220 research outputs found

    Effects of Noninhibitory Serpin Maspin on the Actin Cytoskeleton: A Quantitative Image Modeling Approach

    Get PDF
    Recent developments in quantitative image analysis allow us to interrogate confocal microscopy images to answer biological questions. Clumped and layered cell nuclei and cytoplasm in confocal images challenges the ability to identify subcellular compartments. To date, there is no perfect image analysis method to identify cytoskeletal changes in confocal images. Here, we present a multidisciplinary study where an image analysis model was developed to allow quantitative measurements of changes in the cytoskeleton of cells with different maspin exposure. Maspin, a noninhibitory serpin influences cell migration, adhesion, invasion, proliferation, and apoptosis in ways that are consistent with its identification as a tumor metastasis suppressor. Using different cell types, we tested the hypothesis that reduction in cell migration by maspin would be reflected in the architecture of the actin cytoskeleton. A hybrid marker-controlled watershed segmentation technique was used to segment the nuclei, cytoplasm, and ruffling regions before measuring cytoskeletal changes. This was informed by immunohistochemical staining of cells transfected stably or transiently with maspin proteins, or with added bioactive peptides or protein. Image analysis results showed that the effects of maspin were mirrored by effects on cell architecture, in a way that could be described quantitatively

    Overlapping Cervical Nuclei Separation using Watershed Transformation and Elliptical Approach in Pap Smear Images

    Get PDF
    In this study, a robust method is proposed for accurately separating overlapping cell nuclei in cervical microscopic images. This method is based on watershed transformation and an elliptical approach. Since the watershed transformation process of taking the initial seed is done manually, the method was developed to obtain the initial seed automatically. Total initial seeds at this stage represents the number of nuclei that exist in the image of a pap smear, either overlapping or not. Furthermore, a method was developed based on an elliptical approach to obtain the area of each of the nuclei automatically. This method can successfully separate several (more than two) clustered cell nuclei. In addition, the proposed method was evaluated by experts and was proven to have better results than methods from previous studies in terms of accuracy and execution time. The proposed method can determine overlapping and non-overlapping boundaries of nuclei fast and accurately. The proposed method provides better decision-making on areas with overlapping nuclei and can help to improve the accuracy of image analysis and avoid information loss during the process of image segmentation

    A Comprehensive Overview of Computational Nuclei Segmentation Methods in Digital Pathology

    Full text link
    In the cancer diagnosis pipeline, digital pathology plays an instrumental role in the identification, staging, and grading of malignant areas on biopsy tissue specimens. High resolution histology images are subject to high variance in appearance, sourcing either from the acquisition devices or the H\&E staining process. Nuclei segmentation is an important task, as it detects the nuclei cells over background tissue and gives rise to the topology, size, and count of nuclei which are determinant factors for cancer detection. Yet, it is a fairly time consuming task for pathologists, with reportedly high subjectivity. Computer Aided Diagnosis (CAD) tools empowered by modern Artificial Intelligence (AI) models enable the automation of nuclei segmentation. This can reduce the subjectivity in analysis and reading time. This paper provides an extensive review, beginning from earlier works use traditional image processing techniques and reaching up to modern approaches following the Deep Learning (DL) paradigm. Our review also focuses on the weak supervision aspect of the problem, motivated by the fact that annotated data is scarce. At the end, the advantages of different models and types of supervision are thoroughly discussed. Furthermore, we try to extrapolate and envision how future research lines will potentially be, so as to minimize the need for labeled data while maintaining high performance. Future methods should emphasize efficient and explainable models with a transparent underlying process so that physicians can trust their output.Comment: 47 pages, 27 figures, 9 table

    Perceptual watersheds for cell segmentation in fluorescence microscopy images

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical refences.High content screening aims to analyze complex biological systems and collect quantitative data via automated microscopy imaging to improve the quality of molecular cellular biology research in means of speed and accuracy. More rapid and accurate high-throughput screening becomes possible with advances in automated microscopy image analysis, for which cell segmentation commonly constitutes the core step. Since the performance of cell segmentation directly a ects the output of the system, it is of great importance to develop e ective segmentation algorithms. Although there exist several promising methods for segmenting monolayer isolated and less con uent cells, it still remains an open problem to segment more con uent cells that grow in aggregates on layers. In order to address this problem, we propose a new marker-controlled watershed algorithm that incorporates human perception into segmentation. This incorporation is in the form of how a human locates a cell by identifying its correct boundaries and piecing these boundaries together to form the cell. For this purpose, our proposed watershed algorithm de nes four di erent types of primitives to represent di erent types of boundaries (left, right, top, and bottom) and constructs an attributed relational graph on these primitives to represent their spatial relations. Then, it reduces the marker identi cation problem to the problem of nding prede ned structural patterns in the constructed graph. Moreover, it makes use of the boundary primitives to guide the ooding process in the watershed algorithm. Working with uorescence microscopy images, our experiments demonstrate that the proposed algorithm results in locating better markers and obtaining better cell boundaries for both less and more con uent cells, compared to previous cell segmentation algorithms.Arslan, SalimM.S

    Nuclei/Cell Detection in Microscopic Skeletal Muscle Fiber Images and Histopathological Brain Tumor Images Using Sparse Optimizations

    Get PDF
    Nuclei/Cell detection is usually a prerequisite procedure in many computer-aided biomedical image analysis tasks. In this thesis we propose two automatic nuclei/cell detection frameworks. One is for nuclei detection in skeletal muscle fiber images and the other is for brain tumor histopathological images. For skeletal muscle fiber images, the major challenges include: i) shape and size variations of the nuclei, ii) overlapping nuclear clumps, and iii) a series of z-stack images with out-of-focus regions. We propose a novel automatic detection algorithm consisting of the following components: 1) The original z-stack images are first converted into one all-in-focus image. 2) A sufficient number of hypothetical ellipses are then generated for each nuclei contour. 3) Next, a set of representative training samples and discriminative features are selected by a two-stage sparse model. 4) A classifier is trained using the refined training data. 5) Final nuclei detection is obtained by mean-shift clustering based on inner distance. The proposed method was tested on a set of images containing over 1500 nuclei. The results outperform the current state-of-the-art approaches. For brain tumor histopathological images, the major challenges are to handle significant variations in cell appearance and to split touching cells. The proposed novel automatic cell detection consists of: 1) Sparse reconstruction for splitting touching cells. 2) Adaptive dictionary learning for handling cell appearance variations. The proposed method was extensively tested on a data set with over 2000 cells. The result outperforms other state-of-the-art algorithms with F1 score = 0.96

    Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation

    Get PDF
    Automated segmentation of cells from cervical smears poses great challenge to biomedical image analysis because of the noisy and complex background, poor cytoplasmic contrast and the presence of fuzzy and overlapping cells. In this paper, we propose an automated segmentation method for the nucleus and cytoplasm in a cluster of cervical cells based on distinctive local features and guided sparse shape deformation. Our proposed approach is performed in two stages: segmentation of nuclei and cellular clusters, and segmentation of overlapping cytoplasm. In the rst stage, a set of local discriminative shape and appearance cues of image superpixels is incorporated and classi ed by the Support Vector Machine (SVM) to segment the image into nuclei, cellular clusters, and background. In the second stage, a robust shape deformation framework is proposed, based on Sparse Coding (SC) theory and guided by representative shape features, to construct the cytoplasmic shape of each overlapping cell. Then, the obtained shape is re ned by the Distance Regularized Level Set Evolution (DRLSE) model. We evaluated our approach using the ISBI 2014 challenge dataset, which has 135 synthetic cell images for a total of 810 cells. Our results show that our approach outperformed existing approaches in segmenting overlapping cells and obtaining accurate nuclear boundaries. Keywords: overlapping cervical smear cells, feature extraction, sparse coding, shape deformation, distance regularized level set

    Smart markers for watershed-based cell segmentation

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical refences.Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have a potential to greatly improve the segmentation results. In this study, we propose a new approach for the effective segmentation of live cells from phase-contrast microscopy. This approach introduces a new set of “smart markers” for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1954 cells. The experimental results demonstrate that the proposed approach is quite effective in identifying better markers compared to its counterparts. This will in turn be effective in improving the segmentation performance of a marker-controlled watershed algorithm.Koyuncu, Can FahrettinM.S
    corecore