716 research outputs found

    Segmentwise Discrete Wavelet Transform

    Get PDF
    Dizertační práce se zabývá algoritmy SegDWT pro segmentový výpočet Diskrétní Waveletové Transformace – DWT jedno i vícedimenzionálních dat. Segmentovým výpočtem se rozumí způsob výpočtu waveletové analýzy a syntézy po nezávislých segmentech (blocích) s určitým překryvem tak, že nevznikají blokové artefakty. Analyzující část algoritmu pracuje na principu odstranění přesahu a produkuje vždy část waveletových koeficientů z waveletové transformace celého signálu, které mohou být následně libovolně zpracovány a podrobeny zpětné transformaci. Rekonstruované segmenty jsou pak skládány podle principu přičtení přesahu. Algoritmus SegDWT, ze kterého tato práce vychází, není v současné podobně přímo použitelný pro vícerozměrné signály. Tato práce obsahuje několik jeho modifikací a následné zobecnění pro vícerozměrné signály pomocí principu separability. Kromě toho je v práci představen algoritmus SegLWT, který myšlenku SegDWT přenáší na výpočet waveletové transformace pomocí nekauzálních struktur filtrů typu lifting.The dissertation deals with SegDWT algorithms performing a segmented (segmentwise) computation of one- and multi-dimensional Discrete Wavelet Transform – DWT. The segmented approach allows one to perform the segment (block) wavelet analysis and synthesis using segment overlaps while preventing blocking artifacts. The parts of the wavelet coefficients of the whole signal wavelet transform corresponding to the actual segment are produced by the analysis part of the algorithm exploiting overlap-save principle. The resulting coefficients belonging to the segment can be processed arbitrarily and than they can transformed back to the original domain. The reconstructed segments are than put together using overlap add principle. The already known SegDWT algorithm can not be effectively used on multidimensional signals. Several modifications of the algorithm are proposed which makes it possible to generalize it to multidimensional cases using separability property. In addition, the thesis presents SegLWT algorithm adopting ideas of the SegDWT and transferring it to the non-causal lifting filter bank structures.

    Automated Accident Detection In Intersections Via Digital Audio Signal Processing

    Get PDF
    The aim of this thesis is to design a system for automated accident detection in intersections. The input to the system is a three-second audio signal. The system can be operated in two modes: two-class and multi-class. The output of the two-class system is a label of ?crash? or ?non-crash?. In the multi-class system, the output is the label of ?crash? or various non-crash incidents including ?pile drive?, ?brake?, and ?normal-traffic? sounds. The system designed has three main steps in processing the input audio signal. They are: feature extraction, feature optimization and classification. Five different methods of feature extraction are investigated and compared; they are based on the discrete wavelet transform, fast Fourier transform, discrete cosine transform, real cepstrum transform and Mel frequency cepstral transform. Linear discriminant analysis (LDA) is used to optimize the features obtained in the feature extraction stage by linearly combining the features using different weights. Three types of statistical classifiers are investigated and compared: the nearest neighbor, nearest mean, and maximum likelihood methods. Data collected from Jackson, MS and Starkville, MS and the crash signals obtained from Texas Transportation Institute crash test facility are used to train and test the designed system. The results showed that the wavelet based feature extraction method with LDA and maximum likelihood classifier is the optimum design. This wavelet-based system is computationally inexpensive compared to other methods. The system produced classification accuracies of 95% to 100% when the input signal has a signal-to-noise-ratio of at least 0 decibels. These results show that the system is capable of effectively classifying ?crash? or ?non-crash? on a given input audio signal

    A novel fast algorithm based on SMDWT for visual processing applications

    Get PDF
    [[abstract]]This work presents a fast algorithm, namely 2-D symmetric mask-based discrete wavelet transform (SMDWT), to address some critical issues of the 2-D discrete wavelet transform (DWT). Unlike the traditional DWT involving dependent decompositions, the SMDWT itself is subband processing independent, which can significantly reduce complexity. Moreover, DWT cannot directly obtain target subbands, which leads to an extra wasting in transpose memory, critical path, and operation time. These problems can be fully improved with the proposed SMDWT. Nowadays, many applications employ DWT as the core transformation approach, the problems indicated above have motivated researchers to develop fast algorithms for DWT. The proposed SMDWT has been proved as a highly efficient independent processing to yield target subbands which can be applied to real-time visual applications, such as moving object detection and tracking, texture segmentation, image/video compression, and any DWT-based applications.[[notice]]需補會議日期、性質、主辦單位[[conferencedate]]20090524~2009052

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    A textural deep neural network architecture for mechanical failure analysis

    Get PDF
    Nowadays, many classification problems are approached with deep learning architectures, and the results are outstanding compared to the ones obtained with traditional computer vision approaches. However, when it comes to texture, deep learning analysis has not had the same success as for other tasks. The texture is an inherent characteristic of objects, and it is the main descriptor for many applications in the computer vision field, however due to its stochastic appearance, it is difficult to obtain a mathematical model for it. According to the state of the art, deep learning techniques have some limitations when it comes to learning textural features; and, to classify texture using deep neural networks, it is essential to integrate them with handcrafted features or develop an architecture that resembles these features. By solving this problem, it would be possible to contribute in different applications, such as fractographic analysis. To achieve the best performance in any industry, it is important that the companies have a failure analysis, able to show the flaws’ causes, offer applications and solutions and generate alternatives that allow the customers to obtain more efficient components and productions. The failure of an industrial element has consequences such as significant economic losses, and in some cases, even human losses. With this analysis it is possible to examine the background of the damaged piece in order to find how and why it fails, and to help prevent future failures, in order to implement safer conditions. The visual inspection is the basis for the generation of every fractographic process in failure analysis and it is the main tool for fracture classification. This process is usually done by non-expert personnel on the topic, and normally they do not have the knowledge or experience required for the job, which, without question, increases the possibilities of generating a wrong classification and negatives results in the whole process. This research focuses on the development of a visual computer system that implements a textural deep learning architecture. Several approaches were taken into account, including combining deep learning techniques with traditional handcrafted features, and the development of a new architecture based on the wavelet transform and the multiresolution analysis. The algorithm was test on textural benchmark datasets and on the classification of mechanical fractures with particular texture and marks on surfaces of crystalline materials.Actualmente, diferentes problemas computacionales utilizan arquitecturas de aprendizaje profundo como enfoque principal. Obteniendo resultados sobresalientes comparados con los obtenidos por métodos tradicionales de visión por computador. Sin embargo, cuando se trata de texturas, los análisis de textura no han tenido el mismo éxito que para otras tareas. La textura es una característica inherente de los objetos y es el descriptor principal para diferentes aplicaciones en el campo de la visión por computador. Debido a su apariencia estocástica difícilmente se puede obtener un modelo matemático para describirla. De acuerdo con el estado-del-arte, las técnicas de aprendizaje profundo presentan limitaciones cuando se trata de aprender características de textura. Para clasificarlas, se hace esencial combinarlas con características tradicionales o desarrollar arquitecturas de aprendizaje profundo que reseemblen estas características. Al solucionar este problema es posible contribuir a diferentes aplicaciones como el análisis fractográfico. Para obtener el mejor desempeño en cualquier tipo de industria es importante obtener análisis fractográfico, el cual permite determinar las causas de los diferentes fallos y generar las alternativas para obtener componentes más eficientes. La falla de un elemento mecánico tiene consecuencias importantes tal como pérdidas económicas y en algunos casos incluso pérdidas humanas. Con estos análisis es posible examinar la historia de las piezas dañadas con el fin de entender porqué y cómo se dio el fallo en primer lugar y la forma de prevenirla. De esta forma implementar condiciones más seguras. La inspección visual es la base para la generación de todo proceso fractográfico en el análisis de falla y constituye la herramienta principal para la clasificación de fracturas. El proceso, usualmente, es realizado por personal no-experto en el tema, que normalmente, no cuenta con el conocimiento o experiencia necesarios requeridos para el trabajo, lo que sin duda incrementa las posibilidades de generar una clasificación errónea y, por lo tanto, obtener resultados negativos en todo el proceso. Esta investigación se centra en el desarrollo de un sistema visual de visión por computado que implementa una arquitectura de aprendizaje profundo enfocada en el análisis de textura. Diferentes enfoques fueron tomados en cuenta, incluyendo la combinación de técnicas de aprendizaje profundo con características tradicionales y el desarrollo de una nueva arquitectura basada en la transformada wavelet y el análisis multiresolución. El algorítmo fue probado en bases de datos de referencia en textura y en la clasificación de fracturas mecánicas en materiales cristalinos, las cuales presentan texturas y marcas características dependiendo del tipo de fallo generado sobre la pieza.Fundación CEIBADoctorad

    Multiresolution signal decomposition schemes. Part 2: Morphological wavelets

    Get PDF
    In its original form, the wavelet transform is a linear tool. However, it has been increasingly recognized that nonlinear extensions are possible. A major impulse to the development of nonlinear wavelet transforms has been given by the introduction of the lifting scheme by Sweldens. The aim of this report, which is a sequel to a previous report devoted exclusively to the pyramid transform, is to present an axiomatic framework encompassing most existing linear and nonlinear wavelet decompositions. Furthermore, it introduces some, thus far unknown, wavelets based on mathematical morphology, such as the morphological Haar wavelet, both in one and two dimensions. A general and flexible approach for the construction of nonlinear (morphological) wavelets is provided by the lifting scheme. This paper discusses one example in considerable detail, the max-lifting scheme, which has the intriguing property that it preserves local maxima in a signal over a range of scales, depending on how local or global these maxima are

    A Vlsi architecture for lifting-based wavelet packet transform in fingerprint image compression

    Full text link
    FBI uses a technique called Wavelet Scalar Quantization (WSQ), a wavelet packet transform (WPT) based method, to compress its fingerprint images. Though many VLSI architectures have been proposed for wavelet transform in the literature, it is not the case for the WPT. In this thesis, a VLSI architecture capable of computing the WPT is presented for application of WSQ. In the proposed architecture, Lifting Scheme (LS) is used to generate wavelets instead of the traditional convolution filter-bank (FB) specified in original standard. A comparative study between LS and FB shows that quality of images transformed by LS is completely acceptable (with 30dB∼40dB PSNR at a target bit rate of 0.75dpp) while fewer operations required. In particular, to compare with FB, the hardware consumption, for our WSQ application, is reduced to half due to the LS. Moreover, this architecture can be easily configured to compute any required WPT application
    corecore