, accordingly. To investigate the changes among the GRF images, the 

pixel-level difference ( pldP = iG / changeN ) is used to describe the difference between 
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two images (Yang et al., 2010), where  iG  denotes the sum of gray values of the 

changed pixels, and changeN is the number of the changed pixels. The pixel-level-difference 

tables in Figures 5.8 (a) and (b) confirm that there is no improvement or change among 

the four images (A2, A3, A4, A5) with weight coefficients
 
 and   as (0.2, 0.8), 

(0.4,0.6), (0.6,0.4), (0.8,0.2). As a result, in the following experiments, the weight 

coefficients  and   of (0.5, 0.5) is applied to the road points for generating GRF 

images.  

In Eq. (5.3), the intensity weight 
I

ijkW , includes the following two parts: 
1

,

I

ijkW  and 

2

,

I

ijkW  for the local and global information, respectively. The global weight  
2

,

I

ijkW  functions 

as an equalizer that stretches the gray values of the GRF image for contrast adjustment, 

thus allowing for areas of lower contrasts to gain higher contrasts. Figure 5.9 shows a 

comparison of images with and without the global weights (images A2 and a2). Image 

A2-a2 is the result of image A2 minus image a2, indicating that the use of the global 

weight contributes to contrast enhancement. The vertical profiles B and B’ also confirm 

that the contrasts between the background and foreground in image A2 are greater than 

those in image a2. Through this global adjustment, the intensities can be better 

distributed for road-marking extraction. 

http://en.wikipedia.org/wiki/Luminous_intensity
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(a) 
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(b) 

Figure 5.8: Sensitivity analysis of two coefficient parameters  and    with the grid size of 4 cm: (a) Huandao dataset, and (b) ICEC 

dataset. 
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(a) 

 
(b) 

Figure 5.9:  A comparison of intensity normalization between using global-and-local and 

global information alone: (a) Huandao dataset, and (b) ICEC dataset. 
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5.3.2 Road-marking Extraction 

The performance of the proposed segmentation algorithm is tested by comparing it 

with the fixed threshold using eight road-marking images from two datasets. Table 5.2 

summarizes the types of road markings; each road-marking image includes two or three 

types of road markings. To the best of our knowledge, currently there is no dataset that is 

designed for evaluating the performance of road-marking extraction from MLS systems. 

Table 5.2: Types of road markings in eight GRF images. 

Image Name Types of road markings 

Marking 1 arrow markings, solid edgeline and broken laneline markings 

Marking 2 symbol markings, solid edgeline and broken laneline markings 

Marking 3 word markings, solid edgeline and broken laneline markings 

Marking 4 solid edgeline and broken laneline markings 

Marking 5 crosswalk markings 

Marking 6 arrow markings, symbol markings, solid edgeline and laneline markings 

Marking 7 hatch markings 

Marking 8 hatch markings and solid line markings 

 

The proposed road-marking extraction algorithm keeps the weight coefficients at 

 = 0.5,  =0.5, and the image resolution at rg = 4 cm for generating the GRF image. The 

eight road-marking examples are shown in Figure 5.10. The second row presents the 

segmentation results using the optimal single thresholds based on a histogram analysis, 

where noises emerge on one side of each of the roads, while a part of the road markings 

are missing on the other side.  For example, the histogram of Marking 1 suggests that the 

gray value of 90 is the optimal threshold to separate the foreground (road markings) from 
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the background. The segmentation results, however, show that the straight-ahead arrow 

marking (at the bottom) is barely identified, although the turn-left-and-straight-ahead 

arrow marking (at the top) is almost completely detected with much noise. Therefore, it is 

difficult to keep a trade-off between correctness and completeness of road markings using 

a universal threshold. 

However, compared to the results in the second row, all results in the third row 

indicate that all road markings, such as the word, hatch and arrow markings, can be 

correctly and completely identified. Note that the eight road-marking images generate 

their own three thresholds by Otsu’s method, indicating that the proposed multi-threshold 

segmentation method can provide optimal local thresholds, regardless of the road 

materials and dimensions.  

To explore the impact of structuring element size on road-marking extraction, a 

range of l (3,5,7,9,11) is searched for the eight road markings shown in Figure 5.10, 

while keeping  = 0.5,   = 0.5, and rg = 4 cm. Figure 5.11 displays the extracted road-

markings on the eight examples with the five sizes of horizontal structuring elements. 

Visual inspection suggests that there was no significant change for most road markings 

when l was increased from 3 to 5. However, along the road edges, small areas of noise 

caused by the multi-threshold segmentation algorithm become larger after performing the 

morphological closing operation. In addition, the road markings are gradually dilated 

with increasing kernel size. Particularly, the word markings within Marking 3 are 

severely dilated since l increases from 5 to 11.   
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Figure 5.10: A comparison of the proposed method and the fixed segmenting threshold. 
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Figure 5.11: Sensitivity of structuring element size on the eight road markings. 
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Figure 5.12: Sensitivity analysis of five structuring element sizes, ranging from 3 to 11: 

(a) completeness, (b) correctness, and (c) F-measure. 
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Figure 5.12 shows the measures of the road-marking extraction results on eight 

images with five different sizes of the structuring kernels. Results of all eight samples 

demonstrate that the completeness index cpt increases when the structuring-kernel size 

increases from 3 to 7, while the cpt remains stable when the structuring-kernel size is 

over 7. The correctness index crt, on the contrary, decreases with the increasing size of 

the structuring kernel. Particularly, the crt index of Marking 4 quickly declines, followed 

by Marking 3 (the word marking). The dilation operation causes this downward trend. As 

the structuring kernel increases in size, the dilation operation not only fills the holes in 

the road markings, but also merges small areas of noise into large areas of noise, and 

merges noise into the road markings. In this doctoral research, with an image resolution 

of rg = 4 cm, the best size of the structuring kernel was gained at l=3. 

5.3.3 Impact of Image Resolution  

Because the road markings, under different image resolutions, will be presented with 

different details, the image resolution is one of the very critical parameters for extracting 

road markings. To evaluate the sensitivity of the image resolution relative to the 

performance of the road-marking extraction algorithm, one block data are selected from 

Huandao dataset and search a range of rg (4 cm, 5 cm, 6 cm, 7 cm, 8 cm, 9 cm, and 10 cm) 

while keeping  = 0.5,   = 0.5. The proposed road-marking extraction algorithm is 

applied to each test case.  

Figure 5.13 (a) shows the extracted road markings at seven image resolutions, 

ranging from 4 to 10 cm. The first column shows examples of the arrow-and-lane 

marking with seven image resolutions. Note that details of the arrow-and-lane marking 

are inversely proportional to image resolutions. The second column displays the X-profile 
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data of the arrow-and-lane marking. The horizontal axis represents the widths of the 

arrow-and-lane-marking image; the vertical axis represents the intensity values of pixels 

along the X-profiles. Note that the intensity values vary from one image to the other with 

the image resolution. Correspondingly, the segmentation thresholds are different from 

each other. Thus, the point-density-dependent multi-threshold method is suitable to 

automatically determine the segmentation thresholds for each image based on the 

weighted-intensity-difference (WID) method.  As for the structuring element, l = 3 and 

= 28.46° calculated from the trajectory are applied to this case. The extracted road 

markings are shown in the third column.  Visual inspection suggests that the shapes of the 

arrow-and-lane markings are preserved quite completely for seven test cases.   

To assess the proposed road-marking extraction algorithm, a comparative analysis is 

carried out. The calculated crt, cpt, and F-measure indices are shown in Figure 5.13(b). 

For all the cases, the crt values are greater than 0.72, the cpt values are higher than 0.94, 

and the F-measure values range from 0.82 to 0.9. Note that there are slight changes in 

these three measure indices when the image resolution increases from 4 to 5 cm. 

However, the crt, cpt, and F-measure values slowly decrease when the image resolution 

is greater than 5 cm. Thus, the image resolution of either 4 or 5 cm is selected as the most 

applicable values to generate GRF images from RIEGL MLS data. 

A complete assessment is conducted by comparing the differences between the 

extracted road markings and the actual measured road markings in length and width. To 

compare conveniently, four short lines were randomly selected from the broken lane 

markings. The actual length and width of the selected lane markings are measured and 
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checked with the official specification for road markings. Then, the measured is 

compared with the estimated by the proposed algorithm under seven image resolutions.  

 
(a) 
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(b) 

Figure 5.13: Impacts of image resolution: (a) qualitative assessment, and (b) quantitative 

assessment using cpt, crt, and F-measure. 

5.3.4 Overall Performance 

Pursuant to a discussion of the sensitivity of parameters to the proposed algorithm, 

overall performance tests were conducted on Huandao and ICEC datasets.  First, the 

proposed algorithm keeps Rg = 30 cm, Sp= 5 cm, Sg = 20 cm, Gmin = 8 cm, and Gmax = 30 

cm, as listed in Table 5.1. Due to no sharp turns or curves of the roads in two cases, Rg  is 

kept as 3.0 m. With Rg =3.0 m, Huandao and ICEC datasets have 35 and 21 blocks and 

profiles, respectively. Afterwards, with local and global intensity information, this thesis 

uses  = 0.5,   = 0.5, and rg = 4 cm to generate GRF images from MLS points 

belonging to the road surfaces. 
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(a) 

 
(b) 

Figure 5.14: Orientations of the structuring element obtained by trajectory: (a) Huandao 

dataset, and (b) ICEC dataset. 

In each block, the point-density-dependent segmentation method is employed to 

automatically obtain three thresholds for segmenting the possible road markings. For all 

blocks, the size of the structuring element l is 3, while   is calculated by the trajectory. 

To simplify the task, a fixed value is provided for each block via the trajectory. Figure 

5.14 shows the values of   for the 35 blocks of Huandao and 21 blocks of ICEC datasets, 

respectively. After segmenting with multiple thresholds, a morphological closing 

operation is used to fill up the holes and remove the noise in the segmented road 

markings. The road markings extracted from the two cases are displayed and overlaid in 

the GRF image in Figure 5.15. Three samples are selected from two datasets as follows: 
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samples 1 and 2 from Huandao dataset and sample 3 from ICEC dataset to evaluate the 

proposed road-marking extraction algorithm. The close-up views of three samples show 

that the algorithm produces a completeness of road-marking extraction with less noise. 

The statistical results are listed in Table 5.3. Table 5.3 shows that the F-measure of the 

proposed method is consistently above 0.88. In addition, the cpt, crt, and F-measure do 

not change much among the three samples, indicating that the proposed method is robust 

to different types of road markings. 

 
(a)                                                                                       (b) 

Figure 5.15: Extracted road-markings overlaid in the GRF images: (a) Huandao dataset, 

and (b) ICEC dataset. 
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Table 5.3: Performance of the proposed road-marking algorithm on two datasets. 

 Sample cpt crt F-measure 

Huandao Samp 1 0.98 0.82 0.89 

Samp 2 0.91 0.86 0.88 

All 0.94 0.83 0.88 

ICEC Samp 3 0.98 0.84 0.90 

All 0.97 0.82 0.90 

Average 0.96 0.83 0.89 

 

5.3.5 Computational Complexity 

Through the use of a 3.30 Ghz Intel(R) Core(TM) i3-2120 CPU, the running time of 

the proposed method for processing the 8.4-million-point Huandao and 5.4-million-point 

ICEC datasets are about 1.11 and 0.89 seconds, respectively. The total running time does 

not include data profiling, which is the time of partitioning the raw data into a number of 

blocks and profiles. The reason is that the processing time of the data profiling is highly 

dependent on the reading-and-writing speed of the hard disk due to frequent data-

interaction operations, as mentioned in Chapter 4. In this doctoral research, all extracting 

operations for road markings are performed in the GRF images, indicating that no data 

indexing structures need to be built for data querying and searching. Furthermore, the 

computation and processing time can be reduced if the stand-alone operation is replaced 

by a distributed processing system under a virtualization environment. Therefore, the 

reduced complexity, benefitting from the integration of the proposed road-marking 

processing algorithm and the affordable hardware, is a promising solution to 

computational efficiency of MLS data. 
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5.4 Discussion 

This chapter presented an automated method for road-marking extraction from MLS 

data. The proposed method is based on the 2D GRF image that is interpreted from 3D 

road points using intensity information. The reason behind this is that road markings are 

painted on the road surfaces with high-reflectance material. In MLS data, road-marking 

points are attributed by high values of intensity, indicating that intensity thresholds can be 

used to segment and extract road markings from the 2D GRF image.  

To this end, 3D road points that were extracted by the proposed curb-based road 

surface algorithm were first converted into a 2D GRF image. Different from ALS data, 

MLS data’s point density drops perpendicular to the line of travel. The closer to the 

scanning centre, the higher the point density. Moreover, for some vertical structures such 

as building facades contains more points.  MLS data cannot be generated into a 2D 

intensity image in a way that ALS data are usually interpreted into a range image. The 

point density is considered as an important factor for data interpolation. Thus, the IDW 

method was extended and improved for generating the 2D GRF image. The combination 

of local and global intensity information equalizes gray values of the image. Through this 

contrast adjustment, the intensity values were consistently distributed on the histogram. 

Experiments in Section 5.3.1 confirmed that (1) both intensity and distance contribute to 

the generation of the 2D GRF image, and (2) an integration of local and global intensity 

information improves the image contrast and equalization, benefiting road-marking 

extraction.  

Second, although the proposed equalization strategy lessens intensity imbalance 

caused by point-density differences, the intensity values of road markings are not 

http://en.wikipedia.org/wiki/Contrast_(vision)
http://en.wikipedia.org/wiki/Luminous_intensity
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consistent but gradually change from the scanning center to its two sides. This variation 

is because the reflected intensity values depend on (1) the scanning range from the laser 

sensor to the illuminated objects, (2) the incidence angle of the laser beam, and (3) the 

material properties of the illuminated objects. Thus, to successfully extract road markings, 

this chapter presented a point-density-dependent multi-thresholding method, where the 

road data are vertically sectioned into several bins according to the normal distribution 

function fitted by the point density data of a profile. With Otsu’s method, a segmentation 

threshold is found for each bin. Rather than a universal threshold, multiple thresholds 

were applied to the 2D GRF image.  Experiments in Section 5.3.1 showed that the 

threshold for each bin varies with each other. The use of a fixed threshold cannot obtain 

satisfactory thresholding segmentation results.  

Moreover, the segmented road markings are incomplete and contain much noise. To 

remove noise and fill the holes, a morphological closing operation was used in the road 

markings. A linear structuring element was subsequently adapted for the shape of road 

markings. The direction   of the selected linear structuring element was determined by 

the vehicle trajectory, and its size was determined empirically. The experiments in 

Section 5.3.2 showed that the best size of the structuring kernel was gained at l=3. With 

the morphological operation, the segmented road markings were improved by removing 

noise and filling holes.  

The image resolution of the 2D GRF image is also a factor that affects the quality of 

the results of the road markings. In the perspective of image processing, the experimental 

results were validated using the measures, such as completeness, correctness, and F-

measure. It can be found that, for all the cases, the crt values are greater than 0.72, the cpt 
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values are higher than 0.94, and the F-measure values range from 0.82 to 0.9. Moreover, 

the crt, cpt, and F-measure values slowly decrease when the image resolution is greater 

than 5 cm.  

Through the use of a 3.30 Ghz Intel(R) Core(TM) i3-2120 CPU, the running time of 

the proposed method for processing the 8.4-million-point Huandao and 5.4-million-point 

ICEC datasets are about 1.11 and 0.89 seconds, respectively. Overall performance tests 

with empirically-selected parameters showed that the proposed road-marking extraction 

algorithm was able to extract road markings in a 0.96 completeness rate, a 0.83 

correctness rate, and a 0.89 F-measure rate. The false detections occurred at the places of 

lane marking close to the curbs. The main reason could be the following factors: (1) the 

image resolution of the 2D GRF image, and (2) cracks that break the continuous and long 

road markings down into several short road markings, leading to be enlarged by the 

morphological closing operation. Thus, pavement cracks will be discussed and the 

algorithm for crack extraction will be presented in Chapter 6. 

5.5 Chapter Summary 

This chapter proposed a road-marking extraction algorithm from MLS data, which 

consists of (1) the extraction of road surfaces, (2) the generation of GRF images with a 

histogram equalization-like strategy, and (3) the extraction of road markings using point-

density-dependent multi-thresholding segmentation and morphological closing operation.  

The two datasets collected by RIEGL VMX-450 were used in this research for the 

validation of the proposed method. The two test datasets cover a total length of around 

168 m of the road that contains at least eight types of road markings. The experimental 
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results demonstrated that the proposed method is able to extract road markings with a 

completeness of 0.96, a correctness of 0.83, and an F-measure of 0.89.  

The proposed method for extracting road markings can deal with large volumes of 

MLS data because (1) no data indexing structures are involved for searching and 

querying, (2) the extracted road surface serves a prior knowledge that facilitates the road-

marking processing and improves the correctness of road markings, (3) a combination of 

local and global intensity weights contributes to the generation of the 2D GRF image, and 

(4) the proposed algorithm overcomes inconsistent intensity values caused by the 

incidence angle of laser pulses, and the scanning range of the scanner center to the 

illuminated road surface.  
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Chapter 6 Pavement-crack Extraction
3
 

This chapter details the algorithm for the automated extraction of pavement 

cracks from MLS data. The crack extraction algorithm applies ITV to high density point 

clouds. The crack extraction algorithm comprises (1) pre-processing, detailed in Chapters 

4 and 5, (2) crack candidate extraction by a weighted intensity difference (WID) 

thresholding algorithm, (3) crack enhancement by ITV, and (4) crack extraction by a 

morphological thinning algorithm. These steps for crack extraction are presented in 

Section 6.1. Validation is presented in Section 6.2. Empirical and comparative 

experiments are described and analyzed in Section 6.3.  Discussions are presented in 

Section 6.4. Section 6.5 provides a summary of this chapter. 

6.1 Algorithm Description 

The objective of this chapter is to develop a crack extraction algorithm, analyze 

its performance on a variety of crack types selected from MLS data and pavement images, 

and compare it with other algorithms. The proposed algorithm is seen as a stepwise 

procedure for interpreting MLS data, as shown in Figure 6.1. The algorithm mainly 

includes the following four steps: 

                                                           
3
 The main work presented in this chapter has been submitted by, Guan, H.,  Li, J., Yu, Y., Chapman, M., 

and Wang, C., 2013. Interactive tensor voting method for crack detection using mobile laser scanning data.  

IEEE Transactions on Geoscience & Remote Sensing (under the 3
rd

 round review). 
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Figure 6. 1: An overview of the proposed ITV-based crack extraction algorithm. 
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 (1) Pre-processing: Curb-based road-surface extraction and GRF generation are 

applied to MLS data. 

(2) Thresholding: a weighted intensity difference (WID) method is applied to the 

generated GRF image for extracting crack candidates. 

(3) Crack enhancement: ITV is applied to the noisy GRF image for enhancing 

cracks. 

(4) Morphological thinning: a morphological thinning algorithm extracts the 

enhanced cracks from the background. 

6.1.1 Pre-processing 

The raw MLS data are partitioned, based on the vehicle trajectory, into blocks and 

their corresponding profiles, by which pseudo scan-lines are formed to detect small 

height jumps caused by road curbs. The segmented road points are interpolated into the 

GRF image via an extended IDW method that combines local-and-global elevation and 

intensity data, as shown in Figure 6.2. These algorithms for automatically extracting road 

surfaces and generating GRF images have been detailed in Chapters 4 and 5, respectively. 

 
(a)                                        (b) 

Figure 6. 2: The generation of GRF images: (a) 3D MLS data, (b) the generated GRF 

image. 
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6.1.2 Thresholding Segmentation 

As asphalt pavement mainly contains (i) large aggregates that probably vary with 

geological regions, and (ii) asphalt mix that is made up of a variety of chemical 

components. Thus, the increasing surface roughness and shadows cause reflectance 

differences of up to 7-8 % in the near-infrared between the actual pavement and high 

severity cracks (Martin 2008). In addition, the concave-shaped cracks in the visible/near-

infrared make non-cracked road brighter. Furthermore, compared to road surfaces, deeper 

layers exposed by cracks contains higher proportion of the original asphalt mix, leading 

to an increase of hydrocarbon absorption features that highlight their contrast spectral 

signals. Thus, the visual appearance of cracks in the near-infrared range is usually darker 

than that of the normal road surface. Based on this observation, the optimal threshold 

could be found to segment potential crack pixels from non-crack pixels by making use of 

image histograms and an objective function derived from information theory. Without 

noise, it would be successful to segment cracks from the background by means of a 

bimodal histogram structure. However, a huge amount of noise is scattered in the GRF 

image. Therefore, the image histogram in Figure 6.3 displays no obvious peaks and 

valleys, resulting in the issue of finding the optimal separation value (
E

T ). As a result, a 

WID method is adopted to detect crack candidates by maximizing the information 

measures between crack and non-crack pixels.  
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Figure 6.3: Histogram analysis for GRF image. 

The WID method first computes the intensity difference of a pixel with its nearest 

neighbors to reflect the contrast of this pixel with its neighbors. Afterwards, WID sums 

up all the difference measures for each gray level to reflect the entire difference of a gray 

level in the image. With a weighted scheme, WID can avoid the effects of the noise and 

reflect a general difference measure.  

The weighted intensity difference method is described as: 
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where, 
I

ijG  is the intensity value of pixel ( , )i j , and ( , )d i j  is the weighted neighboring 

difference value of pixel ( , )i j . The neighborhood size selected for calculating ( , )d i j  is

2 1( 0)k k  . Then, a WID function ( ) ( , ), [0,255]
I
ijG l

H l d i j l


  is defined to reflect the 

total intensity-difference measure over all pixels with intensity l , and select the gray level 

corresponding to the maximal value of the WID function as an optimal segmentation 

threshold )3,2,1( iTi  to safely identify the possible road markings: 

max ( )
l

T arg H l                                                    (6.2) 
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6.1.3 Iterative Tensor Voting Framework 

Figure 6.4 shows the flow chart of the ITV-based crack extraction algorithm. 

After thresholding, we assume that },......,,,{ 321 ni pppppP   is the crack candidate data 

set, where n  is the number of crack candidates; ip is the ith crack candidate. First, as 

crack candidate ip has no orientation preference, it is initially encoded by a ball tensor 

with unit saliency, in the form of the 2 × 2 identity matrix.  After the construction of the 

tensor space, the first round of sparse voting is performed using the ball voting field with

ball . 

 

Figure 6. 4: The proposed ITV algorithm for crack enhancement. 

After the large-scale sparse ball voting process, all the tensors corresponding to 

the crack candidates obtain rough orientations ( 1e  and  2e ) and magnitudes ( 1  and 2 ). 
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However, the mapped cracks are inaccurate and lack saliency, a round of stick voting is 

required to refine the orientations and to obtain a saliency map of cracks. Curvilinear 

structures in tensor representation by nature should have high 1 - 2 values, which means 

crack candidates with 1 - 2  values that are smaller than the ball-saliency threshold 
ball

are ruled out in this step. Eliminating the tensors with low stick saliencies can increase 

computational efficiency because fewer crack candidates will participate in ball-and-stick 

voting. 

Each oriented crack candidate is further encoded as a stick tensor. A round of 

dense voting is then executed using the stick field. Note that, according to eigen-

decomposition, although ball tensors have no orientation preferences, they can still cast 

meaningful information to other tensors, contributing to the concentration of saliency. 

For example, a potential curve could be influenced by two nearby ball tensors. Thus, we 

adopt both ball voting and stick voting using the stick voting field with 
stickball for the 

saliency map. 

Usually, after the dense ball and stick voting process, curvilinear structures are 

enhanced on the resulting saliency map. However, the cracks of interest were presented 

with much noise and a low contrast with their surroundings. Only one round of dense 

ball-and-stick voting (namely, a combination of ball voting and stick voting) could not 

achieve a good saliency map for the cracks. An iterative scheme is thus proposed to 

gradually refine the previous results of the dense ball-and-stick voting.  

For each iteration, dense ball-and-stick voting is employed using the stick voting 

field with 
stickball . A stick saliency thresholding similar to the aforementioned ball 

saliency thresholding is subsequently used to remove the resultant tensors with low 1 - 2  
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values. That is, only the tensors with 1 - 2  values larger than the stick threshold 
stick

will go to the next iteration. As such, each iteration refines the previous one. With the 

iterative scheme, the tensors with high 1 - 2  values seem to be concentrated and 

accurate with little disturbance and interference from the tensors with low 1 - 2  values; 

thus, we call this iterative tensor voting (ITV). 

Using dense ball-and-stick voting, the curvilinear structure becomes gradually 

more concentrated and accurate as the number of iterations increases, which means the 

field aperture   for the stick field can be correspondingly reduced to focus on the 

promising votes for enhanced results. For the stick field, let max and min  denote the 

maximum and minimum field apertures, respectively, and   the voting aperture step. 

The number of iterations can be calculated as: 1/)( minmax  N .                                             

For example, for the ith iteration, we employ the stick field with the field aperture of i

(   )1(max ii ) for dense voting. Apart from assigning the voting aperture step for 

calculating the number of iterations, we can also empirically pre-define N  to stop the 

iterative processing. Finally, with ITV, a refined crack probability map is generated to 

enhance the crack pixels; at the same time, suppressing the background and the noise. 

6.1.4 Morphological Thinning 

To further remove noise and obtain cracks in the crack probability map, a 4-pass-

per-iteration morphological thinning algorithm was applied in this section (Parvin et al., 

2007). The algorithm serves to thin a binary crack image down to its median axes, by 

peeling off boundary pixels of the crack. After the implementation of the algorithm 
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proposed in [35], the proposed algorithm produces a converged, 8-connected, one-pixel-

thick skeleton. 

6.2 Validation  

To quantitatively evaluate the crack results, a buffered Hausdorff distance metric 

(H(A, B) ) is used by comparing the detected cracks with the human labelled cracks (Tsai 

et al., 2010).  paaaA ,,, 21 
  

and  qbbbB ,,, 21   are the finite pixel sets 

corresponding to the same locations within the extracted crack image and the human 

labelled image, respectively. The Hausdorff distance metric is given by 

)),(),,(max(),( ABhBAhBAH                                      (6.3) 

where 

baBAh
BbAa




minmax),(                                           (6.4) 

And   is a Euclidean norm on the pixel sets A  and B . The function ),( BAh  is called 

the directed Hausdorff distance from A  to B , describing the degree of difference 

between two shapes. ),( BAh  identifies the point Aa  farthest from any points in B  and 

measures the distance from a  to its nearest neighbors in B . Essentially, ),( BAh  ranks 

each point in A  based on its distance from the nearest point in B , and then uses the 

distance corresponding to the highest ranked point.  A buffer of size L  is used to create a 

searching region, within which the Hausdorff distance metric is adopted to evaluate the 

crack extraction performance based on the ground truth. The scoring measure (SM) is 

calculated for the evaluation of cracks as follows (Huttenlocher et al., 1993): 

100
),(

100 
L

BAH
SM .                                         (6.5) 
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The value of SM ranges from 0 to 100. The higher the value of SM, the better the 

crack extraction performance.  Considering the cracks in the test datasets were not wider 

than 3 pixels, L=5 pixels is assigned for computing the values of SM. 

6.3 Experiments  

The stability and capability of the proposed algorithm were evaluated using 

synthetic data, pavement images, and GRF images. To objectively evaluate the 

performance, the manual interpretations of the crack curves in these images were used as 

the ground truth. 

6.3.1 Synthetic Data Tests 

To evaluate the applicability of the proposed algorithm, two groups of synthetic 

data were created with different noise models. The first group was generated with the 

standard additive white Gaussian noise (AWGN) model, while the second group was 

created with the multiplicative Gamma noise model. In many cases, noise in pavement 

images is found to be additive in nature with uniform power in the whole bandwidth 

following the Gaussian probability distribution. In addition, multiplicative Gamma noise, 

in the form of speckles, normally appears in laser-based images, thus degrading the 

quality of the images and affecting the performance of the image processing techniques 

(Hawwar and Reza, 2002). All synthetic images are 200 × 200 pixels.  

Figures 6.5 (a) and (b) show two groups of synthetic images corrupted with 

additive and multiplicative noise at different variances, respectively, with the parameters 

ball =10.0, stickball =3.0, ball =0.4, stick =0.05, and  =20°. All parameters were 

defined by visual inspection of the sample results, and were used for two groups of the 

synthetic image data sets as well as throughout the following comparative experiments. 
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As shown in Figure 6.5 (a), the synthetic data are corrupted by a set of additive noise 

following a zero-mean normal distribution  ( 0m ) with five different variances 

( 5.0,4.0,3.0,2.0,1.0 ). In this group, the SM values of the detected curves are over 97 

for all five values of  , demonstrating that the developed crack extraction algorithm is 

noise robust and capable of preserving the details of curvilinear structures. In Figure 

6.5(b), the synthetic data are corrupted by a set of multiplicative noise at five different 

variances ( 25.0,20.0,15.0,10.0,05.0 ). The SM values of all five detected curves are 

over 95, again, indicating that the proposed algorithm can handle cracks, which have low 

contrasts with their surroundings (such as asphalt concrete-surfaced pavements) in the 

GRF image. 

 

(a) 

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Variance


136 
 

 

(b) 

Figure 6. 5: Two groups of synthetic data: (a) synthetic data with additive Gaussian white 

noise, and (b) synthetic data with multiplicative gamma noise. 

 

6.3.2 Overall Performance  

To accurately and precisely detect these cracks in the GRF image, overall 

performance tests are conducted on Huandao dataset that contains small cracks with a 

few centimetres in width extending to large alligator cracks up to the size of 10 cm. 

Figure 6.6 shows the extraction results of Cracks 1 to 5 selected from the GRF image 

with the image resolution of 2 cm. Cracks 1, 2 and 5 have a size of 200 × 200 pixels, and 

Cracks 3 and 4 have a size of 250 × 150 pixels. 

This overall performance test set 
ball =10.0, stickball =3.0, 

ball =0.4, 
stick =0.05, 

and  =20° for crack extraction. The row of the binary crack images suggests that 

simple threshoding methods or conventional edge detection algorithms are unable to 

extract the cracks with low SNRs and low contrasts with their surroundings. With the 

proposed algorithm, the curvilinear cracks are enhanced and their surrounding noise is 
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suppressed or removed, as shown in the row of curve probability map. The extracted 

cracks show that the curve probability map contributes to the extraction of the cracks via 

the morphological thinning algorithm. Visual inspection demonstrates that the extracted 

cracks are consistent with the original GRF images, as shown in the last four rows in 

Figure 6.6. Quantitatively, the SM values of around 95% for five cracks reveal that the 

proposed ITV-based crack extraction algorithm can handle complex cracks with low 

contrast and poor continuity. 

 

Figure 6. 6: Crack extraction results: (a) Crack 1, (b) Crack 2, (c) Crack 3, (d) Crack 4, 

and (e) Crack 5. 
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6.3.3 Sensitivity Tests with Parameters 

There are five parameters used in the proposed ITV-based crack extraction 

algorithm: 
ball , 

stickball , 
ball , 

stick , and  . Among them, 
ball  and 

stick , thresholds, 

are used to delete tensors with low stick saliencies and preserve tensors with high stick 

saliencies after the sparse ball voting and  the dense ball-and-stick voting in the iterations, 

respectively. Empirical experiments present 
ball =0.4, 

stick =0.05 by histogram analysis. 

ball  and 
stickball , scales of voting , control the neighborhood sizes for the sparse ball 

voting and the dense ball-and-stick voting in the iterations, respectively. Thus, they have 

a great impact on the performance of the proposed algorithm because they decide how 

many pixels can be used for tensor voting.  Parameter
ball  is generally given a larger 

value to decrease the influence of noise in the sparse voting, while in the iterative process, 

parameter 
stickball  is given a small value to preserve crack details. In addition, the voting 

aperture step   used to control the iterations importantly influences crack enhancement. 

Thus, three groups of experiments are designed by varying the values of the scale 

parameters 
ball , stickball , and the voting aperture step  .  

The first group of tests kept stickball =3.0, 
ball =0.4, stick =0.05,  =20° and 

varied ball
 from 10.0 to 6.0 with an interval of 1.0. Figure 6.7 (a) shows the 

experimental results for these five cracks. As shown in Figure 6.7 (a), the SM values of 

detected cracks dramatically vary with the parameter ball  , which increases from 6.0 to 

9.0. However, the SM values tend to be stable with the parameter ball  changes from 8.0 

to 10.0. The reason behind this phenomenon might be that a large scale prefers long 

range interactions, leading to a higher degree of smoothness (that is, more noise is 
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removed), thus improving extraction performance. In fact, the best cracks could be 

obtained at ball = 9.0 or 10.0 for this research. 

The second group of tests kept ball =10.0, 
ball =0.4, 

stick =0.05,  =20° and 

varied 
stickball

 from 3.0 to 6.0 with an interval of 1.0. Figure 6.7 (b) shows the 

experimental results for these five cracks. As shown in Figure 6.7 (b), when stickball
 is 

3.0, the proposed algorithm achieved a relatively stable performance, indicated by the 

SM values being higher than 95%. The values of SM quickly decreased with stickball
 

increased from 4.0 to 7.0. This is because unlike ball
 in the sparse voting, which is given 

a larger value to remove noise, stickball
 in the iteration process requires a smaller scale to 

preserve crack details. Due to the large amount of noise removal by ball
 in the sparse 

voting process, iterative dense voting is able to enhance the cracks by preserving their 

details. In this study, the stickball
  value of 3.0 obtained the best crack extraction 

performance. 

 
(a) 
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(b) 

 
(c) 

Figure 6. 7: Sensitivity tests with the parameters: (a) 
1 , (b) 

2
  , and (c)  . 

The last group of tests kept 
ball =10.0, stickball =3.0, 

ball =0.4, 
stick =0.05 and 

varied   from 8° to 40° at 5 different  settings (that is, 40°, 20°, 13°, 10°, 8°). This 

group applied the maximum field aperture
max =45° and the minimum field aperture min

= 5°. As the voting aperture step   determines the number of iteration ( N ) in the 

dense voting process, according to equation 1/)( minmax  N , the proposed 

algorithm is performed at 5 different iterations (1,2,3,4,5). As shown in Figure 6.7 (c), 

when   is between 10° and 15°, which entails 3 or 4 iterations, the SM values of all 
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five cracks indicate good performance. The philosophy behind this phenomenon is that, 

in the iterative dense voting process, each iteration refines the previous one by gradually 

reducing the diffusion of votes and focusing the votes on only promising curves. It has 

been found, however, that although the dense voting allows pixels to be interpolated for 

filling discontinuity, excessive number of iterative dense tensor voting (small  ) would 

produce smoother crack curves due to over interpolation. Consequently, some details of 

cracks would be missed, resulting in a decrease of SM values.  

6.3.4 Comparative Tests with Pavement Images 

To further evaluate the performance of the proposed algorithm, it is compared with two 

newly proposed crack extraction methods, FoSA (F* seed growing) (Li et al., 2011) and 

CrackTree (Zou et al., 2012). Tsai et al. (2010) compared six image segmentation 

methods for crack extraction and suggested that dynamic optimization-based methods 

outperformed the other five methods for segmenting low SNR images. Thus, the dynamic 

optimization was selected for comparison (Huang and Tsai, 2011). In pursuance of the 

objectives of this study an experimental study was conducted by the author to compare 

the performance of various crack extraction methods developed to date. It is accepted that 

crack detectors will not be perfect and universally applicable. Although most of them can 

work under most situations and with most data types, they will fail under certain 

environmental conditions. Thus, two groups of comparative experiments are conducted 

for assessing these crack extraction methods. The first group is pavement image based 

comparative test, and the second one is GRF based comparative test. The two 

comparative experiments set ball =10.0, stickball =3.0, ball =0.4, stick =0.05, and  =20°, 

according to the discussion in Section 6.3.3.  
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The pavement images were taken by Canon IXUS 125HS, with the sizes of 1600 

×1200 pixels in this group study. Figure 6.8 shows the results obtained using each of the 

four existing crack extraction methods. Table 6.1 lists the SM values of the extracted 

cracks, in comparison with the crack truth. In the CrackTree method, the parameters were 

selected to be: the voting scale  =11, the edge length threshold e
L  =10, and the path 

length threshold p
L =60. The FoSA algorithm keeps the searching radius being 24.  As 

shown in Table 6.1, given the high spectral and spatial resolutions of the pavement 

images, most algorithms achieve good performance in crack extraction. However, the 

FoSA algorithm achieves a lower SM value (76.09) for Image 2, compared to the other 

images. This might be spectral inconsistency around the crack in Image 2. Thus, this 

algorithm mistakenly identified the boundary of the slightly dark area as a crack, leading 

to a high rate of false alarm. 
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Figure 6. 8: A comparison of the proposed algorithm with the other algorithms using 

pavement images: (a) Image 1, (b) Image 2, and (c) Image 3. 
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Table 6.1: SM values of the four crack extraction methods using pavement images. 

 Image 1 Image 2 Image 3 

The proposed ITV-based algorithm 93.13 90.04 91.64 

CrackTree 93.54 89.17 89.66 

FoSA 92.98 76.09 92.75 

Dynamic optimization 94.22 78.38 33.77 

 

Similarly, the dynamic optimization deals poorly with Image 3, as indicated by the 

SM value of 33.77. This might be caused by a low contrast between the crack pixels and 

their surroundings.  The dynamic optimization method using connected component 

analysis detects crack regions of interest from local crack information, such as density, 

relative area, bounding box, and line similarity. For this reason, low contrast in a local 

window might cause the algorithm to inadequately extract adequate crack information for 

connected component analysis.  As expected, the proposed crack extraction algorithm 

attains a stable performance for all three crack images. Qualitatively, all cracks were 

extracted completely, as shown in Figure 6.8. Quantitatively, Table 6.1 suggests that 

proposed algorithm outperforms the other three algorithms, as indicated by the SM values 

being higher than 90.  

6.3.5 Comparative Tests with GRF Images 

The tests on the synthetic images and pavement images indicated that the 

proposed ITV-based crack extraction algorithm can extract all possible sharp curvilinear 

structures in the presence of severe noise. In comparison with the pavement images, 

cracks in the GRF images show lower contrast with their surroundings and lower SNRs 

with a huge amount of noise. In order to evaluate the effectiveness of the proposed 
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algorithm for these noisy and corrupted GRF images, it was compared with the 

aforementioned algorithms in this section.  

Given the fact of low spectral resolution of the GRF image, the searching radius r 

in the FoSA algorithm has to be smaller to obtain a consistent window for seed growing. 

However, the small searching radius r make it difficult to represent the seed-growing path 

of cracks. Moreover, spectral inconsistency caused by point sampling pattern of MLS 

data leads to the failure of the FoSA algorithm to adequately extract cracks. This 

algorithm might work for cracks if relevant pre-processing procedures, such as filtering, 

are employed.  

The comparison of the results of the other three methods is shown in Figure 6.9, 

and the quantitatively compared results are listed in Table 6.2. Notice that the proposed 

algorithm maintain a much more stable performance than those of CrackTree and the 

dynamic programming, since the SM values for the proposed algorithm range from 

around 94 to 97. In addition, visual inspection shows that the extracted cracks are quite 

complete. These quantitative and qualitative results demonstrate that the proposed 

algorithm achieves a stable performance for not only the pavement images but also the 

noisy GRF images. The dynamic optimization method achieves a poor performance for 

the complex shaped cracks in the GRF image. Due to the robustness of tensor voting 

under the conditions of low SNR and low spectral contrast, the tensor voting based 

CrackTree also outperforms the dynamic programming. However, compared to the 

CrackTree, the developed algorithm enhances promising, salient curvilinear cracks and 

suppresses surrounding noise by gradually reducing the voting aperture, following an 
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iterative processing pattern. Thus, the proposed ITV-based crack extraction algorithm can 

preserve much more details of cracks. 

 

Figure 6. 9: A comparison of the proposed algorithm with the other approaches using 

GRF images: (a) Crack 1, (b) Crack 2, (c) Crack 3, (d) Crack 4, and (e) Crack 5. 

 

Table 6.2: SM values of the three crack extraction methods for GRF images. 

 Crack 1 Crack 2 Crack 3 Crack 4 Crack 5 

The proposed ITV-based algorithm 97.32 95.64 94.14 96.64 95.79 

CrackTree 92.08 65.15 49.62 94.02 77.37 

Dynamic optimization 84.08 51.76 46.60 31.90 43.60 

 

6.3.6 Computational Efficiency 

The analysis indicates that the proposed algorithm is capable of enhancing cracks 

from the noisy and corrupted GRF data because it gradually concentrates on the 

promising crack curvilinear structures by refining previous results. However, iteration 



147 
 

increases computation time. Figure 6.10 shows the runtime for eight cracks, including 

five GRF images and three pavement images.  Observed from Figure 6.10 and Table 6.3, 

the runtime grows as the number of iterations increases. However, for all cracks, the 

growth rates of the runtime are slow. The reason is that the proposed algorithm employs a 

saliency thresholding scheme to delete pixels with low saliency and gradually focuses the 

votes on only promising curves.  It is the first round of dense ball-and-stick voting, ball 

voting in particular, that occupies the majority of processing time. Compared to the five 

GRF images, the runtime for the three pavement images is much shorter in spite of their 

larger sizes. This is because the GRF images contain much more noise than the pavement 

images, and the proposed ITV-based algorithm takes considerable time to concentrate the 

promising cracks.  

 

Figure 6.10: Processing time for all eight cracks at 5 different iterations. 
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Table 6.3: Computational efficiency and SM values for all eight cracks at 5 different 

iterations. 

Crack 

1 

 

Original data 1 2  3 4 5 

      

SM 95.99 96.97 95.77 95.55 94.78 

Runtime (s) 310 317  341 368 401 

Crack 

2 

      

SM 90.60 95.15 94.50 94.00 91.59 

Runtime (s) 379 387  435  485 539  

Crack

3 
      

SM 89.14 94.06 93.38 92.94 90.57 

Runtime (s) 1192 1225  1341   1493  1628  

Crack 

4 
      

SM 93.90 94.62 94.22 94.90 94.73 

Runtime (s) 589  602 647 704 763  

Crack 

5 

      

SM 92.94 95.33 94.71 93.69 90.77 

Runtime (s) 349  355  401  445  501 

Image 

1 

      

SM 92.55 94.69 91.84 88.02 87.93 

Runtime (s) 17  29  62  103  152 



149 
 

Image 

2 

      

SM 92.67 93.72 88.79 87.66 87.72 

Runtime (s) 59  80  145  216  305  

Image 

3 

      

SM 92.75 94.54 94.41 93.11 92.38 

Runtime (s) 90  120  192  287 389  

Rather than all pixels, only the crack candidates binarized from the GRF images 

are the input to be encoded as ball tensors, with the result of the computational cost being 

reduced by 10%-25% for all five GRF images, yet the values of SM dramatically 

growing by 5% - 40%, as shown in Figures 6.11 (a) and (b). With little interference from 

non-crack pixels, the proposed algorithm concentrates on crack candidates, thus 

improving its performance and stability for crack extraction, as shown by the SM values 

being around 95. Traditional tensor voting algorithms generally use a dense stick voting 

process for gradually concentrating on curvilinear structures. However, as we mentioned, 

a ball tensor contains implicit stick information after ball voting according to eigen-

decomposition. Figures 6.12 (a) and (b) show the comparative results between dense stick 

voting and dense ball-and-stick voting in each iteration. We found that the algorithm 

using only stick voting dramatically reduced the computational cost by 90%. However, 

the accuracy of the extracted cracks is unstable as the SM value ranged from 75.93 to 

94.50. On the other hand, ball-and-stick voting preserves many subtle curvilinear crack 

details, entailing a higher degree of accuracy; although it leads to the disadvantage of an 

increase in computational costs.   
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(a)                                                                (b) 

Figure 6.11:  Quantitative comparisons between the methods using all pixels and crack candidates 

encoded as ball tensors: (a) processing time,  and (b) SM values. 

 
(a)                                                        (b) 

Figure 6.12:  Quantitative comparisons between the methods using stick voting alone and ball-

and-stick voting, in the iterations: (a) processing time,  and (b) SM values. 

6.3.7 Overall Tests with a Large MLS Dataset 

The performance of the proposed ITV-based algorithm was tested on a road 

section covered by a number of cracks, as shown in Figure 6.13. The selected road is a 

two-lane road with a length of 75.4 m and a width of around 8 m (see Figure 6.13 (a)). 

The number of the road-surface points is 2,547,020. The GRF image resolution is 2 cm, 

which means that the width of cracks shown in the GRF image is larger than 2 cm, 

indicating these cracks are desperately needed to be repaired, such as sealing or filling 

operations. Figures 6.13 (b) and (c) show the extracted cracks, and the extracted cracks 

overlaid in the GRF image, respectively. As shown in Figure 6.13, almost all cracks with 

the widths over 2 cm were extracted. In order to accelerate the extraction procedure, the 

75-m-long road is segmented into a series of small images with a size of 200×125 pixels. 
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Figure 6.13: Extracted cracks on a 75.4-m-long road surface: (a) GRF image, (b) extracted cracks, and (3) extracted cracks overlaid in 

the GRF image.
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The total processing time for all small images is approximately 5995 seconds, 

computationally intensive due to the iteration operation involved in the tensor voting 

process. However, it could be solved in the recent research of distribution computation 

because the voting process of each tensor is independent. In the parallel environment or a 

multi-thread scheme, the computation burdens can be distributed to each parallel 

procedure, indicating that the computational performance will be obviously improved and 

the time complexity will be greatly reduced. In addition, although the current MLS data 

resolution limits to the extraction of pavement cracks over 2 cm, the hardware 

advancement in the foreseeable future will allow cracks at mm-level to be extracted. 

6.4 Discussion 

This chapter presented an ITV framework for identifying pavement cracks from 

MLS data. The proposed algorithm is based on the assumption that cracks to be detected 

in the GRF intensity image are darker than their neighboring non-crack pixels because of 

the following reasons: (1) the concave-shaped cracks in the visible/near-infrared make 

non-cracked road pavements brighter, (2) compared to pavement surfaces, deeper layers 

exposed by cracks contain higher contents of the original asphalt mix, leading to an 

increase of hydrocarbon absorption features that highlight their contrary spectral signals. 

However, compared to high-spectral-resolution digital images, the generated GRF image 

contains a high amount of noise. In addition, curvilinear cracks in the generated GRF 

image are presented by non-uniform intensity, low contrast with their surroundings, and 

low SNR owing to particle materials of asphalt concrete-surfaced roads, leading to most 

existing traditional perceptual grouping algorithms ineffective to crack extraction. Thus, 

two challenges exist in developing the crack extraction algorithm.  
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The first challenge is to develop a segmentation algorithm that can automatically 

determine an optimal threshold for extracting crack candidates. The developed WID 

algorithm can first compute the intensity difference of a pixel with its nearest neighbors 

to reflect the contrast of this pixel with its neighbors. Afterwards, the method can sum up 

all the difference measures for each gray level to reflect the entire difference of a gray 

level in the image. By using weighted scheme, the algorithm for finding the optimal 

segmentation threshold can avoid the effects of the noise and reflect a general difference 

measure. 

The second challenge is to develop a crack extraction algorithm that can enhance 

the crack candidates from the noisy background by incorporating perceptual cues of 

proximity and continuity. The tensor voting was applied to the noisy GRF image. The 

algorithm starts by encoding every pixel in the image as an unoriented ball tensor. 

Through the ball tensor voting, all the tensors obtain their preferred orientations, which 

indicate the potential curvilinear structures. A set of consecutive stick tensor voting 

procedures is imposed after thresholding out tensors with small saliencies. Each iteration 

aims at refining the previous one at gradually reduced scales. Thereby, this iterative 

operation gradually enhances the concentration of the votes over promising, salient 

curvilinear structures. However, given that cracks in the GRF images show the diffused 

and heterogeneous curvilinear structures, an iterative tensor voting was adapted to 

improve crack grouping and reference by enhancing the concentration of the votes over 

promising curvilinear structures at different scales. The proposed algorithm has two 

distinctions: (1) Prior to the voting in a sparse basis, crack candidates are segmented and 

encoded as unit ball tensors. Due to the use of crack candidates rather than all the pixels 
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on the image, the processing complexity is dramatically reduced. (2) Each iteration 

considers both stick and ball voting, rather than stick voting alone, in a dense voting form 

for refining salient curvilinear structures by gradually reducing the aperture of the stick 

voting field. The introduction of the ball voting in the dense voting assists in preserving 

much subtle curvilinear crack details. 

Sseveral large-scale experiments were conducted to evaluate the stability and 

capability of the ITV-based crack extraction framework. First, the tensor voting was 

applied to two groups of the synthetic data corrupted by the additive Gaussian white 

noise and multiplicative gamma noise. The experiment results show that the tensor voting 

is noise robust and capable of preserving the details of curvilinear structures. The second 

experiment is the ability of the proposed iterative tensor voting framework to different 

types of cracks and small cracks with a few centimeters in width extending to large 

alligator cracks up to the size of 10 cm. The measure scores show that the proposed 

algorithm can accurately and precisely detect those cracks in the GRF image. A series of 

experiments were also conducted to test the sensitivity of parameters used in the 

proposed algorithm. There are five parameters used: 
1 , 

2
 , 

b , 
s , and  . Empirical 

experiments present 
b =0.4, 

s =0.05 by histogram analysis. Note that the best cracks 

could be obtained at 
1 = 9.0 or 10.0, 

2
 = 3.0, and   = 10° ~ 15°.  

For most MLS systems, digital cameras have become conventional components. 

Also, digital image-based mobile mapping systems have been widely used for crack 

extraction. Thus, the proposed crack extraction algorithm was extended to extract cracks 

from digital images by comparing it with two newly proposed crack extraction methods. 

The comparative experiments show that the developed algorithm is better than others by 
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an average measure score over 90. Moreover, the GRF images, much noisy data, were 

used for algorithm comparison. The experiments suggest that the proposed algorithm is 

stable for detecting cracks from the noisy intensity data with the average measure score 

over 94. 

6.5 Chapter Summary 

This chapter presents an ITV-based crack extraction framework, which is based 

on tensor voting for curvilinear structure in clutter backgrounds. To detect cracks from 

the asphalt concrete-surfaced pavements, the proposed framework includes four stages: (a) 

pre-processing including curb-based road extraction and crack image generation, (b) 

thresholding segmentation, (c) ITV-based crack enhancement, and (d) morphological 

thinning.  

The performance of the ITV-based crack extraction framework was validated 

quantitatively and qualitatively by the synthetic data and real crack images. In synthetic 

data test, the framework achieved SM values of over 97 and 95 for curvilinear structures 

corrupted with different-variances additive and multiplicative noise, respectively. 

Experiments on the real cracks in the GRF image, the proposed algorithm is shown to be 

superior to other crack extraction methods. One limitation is computationally intensive 

due to the iteration operation involved in the tensor voting process. However, it could be 

solved in the recent research of distributed computation. In the parallel environment, the 

efficiency of crack extraction can be improved. 

The ITV-based crack extraction method has two contributions. First, the method 

explores intensity information of MLS data for crack extraction. Current MLS systems 

capture both high-accurate geometric information and strong reflective information of 
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objects; therefore, it is intuitive to research intensity, as a complementary data feature, for 

specialist road network asset inventory tools. Another contribution is to extend ITV to 

solve the problem of crack extraction in a noisy GRF image.  
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Chapter 7 Conclusions and Recommendations 

7.1 Conclusions 

MLS is being used at a rapidly increasing rate for many types of transportation-

related as-built surveys because of the following advantages: improved safety, efficiency, 

flexibility, data reusability, data confidence, coverage, and cost saving. One of the 

biggest strengths of mobile mapping is its ability to capture highly dense datasets, but this 

also presents one of its biggest challenges. Datasets collected by MLS systems are very 

large and require extensive network storage space, as well as network and workstation 

processing capabilities. Point clouds have to be post-processed to provide the deliverables 

due to no attribute information. Current CAD package or other software packages are 

incapable of modelling and utilizing point clouds for design. Feature extraction will 

require new software and high-end workstations. 

This dissertation offers a RoadModeler prototype with three computerized 

algorithms: (1) road-surface extraction, (2) road-marking extraction, and (3) pavement-

crack extraction. This doctoral research on RoadModeler using MLS data explores and 

prototypes a system of extracting road information for all levels of transportation 

agencies, and opens a window to advanced MLS technologies for road surveying. 

A curb-based road-surface extraction algorithm is proposed to extract road 

surfaces from large volumes of MLS data. The algorithm explores the vehicle trajectory 

for estimating road curvatures and facilitating data profiling, and extracts road surfaces 

by detecting curbs from data profiles. The results presented in this dissertation show the 

proposed algorithm was successfully used on RIEGL VMX-450 data. 
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Subsequently, a road-marking extraction algorithm and a crack extraction 

algorithm are proposed, respectively. It is important that the proposed algorithms assume 

that, on the road surfaces, road markings are painted with highly reflective materials, 

while pavement cracks are presented as darker curvilinear structures.  As a result, the 

extracted 3D road-surface points are converted into 2D GRF images for the extraction of 

road markings and pavement cracks. Point density is explored to find the locally optimal 

thresholds for the segmentation of road markings from unevenly distributed GRF images. 

Experimental results in this dissertation demonstrate that the proposed algorithm achieves 

a good performance for many types of road markings and computational efficiency. 

As for pavement cracks that present low contrast with their surroundings, low 

signal-noise-ratio, and a poor continuity caused by intensity inconsistency, the classic 

tensor voting framework is extended  into the iterative tensor voting framework for the 

detection of curvilinear crack structures. The results presented in this dissertation show 

that the proposed algorithm is capable of extracting pavement cracks from both the GRF 

images and digital images.  

7.2 Contributions 

This dissertation presents four contributions to automated road-information 

extraction. Namely, the road-surface extraction algorithm, the GRF image generation 

algorithm, the road-marking extraction algorithm, and the crack extraction algorithm, 

following is a brief summary of these contributions.  

1. A curb-based road-surface extraction algorithm for the separation of road 

points from off-road points of MLS data has been presented. A prior knowledge 
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of the vehicle trajectory facilitates to partition MLS data into a number of data 

blocks and profiles. Curbs, vertical surfaces that separate road surfaces from 

sidewalks, are detected from the partitioned profile data. This algorithm is 

computationally efficient as the calculation is performed within the pseudo scan-

lines generated from a large volume of MLS data via a profiling strategy as 

discussed in Chapter 4.  In addition, this algorithm that detects curbs from a 

sequence of profile images using slope and elevation difference can be adaptive to 

the complexity of road surroundings.  Furthermore, this algorithm is used in this 

research as a pre-processing step to provide the road-surface data for road-surface 

or off-road information extraction.  

2. A 2D GRF image generation algorithm of MLS data has been presented. The 

classified road-surface data are interpreted into a 2D raster data, termed as GRF 

image, in order to further improve computational efficiency. This algorithm 

combines local and global intensity weights to overcome unevenly distributed 

intensity data caused by the incidence angle, the scanning range, and the 

characteristics of target surface.   

3. A road-marking extraction algorithm of MLS data has been presented. This 

algorithm applies the point-density attribute of MLS data to the 2D GRF images. 

The approximate normality of point-density dynamically determines multiple 

thresholds for segmenting road markings. The morphological closing operation is 

subsequently employed for incompleteness and noise removal. This algorithm is 

computationally efficient because all operations are implemented in the 2D GRF 

image.  
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4. An ITV-based crack extraction algorithm of MLS data has been presented. 

This algorithm identifies and extracts road pavement distresses, that is, pavement 

cracks, from the interpreted road-surface data. Similar to the proposed road-

marking extraction algorithm, the proposed algorithm extracts pavement cracks 

from 2D GRF images.  Tensor voting, a well-known  algorithm for extracting 

curvilinear structures from noisy and corrupted data, was adapted and applied to 

the 2D GRF images. The developed algorithm encodes crack candidates rather 

than all pixels in the GRF images as unit ball tensors to dramatically reduce 

computational complexity. In addition, this algorithm uses ball-and-stick voting, 

rather than stick voting alone, in a dense voting form for refining salient 

curvilinear structures by gradually reducing the aperture of the stick voting field. 

The dense ball-and-stick tensor voting preserves much subtle curvilinear crack 

details.  

7.3 Recommendations for Future Studies 

This doctoral research has made four contributions to the field of mobile mapping 

technology in the aspects of the automated extraction of road surface, road markings, and 

pavement cracks, respectively, from the point clouds acquired by the state-of-the-art 

mobile laser scanning systems. This section discusses the future work that will be 

directed towards improving each individual components of the RoadModeler prototype, 

and also towards system-related and conceptual improvements. An interesting challenge 

will be to integrate more automated algorithms into RoadModeler.   
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7.3.1 Road-surface Extraction 

(1) Considering working principles of MLS 

Curbs were detected from each pseudo scan-line generated from each profile with 

a certain width. Although a certain width of profile data can guarantee adequate points to 

the presence of curbs, too many points would decrease the accuracy of the extraction of 

road edges.  

Given the MLS scanning principle that a laser scanner is triggered by a high 

precision timer and rotates at a fixed frequency, points extracted from returned pulses are 

sequentially recorded using a unique time marker. Thus, the consecutive points  could be 

justified using criteria such as elevation difference and slope. 

Point density would be another criterion that justify whether a point belongs to a 

curb because the curb surface is nearly vertical and contain more points than its 

neighboring road surface. Multiple rules would be helpful to the extraction of curbs from 

MLS data. 

(2)  Automated extraction of road edges using active contour model 

In image-based road extraction systems, snakes or active contour models have 

been widely used to outline road edges from a possibly noisy image because snakes are 

explicitly presented as a controlled spline curve based on computed energy. The snake 

framework attempts to minimize the energy associated with the current contour as a sum 

of an internal and external energy. The internal energy controls the curve’s elasticity and 

rigidity, while the external energy guides the snake toward the boundary of interest. 

http://en.wikipedia.org/wiki/Graph_cuts_in_computer_vision
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When the snake energy reaches the minimum, the boundaries of an object such as road 

could be outlined. The popularity of this method could be attributed to its ability to assist 

in the estimation of object boundaries with a priori knowledge and user interaction.  

The proposed curb-based road-surface extraction algorithm is limited to urban 

roads with curbs and incapable of extracting road edges of rural roads without curbs. 

Thus, snakes could be extended to a general road extraction framework. For example, 

integrating digital images with GRF images could be a promising solution to precise 

extraction of road edges. 

(3) Improving extraction of road surfaces with other ancillary information  

The vehicle trajectory records the precise time-stamped geometric information of 

the vehicle running along the road. Although the vehicle trajectory is applied to the data 

partition and provide a constraint to the generation of road edges.  Further research is 

needed to explore the applicability of the vehicle trajectory. For example, the vehicle 

trajectory could be a prior knowledge to be integrated into the active contour model for 

the automated extraction of road edges. 

This thesis first extracts road surface and then identifies road makings on the 

extracted road surface. An inverse scheme could be used to first identify road markings 

and extract road surfaces in light of a prior knowledge of road markings. Multiple data 

sources and relevant road features could not only facilitate road extraction, but also 

improve the quality of road extraction. 
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(4) Algorithm extension 

The main extension of the proposed algorithm is to develop a GIS-related road 

inventory asset library that stores road-related information, such as road width, length, 

roughness, direction, and other geometric attributes. 

7.3.2 Road-marking Extraction 

(1) Improving intensity quality  

Intensity values faded towards the edges of the road are caused by the longer 

distance from the laser scanner and the larger incidence angle. Calibrated intensity could 

give added value for laser scanning data processing, for example, in making object 

recognition and classifying easier and more reliable. Although the road-marking 

extraction algorithm equalizes intensity using local-and-global information when 

converting 3D road data into GRF images, unevenly distributed intensity still exists in the 

GRF image, more or less, decreasing the quality of the extracted road markings. A 

universal threshold for segmenting road markings is impossible to achieve a good result. 

In order to solve this problem, the point density was used to section the road surface into 

a number of bins, perpendicularly to the line of travel. An optimal threshold for each bin 

was calculated by Otsu’s method. With this scheme, road markings were dynamically 

segmented. However, the segment range determined by the point density could be a little 

questionable without the constraint of the vehicle trajectory. 

Thus, radiometric correction for distorted intensity data is required. The 

radiometric correction for MLS intensity data in the future research could focus on the 
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much modifications of the radar range equation. The corrected intensity data can be used 

in the applications such as feature extraction, segmentation, and classification. 

(2) Improving extraction of road markings 

The extracted road markings by Otsu’s method contain much noise and are 

incomplete. Noise removal is very critical for road-marking extraction because noise 

could be enlarged by morphological dilation operation and cannot be removed by 

morphological erosion operation. The size of the structuring element is behind this. 

Moreover, the shape of the structuring element is another factor that plays an important 

role in noise removal and road-marking completeness. Future research is required to 

investigate the proper structuring elements, or to provide a tool for adaptively selecting 

structuring elements with different sizes and shapes based on accuracy evaluation.   

(3) Accuracy validation 

In the task of road-marking extraction, the extracted road-marking results were 

evaluated by comparing with the manual interpretation using three measures: correctness, 

completeness, and F- measure. These measures may have a limitation to the evaluation of 

road markings because of some interpretation errors during converting 3D MLS data into 

2D GRF images. Thus, an improved validation is required to examine the accuracy of 

road-marking extraction. 

(4) Algorithm extension 

One extension for the developed algorithm is to develop a road-marking model 

library, a model-based road marking classification system. Our team has developed a 
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shape-context-based light-pole extraction algorithm which can be modified and employed 

to extract road markings. 

7.3.3 Pavement-crack Extraction 

 (1) Improving the quality of thresholding 

GRF images contain noise and uneven illumination, leading to curvilinear cracks 

presented by non-uniform intensity, low contrast with their surroundings, and low SNR 

owing to particle materials of asphalt concrete-surfaced roads.  Before the tensor voting 

framework is implemented for crack extraction, a thresholding algorithm is required to 

search crack candidates as input. Traditional thresholding methods including Otsu’s 

method somewhat fail to segment crack pixels from the noisy and low-contrast image. 

Although the proposed WID method achieved a greater performance by computing 

intensity difference of a pixel with its nearest neighbors to reflect the contrast of this 

pixel with its neighbors, the segmented cracks are required to improve for noise removal 

and preserving much crack details.   

(2) Improving computational efficiency 

The segmented cracks by using the proposed WID method were input to the 

iterative tensor voting for crack enhancement. In order to remove noise and preserve 

crack details, the tensor voting framework was used to iteratively refine the previous 

crack results using an iterative scheme, thereby leading to intensive computation burdens. 

However, the voting process of each tensor is independent. Therefore, the iterative tensor 

voting can be carried out using a parallel computation or a multi-thread scheme. The 
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computation burdens can be distributed to each parallel procedure. The computational 

performance will be obviously improved and the time complexity will be greatly reduced. 

(3) Crack classification 

The developed ITV-based crack extraction algorithm can detect multiple types of 

curvilinear cracks, but crack classification is not included in this thesis. Thus, two tools 

are required to improve the algorithm: (1) a crack classification tool and (2) a crack 

attribute report tool.  Tensor voting will be extended to detect the intersection points 

among curvilinear cracks. As a result, intersection points and curvilinear cracks will be 

grouped to a topology table, in which the algorithm can tell what types of the detected 

cracks will belong to. Moreover, the algorithm can tell not only the types of cracks, but 

also provide detailed information of the detected cracks, such as length and width, as a 

reference for transportation agencies. 

(4) Algorithm extension 

According to the specification of RIEGL VMX-450, the average interval between 

points is around 3 cm to 6 cm at the speed of 30 km/h, which means the detect cracks are 

only at cm-level, rather than mm-level required by most transportation agencies.  

Although the proposed algorithm has been tested on digital images that record cracks at 

mm-level, the algorithm is needed to extend for extracting mm-level cracks from MLS 

data. 
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7.3.4 Extension of RoadModeler 

This doctoral study focused on the extraction of road surfaces, road markings, and 

pavement cracks, three models of the RoadModeler prototype developed for 

transportation-related applications. As for the applications in road traffic safety, the 

RoadModeler package should include the models of not only road-surface related 

information (e.g., road surfaces, road centre-lines, road markings, manholes, and 

pavement cracks) but also off-road-related information (e.g., traffic signs, tunnels, light-

poles, and trees). The main extension of RoadModeler is to develop models that extract 

off-road features and other road-related features for the completion of this transportation-

related software package.  
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Appendix A MTO Marking Standards 

In order to invest in the future of Canada’s Transportation Infrastructure, different 

levels of Canadian authorities have attempted to seek academic assistances in a number 

of areas including engineering materials, traffic operations, intelligent transportation 

systems, highway design, environmental, structures, geomatics, construction, and 

maintenance; for example, the Highway Infrastructure Innovation Funding Program 

(HIIFP) funded by MTO.  In addition, a variety of road safety strategies such as road 

safety inspection, road traffic safety, and intelligent transportation systems, have been 

proposed to identify the elements of roads and monitor pavement performance for 

quantitatively evaluating road safety along federal, provincial, or municipal corridor 

routes.  

Pavement Cracks 

Pavement surface condition data is a key component of the MTO infrastructure 

asset management program. The crack information is used across a wide range of 

business processes, which include (1) monitoring the on-going performance of the 

provincial paved road work, (2) predicting future pavement conditions and assess long 

term needs, (3) planning strategic investment for the support of annual programming and 

decision making, (4) identifying rehabilitation and maintenance treatment options, (5) 

investigating causes of pavement deterioration and evaluating specific treatment options, 

and (6) supporting outsourced rehabilitation and maintenance service delivery. Usually, 

regular inspection of all paved road surfaces is carried out to ensure that all areas of 

pavement failures have been promptly identified, signed and repaired.  

http://en.wikipedia.org/wiki/Road_traffic_safety
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MTO performs pavement distress data surveys of their network using four 

different condition rating manuals for evaluating road surface condition (MTO 1989a, 

1989b, 1989c, and 1995). 2012 pavement surface condition rating manual states that 

there are two practices: (1) high speed network level (HSNL) surveys that are conducted 

on a cyclical basis for the provincial road network, and (2) project level manual (PLM) 

surveys that are routinely conducted during the detailed evaluations that are carried out 

for candidate rehabilitation projects.   

The HSNL surveys measure (1) the severity and density of several surface distress 

types within each surveyed lane, (2) rut depth and roughness measurements in both wheel 

paths, and (3) digital images of the right-of-way. The HSNL surveys detect the following 

distress types: longitudinal wheel path cracking, longitudinal joint cracking, pavement 

edge cracking, transverse cracking, meandering longitudinal cracking, alligator cracking, 

bleeding, and potholes. The HSNL surveys are conducted every two years on the primary 

highway system, on a two or four year cycle for secondary highways depending on 

significance, and on a four year cycle for selected paved side roads (MTO, 2008). 

In addition to distress surveys, the PLM surveys can include geotechnical 

investigations, strength testing, coring, and laboratory testing. The purpose of the PLM 

surveys is to provide a more accurate and detailed investigation of the pavement 

deterioration in order to assist in determining appropriate rehabilitation treatments. 

Road Markings 

Road markings, painted on the road surfaces with high-reflectivity materials 

deteriorate over time because these road markings are susceptible to damage from snow 
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plows, winter sand, and traffic. Thus, periodically managing and maintaining road 

markings is often required to ensure that they are clearly visible at night. 

As the retro-reflectivity of road markings is an essential performance indicator for 

ensuring that drivers can effectively see and respond to changing roadway geometry, 

particularly, for how they will perform at night or in wet weather. Thus, the minimum 

acceptable pavement marking retro-reflectivity performance levels were specified.  

MTO conducts and monitors the retro-reflectivity of pavement markings by first 

visually assessing the retro-reflective performance of road markings and identifying areas 

of concern at night, and a handheld retro-reflectometer is used to measure the road 

marking retro-reflectivity for these areas of concern during the day.  
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