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Abstract. We propose a technique for analyzing images of immunohis-
tochemically stained tissue samples for extracting features that correlate
with patient disease. We address the problem of quantifying tumor tissue
and segmenting and counting nuclei. Our method utilizes a flexible seg-
mentation technique trained from representative image samples. Nuclei
counting is based on a nucleus model that takes size, shape and nucleus
probability into account. We obtain the probability of a nucleus from
our segmentation procedure. Our method is experimentally validated on
images stained with nuclear markers for the Estrogen Receptor (ER)
and proliferation marker KI-67. In addition we qualitatively validate our
method for tumor tissue segmentation and we obtain state of the art
results on cell nuclei separation.

1 Introduction

Diagnosis from immunostained histological tissue biopsies plays a major role in
cancer diagnosis. Histopathological images are obtained from digitized light mi-
croscopy of thin tissue slices colored using immunohistochemical staining tech-
niques with different biomarkers. This results in images with tissues colored
according to specific functionality. For example proliferating cell nuclei are col-
ored differently from other nuclei, c.f. Figure 1. The fundamental problem in
histopathological analysis is to infer information about diagnosis and decide
treatment.

Diagnosis of cancer based on automated analysis of histopathology images
rely on segmentation and extraction of quantitative features including cell nu-
clei, cell membranes, cytoplasm, or larger tissue parts containing clusters of cells
[8, 10]. Both color and shape are used for quantifying structures, especially cell
nuclei. A threshold in the color space is often employed followed by region pro-
cessing, e.g. using an elliptical model [2, 11] or learning shape features [3].

Manual analysis can be time-consuming and biased and employing computers
can improve performance both in relation to objectivity and labor. Additionally,
features that are beyond the capabilities of manual analysis can be extracted.
Obtaining these benefits require robust and flexible automated segmentation and
classification methods. One of the major difficulties when analyzing histopatho-
logical images is the biological variations of the tissue and the staining variations
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Fig. 1. Segmentation example of histopathological images. (a) shows the original mi-
croscopy image where proliferating nuclei appear brown and other nuclei are blue.
Tumor tissue appears as darker regions. (b) shows a part of the original image (marked
with red in the first image). (c) shows the probability map for segmenting nuclei, where
bright color is high probability. (d) shows the segmentation result with probability map
for tumor tissue. Both segmentations are based on the same procedure, but with dif-
ferent training samples. (e) shows our nuclei separation with the original images at the
top and separated nuclei at the bottom.

[4]. It is important that segmentation algorithms are robust to these changes as
well.

Our contribution includes applying a highly flexible segmentation and clas-
sification technique, which is easily adapted to the varying appearance of the
histopathological images. Cell nuclei often appear clustered resulting in under-
segmentation. To overcome this, we propose a nuclei separation approach that
utilizes the probability map obtained from our segmentation procedure.

The nuclei separation method is based on the commonly used combination
of the watershed algorithm and the complement to the distance transform [12].
However, this often leads to oversegmentation, which is usually solved with either
region merging techniques [1, 5, 16] or marker-controlled watersheds [6, 11, 15].
We propose a method where we combine these strategies to achieve a better
separation. Our nuclei separation method is an extension of the method of Jung
and Kim [11].

2 Method

Our approach for analyzing histopathological images is based on applying a
segmentation procedure followed by an automatic nuclei separation. Here we
will give a short description of the segmentation procedure and we refer to [7]
for a detailed description.

2.1 Tissue segmentation

The segmentation procedure is based on assigning a label probability to all pixels
in the image resulting in a label probability image. We obtain the label proba-
bility image by employing a dictionary of small image patches, which we denote
the intensity dictionary. This intensity dictionary is coupled with a dictionary
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Fig. 2. Illustration of segmentation procedure. (a) building the segmentation proba-
bility image. For the image patch marked with the red square in the top image of (a)
we select the most similar dictionary element in (b). The associated label element in
the bottom image of (b) is chosen and added to the segmentation probability image,
which is shown at the bottom of (a). Bright color indicates high probability. The two
layers of the label images show that there are two classes in this segmentation example
– brown nuclei and background.

of small label patches – the so-called label dictionary. To encode an unknown
image we start by employing a nearest neighbor search in the intensity dictio-
nary. Then we choose the corresponding label patch from the associated label
dictionary and this way build our label probability image. Based on the label
probability image we can obtain a segmentation by choosing the most probable
label in each pixel. The segmentation procedure is illustrated in Figure 2.

We will now provide some details of how the segmentation is performed, how
the dictionaries are trained, and how to choose good samples for building the
dictionaries.

Intensity and label dictionaries The two dictionaries, that are the basis for our
segmentation method, consists of an intensity dictionary of small image patches,
D ∈ Rsl×m, with an associated label dictionary of label patches, L ∈ Rsc×m,
where m is the number of dictionary elements. The image patches are of size√
s ×

√
s × l, where s is the number of pixels in an image patch and l is the

color depth of the image. In this work we use RGB with l = 3. The label
dictionary elements are of size

√
s ×

√
s × c, where c is the number of labels.

Each label pixel contains the probability of given label. The image and label
patches are concatenated to form vectors such that each column in D contains
an image patch and each column in L contains a label patch. An illustration of
the dictionaries and the segmentation procedure is shown in Figure 2.

There is an element-wise association between the intensity and label dic-
tionaries, such that each intensity dictionary element has an associated label
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Fig. 3. Illustration of building the dictionaries. (a) shows the training image at the
top together with the manual annotated label image at the bottom. (b) a number of
image patches have been extracted together with their associated label patches. (c)
the image patches from (b) are grouped to form the intensity dictionary and the label
dictionaries. In this example there are two classes – brown nuclei and background.

dictionary element. We use this for inferring label probability to the image that
we are segmenting. The segmentation is done by going through all pixels, where
a
√
s ×

√
s × l image patch p can be extracted. We find the nearest neighbor

among all intensity dictionary elements dj ∈ D, i.e. d∗ = minj ||dj−px||22, where
x denotes the spatial position of the image patch. From the label dictionary we
pick the associated label element l∗ and add this to the label probability image
that we are building, as illustrated in Figure 2.

Label probability image In the process of building the label probability image
we add the label probability to each pixel in the area covered by the image
patch. This is done for all pixels so the patches overlap and each pixel get a
contribution from its neighborhood. The final probability is estimated as the
average of these contributions. This results in a robust labeling, because each
pixel is labeled as an average of several contributions. In addition the patches
will typically cover more than one class and this way edges are handled very
nicely. This is illustrated in the bottom part of Figure 2.

Learning dictionaries The dictionary learning is based on a modified vector
quantization approach. We want to choose an intensity dictionary D that models
data well, but this should be coupled with a discriminative label dictionary L.
These dictionaries are obtained using an iterative clustering procedure, where
the dictionary elements are built as a weighted average of a set of image patches.

The clustering procedure runs as follows; we select a training set of image
patches with associated label patches, c.f. Figure 3. From this set we select a
subset of image patches as our initial intensity dictionary D and their associated
label patches as the label dictionary L. We now iteratively update the dictionary
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(a) (b)

Fig. 4. Example of images which are hard to separate. (a) nuclei overlapping due to
occlusion, and (b) nuclei clustering

elements using a weighted average of the nearest intensity patches in our training
set. Patch weights are estimated according to the similarity of the ideal label
element and the label patch. The ideal label element is a label element modified
to have maximum discriminative power. If the ideal label element and the patch
label are similar we assign a high weight, and if they are dissimilar the weight
is low. In effect this results in an intensity dictionary D with elements that
are similar to the image and simultaneously a label dictionary L with high
discriminative power. The precise details of the segmentation procedure are given
in [7].

Training data A representative training set is necessary to build a good seg-
mentation model. The training set should contain all relevant tissue types and
structures. It is also important that the annotation covers the entire training
image because wrongly segmented training data can weaken the segmentation.
But in general we found our method to be very robust to noisy training data.

2.2 Nuclei separation

Our images are acquired from very thin sections of the tissue sample. The sec-
tions are often thinner than the nuclei itself, but despite these thin slices it is not
uncommon that nuclei overlap in the two-dimensional image. This often leads
to merged nuclei regions in the segmentation output, as seen in Figure 4(a).
Merging can also occur when nuclei are heavily clustered, as is often the case in
tumour regions, c.f. Figure 4(b). To acquire a correct nuclei segmentation and
count, merged nuclei therefore have to be separated.

One of the most widely used object separation techniques is the watershed
algorithm [12]. The watershed algorithm operates on a marking function and a
set of markers. A very common marker function is the complement of the distance
transform [12] using the regional minima of the inverse distance transform as
markers. Using the watershed algorithm on the inverse distance transform is
useful for separating touching objects that are approximately convex. However,
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due to small local variations in the distance transform, it often leads to over-
segmentation as you seldom have a one-to-one correspondence between number
of local minima and nuclei.

To overcome this problem, two main strategies are found in the literature:
region merging and marker-controlled watershed.

Region-merging refers to techniques that merge over-segmented regions based
on certain criteria. Common criteria are based on features like border-strenght,
size or shape of the region [1, 5, 16].

Marker-controlled watershed tries to optimize the region minima so that each
minimum correspond to one true region only. This can be done by pre-processing
of the marker function by, for example, using different morphological operations
[6, 11].

Our proposed method for separating merged nuclei combines region-merging
with a marker-controlled watershed and is based on the object separation algo-
rithm presented by Jung and Kim in [11]. This method uses the h-minima trans-
form to remove local minima in the inverse distance transform before applying
the watershed. However, as Jung and Kim point out, the empirical selection of
the h-value often makes robust segmentation difficult. They therefore propose an
adaptive h-value selection method that uses an optimal energy function, based
on the hypothesis that a nucleus can be described by an ellipsoidal model. The
h-minima transform, with h = 1, and watershed transform are repeated and
every time two regions merge, the optimal energy function S is calculated. The
final segmentation is chosen as the regions with the lowest S.

S is mainly based on the mean averaged fitting residual over all merged
regions in a segmented object, where the averaged fitting residual Er̄, defined in
[11], is calculated as

Er̄ =
1

nh

nh�

i=1

r(Th,i(bh,i), Th,i(Fh,i)), (1)

which is an averaging over the nh number of merged regions we get using h-
value h. r is the average distance between the affine transformation Th,i of the
boundary points bh,i of region i and the best fitting ellipse Fh,i. Th,i converts the
ellipsoidal model to the unit circle and is done to compensate for nuclei having
different sizes.

Apart from the averaged fitting residual, we have also introduced an area-
based penalty function Ap̄ that adds a penalty to the segmentation distortion
function if objects are very small or very large compared to the normal area of
a nuclei. Ap̄ is calculated as

Ap̄ =
1

nh

nh�

i=1

ρj , ρ =

�
0.2ao−2.5as

2.5as
if ao > 2.5as

0.25ao−0.6as
0.6as

if ao < 0.6as
, (2)

where ao is the area of current object and as is the area of a standard nuclei.
2.5 and 0.6 above are empirically decided and as is estimated from the training
data.
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Algorithm 1 Nuclei separation algorithm

for all objects do
Do ← GWDT of object o
h ← 0
Smin ← ∞
m ← # initial regions
while m > 1 do

repeat
h ← h+ 1
Hh ← H-minima of Do

until # region minima of Hh < m

Wh ← Watershed transform of Hh

repeat

Merge region based on size
until all regions are valid nuclei
Mh ← merged Wh

m ← # of regions after merge
Sh ← Calculate S on merged Wh

if Sh < Smin then
Mbest ← Mh

Smin = Sh

end if
end while
Separation of object o ← Mbest

end for

Finally, S is estimated as

S = Er̄ +Ap̄. (3)

S is calculated per object (single nucleus or merged nuclei) and therefore allows
different h-values for different objects instead of using a global h-value. Algorithm
1 provides pseudocode for our method.

The method proposed in [11] also introduces an oversegmentation criterion
based on the outer angle of merged regions. The criterion rejects h-values that
produce merged regions with too small an outer angle. The outer angle is the
angle spanned by the circular section with the same center as the best fitting
ellipse, which covers the part of the border of the merged region that is also a
part of the border of the whole object.

While their oversegmentation criteria successfully identifies oversegmentation
in many cases has problems for some types of images. One problem is that it
rejects the h-value for the whole object, even though this h-value might be the
best h-value for segmenting another part of the object. Another, more serious,
problem is in the case of heavily clustered nuclei, where nuclei in the middle of
the cluster will have very small or no outer angle. Using the outer angle criteria
will prevent these clusters from being separated, as it will always reject the
h-values until the inner nuclei is merged with a neighbour.

Our proposed method instead uses region merging, where regions are merged
using a criterion based on size. Before calculating the optimal energy function,
we identify all regions that are very small. The identified regions are then merged
with the neighboring region to which it shares the longest common border. S
is then calculated on these merged regions. This way, oversegmentation is still
identified, but no h-values are rejected and neither are nuclei in the middle of
clusters.

Apart from adding merging of small regions, we also introduce a probability-
weighted distance transform that replaces the binary distance transform the
watershed operates on. One major drawback of the binary distance transform is
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Fig. 5. Example of data for nuclei separation experiment. Left three images are KI-67
immunostained and right is ER stained. The first image is the immunostained image,
the second is the probability map – bright colors indicating high nuclei probability,
and third image is the nuclei separation with the ground truth marked with red points.
9 × 9 image patches were used for the segmentation. Note that both images have an
error with one nucleus not being separated.

that it only considers the binary object. It is very good for separating objects
with a clear concavity where the objects merge. However, when there is no such
concavity, it will never separate the objects, no matter how clear the border
of the two objects are if you are looking at other features, such as intensity.
To overcome this problem, we combine the ordinary binary distance transform
with the probability map from the segmentation. The idea is that pixels between
nuclei should have a lower value in the probability map than the pixels within
the nuclei. Hence, by combining the distance transform with the probability
map, we can suppress the values of the distance transform where there is a low
probability of pixels being considered nuclei, and keep the values where there is
a high probability. This way, the good properties of the distance transform is
kept while also adding the good properties of the probability map.

Combining gray-values, or fuzzy values, with the distance transform is not
a new idea. Several methods have been presented in the past, such as the
Gray-weighted distance transform (GWDT) [13] or Weighted Distance Trans-
form On Curve Spaces (WDTOCS) [14]. A comparison of the two methods [9]
conclude that GWDT follows low gray-values whereas WDTOCS will minimize
the changes in gray level values. In our data, it makes more sense to follow low
gray-values and that has also been verified on our data.

3 Data and results

Our analysis on segmenting positive nuclei is aimed at demonstrating the per-
formance of our segmentation procedure and our nuclei separation approach.
We validate our nuclei separation method by comparing segmentation results
to hand annotated ground truth images. Segmentation of regions of cancerous
tissue in whole slides is shown to illustrate the flexibility of our segmentation
procedure.

A number of different ways to qualitatively measure the performance of our
algorithm exist, such as the number of correctly segmented nuclei or size and
shape of the nuclei missed [4]. The ground truth of our images corresponds to
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Fig. 6. Segmentation of tumor tissue. Top row is microscopic cores and bottom row is
segmentation results with white pixels classified as tumor tissue. We used 5× 5 image
patches and trained a dictionary for each type of image – we used one dictionary for
the first two images from the left, a second for the third image and a third dictionary
for the last two images.

an approximate manual annotation of nuclei centra. The measure we have used
is an error rate based on the sum of number of annotations that does not have a
corresponding segmented object and the number of segmented objects that does
not have a corresponding annotation.

Data We have based our experiments on two sets of immunostained histopatho-
logical images – one set based on the Estrogen Receptor (ER) and the other on
antigen KI-67. In the segmentation experiment we use the original images. For
the nuclei separation we have selected 207 ER image samples from 58 Tissue
Micro Array-cores corresponding to 58 patients and 136 KI-67 image samples
also from 58 cores. Each image sample is about 100 - 200 pixels in width and
height. The images are sampled to be challenging for the algorithm. We have
hand annotated the images by marking the center position of each nucleus and
we do not include nuclei that touches the image border. For the ER data we
have a total of 1006 nuclei and for the KI-67 we have 796 nuclei. Data examples
are shown in Figure 5. For all nuclei separation experiments we used 9×9 image
patches in the segmentation algorithm.

Results We have made a quantitative analysis on nuclei segmentation and sepa-
ration. We have performed five combinations of methods for each of the two sets
of images. The basic method is a standard Bayesian classifier for segmentation
based on the RGB color representation followed by a standard watershed nuclei
separation1. In the rest of the experiments we have employed the segmentation
procedure we propose. In the second experiment we also use watershed, so the
gain in performance from experiment #1 to #2 is only caused by our segmenta-
tion procedure. The third experiment is the competing method of Jung and Kim
[11], and the last two are our suggestions – #4 with standard distance transform
and #5 with weighted distance transform (GWDT).

1 VisioMorph, Visiopharm A/S, http://www.visiopharm.com/
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Experiment ER experiment KI-67 experiment
# 1 2 3 4 5 1 2 3 4 5

Missing objects [%] 1.2 1.4 0.7 1.2 0.5 3.0 0.9 1.2 1.0 1.0
Missing annotations [%] 7.5 4.9 4.4 5.1 3.2 8.7 1.5 5.0 2.8 2.6
Multiple annotations [%] 8.6 2.5 2.3 1.2 1.1 5.9 9.6 4.5 4.5 4.1

Total errors [%] 17.3 8.8 7.4 7.5 4.8 17.6 12.0 10.7 8.3 7.7

Mean # errors/image 0.79 0.43 0.36 0.30 0.23 1.04 0.71 0.63 0.49 0.45

Table 1. Results for our nuclei separation experiment. We have performed five method
combinations on both sets of images (ER & Ki67): 1) Segmentation using a Bayes
classifier and watershed for separation, 2) proposed segmentation and watershed for
separation, 3) proposed segmentation and method of Jung and Kim [11] for separa-
tion, 4) proposed segmentation and normal binary distance transform, 5) proposed
segmentation and GWDT distance transform. The error rates are percentages of the
different error types for all nuclei across all images: Missing object rate where we have
an annotated nucleus but the algorithm did not find it. Missing annotation rate where
the algorithm found a nucleus, but there is no manual annotation. Multiple annotation
rate where we have more than one annotated nuclei but the algorithm only found one.
Total nuclei error rate is the sum of the three error rates. We also show the mean
number of errors per image. Best performance is marked in bold face.

The results from the nuclei segmentation and separation experiments are
summarized in Table 1, which shows error rates of nuclei across all images.
The error rates are divided in three types of errors: missing object (no nucleus
was segmented where there was supposed to be one), missing annotation (a
nucleus was segmented where there was no real nucleus) and multiple annotations
(multiple real nucleus in one segmented object, i.e. where separation failed).
Table 1 also show mean number of errors per image, no matter which error type.

We have also made a statistical analysis on the number of errors per image, no
matter which error type. This is shown in Figure 7, which is a box-plot showing
median, 75th percentile and outlier values as well as the mean error per image
from Table 1. Included in the statistical analysis is also a confidence test shown
in Figure 8 were we have used Wilcoxon rank-sum test to test the significance
of the differences across experiments.

The proposed segmentation method has been evaluated qualitatively on tu-
mor tissue and the results are shown in Figure 6.

The results from the nuclei segmentation experiments are summarized in
Table 1, Figure 7 and 8. In both experiments, our proposed method, evaluated
in experiment #5, provides better results than the other methods the Wilcoxon
rank-sum test, in Figure 8, shows that it is significantly better than experiment
#1, #2 and #3 for the ER image set and experiment #1 and #2 for the Ki-
67 image set. However, the difference between the best performing methods are
not statistically significant. From the box-plot in Figure 7 we can see that the
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Fig. 7. Box-plot of number of errors per image. On each box, the central red mark is the
median, the edges of the box are the 75th percentile, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted individually as red
points. Also shown is the mean as blue plus signs, which can also be seen numerically
in Table 1.

(a) P-values for experiments on the ER
dataset.

(b) P-values for experiments on Ki67
dataset.

Fig. 8. P-values from the Wilcoxon rank-sum test that tests significance for difference
in error rates per image between the experiments.

median of most experiments is 0 errors per image but the values of the extreme
outliers decrease with the more high-performing methods.

The goal of this manuscript is to show how the proposed method can be
used for segmenting different structures in histopathological images. We have
focused on experiments where we detect positive nuclei for two different markers.
However, for the method to be useful in histopathological applications, negative
nuclei typically has to be segmented as well. We have not done any quantitative
or qualitative experiments for segmenting both positive and negative nuclei, but
the segmentation method supports segmentation of two, or more, classes and we
have performed a few tests to show that this is possible. The output of one of the
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tests can be seen in Figure 9. Making a more thorough analysis of the method’s
ability to segment positive and negative nuclei is part of our future work.

(a) (b)

Fig. 9. Segmentation of positive and negative nuclei with positive nuclei labeled white
and negative nuclei gray.

4 Discussion

We have presented a method for analysis of immunohistochemically stained tis-
sue samples based on a highly flexible segmentation procedure and a novel nuclei
separation method. The nuclei separation method is based on shape, size and
nuclei probability. We have performed two experiments to validate our method
– a tissue segmentation experiment that illustrates the flexibility of our segmen-
tation procedure, and a nuclei separation experiment, where we compare the
segmentation to hand annotated images with a total of 1802 nuclei. We obtain
better performance on both binary segmentation and nuclei separation compared
to the state of the art, despite these results are not statistically significant.

We employ images based on two common markers within breast cancer di-
agnosis, one based on the Estrogen Receptor (ER) and one based on the KI-67
receptor. The ER images are relatively uniform in appearance whereas the KI-67
images vary significantly with the brown stained nuclei going from pale brown
to dark brown. This is also the reason why the results of the ER experiment are
better than the KI-67 experiment.

Our algorithm is based on learning the local appearance of the images that we
are segmenting, and we use no prior assumption about the number of nuclei. As
a result we obtain a flexible and robust model that works well independently of
the density and distribution of stained nuclei. If there for example are no brown
nuclei, it will just return an empty segmentation. Furthermore, the algorithm
can be trained for segmenting two or more tissue types, which is for example
relevant for quantifying the ratio between positive and negative nuclei.

The performance gain in employing our nuclei separation experiment is how-
ever not statistically significant, but it is very close. Ideally a larger dataset
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could show if there really is a significant difference, but annotating data is time
consuming and we chose the 1802 hand annotated nuclei. A related problem is
that there, to our knowledge, is no standard data benchmarks available, which
could provide a better comparison.

In addition to efforts in the academic sector, a number of commercial prod-
ucts exist that already claim some success in the area of cell nuclei segmentation.
These include Aperio GenieTM2, CRI inFormTM3, Definiens Tissue StudioTM4

and Visiopharms VisioMorphTM5.

The only one of these products we have access to is VisioMorph and the
method it uses very much equals the first experiment in our study. It is based
on a Bayesian classifier and a watershed algorithm for separating nuclei. A ver-
sion of a our proposed method is implemented in TissueMorphTM, which is
Visiopharm’s latest toolkit using quantitative image analysis for cell population
characterization. We do not have access to the other commercial products, and
therefore we have not been able to make a comparative study. Again it would
be beneficial with a standard benchmark with reported performance for these
commercial products.

The purpose of automated analysis of immunostained histopathological im-
ages is to infer information about diagnosis, disease, and potential development
of the disease and ultimately how the patient can be cured. Current methods
often follow the methodology of the pathologist. Using automated techniques
allows a much higher degree of detail in the analysis, and in addition a much
larger volume of data can be analyzed. Based on our flexible segmentation and
nuclei separation technique it is possible to extract much of this information in
a precise and robust manner.

5 Conclusion

We have addressed the problem of segmenting and quantifying tissue in mi-
croscopic images of immunohistochemically stained tissue samples. We employ
a recently published segmentation procedure coupled with a nuclei separation
method based on the h-minima transform. We demonstrate our method on a
data set with 1802 hand annotated nuclei, and obtain good performance com-
pared to state of the art nuclei separation. Our segmentation procedure is simple,
highly flexible, and we demonstrate how it, in addition to the nuclei separation,
can perform precise segmentation of cancerous tissue. The complexity of the
segmentation procedure is linear in the image size and the nuclei separation is
linear in the number of nuclei. Additionally the method can be parallelized to
obtain high-speed computations.

2 http://www.aperio.com/
3 http://www.cri-inc.com/
4 http://www.tissuestudio.com/
5 http://www.visiopharm.com/
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