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Research Line:

Digital Image Processing

Research Group:

GAUNAL

Universidad Nacional de Colombia

Faculty of Engineering, Department of Electrical and Electronic Engineering
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Abstract

Nowadays, many classification problems are approached with deep learning architectures,

and the results are outstanding compared to the ones obtained with traditional computer

vision approaches. However, when it comes to texture, deep learning analysis has not had

the same success as for other tasks. The texture is an inherent characteristic of objects, and

it is the main descriptor for many applications in the computer vision field, however due to

its stochastic appearance, it is difficult to obtain a mathematical model for it. According

to the state of the art, deep learning techniques have some limitations when it comes to

learning textural features; and, to classify texture using deep neural networks, it is essential

to integrate them with handcrafted features or develop an architecture that resembles these

features. By solving this problem, it would be possible to contribute in different applications,

such as fractographic analysis.

To achieve the best performance in any industry, it is important that the companies have a

failure analysis, able to show the flaws’ causes, offer applications and solutions and generate

alternatives that allow the customers to obtain more efficient components and productions.

The failure of an industrial element has consequences such as significant economic losses,

and in some cases, even human losses. With this analysis it is possible to examine the back-

ground of the damaged piece in order to find how and why it fails, and to help prevent

future failures, in order to implement safer conditions. The visual inspection is the basis for

the generation of every fractographic process in failure analysis and it is the main tool for

fracture classification. This process is usually done by non-expert personnel on the topic, and

normally they do not have the knowledge or experience required for the job, which, without

question, increases the possibilities of generating a wrong classification and negatives results

in the whole process.

This research focuses on the development of a visual computer system that implements a

textural deep learning architecture. Several approaches were taken into account, including

combining deep learning techniques with traditional handcrafted features, and the develop-

ment of a new architecture based on the wavelet transform and the multiresolution analysis.

The algorithm was test on textural benchmark datasets and on the classification of mecha-

nical fractures with particular texture and marks on surfaces of crystalline materials.

Key words: Machine Learning, Computer Vision, Deep Learning, Texture Analysis,

Failure Analysis.
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1. Introduction

Convolutional neural networks (CNNs) have become the dominant approach for different

machine learning applications. Since AlexNet [68] performed much better than other models

in the ImageNet challenge [27], several deep learning architectures have been developed.

Based on backpropagation, CNNs can leverage correlation and structure inside datasets by

directly tuning the network trainable parameters for a given task. However, when it comes

to texture, deep learning has not had the same success as in other classification tasks [13],

which becomes a limitation of deep learning given that texture is an inherent feature of

objects and is the primary descriptor for many applications in computer vision [21].

The trend in CNNs is to increase the number of layers to be able to model more complicated

mathematical functions, to the point that recent architectures surpass 100 layers [52, 54].

There is, however, no guarantee that increasing the number of layers is always advantageous.

Zagoruyko et al. [120] indeed showed that decreasing the number of layers and increasing

the width of each layer leads to better performances than their commonly used thin and

very deep counterpart, while reducing training time. Their results also support our general

observation that current CNNs are not necessarily designed systematically, but usually th-

rough a manual process based on trial-and-error [32].

A limitation of such networks is the lack of interpretability, which is usually referred to as

the Achilles heel of CNNs. Convolutional neural networks are frequently treated as black-box

function approximators which map a given input to a classification output [29]. As deep lear-

ning becomes more ubiquitous in domains where transparency and reliability are priorities,

such as healthcare, autonomous driving and finance, the need for interpretability becomes im-

perative [19]. Interpretability enables users to understand the strengths and weaknesses of a

model and conveys an understanding of how to diagnose and correct potential problems [29].

Interpretable models are also considered less susceptible to adversarial attacks [99].

Furthermore, when it comes to texture, deep learning has not had the same success as in

other classification tasks [13], which becomes a limitation of deep learning given that textu-

re is an inherent feature of objects and is the primary descriptor for many applications in

computer vision [21].

This research focuses on developing a deep learning approach able to classify texture. We



2 1 Introduction

choose failure analysis as an application because it plays an important role in many indus-

tries, such as the automotive industry [86]. The failure of an industrial element may lead to

significant economic losses, and in some cases, even human losses. Visual inspection is the

base for fracture classification and is typically performed by non-expert personnel on the

topic who may not have the knowledge or experience that the job requires [7]. Fractographic

classification can be performed as a texture analysis problem [12]. It relates to the visual

analysis of mechanical fracture surfaces to find propagation patterns and the origin of the

fracture [69]. Through characterization of the fracture surface, it is possible to study the

history before the failure happened, and ultimately, the causes of the failure.

To achieve this, we first proposed a modification of traditional CNNs consisting of integrating

deep models with handcrafted features. More precisely, three different sets of handcrafted

features, namely, Haralick, fractal dimension and LBP, extracted from the features maps

generated by the convolutional layers of the VGG-19 deep learning model. We tested our

model in a textural benchmark dataset denominated KTH-TIPS [18]; which demonstrated

that blending deep learning models with traditional approaches leads to better results com-

pared to those obtained with deep learning techniques only. This motivated us to design an

architecture that captures texture features while performing an end-to-end training.

Theoretical properties of traditional signal processing approaches, such as multiresolution

analysis using wavelets, are well studied, which makes such approaches more intepretable

than CNNs. Inspired by Wavelet-CNNs studies [39, 89, 117], this work proposes an ap-

proach able to perform multiresolution analysis within the network architecture by using

the lifting scheme [107] to obtain a data-driven wavelet transform. The lifting scheme of-

fers many advantages compared to the first-generation wavelets, such as adaptivity, data-

drivenness, non-linearity, faster and easier implementation, fully in-place calculation, and

reversible integer-to-integer transform [121].

Unlike previous works which combine CNNs and wavelets, the model learns all the filters

from data in an end-to-end framework. Due to the connection with multiresolution analysis,

the number of layers in our network is determined mathematically. In addition, the need for

hyper-parameter tuning is significantly less compared to state-of-the-art architectures be-

cause it is based on stacking modules of the same topology. The combination of end-to-end

training and multiresolution analysis via the lifting scheme allows us to efficiently capture

the essential information from the input for image classification. The use of multiresolution

analysis generates a relevant visual representation at each decomposition level, which con-

tributes to the interpretability of the network.

The evaluation of the proposed network was performed on three competitive benchmarks for

image classification tasks, namely, CIFAR-10, CIFAR-100 and ILSRVC-2012 (ImageNet).
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The proposed model gets comparable results to those obtained by state-of-the-art classifi-

cation networks. This work is the first to propose trainable wavelet filters in the context

of CNNs. It was also tested on KTH-TIPS-2b [18] dataset achieving state-of-the-art results

with a small number of parameters.

Finally, both approaches were tested on two fracture datasets: i) a real-scale fracture dataset,

with three types of fractures, namely, ductile, brittle and fatigue; and ii) a Scanning Elec-

tron Microscope (SEM) dataset, with four kind of fractures, the three before mention plus

a corrosion fatigue mode. And the results for the real-scale fracture dataset were compared

to those gotten by two experts on the topic, in order to validate them. It can be concluded

that the proposed architectures have competitive performances to the ones obtained with

handcrafted features, while performing an end-to-end training.

As an appendix to this work we present an approach considered as a possible data aug-

mentation application, motivated by the small amount of images obtained for the real-scale

and SEM datasets. This approach uses a Progressive Growing GAN, in order to obtain new

generated synthetic data. However, this approach does not represent a high improvement

over the final classification, reason why it is not included in the main text.

1.1. Objectives

1.1.1. General Objective

To design a visual computer system by implementing a textural deep neural network archi-

tecture, capable of classifying texture patterns in mechanical fractures surfaces as support

in failure analysis inside the department of Nariño - Colombia.

1.1.2. Specific Objectives

1. To propose a deep convolutional network architecture applied to texture databases.

2. To develop a system capable of recognizing texture by combining deep neural archi-

tectures and handcrafted features.

3. To develop an automatic classification algorithm for images from mechanical fracture

surfaces.
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4. To perform the systematic validation of the final system of mechanical fracture classi-

fication, with statistical significance, by the support of human experts on the topic.

1.2. Contributions

Deep learning Combined with Handcrafted Features

• The proposed model extracts three sets of handcrafted features, namely fractal dimension,

Haralick features and LBP, from the output of different convolutional layers of the VGG-

19 model pre-trained with the ImageNet database

• Experimental results suggested that it is beneficial to integrate handcrafted features with

deep neural networks for the problem of texture classification.

Note: Achieves specific objective No. 2

Deep Adaptive Wavelet Network

• The network is interpretable since approximation and detail coefficients, which have a

relevant visual representation, are generated by the multiresolution analysis, using the

lifting scheme at each decomposition level.

• The architecture is designed in a systematic fashion, without a trial-and-error process,

and with significantly less hyper-parameter tuning than state-of-the-art CNN models for

image classification.

• The network extracts features using a multiresolution analysis approach to capture es-

sential information for classification. The loss function used to train the network ensures

that the captured information is relevant to the classification task, while keeping the

properties of the wavelet transform. Furthermore, it offers competitive accuracy in image

classification tasks.

Note: Achieves specific objective No. 1

Deep Learning and Fracture Analysis

• Two Failure datasets are analysed: i) Real-scale fracture database, with three kind of

fractures (ductile, brittle, fatigue) and ii) Scanning Electron Microscope with four kind

of fractures to analyze (ductile, brittle, fatigue and corrosion fatigue).

• The results of Deep Learning plus handcrafted features method show that this approach

can improve those of the VGG-19 features obtained from a pre-trained architecture.

• DAWN architecture proves to be suitable for textural analysis in real world problems.

• Human expert validation is presented showing competitive results on the real-scale frac-

ture database for the DAWN architecture.
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Note: Achieves specific objectives No. 3 and 4
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Many real world image analysis uses texture as the primary descriptor; including automated

inspection, image retrieval, and medical image analysis [81]. Even though the texture could

be described as a variation of intensities or colors that create certain patterns in a determined

region, it is still a difficult concept [114]. Proof of this are all the different attempts made

by computer vision researchers trying to explain it [113]. In consequence, a lot of methods

have been proposed in the computer vision field trying to generate the texture classification

or segmentation in an image.

As a particular application of texture recognition, this work will focus on fractographic

analysis, which is a visual analysis on the surface of mechanical fractures, looking for specific

features like propagation patterns and the fracture origin. The characterization of the frac-

ture surface, makes it possible to show the history before the flaw, which allows us to find

the causes of the failure. It is important to highlight that without the necessary information

about how the fracture was generated it is hard to find the causes that produced it.

The next subsections present the state of the art for this research, which includes some textu-

ral analysis used in computer vision in the last years and a new approach in computer vision

techniques called deep learning with its influence on texture analysis. Finally, a background

about failure analysis and fractography.

2.1. Textural Analysis in Computer Vision

In computer vision, many different methods have been proposed to analyze texture. Most of

them used the same four steps: pre-processing the images, features extraction, feature selec-

tion and machine learning task(s) (classification, segmentation, pattern recognition, among

others) [81]. However, these methods are manly focused on the feature extraction step, trying

to improve the results on a particular task by finding different features. These features could

be divided into four main groups: i) Statistical features, ii) Structural features, iii) Pro-

bability models and finally, iv) Filter models. The first group, uses statistical features to

describe texture by modeling the human visual system [81]. The most common method is

the one proposed by Haralick [97], which uses the gray level co-occurrence matrix of an

image, calculated in 4 directions, and extracts 26 features from them. This method presents

favorable results in different researches such as in the one presented by Pham [93]. However,
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as summarized by Sayadi et al. [101] to improve these results many other approaches have

been proposed. For example, the gray level run length matrices for texture analysis [40]

calculates the number of consecutive pixels that have the same gray level value, and puts

it on matrices calculated in 4 directions with the run length vs. the gray level value. The

gray level aura matrices [31], based their concept in the aura set and the aura measure to

generate the matrix. Finally, the Local binary patterns [109] are defined as a gray-scale and

rotation invariant approach for texture classification; just to name a few.

The second group uses structural features by decomposing the texture into elements denomi-

nated as primitives [81]. For example, the morphological operations [94], which uses different

morphological transformations like granulometry, orientation map surface area, watersheds,

etc., to discriminate textures. Fractal dimension is also used in this type of operations and

contains information about the geometric structure of the object [90]. However, according

to Maani [81], these methods work fine with macro-structural textures but not with micro-

textural ones.

The third group is probability models. For instance, Markov Random Fields [24] are pro-

posed as texture models, proving that the Markov random field controls the strength and

direction of the clusters inside the images. The problem with this kind of method is that it

is necessary to choose the correct model for a given texture and then map it to a selected

probability model [81].

The final group of texture analysis applied filters on the image to get different features, this

is the case of Gabor Filters defined in [56] as basically sine and cosine functions modulated

by a Gaussian window to develop a local Fourier analysis.

In the past few years, researchers have been modifying these methods by adding different

approaches to them, but continuing with the four basic steps mentioned above. This is the

case of the approach proposed by Maani et al. [81], where the researchers used the magnitude

of the coefficients of the 1D Fourier transform to define a local frequency descriptors. They

tested their descriptor on the Outex, CUReT, and KTH-TIPS databases. Pham [30] used

the Kolmogorov-Sinai entropy, measuring the amount of chaos in an image. Hadida [45] and

Tang [110] applied the LBP method to two particular classification problems: the first one

used 13 variants of local binary pattern and applied them to gender recognition; while the

second one used LBP to classify tea leaves. Ahmadvand [28] developed two techniques to

generate local parameter histograms based on Gaussian-Markov random fields descriptors

applied to Brodatz and CUReT databases. Zhao et al. [122] proposed a new method denomi-

nated Completed Robust Local Binary Pattern (CRLBP), where the authors modified the

original LBP by replacing each central pixel in a 3 × 3 local area by its average local gray

level, obtaining a robust descriptor to noise and illumination. In [49] the concept of aura
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matrices was extended having into account the imprecise nature of images and used them as

a texture descriptor. Furthermore, many of these research test their textural descriptors in

data sets as the Brodatz Image Database obtaining great results, but when these are tested

in textures with minimal different patterns between them, these results tend to decrease.

Purchasing a network able to characterize textures with a significant percentage of accuracy

will allow us to solve various problems in computer vision.

2.2. Deep Learning Technique

The aim of deep architectures is to learn features hierarchies by obtaining high-level featu-

res from the composition of lower level hierarchies. This allows a system to learn features

directly from the input image without depending exclusively on handcrafted features [15].

These architectures are based on the mammal brain, which appears to obtain information in

different stages such as detection of edges, primitive shapes and moving up to more complex

shapes [15]. Although this research field is not new, many researchers have tried to train deep

multi-layer neural network. Only until 2006 Hinton at University of Toronto reported posi-

tive experimental results by using deep belief networks [53]. Since then, deep networks have

been successfully applied in many different applications in machine learning [15]. Among the

reasons that motivate the use of deep networks according to Bengio [15] are:

They learn with little human intervention and with a big amount of abstraction.

They allow representing complicated function needed in artificial intelligence applica-

tions.

They allow learning from a big amount of data.

They have the ability to make unsupervised learning, obtaining structure from the

data.

2.2.1. Convolutional Neural Networks (CNN)

Convolutional Neural Networks are one of the first truly successful deep learning approach.

In the computer vision field, many architectures have the images as input, and therefore, its

neurons are arranged in a 3-dimensional space with width, height, and depth. Contrary to

conventional neural nets, the neurons in a layer will only be connected to a small portion

of the layer before, instead to be all neurons fully-connected [75]. In Fig. 2-1 a comparison

among a regular neural network and a CNN is shown.

Convolutional nets architecture contains three main types of layers: i) Convolutional layer,

ii) pooling layer and iii) fully-connected layer (the same of regular neural networks). The
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Figure 2-1.: Left: a regular three-layer neural network. Right: CNN. Every layer transforms

the 3D input volume into a 3D output volume of neurons activations. The red

input layer holds the image, so its width and height are the dimensions of the

image, and the depth would be three due to the image channels (Image inpired

by [75]).

Convolutional layer consists of a set of filters with a small 2D dimension but extended

through the full depth of the input volume. In the first layer, the depth of the filter will be

the number of channels in the image [75]. For each 3D filter, a 2D dimensional activation map

will be produced and the depth of the output volume will be produced by stocking the entire

set of activation maps in each convolutional layer [75]. Each neuron on the convolutional

layer is also connected only to a local 2D region of the input layer, but fully connected

along the entire depth. Fig. 2-2 presents an example of a convolutional layer. It also shows

that each neuron acts like a regular neural network by performing a dot product of their

weights with the input followed by a nonlinearity [75]. The convolutional layer obtains an

Figure 2-2.: Example of a convolutional layer. At the left: the input volume of 32×32×3 is

in red and an example of neurons in the first convolutional layer, each neuron

is connected to a local 2D region of the input volume, but to the full depth.

At the right: The neurons act like a regular neural network, but restricted in

its connectivity (Image inpired by [75]).

output volume, whose depth corresponds to the number of filters used in the layer. Each



10 2 Chapter 1: State of the Art

filter looks for a different feature on the input image. Its stride corresponds to the number

of pixels a filter slide through the image; this means that when the stride is equal to 1, the

filter will move one pixel at a time and so on. Sometimes, it is convenient to add some zeros

around the input border, to control the spatial size of the output. This process is called

zero-padding [75]. The pooling layer is commonly used between convolutional layers and its

function consist in progressively reducing the spatial size of the representation to reduce the

amount of parameters and computation in the network. These layers apply a max operation

in every depth slice of the input and re-size it in the 2D space [75]. The most common

pooling layer consists in filters of size 2×2 with a stride of 2 as it is shown in Fig. 2-3 where

an example of pooling layer is presented. iii) Finally, the fully-connected layer has neurons

connected to all activations in the previous layer as occurs in a regular neural network [75].

Figure 2-3.: At the left: An example of downsampling the input volume through a poo-

ling layer. At the right: The most common downsampling operation the max

pooling (Image inpired by [75]).

2.2.2. Transfer Learning and Data Augmentation

To use deep neural networks it is usually necessary to input a large amount of data in the

net, this way, the network will have enough information to accomplish the classification task.

However, in many applications, there is not enough data to train a network from scratch.

For this reason, two methods are commonly used in order to solve this problem: i) Transfer

Learning, which uses a pre-trained network with a big enough dataset and transfers some

parameters to a new system where the input data is limited. And ii) Data Augmentation,

which makes different transformations on the input data and, by doing this, it obtains some

new and different information. These two methods are explained below in details.

Transfer learning According to Torrey and Shavlik [111], transfer learning improves a

learning task by transferring the knowledge already learned from a related work. The study
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of this method is motivated by the fact that humans can use previously acquired knowledge

to solve new problems faster and more efficiently [91]. In image analysis, this method is

used because there is not the necessary amount of data to train a deep neural network

from scratch. The two most common approaches are using the convolutional network as a

fixed feature extractor or fine-tuning the convolutional network [75]. In the first case, the

convolutional network of the pre-trained source is taken, and the last fully-connected layer

is removed; finally, this convolutional network is used as a fixed feature extractor from the

dataset [75]. The second method fine-tunes the weights acquired in the pre-trained source

into the target dataset; this approach takes advantage of the fact that early features of the

convolutional network extract more generic features than the final layers [75].

Data augmentation In many applications the available dataset is not enough to train a

classifier. For this reason, some research transform the available samples into new samples,

preserving the labels. This process is called Data Augmentation (DA) [37]. Even though Da-

ta Augmentation is usually made to train very large deep networks, looking to improve the

generalization error, it is not a simple process due to it involving some manual choices [37].

In practice, this process is made by hand, applying a small set of transformations for which

the classifier will believe to be invariant [50]. Some DA methods could be brightness aug-

mentation, which changes the intensity by simulating day and night conditions; horizontal

and vertical shifts, which simulates the effect of different position; rotation of the image,

among others.

2.2.3. Deep learning in Texture Applications

The most recent researches in deep learning have proved that it is possible to identify objects

by learning features directly from the data. However, when it comes to classify textures

it is not that simple. Geirhos et al. [41], developed several test to evaluate if CNNs are

biased towards shape or texture. In their experiments, CNNs encounter more difficulties

recognizing objects when they lose textural information. The authors created a stylized

dataset using a style-transfer technique and they prove that when an object is stylized the

network will probably classify the texture rather than the object itself. However, in their

method they are not exactly classifying texture, and furthermore, they do not evaluate

inner class variation on textural datasets. On the other hand, Basu et al. [13], argument

that CNNs has had a limited success when it comes to learning textural features, because

there are some limitations with the existing neural networks architectures. By using the

Vapnik and Chervonenk dimension, the authors showed that handcrafted features (such as

Haralick features) create a low-dimensional representation of texture databases that helps

to reduce the overall error rate. Furthermore, they calculated the intrinsic dimension of

some popular object recognition databases by using the maximum likelihood algorithm,

and compared them with textural databases (results in Table 2-1); concluding that texture
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datasets have an inherently higher dimensional manifold compared to object recognition

datasets. Therefore, they are more difficult to classify by neural networks. Finally, they

point out that, to classify texture using deep neural networks, it is necessary to integrate

them with handcrafted features or create a novel neural architecture that allows learning

features from the input datasets resembling these handcrafted texture features.

Table 2-1.: Intrinsic dimension of some object recognition and texture datasets [13]

Object Datasets

Dataset MNIST CIFAR10 DET 1

Intrinsic Dim 9.96 15.9 17.01

Texture Datasets

Dataset Brodatz KTH KTH-2

Intrinsic Dim 34.87 43.69 54.19

Intrinsic Dim (Haralick features) 4.03 3.73 3.93

In recent years, there are a few researches on textural computer vision problems, using deep

learning techniques. Hafemann et al. [46] classify forest species by using CNN addressing it

as a texture classification problem. They used two forest species datasets, one with macros-

copic images of 41 classes containing over 50 high-resolution images for each class, getting

95.77% of accuracy against a 97.77% achieved in the state of the art. And one with micros-

copic images of 112 species containing 20 images for each class, with an accuracy of 97.32%

improving on the-state-of-the-art by 5%. The architecture used in this research consists of

one input layer; two combinations of convolutional and pooling layers with 64 filters of 5×5,

and the pooling layer with windows of 3 × 3 and stride 1; one locally-connected layer with

32 filters of 3× 3 and stride 1; and finally, one fully-connected output layer.

Cimpoi et al. [21] proposed a describable texture dataset, which consists of a collection of

5640 real-world texture images labeled with adjectives taken from a vocabulary of 47 English

words. Then, they performed two feature analysis: first they tested different handcrafted fea-

tures, and secondly they used transfer learning with ImageNet in a VGG 19 architecture to

extract features from the last pooling layer of the model. Then two classification methods

are tested: using those features as input to an SVM classifier and inputting them into a fisher

vector transformation before the SVM classifier. Finally, they concluded that CNN features

is a good texture descriptor to achieve texture segmentation and classification. However, ac-

cording to Andrearczyk and Whelan [6], this method is computationally expensive, so they

developed a simple network architecture called Texture-CNN (T-CNN), which obtains an

energy measure from the last convolutional layer before connecting it to a fully connected

layer. It was successfully applied in the biomedical texture image analysis performed by the

same researches [5] where they test this approach by using three datasets of liver tissues
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images.

Finally, Hafemann et al. [47] presented a transfer learning method, however, their transfer

method does not transfer the weights from the source, as previous works have done, but by

performing a forward propagation of the target dataset, obtaining a new representation for

each sample, and performing the final classification by using a support vector machine. The

source dataset contains 41 classes, and around 65 GB images with resolution 3264 × 2448;

the target dataset is the Brodatz dataset highly used in texture analysis.

2.2.4. Wavelet Analysis and Convolutional Neural Networks

There are some works that incorporate wavelet representations into CNNs. Oyallon et al. [89]

proposed a hybrid network which replaces the first layers of ResNet by a wavelet scattering

network. This modified ResNet resulted in comparable performance to that of the original

ResNet but has a smaller number of trainable parameters. Williams et al. [116] took the

wavelet sub-bands of the input images as a new input and processed them with CNNs. In

a different work [117], they showed a wavelet pooling algorithm, which uses a second-level

wavelet decomposition to subsample features. Lu et al. [80] addressed the organ tissue seg-

mentation problem by using a dual-tree wavelet transform on top of a CNN. Cotter and

Kingsbury [23] also used a dual-tree wavelet transform to learn filters by taking activation

layers into the wavelet space.

Recently, Fujieda et al. [39] proposed a wavelet CNNs (WCNNs), which were built upon

the resemblance between multiresolution analysis and the convolutional filtering and poo-

ling operations in CNNs. They proposed a CNN similar to DenseNet, but the Haar wavelets

(which are commonly used in multiresolution analysis) where used as convolution and poo-

ling layers. These wavelet layers were concatenated with the feature maps produced by the

succeeding convolutional blocks. This model is more interpretable than CNNs since the wa-

velet layers generate the wavelet transform of the input. However, the use of a fixed wavelet

(Haar) is likely suboptimal as it restricts the adaptability and cannot leverage data-driven

learning.

2.3. Failure Analysis

The visual observation of the surface of a fracture gives information about the characteri-

zation of the rupture of the element, like the crack propagation mechanism or the fracture’s

origin, the tenacity of the material, the tension configuration, distribution, and magnitude

and the chemical environment. This observation allows us to make a qualitative estimation

of the acting tension magnitude. There are some patterns that show if the acting forces of

the failure were high or low. The determination of the fracture’s origin is one of the main
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contributions because it is created inside the piece, for instance, in some structural imper-

fection, it is required to get better materials, but if a fissure is placed on the component

surface, it is necessary to increase the superficial resistance of the element [57].

Fractography is a discipline of materials science, and it studies the topographical features of

each failure mode on the surface of the fracture [34]. This study is made by a visual inspec-

tion, the first steps of this analysis could be performed by a well-trained human eye and, in

case of doubt, magnifiers could be used to help, such as a stereoscopic or a SEM [4]. The use

of an experienced person’s eye could extract plenty of information such as the presence of

the crack, corrosion marks, deformations, among others [102]. The initial general procedure

is to photograph the entire fractured part. Here, it is important to capture high-resolution

and clear contrast images. On a macroscopic scale, fractures can generally be classified as

ductile, brittle, fatigue fractures and fractures resulting from both stress and environmental

conditions [102]. Microscopical analysis allow to observe finer details in the fracture’s surfa-

ce [102]. This analysis also takes into account the kind of force that the element experiences,

the work environment, and the operation temperature, among other variables.

The mechanical fractures occur when a mechanical element splits into two or more fragments

Figure 2-4.: General classification of more common fracture failure modes in metallic mate-

rials, according to its sudden or progressive nature [34]. The fractures to work

with are framed in a square.

following three steps: i) nucleation of one or several cracks, ii) propagation of the crack(s)

and iii) fracture of the element [34]. Depending on the speed at which these phases take

place, fractures can be classified into sudden and progressive. They are sudden if the crack

propagation occurs between 0,2 to 0,4 times the speed of sound in the material and they are

progressive if the crack propagation is slow for instance 1 mm/day. It is possible to match up

the majority of failure modes in metallic materials through the basic classification between
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sudden and progressive. The first ones are classified depending on their behavior: ductile,

brittle or mixed mode; while the second ones are classified depending on what produces the

nucleation and the crack propagation, whether it is the force cycles (generating behaviors of

fatigue and corrosion fatigue), the time (generating slow fluency, embrittlement and corro-

sion effort) or mixed modes [34]. These fracture types can also be classified in mechanical

fractures, fractures assisted by the environment or fractures assisted by the temperature.

The classification of the fracture modes can be seen in Fig 2-4.

The distinctive marks and textures on the fracture’s surface are presented at following [34]:

Distinctive Marks (Figure 2-5):

Figure 2-5.: Common marks that can be find on fracture surface of mechanical elements[34].

- The direction of propagation marks. These marks are aligned with the local direction of

the crack growth on the fracture’s surface. Through them, two or more crack surfaces

are split and located at different height levels. Some of those marks are: i Saw-tooth

or Ratched marks, which are generated at the origin of the fracture and it splits each

mark between two adjacent independent cracks, creating the saw-tooth. ii River marks,

which look like a riverbed and are caused by the fact that during the crack propagation,

several planes are split up over the surface of the fracture. And finally, iii Radial marks,

which differ from the river marks in that they only split the surface into two planes [34].

- Front crack position marks. They show the location where, at some point, the crack

front was. They are perpendicular to the local growth direction and the direction of

propagation marks. These marks are: i Beach marks, generated by the speed growth

of the crack, by changes in the effort states or by environmental actions on the front of

the crack, among others. And ii Striations, which are formed with every crack growth

cycle and, for this reason, are separated by spaces of some micrometers [34].

- Wallner marks or interaction with deformation of waves. These are formed due to the

interference between the crack front (during an unstable crack propagation) and the
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deformation waves produced by the cracking phenomenon (when they are reflected

by free surfaces, they turn back into the crack zone or produced by applying forces

at high speed). These waves create small oscillations on each side of the main crack

propagation, leaving marks very similar to beach marks [34].

- Material change marks. They are formed when the crack propagation inside a piece go

through a change from a high toughness material to one with little toughness or vice

versa. Or when there is an effective change in the material composition [34].

Distinctive Textures:

- Granular texture. Shows a similar aspect to sand grains and tends to be shiny on

metals. It is formed from polycrystalline materials [34].

- Fibrous texture. It is more opaque and rough than the granular texture [34].

- Smooth texture. It is not very rough and in metals can be shiny [34].

- Flat texture. Under visual inspection, this texture is close to the flatness concept [34].

Becker [14] presented the Table 2-4 showing some general macroscopic and microscopic frac-

tographic features. He pointed out that it is possible to misinterpret the fracture surface’s

features, and, for this reason, the failure analysis process should use all the information

available to reach a conclusion as to the cause of the failure. Using just a single method i.e.

Macroscale examination without microscale examination, would lead to an incorrect conclu-

sion.

The fractographic analysis starts with a visual observation of the macroscopic features on

the fracture’s surface, followed by the stereoscopic analysis, which can be used to confirm

previous observations [57]. Developing an automatic algorithm for segmentation and classi-

fication of fractures would contribute to this analysis and, for this reason, would prevent the

generation of future failures that would lead to economic and human losses in industries.

2.3.1. Computer vision techniques used in fractographic applications

An expert system is a computer program that emulates the behavior of a human expert and

consists in one of the most practical applications of artificial intelligence [76]. One of the main

reasons to use this kind of systems is that it is sometimes not possible to find an available

expert or that it may be too expensive to hire one. Optimizing time, improving productivity

and facilitating workers training are also very important reasons for such developments [76].
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Computer techniques are essential to process fractographic digital images, since it allows it to

obtain more information in less time and achieving better results than traditional ways [17].

These techniques have been used in failure analysis and materials science for different appli-

cations. For example, to estimate the crack growth rate (CGR) through textures of surfaces

acquired by SEM, obtaining a fracture surface reconstruction through sub-images previously

selected process called auto-shape analysis [72]. In many cases, the images of some specific

material are analyzed, as in the work of Camargo et al. [17], whom evaluate the API5L-X52

steel, looking for the characterization of micro-holes morphology. Laushmann [73] and Ko-

sarevych [66] explained fractographic texture methods with the aim of reconstructing the

history of fatigue fracture, using the relationship between textural features on the fracture’s

surface and the CGR. For 3D analysis, Kolednik et al. [63] used the shape reconstruction

method through stereo images, applying an algorithm able to find homologous points bet-

ween two images. The stereo algorithm recovers the shape through multiple images from the

same scene, using a fixed viewing direction and different light source [95]. The use of the

information given by three-dimensional images allows it to determine relevant quantitative

features, such as the local roughness and leads to a deeper comprehension of the failure

mechanisms [62]. The reconstruction process is applied with the final purpose of obtaining

the 3D mesh for each region of interest (ROI) [62].

For the recognition or classification of fracture’s surfaces, Komenda et al. [58] worked with

three kinds of sintered steel looking to recognise the morphology, measures and apparent

porosity on the fracture’s surface. They got their images with SEM, and they analyzed the

fatigue fracture mode. Among the obtained features are the morphological gradient on gray

level images, and they took into account the nearest local neighbors to do the classification.

In [64], they create a program able to classify between six different morphologies of fracture’s

surfaces, using as descriptors, the Fourier spectrum, the co-occurrence matrix (where they

extract three features: contrast, variance, and correlation), and 3D topology. The data set

acquisition is made using SEM, and the cluster method used the K-means algorithm. Howe-

ver, the classification percentage does not get over the 80% on the majority of morphologies.

2.3.2. Deep Learning methods used in fractographic applications

Deep learning have become a highly immersive field in different applications and topics; some

studies show fractographic analysis using deep learning approaches. Most of them focus on

one kind of failure mode or type of material, such as the approach presented by Mahto [82],

who analyzed the fracture mode generated on a ductile iron material by a tension test using

various heat. Konovalenko et al. [65] used CNNs to analyze the rupture surface of a tita-

nium alloy, detecting dimples on SEM images, and they arrived to the conclusion that CNNs

perform similarly to stat-of-the-art handcrafted features in this application. Tsopanidis et
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Figure 2-6.: Samples of typical texture on a fatigue fracture surface. Low (a) and High (b)

CGR. AISI304L stainless steel [72].

Figure 2-7.: Basic subimages selected through training images [72].

al. [112] analyzed transgranular and intragranular brittle fractures of two ceramimc materials

by using CNNs and a semantic segmentation algorithm in SEM images. They concluded that

the proposed method had a high performance, even when the model is only trained in one of

the two ceramic materials. Wang et al. [108] used a DenseNet model pre-trained with Ima-

geNet and fine-tuned features to localize the fracture’s origin in fatigue failure mode of SEM

images; they recognized that the proposed method do not overcome other object detector

approaches, though they highlighted that results are promising and proposed several future

work modifications. Haider [48] also analyzed fatigue failure modes. He used Monte Carlo

simulation output as input to the deep learning model of six hidden layers to determine the

time associated to the crack growth increments. Feng et al. [38] studied the solidification

cracking susceptibility, and by using deep learning pre-training and fine-tuning methods in

a small dataset (478 datapoints), he obtained better results than by using an SVM and a

shallow neural network in the same data.

In opposition to state-of-the-art studies, the approach presented here does not focus on one

type of material or failure mode, and presents a generalized model. Furthermore, most of
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Figure 2-8.: Comparison between the original image (a) and a reconstruct image (b) (256

x 256 pixels sections) [72].

the researches focuses only on SEM images, but in this work we focus on two databases, a

real-scale one and one taken with SEM.

Figure 2-9.: (a) Fractogram of a typical ductile fracture of bridges between fragments of

brittle cleavage fracture in neighboring areas of the fracture (b) and brightness

histogram of this image. [66].

2.3.3. Texture analysis and histogram of a surface fracture image

With the texture methods, it is possible to extract information from the whole image, to

make a statistical estimation, or to obtain a parameters model through the gray-scale ima-

ge [73]. Currently, some of them have been developed to obtain the history of the fracture’s

reconstruction [66]. They use histograms or the intensity pixel information to reconstruct an

image or to segment it. For this method, it is appropriate to use SEM with a zoom between

30× and 500× [72].

Among the qualitative fractography of fatigue fracture, the traditional source of information

about the crack growth are the striations. In the Figure 2-6 are shown two samples of the

typical textures for this mode of fracture, and it is possible to observed a high and low crack

growth. To calculate this CGR, the authors made an auto-shape analysis, which consists
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Figure 2-10.: Scheme of a fractographic image conversion (a) using shine levels as labels

(b) Inside a segmented image (c) [66].

Figure 2-11.: Successive transformation of an input fractographic image (a), Segmented

images as result of pixel fragmentation inside five subsets (b), with isolation

of typical elements (c), dimples formed (d), bridges formed between them (e),

and edge dimples conglomeration (f) [66].

in decomposing the testing images set through special small sub-images (Figura 2-7). This

way, every image is adjusted to a linear combination of those. In Figure 2-8 it is possible to

see the comparison between the original image and a reconstructed image. However, They

do not mention the existing error between the images. The auto-shape analysis method is

simple, easy to implement and computationally fast, obtaining results that can be compared

with other textural methods used in fractography and fatigue features, some of them more

complicated and with more time consumption [72].

In Figure 2-9 (a) the elements of a transgranular brittle fracture are shown in gray-scale ima-

ges. Due to the fact that the fracture relief is almost the same, with a small shiny gradient,

the histogram for this image is unimodal [66]. The essential step in the image segmentation

method using the histogram is to determine a finite set of local extremes. As a rule, during

the isolation of the histogram set, the existence of a maximum local and a minimum local

is necessary [66]. In Figure 2-10, the segmentation of a fracture surface using the image

histogram can be observed. After choosing, in the image, a point that in luminosity belongs

to a subset, a binary image was formed in which these points are part of the object, and the

rest of the points are part of the background. With these new images, it is easy to calculate
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Figure 2-12.: Fractograpgy of a metal welding (a) and the image histogram (b) [17].

Figure 2-13.: Fractography of a metal welding; Original image (a) and segmented image

(b) [17].

the qualitative features of the objects, for instance: area, perimeter and orientation [66]. In

Figure 2-11 a segmentation sequence of the image is shown, and this illustrates the succes-

sive transform of an input image in the segmented images.

In Figure 2-12, a fractographic grey-scale image of a ductile fracture with micro-holes morp-

hology is shown. This image was segmented with the Otsu method (Figura 2-13) and its

histogram. This segmentation was made in order to observed the growth of micro-holes den-

sity and the reduction of their diameter as consequence of age in a welding micro-alloyed

steel [17].

In Figure 2-14, a fiber extraction is shown through a fatigue fracture image. This extraction

was made with an image normalization looking for similar textures. The procedure was made

by detecting the edges convolving the original image with the following mask [73]:

U =

[−1 −3 9 −3 −1

−1 −3 9 −3 −1

]
.

2.3.4. Fractographic classification in metallic materials by using

computer vision

In our previous work [98], it was decided to create a classification system with the support of

my adviser and co-adviser. This system allow us to classify fracture surfaces with three failure
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Figure 2-14.: Fiber extraction in a fatigue fracture surface image; (a) normalized image

(400 X 300 pixels), (b) fiber detection, (c) significant fiber traces [73].

Table 2-2.: Results with the classification percentage of accuracy (ACC), sensibility (TPR)

and specificity (SPC) for each mode of fracture according to ANN classifier by

using 2D images.

Fracture ACC TPR SPC F1-score

Ductile 80.64% 63.88% 91.23% 0.719

Fatigue 84.95% 91.66% 81.74% 0.797

Brittle 82.8% 68.51% 88.64% 0.698

Average 82.79% 74.7% 87.2 0.74

modes: i) ductile, ii) brittle and iii) fatigue. As computer vision methods, we use an approach

obtaining 2D images in real scale [12]. The texture was the main descriptor and the features

that we used were Haralick’s features [97, 93] (obtained from the gray level co-occurrence

matrix in 2D [59]). The texture energy laws [2], calculated from the convolution between the

images with energy masks [55]; and, finally, the fractal descriptor [90], through the fractal

dimension [77, 26], which define the object in terms of occupation and self-similarity [11].

Furthermore, two classifiers were analyzed: artificial neural networks (ANN) [92, 3] and a

support vector machine (SVM) [1, 106, 105].

In the 2D analysis, the obtained results are very favorable [12], achieving the aim of clas-

sifying the fractures with an accuracy percentage over the 80% in the three fracture modes

studied and a macro f1-score of 0.74 (Table 2-2). We worked with two classification algo-

rithms commonly used in computer vision, artificial neural networks (ANN) and a support

vector machine (SVM). Their performances were evaluated through the ROC space [36] and

the ICSI and F metrics [70], where we concluded that the ANN classifier presents better

results than the SVM. Additionally, the input that generates each feature group was analy-

zed individually and by pairs, where we can see that the SVM is more efficient than ANN

in particular cases of fracture modes. However, the ANN classifier presents a better global

performance than SVM for the three studied fracture modes (Table 2-3).

Finally, the algorithm with 2D images achieves a classification of 77.4% of all the pieces

and is comparable with the results obtained by a human expert on the topic, which classi-
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Table 2-3.: Performance evaluation according to the fracture mode and the classifier

(GLCM: Haralick, LE: energy lows y D: Fractal Dimension).

Fracture mode Classifier Parameter ICSI F

Brittle

ANN

GLCM+LE+D 0.397 0.698

GLCM 0,279 0,6171

D -0,14 0,4516

SVM

GLCM+LE+D 0.119 0.535

D 0.7721 0.86

LE -0.085 0.447

Fatigue

ANN

GLCM+LE+D 0.621 0.797

GLCM+LE 0,5 0,74

D -0,0238 0,439

SVM

GLCM+LE+D 0.283 0,515

GLCM 0,81 0,90

LE+D -0,026 0,48

Ductile

ANN

GLCM+LE+D 0.460 0.719

GLCM+LE 0,46 0,071

LE 0,086 0,51

SVM

GLCM+LE+D 0.247 0.614

GLCM+D 0,32 0,65

D -0,017 0,4406

fication percentage is between the 70% and 87%. This was achieved by the expert without

an access to the real pieces, just by looking at the images. The pieces that were not correctly

classified showed similar features to another kind of fracture or the surface was too small to

be analyzed.
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Table 2-4.: Microscale fractography features [14]

Mark/Indication Implication

Visible distortion
Plastic deformation exceeded yield strength and may indicate ins-

tability (necking, buckling) or post-failure damage.

Visible nicks or gouges Possible crack initiation site.

Fracture surface orientation

relative to component geo-

metry and loading condi-

tions.

Helps to separate loading modes I, II, III Identifies macroscale duc-

tile and brittle fracture.

Both flat fracture and shear

lips present on fracture sur-

face

Crack propagation direction parallel to shear lips, Mixed-mode frac-

ture (incomplete constraint)

Tightly closed crack on sur-

face

Possible cyclic loading, Possible processing imperfection, e.g., from

shot peening, quench cracks

Radial marks and chevrons

(v-shape)

Point toward crack initiation site, Show crack propagation direc-

tion.
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Mark/Indication Implication

Crack arrest lines (cyclic

loading)(beach marks, con-

choidal marks)

Indicates cyclic loading, Propagation from center of radius of

curvature, Curvature may reverse on cylindrical sections as

crack propagates

Ratchet marks More likely in cyclic loading, Indicates initiation site(s)

Adjacent surface and or

fracture surface discolora-

tion

May indicate corrosive environment, May indicate elevated

temperature

Oxidized fingernail on frac-

ture surface
Possible crack initiation site

Fracture surface reflectivity

Matte: ductile fracture or cyclic loading, Shiny: cleavage likely,

Faceted (bumpy) and shiny; intergranular fracture in large

grain size.

Fracture surface roughness

Increase in surface roughness in direction of crack growth

(may be affected in bending by compressive stressed region

when crack moves into this region), smooth region plus rough

region in direction of growth—cyclic loading, rough matte

fractures are ductile, may indicate transition from fatigue

crack growth to overload.

Rubbing (general)
may indicate vibration, may show final direction of separation,

swirl pattern indicates torsion.

Rubbing (localized)
may indicate crack closure in cyclic loading, May obliterate

beach marks.

Deformed draw marks, ro-

lling scratches
If twisted, indicates torsion loading.

Machining marks (normal

to axis of component)
Not distorted in torsion loading.

Variable roughness of frac-

ture edge
In brittle bending, rough side is tension side.

Dimpled fracture surface Ductile overload fracture at this location.

Faceted fracture surface
Brittle cleavage fracture, possible SCC fracture, may be low

�K fatigue.

Intergranular with smooth

grain boundaries

Likely either improper thermal processing or environmental

assisted fracture (high temperature, corrosive environment).

Intergranular with dimpled

grain boundaries

Decohesive rupture—fracture at high fraction of melting

point, Possible improper processing creating denuded zone ad-

jacent to grain boundary.
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Mark/Indication Implication

River pattern or fan pattern
Cleavage fracture; crack runs down river; fan rays point to

initiation site within a grain.

Tongues Twinning deformation during rapid crack propagation.

Flutes on transgranular

fracture surface

Indicates corrosive environment and ductile fracture, Crack

propagates parallel to flutes.

Striated or ridged fracture

Cyclic loading fatigue striations; Constant spacing, constant

stress, amplitude; variable spacing, variable stress amplitude

or block loading, Striated surface caused by second phases in

microstructure.

Grooves or flutes SCC, TGF

Artifacts (mud cracks)

Dried liquid on surface. May indicate incomplete cleaning of

surface. If in the as-received condition, may indicate fluids

from service and may indicate SCC conditions. Material

should be analyzed.

Artifacts (tire tracks)
Common in cyclic loading, due to entrapped particulate mat-

ter.



3. Chapter 2: Deep learning Combined

with Handcrafted Features

Summary

Deep Learning is a machine learning technique that learns features directly from input data

and has achieved outstanding results in object classification. However, when it comes to

texture classification, the results of deep learning are not as good as in other classification

tasks. In this chapter, a deep learning method combined with handcrafted features is pre-

sented. This method uses the calculation of three common handcrafted features, namely, i)

Haralick’s features, ii) Fractal Dimension and iii) and Local Binary Patterns (LBP), taking

as input different levels of a common pre-trained deep learning architecture denominated as

VGG.

3.1. Handcrafted features

Three sets of handcrafted features widely used in texture recognition were selected: i) Hara-

lick features [97], ii) fractal dimension [11] and iii) LBP [123]. The first two sets of features

were already used in failure mode classification in [12] and the third set was already used

for texture classification [123].

3.1.1. Haralick’ features

One of the most popular methods to find features in texture analysis, it is called the Hara-

lick’s approach [97]. This method uses the grey level co-occurrence matrix of the image to

obtain several features trough the relationship among the pixels. The co-occurrence matrix

is the spatial relationship among two pixels located at certain distance d and an angle θ

form the reference pixel. This matrix is not symmetric, because it does not take into account

the relationship given by −θ; To solve this issue, it is necessarily to sum its transpose ma-

trix [59]. This concept is illustrated in Fig 3-1. Finally, a probabilistic matrix is obtained

by pij = Vij/
∑N−1

i,j=0 Vij, where i is the number of rows, j is the number of columns, Vij is

the value of the cell at position (i, j) and N is the total number of rows or colums in the

matrix [59]. An example of the calculation of this matrix it is shown below, taking d = 1
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and θ = 0◦

Figure 3-1.: Nearest neighbor pixels to a reference pixel in direction 0◦, 45◦, 90◦ and 135◦,
pixels 1,8,7 and 6 respectively, and direction −θ, pixels 5, 4, 3 and 2.

For example, given an input image:

Test Matrix =

⎛
⎜⎜⎜⎝

0 0 1 1

0 0 1 1

0 2 2 2

2 2 3 3

⎞
⎟⎟⎟⎠ .

The possible pixel combinations in the image are:

Cooccurrence Matrix =

⎛
⎜⎜⎜⎝

(0, 0) (0, 1) (0, 2) (0, 3)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 2)

(3, 0) (3, 1) (3, 2) (3, 3)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

2 2 1 0

0 2 0 0

0 0 3 1

0 0 0 1

⎞
⎟⎟⎟⎠ .

The previous matrix is not symmetric, so it does not take into account the −θ directions. To

turn it into a symmetric matrix, its transpose matrix is sum it. In this particular example the

directions θ = 0◦ and −θ = 180◦ are obtained. Finally, the probabilistic matrix is generated.

p(i, j) =

⎛
⎜⎜⎜⎝

0, 166 0, 166 0, 083 0

0 0, 166 0 0

0 0 0, 25 0, 083

0 0 0 0, 083

⎞
⎟⎟⎟⎠ .

After generating the co-occurrence matrix, the 11 features suggested by Haralick [97] are ob-

tained. Where:Ng is the total number of grey levels in the image, px+y(k) =
∑Ng

i=1

∑Ng

j=1i+j=k
p(i, j),
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k = 2, 3, ..., 2Ng and px−y(k) =
∑Ng

i=1

∑Ng

j=1|i−j|=k
p(i, j), k = 0, 1, ...., Ng − 1.

Angular second moment: It is also known as uniformity of energy. The greater the

similarity between the pixels, the greater this moment [93], f1 =
∑

i

∑
j p(i, j)

2.

Contrast: It Measures the variation among the intensity of grey levels [93], f2 =∑Ng−1
n=0 n2

{∑Ng

i=1

∑Ng
j=1 p(i, j)

}
|i−j|=n

.

Correlation: It shows the linear dependency among the values in the co-occurrence

matrix. Given a reference pixel, it is obtained 1 if they are perfectly correlated and 0

if they aren’t correlated at all [93], f3 =
∑

i

∑
j((ij)p(i, j) − μxμy)/(σxσy), where μx,

μy, σx and σy are the mean and the standard deviation of px y py.

Variance or sum of squares: It is the dispersion measure among the neighbor pixels

and the mean [93], f4 =
∑

i

∑
j(i− μ)2p(i, j).

Inverse difference moment: It measures the homgeneity on the image [93],

f5 =
∑

i

∑
j p(i, j)/(1 + (i− j)2).

Sum average: f6 =
∑2Ng

i=2 ipx+y(i).

Sum Variance: f7 =
∑2Ng

i=2 (i− f6)
2px+y(i).

Sum Entropy: f8 = −∑2Ng

i=1 px+y(i) log px+y(i).

Entropy: It is defined as the quantity of chaos or disorder [93],

f9 = −∑
i

∑
j p(i, j) log p(i, j).

Difference variance: f10 =
∑Ng−1

i=0 (i−f ′
10)

2px−y(i), where px−y(k) =
∑Ng−1

i=0

∑Ng−1
j=0 pd,θ(i, j),

k = |i− j| = 0, 1, 2..., (Ng − 1) y f ′
10 =

∑Ng−1
i=0 ipx−y(i).

Difference entropy: f11 = −∑Ng−1
i=0 px−y(i) log px−y(i).

Following the recomendation of Haralick [97], in this work, the co-occurrence matrix was

calculated with 256 grey levels and in four possible directions, θ = 0◦, 45◦, 90◦ y 135◦, with a

distance d = 1. The final features used are the average and the range for the four directions

in each feature, as it is shown in Eq. 3-1 and 3-2.

Average(d) =
1

Nθ

∑
θ

T (d, θ). (3-1)

Range(d) = máx
θ

[T (d, θ)]−mı́n
θ
[T (d, θ)]. (3-2)

Where T (d, θ) is the feature value and Nθ is the total number of directions.
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3.1.2. Fractal Dimension

Features obtained from the fractal dimension (D) were used, by computing Eq. 3-3. This

feature extracts important information about the geometric structure of the image [90].

While the topological dimension is given by an integer value, that describes the number of

dimensions that an object is immersed (1D, 2D , 3D), the fractal dimension uses real values

to described an object in terms of space occupancy and self-similarity [11]. One of the most

popular methods to obtain it is called Differential box counting (DBC), which assumes the

grey levels on the image as a 3D space, having the dimensions x and y as rows and columns

of the image, respectively; and the dimension z as the grey level on the pixel [77].

D =
log(Nr)

log(1/r)
, (3-3)

Differential box counting method Given an image of size M ×M pixels, it is divided in a

grid of size s× s pixels and a radius given by r = s/M < 1. If G is the total number of grey

levels, then s′ = G · s/M corresponds to the grey level units in the z direction for each box.

Then each box has a size of s× s× s′. If the minimum and maximum grey level in the (i, j)

cell falls in the boxes number k and l, respectively, then, the contribution of the (i, j) cell to

Nr is given by nr = l − k + 1. Finally, Nr =
∑

i,j nr(i, j) [77]. Fig. 3-2 shows an example of

the calculation of nr with s′ = s = 3. Supposing that the maximum grey level is equal to 8

and the minimum grey level is equal to 2 in the cell, then those level falls into the 3rd and

1st boxes, respectively, and nr = 3− 1 + 1.

Figure 3-2.: Example of the calculation of DBC method for one of the boxes with size

s× s× s′ con s′ = s = 3 [77].

Fractal Dimension on modifications of the original image Additionally to the calculation

of the fractal dimension in the original image, D is obtained through two modifications of the
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original image, namely, high grey level and low grey level value images, defined by Eq. 3-4

and 3-5; and one image obtained with the average of four neighboring pixels to a reference

pixel, Eq 3-6 [26]. If two images I1 and J1, has the same value of D, then its high grey level

values images I2 and J2, and low level value images I3 and J3 do not has the same roughness

and then, D will have different values in these modify images [26].

I2(i, j) =

{
I1(i, j)− L1, If I1(i, j) > L1

0, otherwise
. (3-4)

I3(i, j) =

{
255− L2, If I1(i, j) > (255− L2)

I1(i, j), otherwise.
, (3-5)

I4(i, j) =
1

4

2∑
i=1

2∑
j=1

I1(i, j), (3-6)

where, L1 = gmin + av/2 and L2 = gmax − gave/2, with gmax, gmin and gave being the maxi-

mum, minimum and average values on the original image.

3.1.3. Local Binary Pattern (LBP)

Since they were proposed in 1990 by Ojala et al. [109], these features are highly used in

texture analysis problem. They are based on the binary relationship among the pixels [109].

Taking the center pixel as reference and using it as a threshold for the pixel neighbors; if the

intensity of the center pixel is greater or equal to its neighbor, then the neighbor assumes a

value of 1, in the other case it assumes a value of 0. After that it is necessary to calculate the

local binary pattern for the center pixel, starting for any neighbor pixel (being consistent for

the next pixel LBP calculation and for all the images in the dataset). Fig. 3-3 presents an

example of LBP calculation.

Mathematically, the LBP code is computed by comparing a given pixel with its neigh-

bors [123], presented in Eq. 3-7, where gc corresponds to the grey value of the center pixel

and gp is the value of its neighbor. P is the total number of pixels and R is the radius of the

neighborhood

LBPP,R =
P−1∑
p=0

s(gp − gc)2
p, s(x) =

{
1, x ≥ 0

0, x < 0
(3-7)
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Figure 3-3.: LBP calculation example. The central pixel is the reference pixel, that acts as

threshold for the neighboring pixels.

The last step consists in obtaining an histogram with 256 possible values, given by Eq. 3-8,

where the maximal LBP pattern value is given by K [123].

H(k) =
I∑

i=1

J∑
j=1

f(LBPP,R(i, j), k), k ∈ [0, K]

f(x, y) =

{
1, x = y

0, Otherwise
.

(3-8)
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3.2. Very Deep Convolutional Network for Large-Scale

Image Recognition (VGG)

After AlexNet [68] won the ImageNet [27] challenge in 2012, which consists on classif-

ying among one thousand classes, several architectures have been constructed. In 2014, the

VGG [103] architecture improved the results achieved by its predecessors and served as a

basis to develop other architectures such as ResNet and DenseNet. Furthermore, there are

only two variations of the architecture tested on ImageNet and the one that achieves better

results on this database is the VGG with 19th layers, which makes it an easy test architec-

ture for the model presented in further sections. This architecture, presented in the Fig. 3-4

consists in five sequential convolutional blocks, separated by a maxpooling layer. The first

two blocks contain two convolutional layers with the same amount of filters, 64 and 128,

respectively. The three next blocks contain three or four (depending on whether it is a 16th

or 19th model) convolutional layers with the same amount of filters, 256, 512, 512 for each

block, respectively. The kernel size for each convolution layer is 3×3. After the convolutional

blocks a set of three fully-connected layers of 4096, 4096 and 1000 neurons is applied.

Figure 3-4.: VGG 19 original model

Table 3-1 presents the performance of VGG models trained on ImageNet, The VGG 19

model will be use in the next section in its pre-trained form.

Table 3-1.: VGG performance on ImageNet model [103] for the top-1 and top-5 error rate

model params Top-1% Top-5%

VGG 16 138 M 24.7% 7.5%

VGG 19 143 M 23.7% 6.8%
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3.3. Deep Learning architecture combined with

handcrafted features

Traditional deep learning architectures have not achieved good results when it comes to

texture classification. As stated by [13], this is because texture datasets lie in a much hig-

her dimensional manifold than object recognition datasets. In [13], the need to create new

deep learning architectures that integrate handcrafted features was emphasized. This paper

addresses this need by proposing a network architecture that extracts handcrafted texture

features from the output of selected convolutional layers.

One of the most common problems in deep learning is the lack of sufficiently large datasets
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Figure 3-5.: VGG-19 architecture

for training. Even with methods [88], such as data augmentation and transfer learning, net-

works still overfit. Unfortunately, to the best of our knowledge, large databases for texture

classification that would allow efficient training with deep neural networks are not available.

To alleviate this problem, in the context of textural classification, we propose to enhance

VGG-19 features by incorporating handcrafted texture features in the feature extraction

process. These features not only improve the classification performance of the network but

also mitigate the translation and rotation invariance problems of CNNs.

The method starts with the VGG-19 model, shown in Fig. 3-5, pre-trained on the ImageNet

database. Then, three sets of handcrafted features, namely, fractal dimension, Haralick and

LBP are extracted from the outputs of selected convolutional layers. Classification using

the extracted features is performed with an SVM. Fig. 3-6 illustrates the process with an

input RGB image of size 224 × 224 × 3 corresponding to a fracture surface. Fig. 3-6 a)

illustrates the process when the handcrafted features are extracted from the output of the

first convolutional layer, which contains 64 filters, and therefore, its output corresponds to a

set of feature maps of size 224× 224× 64. Fig. 3-6 b) illustrates a similar process when the

handcrafted features are extracted from the output of the second convolutional layer, which

contains 128 filters, and therefore, its output corresponds to a set of feature maps of size

112× 112× 128.
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Figure 3-6.: Feature extraction process. (a) Feature extraction from the first convolutional

layer Conv 1(1) and b) Feature extraction from the second convolutional layer

Conv 2(1).

3.4. Experiments and Results on the KTH-TIPS and

KTH-TIPS2-B Texture Databases

The KTH-TIPS Texture Database was developed by the Computational Vision and Active

Perception Laboratory (CVAP) at the KTH Royal Institute of Technology in Stockholm [18].

There are three versions of this dataset: KTH-TIPS, KTH-TIPS2-A and KTH-TIPS2-B. In

this study, we work with the first and the third versions since they are the most widely used

versions in the literature [39]. The KTH-TIPS dataset has nine different classes with 81 ima-

ges per class with a size of 200×200 pixels. In this work, 70 images are used for training and

11 images are used for testing. The KTH-TIPS2-B dataset has 11 classes with four folders

per class called samples, each sample has 108 images. So, as shown by Fujieda [39], one of

the samples of each class was used for training and another sample was used for testing.

In this paper, both databases are used as a benchmark to demonstrate that incorporating

handcrafted features in deep networks leads to improvement in performance. Fig. 3-7 shows

samples of six classes of the KTH-TIPS2-B Texture Database.

Table 3-2 shows the most representative results obtained by classifying the testing sets of

the KTH-TIPS and KTH-TIPS2-B with the proposed approach using different handcrafted

features and convolutional layers. The results of the VGG-19 model without handcrafted

features for the KTH-TIPS2-B and fracture databases present a low performance, having a
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low F1-score of 0.64 and 0.55, respectively. Haralick features for the fourth group of convo-

lutional layers and fractal dimension features from the early convolutional layers were not

calculated due to the high computational cost. For the KTH-TIPS and KTH-TIPS2-B data-

bases, the results of the VGG-19 model were outperformed by our approach using LBP and

Haralick features. An F1-score of 1.0 was achieved for the KTH-TIPS dataset by extracting

LBP and Haralick features from the first feature maps of the third convolutional layer group.

For the KTH-TIPS2-B dataset, the best results, corresponding to an F1-score of 0.77, were

obtained by extracting LBP features from the second feature maps of the fifth convolutional

layer group.

Figure 3-7.: Examples for 6 classes of the KTH-TIPS2-B texture database.

Table 3-3 shows the best accuracy results obtained with the proposed approach for the

KTH-TIPS and KTH-TIPS2-B databases. These results are comparable with those of the

state of the art for the two databases. For the KTH-TIPS dataset, an accuracy of 100%

is obtained with the proposed method against a 99.8% accuracy in the state-of-the-art,

while an accuracy of 79.8% is obtained with the proposed method for the KTH-TIPS2-B

dataset against a 81.8% accuracy obtained with a VGG model in combination with the

Fisher vector proposed by Cimpioi [21] and against a 74.2% accuracy obtained with the

wavelet CNN proposed by Fujieda [39]. Furthermore, LBP features are computationally less

expensive than the Fisher vector representation.
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Table 3-2.: Results of the proposed approach and comparison with the VGG-19 model for

texture benchmark datasets

Texture benchmark databases

KTH-TIPS

Feature set VGG Layer Precision Recall F1-score

VGG-19 model conv 5(4) 99% 99% 0.99

Fractal dim. conv 3(1) 78% 77% 0.77

Haralick conv 3(1) 100% 100% 1.0

LBP conv 3(1) 100% 100% 1.0

KTH-TIPS2B

Feature set VGG Layer Precision Recall F1-score

VGG-19 model conv 5(4) 67% 64% 0.64

Fractal dim. conv 3(1) 54% 55% 0.52

Haralick

conv 5(1) 80% 77% 0.74

conv 5(2) 75% 74% 0.71

LBP

conv 3(1) 64% 71% 0.66

conv 4(1) 62% 70% 0.64

conv 5(1) 84% 78% 0.77

conv 5(2) 80% 80% 0.77

Table 3-3.: Accuracy of the best results obtained with the proposed method for the KTH-

TIPS and the KTH-TIPS2-B textural databases.

Database VGG Layer Feature set Accuracy

KTH-TIPS Conv 3(1)
Haralick 100%

LBP 100%

KTH-TIPS2-B Conv 5(2) LBP 79.8%

3.5. Conclusions of the Chapter

The proposed model extracts three sets of handcrafted features, namely fractal dimension,

Haralick features and LBP, from the output of different convolutional layers of the VGG-19

model pre-trained with the ImageNet database. To test the model, two benchmark textural

databases were employed: KTH-TIPS and KTH-TIPS2-B. Experimental results showed that

the proposed approach outperforms the F1-score results of using just the VGG-19 model by

13% for the KTH-TIPS2-B database when using LBP features. Therefore, experimental re-

sults suggest that it is beneficial to integrate handcrafted features with deep neural networks

for the problem of texture classification. This assumption, lead us to think that by building

an architecture able to obtain texture representation in an end-to-end manner would help in

the texture recognition problem.



4. Chapter 3: Deep Adaptive Wavelet

Network

Summary

Even though convolutional neural networks have become the method of choice in many fields

of computer vision, they still lack interpretability and are usually designed manually in a

cumbersome trial-and-error process. This chapter aims at overcoming those limitations by

proposing a deep neural network, which is designed in a systematic fashion and is interpre-

table, by integrating multiresolution analysis at the core of the deep neural network design.

By using the lifting scheme, it is possible to generate a wavelet representation and design a

network capable of learning wavelet coefficients in an end-to-end form. Compared to state-of-

the-art architectures, the proposed model requires less hyper-parameter tuning and achieves

competitive accuracy in image classification tasks.

4.1. Wavelet Transform in Texture Analysis

A wavelet is a function Ψ ∈ L2(R) with zero average Eq. 4-1. The wavelet transform de-

composes the signal into translated and dilated wavelets, called wavelet basis. These are

constructed by dilating (2j) and translating (2jn) a single function Ψ (Eq. 4-2). The wavelet

basis revels the signal behavior thorough the amplitude of its coefficients, it defines a sparse

representation of the signal, and in images, large wavelet coefficients are located in edges

and irregular textures [84].

∫ −∞

+∞
Ψ(t) dx = 0. (4-1)

{Ψj, n(x) =
1

2j
Ψ
(x− 2jn)

2j
}j∈Z,n∈Z� . (4-2)

Texture points out intrinsic properties of the surfaces that includes characteristics as rough-

ness, granularity and similarity [79]. However, there is not an appropriate mathematical

model for textural images. The texture is generally defined by the human visual percep-

tion [84]. Wavelet transform have been widely used in texture recognition tasks, this due to
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its ability to perform a scale analysis. This process is similar to the one performed by the

human visual system [79]. Some feature extraction techniques applied to each sub-band (or

some of them depending on the application) on the wavelet transform, include obtaining a

measure of energy [20, 71, 104], statistical features such as Haralick’s [118] and histogram

analysis [96], among others. The good performance obtained by these feature extraction pro-

cess in texture applications such as image classification [51, 9], image segmentation [33, 10]

and texture syntheses [35], makes wavelet analysis an interesting case of study.

4.2. CNNs as Multiresolution Analysis

Convolutional neural networks proposed by LeCun in 1989 [74] contain filtering and down-

sampling steps. In order to have a better understanding of CNNs, we propose to interpret

convolution and pooling operations in CNNs as operations in multiresolution analysis [83].

In the following, only one-dimensional input signals are considered for simplicity, but the

analysis can be easily extended to higher dimensional signals.

Given an input vector x = (x[0], x[1], ..., x[N−1]) ∈ R
N , and a weighting function ω, referred

to as kernel, the convolution layer output (or feature map) y = (y[0], y[1], ..., y[N − 1]) ∈ R
N

can be defined as

y[n] = (x ∗ ω)[n] =
∑
j∈K

x[n+ j]ω[j] (4-3)

where K is the set of kernel indices.

The role of the pooling layers is to output a summary statistic of the input [43]. It is

normally used to reduce the complexity and to simplify information. Most common pooling

layers consist of convolution and downsampling in signal processing. Using the standard

downsampling symbol ↓, the output vector o from a pooling layer can be written as

o = (b ∗ p) ↓ p, (4-4)

where p = (1/p, ..,1/p) ∈ R
p is the pooling filter.

We can now interpret convolution and pooling layers as operations in multiresolution analy-

sis. In this analysis, the resolution of a signal (measure of the amount of detail in a signal)

is changed by a filtering operation, and the scale of a signal is changed by a downsampling

operation [85]. The wavelet transform, for example, repeatedly decomposes a signal into

spectrum sub-bands by using low-pass kl and high-pass kh filters and applies downsampling

by a factor of 2.
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Then, to perform a multiresolution analysis, a new signal decomposition is obtained by

taking as input the low-pass filtered sub-band cl. Each of these decompositions are referred

to as levels, and generate a hierarchical decomposition of the signal into cl,t and dh,t each

time. Let kl,t and kh,t denote the low-pass and high-pass filters at step t, respectively. Such

transformation is thus represented as a sequence of convolution and pooling operations,

cl,t+1 = (cl,t ∗ kl,t) ↓ 2

dh,t+1 = (dh,t ∗ kh,t) ↓ 2,
(4-5)

where cl,t+1 and dh,t+1 denote the approximation and detail coefficients generated at step t,

respectively, cl,0 = x and dh,0 = x. Based on this level decomposition-based construction,

it is possible to compare CNNs structures with multiresolution analysis, as Eqns. 4-4 and

4-5 are quite similar, with the difference that in CNNs the filters are randomly selected and

their output does not have a meaningful interpretation.

4.3. Lifting Scheme

The first-generation wavelets are mathematical functions that allow for efficient representa-

tions of data using only a small set of coefficients by exploiting space and frequency corre-

lation [85]. The main idea behind the wavelet transform is to build a sparse approximation

of natural signals through the correlation structure present on them. This correlation is nor-

mally local in space and frequency, meaning that there is a stronger correlation among the
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neighboring samples on the signal. The construction of mother wavelets is traditionally per-

formed by using the Fourier transform, however, this can also be constructed in the spatial

domain [25].

The lifting scheme, which is also known as second-generation wavelets [107], is a simple and

powerful approach to define wavelets that has the same properties as the first-generation

wavelets [25]. The lifting scheme takes as input a signal x and generates as outputs the

approximation c and the details d sub-bands of the wavelet transform. Designing such lifting

scheme consists of three stages [22] as follows.

Splitting the signal. This step consists of splitting the input signal into two non-overlapping

partitions. The simplest possible partition is chosen; i.e. the input signal x is divided into

even and odd components denoted as xe and xo, respectively, and defined as xe[n] = x[2n]

and xo[n] = x[2n+ 1].

Updater. This stage will take care of the separation in the frequency domain, looking that

the approximation has the same running average as the input signal [25]. To achieve this,

the approximation c should be a function of the even part xe of the signal plus an update

operator U .

Let xLU
o [n] = xo[n− LU ], xo[n− LU + 1], . . . , xo[n+ LU − 1], xo[n+ LU ] denote the sequence

of 2LU + 1 neighboring odd polyphase samples of xe[n]. The even polyphase samples are

updated using xLu
o [n], and the result forms the approximation c, as described in Eqn. 4-6,

where U(·) is the update operator.

c[n] = xe[n] + U(xLU
o [n]). (4-6)

Predictor. The splitting partitions of the signals are, typically, closely correlated. Thus,

given one of them, it is possible to build a good predictor P for the other set, by tracking

the difference (or details) d among them [25]. As the even part of the signal x[n] corresponds

to the approximation c[n] (Eqn. 4-6), then it is possible to define P as a function of c[n].

Let cLP [n] = c[n − LP ], c[n − LP + 1], . . . , c[n + LP − 1], c[n + LP ] denote a sequence of

2LP + 1 approximation coefficients. In the prediction step, the odd polyphase samples are

predicted from cLP [n]. The resulting prediction residuals, or high sub-band coefficients d, are

computed by Eqn. 4-7, where P (·) is the prediction operator.

d[n] = xo[n]− P (cLP [n]). (4-7)
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4.4. Lifting Scheme Via Neural Networks

Yi et al. [119] proposed a method to replace the prediction and update operators with non-

linear functions using trainable neural networks, which leads to operators that adapt to the

input signal. To define the loss function needed to train the networks, Yi et al. proposed to

use the following two assumptions.

Assumption on c[n]. The signal c must be the coarse approximation of the input signal x.

According to Eqn. 4-6, c is the modified version of xe, and therefore, close to xe by definition.

Thus, there is only need to minimize the distance between c and xo. In other words, the loss

function of the update network needs to be defined as

loss(U) =
∑
n

(c[n]− xo[n])
2, (4-8)

and by substituting Eqn. 4-6 into Eqn. 4-8, the loss function becomes

loss(U) =
∑
n

[U(xLU
o [n])− (xo[n]− xe[n])]

2. (4-9)

In the adaptive lifting scheme in [119], the updater operator is designed as a neural network

with inputs xLU
o [n], output xo[n]−xe[n], and trained through backpropagation using the loss

function in Eqn. 4-9.

Assumption on d[n]. Better approximations are obtained with low-energy high-pass coef-

ficients. From (4-7), it becomes evident that having low-energy high-pass coefficients implies

that the output of the predictor network should be close to xo(n), which leads to the loss

function:

loss(P ) =
∑
n

(P (c[n])− xo[n])
2. (4-10)

In the adaptive lifting scheme [119], the predictor operator is designed as a neural network

with inputs xo[n], output c[n], and trained through backpropagation using the loss function

in Eqn. 4-10.

4.5. Deep Adaptive Wavelet Network (DAWN)

We propose a new network architecture, Deep Adaptive Wavelet Network (DAWN), which

uses the lifting scheme to capture essential information from the input data for image clas-

sification. The adaptive lifting scheme presented by Yi et al. [119] showed that neural net-

works trained through backpropagation can be used to implement the lifting scheme for
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one-dimensional (1D) signals. The DAWN architecture extends this idea to address a clas-

sification task, and integrates multiresolution analysis into neural networks. The proposed

model performs multiresolution analysis at the core of the classification network by training

the parameters of two-dimensional (2D) lifting schemes in an end-to-end fashion. None of

the previous wavelet-based CNN approaches have performed this end-to-end training while

learning the wavelet parameters.

4.5.1. 2D Adaptive Lifting Scheme

We first explain the proposed 2D Adaptive Lifting Scheme, and then present the integration

of the 2D lifting scheme into the proposed classification architecture.

The 2D Adaptive Lifting Scheme consists of a horizontal lifting step followed by two in-

dependent vertical lifting steps that generate the four sub-bands of the wavelet transform.

These sub-bands are denoted as LL, LH, HL, and HH, where L and H represent low and

high frequency information, respectively, and the first and second positions refer to the ho-

rizontal and the vertical directions, respectively. Note that the 2D lifting scheme, illustrated

in Figure 4-1 (a), performs spatial pooling, as the spatial size of the outputs are reduced by

half with respect to the input.

The Adaptive Horizontal Lifting Scheme performs horizontal analysis by splitting the 2D

signal into two non-overlapping partitions. We chose to partition the 2D signal into the even

(xe[n] = x[2n]) and odd (xo[n] = x[2n+1]) horizontal components. Then a horizontal upda-

ter (Uh) and a horizontal predictor (Ph) operators are applied in the same way as described in

Section 4.3. The vertical lifting step has a similar structure as the horizontal lifting step, but

in this case, the splitting is performed in the vertical component of the 2D signal, followed by

the processing, performed by the vertical updater Uv and the vertical predictor Pv operators.

Predictor and Updater. The internal structure of the updater and the predictor is the

same for both the vertical and horizontal directions. Figure 4-1 (b) shows the structure

of the horizontal predictor (or horizontal updater). At the beginning, reflection padding is

applied instead of zero padding to prevent harmful border effects caused by the convolution

operation. Then, a 2D convolutional layer, where the kernel size, depending on the direc-

tion of analysis ((1, 3) if horizontal while (3, 1) if vertical), is applied. The output depth of

the first convolutional layer is set to be twice the number of channels of the input. Then,

a second convolutional layer with kernels of size (1,1) is applied. The output depth of this

layer is set the same as the initial input depth of the predictor/updater. The stride for all

the convolutions is set to (1, 1).
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The first convolutional layer is followed by a relu activation function, and we can benefit

from its properties of sparsity and a reduced likelihood of vanishing gradient. The last convo-

lutional layer is followed by a tanh activation function as we do not want to discard negative

values in this stage.

Design Choices. We arbitrarily chose to perform the horizontal analysis before the vertical

analysis. However, there are no performance variations by computing the vertical analysis

first. The number of convolutional layers and the kernel size used in the predictor/updater

will be discussed during the hyperparameter study (Section 4.6). The main concern while

choosing the depth was to maintain a relevant visual representation of the approximation

and details sub-bands, while not considerably increasing the number of network parameters.

4.5.2. DAWN Architecture

The DAWN architecture is based on stacking multiple 2D Adaptive Lifting Schemes to

perform multiresolution analysis (see Figure 4-2). The architecture starts with two convolu-

tional layers followed by a multiresolution analysis of M levels. Each level consists of a 2D

Adaptive Lifting Scheme, which generates as output the four wavelet transform sub-bands

LL, LH, HL and HH, and the input correspond to the low level sub-band (LL) from the

previous level. The details sub-bands from each level (LH, HL, HH) are concatenated and

followed by a global average pooling layer [78], used to reduce overfitting and to perform

dimensionality reduction. In the last level, the global average pooling of the outputs at each

level are concatenated before the final fully-connected layer and a log-softmax to perform

the classification task.

Number of levels. The minimum size of feature maps at the end of the network for this

architecture is set to 4 × 4 as it is the minimum possible size that still maintains the 2D

signal structure. Assuming that the input images are square, the number of levels M , is

given by M = �log2(is)− log2(4)�, where is is the input image dimension. For example, for

input images of size 224 × 224, is = 224 and M = 5. Note that this number of layers is

automatically given since our network is based on multiresolution analysis. The effect of

choosing different levels, than the ones given by M is analyzed during the hyperparameter

study (Section 4.6).

Initial convolutional layers. As in every classification task, the proposed approach needs

a discriminative representation of the data before the classification takes place. To obtain a

discriminative feature set before the first downsampling of the signal, the architecture starts

by extracting descriptors with two sequences of Conv-BN-ReLU, where Conv and BN stand

for Convolution and Batch Normalization respectively, with kernel size 3 × 3 and with the

same depth. The depth in these initial convolutional layers is one of the few hyper-parameters
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of DAWN. By fixing the depth and determining the number of decomposition levels, one can

automatically obtain the depth of features maps of the last 2D lifting scheme for a given

input image size.

Loss function and constraints. End-to-end training is performed using the cross-entropy

loss function, in combination with some regularization terms to enforce a wavelet decom-

position structure during training. The loss function takes the form of Eqn. 4-11, where P

denotes the number of classes, yi and pi are the binary ground-truth and the predicted pro-

bability for belonging to class i, respectively. The regularization parameters λ1 and λ2 tune

the strength of the regularization terms. Also, mI
l and mC

l denote the mean of the input

signal to the lifting scheme at level l and the mean of the approximation sub-band at level

l, respectively. And, Dl is the concatenation of the vectorized detail sub-bands at level l.

Loss = −
P∑
i=1

yilog(pi)

+ λ1

M∑
l=1

H(Dl) + λ2

M∑
l=1

‖mI
l −mC

l ‖22.
(4-11)

To promote low-magnitude detail coefficients [42], the first regularization term in Eqn. 4-11
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Figure 4-2.: The proposed architecture is composed by three modules: i) Initial convolutio-

nal layers to increase the input depth, ii) M levels of multiresolution analysis,

where 2D lifting scheme is applied on the approximation output of the pre-

vious level, and iii) a large concat of details from the different levels and the

approximation, followed by a global average pooling and a dense layer. The

operations in the architecture can be classified as either trainable (red boxes)

or fixed (green boxes).
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Figure 4-3.: The proposed architecture for the Moified DAWN is composed by three mo-

dules: i) Initial convolutional layers to increase the input depth, ii) M levels

of multiresolution analysis where each of them contains a 2D lifting scheme,

and iii) a global average pooling and a dense layer. The operations in the

architecture can be classified as either trainable (red boxes) or fixed (green

boxes).

minimizes the sum of the Huber norm of Dl across all the decomposition levels. The choice of

a Huber norm compared to �1 is motivated by training stability. The second regularization

term minimizes the sum of the �2 norm of the difference between mI
l and mC

l across all

the decomposition levels in order to preserve the mean of the input signal to form a proper

wavelet decomposition [42].

4.5.3. Modified Deep Adaptive Wavelet Network

Multiresolution analysis based on wavelet transform have been widely used in texture re-

cognition task, however, in some applications a deeper representation is needed. For those

scenarios, a variation of the DAWN architecture is proposed. This variation is based on the

wavelet tree structure [20], which not only calculates the wavelet transform for the next level

form the approximation, but also from some details output of the previous level. It has the

same initial convolution layers, followed by M levels of 2D Adaptive Lifting Scheme, but this

time, the four sub-bands of the previous level are concatenated and a bottleneck layer is ap-

plied to compress the number of components generated. This variation of the architecture is

presented in Fig. 4-3 and will be referred as M-DAWN in further sections. It is important to

note that for this model the regularization term is not used as different from multiresolution

analysis the four sub-bands of the 2D adaptive lifting scheme are concatenated and used as

input for the next level.
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Bottleneck layer. In traditional CNNs, it is possible to choose the number of filters

and the position of the pooling layer arbitrarily. However, for a given 2D lifting scheme, the

output depth is four times larger than the input depth and the pooling step is mandatory.

This incremental factor is problematic because it increases the number of trainable para-

meters significantly through the architecture. To alleviate this issue, we propose to use a

convolutional layer with kernels of size 1× 1 to only increase the number of channels by two

for each level. Batch normalization and a non-linear activation function are added to reduce

training time and to increase the non-linearity of the network.

4.5.4. Visual Representation Results

The decomposition generated by the lifting scheme has a relevant visual representation as it

is composed of approximation and details sub-bands of an input signal. Figure 4-4 shows the

visualization of the multiresolution analysis for different number of decomposition levels. To

generate the visualizations presented in Figure 4-4, the network was run without the initial

convolutional layers on KTH database (Section 3.4).

Many decomposition levels are very similar to traditional wavelet decomposition where the

approximation sub-band captures the low-frequency information of the image while the detail

sub-bands tend to capture high-frequency information. However, some sub-bands are slightly

different as the loss function also minimize the cross-entropy loss function to ensure good

classification performance (Section 4.5).

4.6. Experiments and Results on Benchmarks Datasets

The evaluation of the DAWN model was analyzed on one texture dataset, KTH-TIPS2-b and

three benchmarks datasets for object recognition task, namely, CIFAR-10, CIFAR-100, and

ImageNet. The obtained results are compared against different models commonly used for

classification: ResNet [52]; DenseNet [54] with growing factor of 12; a variant of VGG [103],

which adds batch normalization, global average pooling, and dropout. The proposed ar-

chitecture is also compared with previous networks using some multi-resolution analysis

component: wavelet CNN (WCNN) [39], and Scattering network [89]. For this later one,

we show the results of the handcrafted representation and the hybrid network that combi-

nes scattering transform on top of a Wide-Resnet. For KTH-TIPS2-b, T-CNN [6] results is

shown as this architecture specifically tailored to texture analysis. The training was done on

multiple NVIDIA V100 Pascal GPUs with 12Gb of memory.
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Figure 4-4.: Results of extracting the coefficients for 3 decomposition levels of the 2D Adap-

tive Lifting Scheme in the DAWN architecture. The loss function applied is the

same as in Eqn. 4-11. For visualization purposes, the LH, HL and HH sub-bands

were multiplied by a factor of 10.

Implementation An SGD optimizer with a momentum of 0,9 is used for training. The

initial learning rate is set to 0,03 for all the databases. The batch size is set to 256, 64 and 16

for ImageNet, the CIFAR databases and KTH-TIPS2-b, respectively. A learning rate decay

of 0,1 is applied on epochs 30 and 60 for ImageNet and KTH-TIPS2-b; and on epochs 150 and

255 for CIFAR. The number of epochs is set to 90 and 300 for ImageNet and KTH-TIPS2-b,

and the CIFAR databases, respectively. The regularization parameters λ1 and λ2 are set to

0,1 for all the experiments. For the Scattering networks [89] on the CIFAR databases, the

original training setup has been used, as it achieves higher accuracy than the one obtained

with the configuration proposed in this paper for the other architectures.

Object Recognition Datasets
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CIFAR CIFAR-10 [67] contains 60000 colour images of size 32 × 32 belonging to 10

classes. The same partition used to train and test DenseNet [54] is used in this paper, i.e.

50000 images for training and 10000 images for testing. CIFAR-100 [67] has 100 classes with

500 images per class. The data augmentation consists in applying random cropping with a

padding of 4 pixels and horizontal mirroring operations.

Table 4-1 shows the best results of each architecture on these two databases. There are diffe-

rent DenseNet configurations available with a default growth value of 12. The configuration

chosen for the comparison was the one with the closest number of parameters to that of the

proposed model. The 18-layer ResNet architecture, after replacing the initial convolutional

layers with a convolutional layer with stride 1 and kernel size 3× 3, is used for comparison.

Those layers were removed because they are normally used to reduce the size of the image

at the beginning of the network, which is not required for the small images of the CIFAR

datasets. For WCNN, an experiment on varying the number of levels was conducted and the

result of the best variant is reported in Table 4-1. Scattering transform network configura-

tions are the same used the original paper [89] for these datasets.

For the CIFAR databases, the proposed network uses three levels of lifting scheme, as the in-

put image size is 32×32. Table 4-1 shows that increasing the number of initial convolutional

filters tends to improve the accuracy performance. Therefore, it is up to the user to balance

between a more compact network, in terms of number of parameters, and a network with

better classification performance. DAWN architecture outperforms WCNN for both datasets

even when the proposed architecture has significantly less number of parameters. The scat-

tering network with handcrafted representation (Scattering+MLP) achieves less accuracy

than DAWN architecture as the wavelets are not learned.

It also has a competitive accuracy for CIFAR-10 compared to VGG and ResNet architectu-

res; furthermore, DAWN with a depth of 256 for the initial convolution layers, outperforms

the results in both architectures for CIFAR-100 dataset. The scattering hybrid represen-

tation (Scattering+WRN) has a considerable higher number of parameters than the other

architectures, and its performance is similar to VGG and ResNet for both datasets. In this

application, the DenseNet architecture exhibits good performance due to its ability to retain

relevant features through the entire network.

Hybrid network As an additional experiment, the proposed multiresolution analysis

can be combined with other network architecture. This hybrid network (DAWNN+WRN)

consists in replacing the scattering transform by the 2D lifting schemes (Figure 4-2) inside

the Scattering+WRN architecture. This proposed hybrid architecture has similar number of

trainable parameters than Scattering+WRN. On CIFAR databases, this architecture gets

93,76% and 74,88% of accuracy for CIFAR-10 and CIFAR-100, respectively, which is slightly



50 4 Chapter 3: Deep Adaptive Wavelet Network

Table 4-1.: Comparison of accuracy results on the CIFAR-10 and CIFAR-100 databases.

The number of trainable parameter are shown for CIFAR-100 database.

Architecture # param. CIFAR-10 CIFAR-100

VGG (variation) 15.0 M 94.00% 72.61%

ResNet 18 11.2 M 94.25% 73.30%

DenseNet 40 1.10 M 94.73% 75.25%

DenseNet 100 7.19 M 95.90% 79.8%

WCNN L3 2.28 M 89.85% 65.17%

Scattering+WRN 45.5 M 92.31% 72.26%

Scattering+MLP 17.0 M 81.90% 49.84%

DAWN (16 init.) 59.3 K 86.04% 56.7%

DAWN (32 init.) 0.21 M 90.41% 65.06%

DAWN (64 init.) 0.73 M 92.69% 70.57%

DAWN (128 init.) 2.79 M 93.34% 72.47%

DAWN (256 init.) 10.9 M 92.02% 74.04%

higher compared to the one obtained by Scattering+WRN.

Hyperparameter Tuning DAWN network uses a few number of hyperparameters inside

the architecture. Besides the initial convolution depth, the other hyperparameters are the

kernel size and the number of convolutional layers inside the updater and predictor of the

lifting scheme. This section presents an analysis of the effect of these hyperparameters on the

final architecture results. For simplicity, the experiments are performed on CIFAR datasets

using the DAWN architecture with 64 initial filters.

Kernel size and number of convolutions Both of these hyperparameters affect the

lifting scheme module, whose role is to generate a mathematical function for the wavelet

representation. The update operator U needs to represent the frequency structure of the

input signal, while the predictor P needs to represent the spatial structure of the input

signal. These hyperparameters also affect the final number of trainable parameters for the

whole architecture. Table 4-2 shows the effect when changing these hyperparameters: i) the

kernel size experiments were obtained with the U/P structure described in Figure 4-1 ii)

the number of hidden layers inside the module is generated by the repetition of the first

convolutional layer of the U/P module. It is noticed that the performance results do not

have a high variance for combinations of hyperparameters with similar number of trainable

parameters.

Number of multiresolution analysis levels Table 4-2 shows how the number of traina-

ble parameters depends on the number of levels of the 2D adaptive lifting scheme. This table
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Table 4-2.: Results of tunning the DAWN architecture with 64 initial convolutions. The

first table entry is the network configuration used to generate the results in

Table 4-1. The hyperparameters tested are kernel size (k), the number of hidden

convolutional layers (h), and the number of levels (l). The number of trainable

parameter are shown for CIFAR-100 database.

Configuration CIFAR-10 CIFAR-100 # param.

(k=3, h=1, l=3) 92.69% 70.57% 734’628

(k=1, h=1, l=3) 88.09% 64.30% 439’716

(k=2, h=1, l=3) 92.27% 68.01% 587’172

(k=4, h=1, l=3) 92.69% 70.96% 882’084

(k=3, h=2, l=3) 92.58% 70.51% 918’564

(k=3, h=3, l=3) 92.46% 68.85% 1’140’900

(k=3, h=4, l=3) 92.35% 68.19% 1’363’236

(k=3, h=1, l=0) 75.49% 44.12% 45’348

(k=3, h=1, l=1) 90.53% 66.71% 275’108

(k=3, h=1, l=2) 92.17% 70.42% 504’868

illustrates how the performance varies from not using any lifting scheme level (only initial

convolutions), which results in poor performance, to using the maximum number of possible

levels (according to Section 4.5). As shown in Table 4-2, it is usually beneficial to use the

maximum number of levels as it leads to higher accuracy values for both datasets. Note that

in the CIFAR database, the input size is 32×32, which makes makes the maximum number

of possible levels equal to 3.

ILSRVC-2012 (ImageNet) The ILSRVC-2012 dataset consists of 1.2 million images for

training and 50000 images for testing, from 1000 different classes. For this database, the

M-DAWN architecture contains 5 decomposition levels. The proposed model is compared

to commonly used models for image classification using the top-1 error rate. As shown in

Table 4-3, the proposed model obtains better results than those attained by AlexNet [68],

Scattering + Rwsnet 10 [89] and WCNN [39]. Even though ResNet [52], DenseNet [54] and

VGG [103] attain smaller top-1 errors rates, our proposed model is less complex, requires

less hyper-parameter tuning and is designed in a systematic fashion without a cumbersome

trial-and-error process.

KTH-TIPS2-B Texture Databases Similar to Section 3.4, KTH-TIPS2-B was used as

texture benchmark. As in other works [39], one of the samples of each class was used for

training and the rest sample folders were used for testing. The data augmentation consists

in applying random cropping and mirroring operations. Table 4-4 contains the average and
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Table 4-3.: Comparison of top-1 and top-5 error rate results on the ILSRVC-2012 Database.

Architecture # param. top-1% top-5%

AlexNet [68] 62.3 M 36.7 15.4

VGG-E 19 [103] 143 M 27.3 9.0

ResNet-50[120] 25.6 M 24.01 7.02

DenseNet-121 [54] 8.0 M 25.02 7.71

DenseNet-201 [54] 20.2 M 22.58 6.34

Scattering + Resnet-10[89] 12.8 M 31.3 11.4

WCNN (4 levels) [39] 11.6 M 34.75 –

M-DAWN (16 init.) 6.46 M 32.08 11.89

M-DAWN (32 init.) 24.8 M 28.95 9.768

standard deviation across different training sessions.

In this database, WCNN [39] with 4 levels achieves better accuracy compared to T-CNN

with a smaller number of trainable parameters. The proposed architecture with a depth of

16 for the initial convolutional layers, achieves the same accuracy as WCNN but with a

much smaller number of parameters. Note that the initial convolutional layers are essential

for extracting meaningful feature representations, and without them the performance of the

model drops significantly.

Scattering network with the handcrafted representation (Scatter+FC) consist of using a scat-

tering transform of spatial scale five followed by a global average pooling and ending with

a fully connected layer. This network configuration is very similar to the proposed network

structure used for this database (Figure 4-2). This network configuration achieves similar

performance to the proposed approach with sightly less trainable parameters as the wavelets

are not trainable. This result indicates that our architecture is able to learn representations

that are similar to the scattering transform.

The proposed architecture performs better than DenseNet 13 and 22 BC with similar number

of parameters. Note that for DenseNet, the number indicates the total number of layers used

inside the network and BC meaning the use of the bottleneck compression approach [54].

Scattering network with hybrid configuration (Scatter+WRN) increases significantly the

number of trainable parameter compared to the handcrafted representation network. This

hybrid configuration perform poorly as it overfit the dataset, and it has a highly dependence

on the CNN architecture and the setup of hyperparameters.
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Table 4-4.: Comparison of accuracy results on the KTH-TIPS2-b database where all the

network are trained from scratch without pre-trained information.

Architecture # param. Avg. Std.

T-CNN 19’938’059 63.80% 1.68

WCNN L4 10’211’811 68.83% 0.73

Scatter+WRN 10’934’283 60.33% 2.19

Scatter+FC 22’484 68.57% 2.86

DenseNet 22 BC 74’684 65.71% 1.35

DenseNet 13 89’711 66.16% 1.52

DAWN (no init.) 2’894 58.60% 4.10

DAWN (16 init.) 71’227 68.88% 2.14

4.7. Conclusions of the Chapter

We presented the DAWN architecture, which combines the lifting scheme and CNNs to

learn features using multiresolution analysis. In contrast to the black-box nature of CNNs,

the DAWN architecture is designed to extract a wavelet representation of the input at each

decomposition level. Unlike traditional wavelets, the proposed model is data-driven so that

it adapts to the input images. It is also trainable end-to-end and achieve state-of-the-art per-

formance for texture classification with very limited number of trainable parameter. Further-

more, the decomposition generated by the lifting scheme has a relevant visual representation

as it is composed by approximation and detail sub-bands of an input signal. Interpreting

convolution and pooling operations in CNNs as operations in multiresolution analysis hel-

ped us to systematically design a novel network architecture. The performance of DAWN is

comparable to that of state-of-the-art classification networks when tested on the CIFAR-10

and CIFAR-100 datasets. For ImageNet, the DAWN model outperforms AlexNet, Scatter +

Resnet-10 and WCNN, which demonstrates its ability to perform well in image classification

tasks while being designed in a systematic fashion with little hyper-parameter tuning.



5. Chapter 4: Deep Learning and

Fracture Analysis (Experiments and

results)

Summary

Periodic fractographic analysis of fracture surfaces helps to improve the performance of

mechanical pieces and avoids economical and security problems in many industries, such as

the automotive industry. Classifying a fracture into a failure mode is necessary to determine

the causes that generated the fracture in the first place. Experts in fracture classification of

metallic materials usually use texture and surface marks to determine the type of fracture.

In this chapter two datasets for failure modes are presented; the first one is the same used in

previous handcrafted features studies [12], and consists on a real-scale fracture dataset; The

second one was obtained for this study and consist in different scale images obtained with

a Scanning Electron Microscopy (SEM). Furthermore, the performance on these datasets of

the approaches presented in previous chapters: DL + Handcrafted features, Chapter 3 and

DAWN architecture, Chapter 4, proposed for texture analysis is also presented. Finally a

Human-Expert based comparison is done, in order to evaluate the final performance.

5.1. Fracture Databases

As it was presented in the state-of-the-art, Chapter 2, each failure mode has its own features

represented with different marks and textures. An expert on the topic searches for these

features when performing fracture mode classification. First, the expert observes the fracture

surface at real-scale. Since this step is typically not enough to determine the fracture mode,

the next step is to search for the features by using lenses and microscopes [57]. Table 5-1

illustrates the main features that an expert on the topic typically uses for fracture surface

classification. In terms of texture, ductile fracture shows a fibrous texture, while brittle

fracture presents a granular texture and a fatigue fracture presents a smooth and plane

texture.
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Table 5-1.: Main visual features analyzed by an expert on failure classification.

Fractures Marks Texture

Ductile Microvoids and deformation of the piece Fibrous

Brittle River and radial Granular

Fatigue Ratchet, beach and striations Plane, smooth

Real-Scale For the real-scale database, to test the performance of the proposed method, the

same database used in [12] with three fracture modes, namely ductile, brittle and fatigue,

is employed. The dataset consists of real scale images, acquired with a camera without

augmentation. An contains a total of 300 images (100 per class) for the training step and

186 images for the testing step. Fig. 5-1 exhibits two samples of real-scale images per each

class. All images were resized to a scale of 224×224 pixels. The training and testing datasets

consist of 100 and 186 images per class, respectively.

Figure 5-1.: Examples of real-scale images from the fracture database used in this paper.

SEM The SEM fracture database consists on images divided among four different classes

of fractures, namely, ductile, brittle, fatigue and corrosion fatigue. The scale is not fixed

and it varies depending on the piece. Therefore, all images are resized to 224 × 224 pixels.

Figure 5-2 shows two samples per class of the SEM fracture database. It is worth noting

that images belonging to the same class also exhibit a remarkable variation, which makes

fracture classification a difficult task for a non-expert eye. A total of 120 images per class
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was used for training, while 31 images per class were used for testing.

Figure 5-2.: Samples of SEM images from the fracture database used in this paper.

5.2. Traditional Deep Learning Models

We obtained the accuracy of training traditional deep learning models, pre-trained with

ImageNet, over the two fracture database. Three traditional deep learning models were

analyzed, namely, VGG-16, VGG-19 and ResNet 18. For the VGG models the torchvision

version with batch normalization were used. The results presented in Table 5-2 shows the

tested models, the number of last tuned layers and the accuracy achieved in both databases.

For tuning the parameters a learning rate of 1e−3 was used, and a SGD optimizer with 0.9

momentum and weight decay of 1e−4 was applied. As general analysis, it can be observed

that deep learning techniques show interesting results in the fractographic analysis and it

is possible to train end-to-end architectures on these kind of problem. However, to improve

its results some modifications have to be done; specially for the analysis on the real-scale

database. Moreover it represents and attractive case of study. A further analysis per dataset

is presented in the below paragraphs.

Real-scale fracture dataset As it can be observe in Table 5-2, the results varies in a small

range. Furthermore, it is not possible to achieve similar performance to the ones got with

object datasets when using pre-trained models, where the accuracy normally achieves higher

results than the ones obtained by the ones achieved with handcrafted features. However,
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best result for this dataset was achieved by using ResNet-18 architecture with an F1-score

of 0,737; similar to the one achieved by using handcrafted features. (Table 2-2).

SEM dataset it presents an acceptable accuracy, having into account the small amount of

data and the differences presented among the images with different scales; the best result

for this database is achieved by using ResNet-18 and fine-tuning the whole architecture

layers with an accuracy of 85,48%. SEM images contain more details in terms of shapes

than the ones perceived by the real-scale image; for instance, in this images, it is possible to

distinguish the microvoids of the ductile fracture or the transgranular or intergranular crack

of the brittle fracture mode. This characteristics allows the system to classify the fracture

modes better in SEM than in real-scale images, by using pre-trained and fine-tuning models.

Table 5-2.: Comparison among traditional deep learning architectures pre-trained with Ima-

geNet and fine-tuned at some layers

model layers
Real-scale SEM

acc. F1-score acc. F1-score

VGG-16

4 67.74% 0.642 61.29% 0.591

8 71.51% 0.696 70.16% 0.573

10 72.04% 0.71 76.61% 0.748

all 71.51% 0.699 84.68% 0.827

VGG-19

4 68.28% 0.678 61.29% 0.613

8 70.43% 0.673 75.81% 0.733

10 68.82% 0.661 76.61% 0.762

all 68.28% 0.652 83.87% 0.830

ResNet-18

4 70.97% 0.688 70.10% 0.683

8 69.89% 0.678 79.03% 0.768

10 70.43% 0.684 79.03% 0.773

all 74.73% 0.737 85.48% 0.848

5.3. Deep Learning Combined with Handcrafted Features

The same approach used in the Chapter 3, where a VGG architecture pre-trained with Ima-

geNet was intervened to extract textural handcrafted features, more precisely, Haralick’s

features, fractal dimension, and LBP features, was applied for the real-scale and SEM frac-

ture databases, by using an SVM classifier. The results of the proposed approach for both

databases are exhibited in Table 5-3. In the general case, it can be conclude that adding

textural handcrafted features helps to improve the results obtained by only using VGG-19

model feature extraction, and thus creating a model capable of learning this textural featu-



58 5 Chapter 4: Deep Learning and Fracture Analysis (Experiments and results)

res directly from the input data becomes an interesting research topic. Further analysis per

dataset is given in the below paragraphs.

Table 5-3.: Results of the proposed approach and comparison with the VGG-19 model for

fracture datasets.

Fracture databases

Real

Feature set VGG Layer Precision Recall F1-score

VGG-19 model conv 5(4) 56% 55% 0.55

Fractal dim.
conv 1(1) 73% 73% 0.72

conv 2(1) 63% 58% 0.57

Haralick

conv 1(1) 63% 63% 0.63

conv 2(1) 64% 64% 0.64

conv 3(1) 67% 68% 0.68

conv 5(1) 63% 62% 0.62

LBP

conv 1(1) 56% 57% 0.56

conv 2(1) 66% 65% 0.65

conv 3(1) 66% 65% 0.65

conv 4(1) 65% 64% 0.64

SEM

Feature set VGG Layer Precision Recall F1-score

VGG-19 model conv 5(4) 48% 47% 0.47

Fractal dim.
conv 1(1) 37% 31% 0.33

conv 2(1) 35% 33% 0.33

Haralick

conv 3(1) 64% 63% 0.64

conv 5(1) 66% 65% 0.65

conv 5(2) 68% 68% 0.68

LBP

conv 2(1) 58% 58% 0.58

conv 3(1) 72% 72% 0.72

conv 4(1) 73% 72% 0.73

conv 5(1) 69% 69% 0.69

Real-Scale Fracture Dataset For the real-scale fracture database, the best results, co-

rresponding to an F1-score of 0.72, were obtained by extracting fractal dimension features

from the first convolutional layer (Conv 1). By comparing with the results in Table 2-2, it is

noticed that this F1-score is similar to the one obtained by the state-of-the-art algorithm for

fracture mode classification using handcrafted features. For the other two sets of features,

Haralick and LBP, their metrics are better than those achieved with the VGG-19 model;

however, they have a larger error rate than the one obtained with the fractal dimension.
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SEM Dataset Opposite to the results obtained for the real-scale fracture dataset, for the

SEM fracture database the best results are generated with the LBP feature sets extracted

from the first convolutional filter maps of the fourth layer, obtaining a F1-score of 0.73. This

shows that the different scale composition of the SEM database are better represented by

the local binary patterns code rather than the fractal dimension, similar to the outcome

presented for the KTH-TIPS database 3-2. It is worth notice that for these experiments

a total of 404 images for training and 167 images for testing were used. These results co-

rroborate the ones presented in the Chapter 3 were a common deep learning architecture

as VGG, obtains better results when it is intervened by adding textural handcrafted features.

5.4. Deep Adaptive Wavelet Neural Network (DAWN)

Table 5-4.: Comparison of accuracy and F1-score results on the real-scale Fracture database

and SEM Fracture Database for Deep Learning Architectures.

Architecture #param.
Real-scale SEM

acc. F1-score acc. F1-score

VGG (variation) 15 M 62.37% 0.604 35.48% 0.242

ResNet 18 11 M 75.27% 0.721 57.26% 0.561

DenseNet 40 1 M 70.43% 0.661 58.82% 0.580

DenseNet 13 88 K 72.04% 0.704 57.65% 0.563

DenseNet 22 BC 88 K 68.82% 0.67 54.03% 0.514

T-CNN 19 M 64.52% 0.625 35.29% 0.281

WCNN 10 M 70.97% 0.677 52,42% 0.506

Scater + Resnet10 15 M 66.13% 0.634 55.65% 0.532

scatter + FC 3 M 66.13% 0.634 62.10% 0.609

DAWN (no init.) 2 k 72.58% 0.718 33.06% 0.245

DAWN (16 init) 70 k 75.27% 0.747 38.71% 0.310

DAWN (32 init) 277 k 71.51% 0.69 44.35% 0.381

M-DAWN (no init) 174 k 74.73% 0.734 58.06% 0.538

M-DAWN (16 init) 5 M 69.89% 0.669 62.10% 0.569

M-DAWN (32 init) 19 M 70.43% 0.666 63,71% 0,622

DAWN and DAWN c architectures were thought as deep architectures focused on texture

analysis. As it was shown on Chapter 4 the architecture achieves state-of-the-art performan-

ce for a texture benchmark dataset, with a considerable small number of parameters. We

tested the architecture with the fractures datasets. Results are compared with different deep

learning architectures, including texture based architectures. For the real-scale dataset, for
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ResNet [52], DenseNet [54], VGG-19 [103] (Batchnorm version) and WCNN [39] the experi-

ments were run over 120 epochs, with a learning rate of 0.1 and a weight decay of a factor

of 10 in epochs 30, 60 and 90. While for DAWN, T-CNN [6] and Scattering [89] and all

architectures for SEM dataset, the tests we used a training over 90 epochs, with a learning

rate of 0.03 or 0.01 (choosing the best performance for each), and a weight decay of factor

of 10 at epochs 30 and 60. Also, for DAWN architecture a regularization term of 0.2 for

approximation and details was also used. For all the experiments, a batch size of 16 and a

data augmentation of random crops and horizontal and vertical flips were applied. Table 5-4

present the results obtained.

Real-scale Dataset For the real-scale images, the same as previous analysis data split for

training and testing was used. The results show that DAWN architecture obtain a better

performance than traditional and texture based deep architectures for this particular pro-

blem. A F1-score of 0.747 was obtained, similar to the one got with handcrafted features

alone (Table 2-2), deep learning plus handcrafted features (Table 5-3), and the pre-trained

models (Table 5-2). Even though ResNet obtains similar results with a F1-score of 0.721,

the number of parameters is considerably higher than the one used by DAWN. Figure 5-3

shows the confusion matrix for the proposed DAWN architecture. It can be observed that

the ductile and fatigue fractures have a high classification performance, while more pro-

blems are observed for brittle fractures. It is also worth notice that different than ResNet,

the common deep learning architectures or the texture focus architectures do not have a

better performance than the smallest DAWN, with no initial convolution applied.

Figure 5-3.: Confusion matrix of the real-scale fracture database.
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SEM Dataset For SEM architecture a 120 images per class were used for training and 31

images per class were used for testing (which represents the 20% of the samples). In this

dataset all architectures seem to have more complications than in the previous databases

analyzed; this can be explain as the different scale obtained in the images, generates diffe-

rent textures on them. Furthermore, in this scale of analysis, the ductile’s dumping, brittle

intragranular or transgranular fractures, among other characteristics are more visible than in

the real scale dataset; for this reason, the shapes take more importance as features, and the

architectures behave similar to object databases. Best F1-score of 0,622 was achieved with

the M-DAWN (Modified DAWN), though it is very similar to the one achieved by the scat-

tering network plus a fully connected layer. Among the architectures without handcrafted

features. It can be observed that by using deep learning in this kind of images it is possible

to achieve interesting results. Fig. 5-4 presents the confusion matrix for the SEM database.

Figure 5-4.: Confusion matrix of the SEM fracture database.

As final analysis, in Table 5-5 the results of two of the strongest deep learning architectures

in the state-of-the-art as ResNet-18 and DenseNet-121, compered to DAWN c architecture

and evaluated on the SEM dataset. All methods were pre-trained with ImageNet weights

and leaving all the layers trainable. As it can be observed, the proposed network achieves

a good performance in this kind of dataset, and it is even a bit better than the other two

architectures. These results allow us to conclude that adaptive wavelet based architectures

allow to obtain more interpretable models, with less hyperparameters, and that them adapt

better to texture based images. Fig. 5-4 shows the confusion matrix for the SEM fracture

dataset.
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Table 5-5.: Comparison of accuracy and F1-score for pre-training deep learning architectu-

res with ImageNet weights and keeping all the layers on the models trainable,

evaluated on the SEM dataset.

model
SEM

acc. F1-score

ResNet-18 85.48% 0.848

DenseNet-121 81,45% 0,802

DAWNc(32init.) 87.10% 0.864

5.5. Comparison of Fracture Classification Approaches

Among Handcrafted Features, Deep Learning and

Human Experts on the Topic

Table 5-6.: Comparison of the fracture classification analysis among the proposed algo-

rithms and two experts on the topic.

Expert Correct pieces Wrong pieces Not defined % class.

Expert 1 28 4 0 90.32%

Expert 2 22 9 0 70.96%

Handcrafted features [12] 24 3 4 77.4%

DAWN 24 4 3 77,4%

To check the behaviour of the algorithm against human experts, we decided to validate the

results of the real scale dataset, as it is the hardest fracture dataset to classify for an expert

on the topic, without access to the real piece. It is important to note that both of the experts

consulted are magisters on materials an process at the National University of Colombia, and

non of them had access to the real piece, only had access to the image of the whole piece.

The ground-truth was obtain by a different expert that had access to the real piece and

could perform microscopic analysis in case of doubt. The evaluation methodology for the

algorithms consisted in take six ROI images per piece and classify them individually. The

final labeled of the piece, then it is obtained when more than three images are classified in the

same category. An example of the classification method is shown in Fig. 5-5. Results of this

comparison are shown in table 5-6. It can be observed that DAWN architecture performs

similar to handcrafted features and achieves the same percentage of correct pieces classified.

Furthermore, it is worth notice that fracture classification is a non trivial problem where

even experts on the topic can encounter some difficulties when analysing real-scale images.
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Piece ROI

Handcrafted Ductile Ductile Ductile Ductile Ductile Ductile

DAWN Ductile Ductile Ductile Ductile Ductile Ductile

Final class. Handcrafted: Ductile

Final DAWN: Ductile

Final class. expert: Ductile

Handcrafted Fatigue Brittle Brittle Brittle Fatigue Fatigue

DAWN Fatigue Ductile Brittle Fatigue Fatigue Ductile

Final class. Handcrafted: Not defined

Final DAWN: Fatigue

Final class. expert: Brittle

Figure 5-5.: Comparison of three test pieces among the proposed algorithms and the expert

that generated the ground-truth labels

5.6. Conclusions of the Chapter

This work addressed the real-world problem of mechanical failure classification by using

a database consisting of 484 real-scale images corresponding to three fracture modes: i)

ductile, ii) brittle and iii) fatigue; and a SEM fracture database with 640 images of four

failure modes, same three as before plus one additional mode, named corrosion fatigue.

Three different methods were analysed, the first method is a traditional approach, were three

different and common deep learning architectures were pre-trained with ImageNet training

weights and then a fine tuning process was performed. This method allowed us to conclude

that deep learning architectures have a good performance on the SEM images database, and,
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for the real-scale dataset the performance it is the same as the one achieved with handcrafted

features. For the second method, the Deep learning plus handcrafted features approach,

experimental results shows that it outperforms the F1-score results of using just the VGG-19

model by 17% for the real-scale fracture database when using the fractal dimension, by 26%

for the SEM fracture database when using the LBP feature set. The Final approach consisted

in testing the DAWN and M-DAWN architecture on the two fracture datasets; results shows

that DAWN architecture performs similar to the handcrafted feature method and ResNet

pre-trained with ImageNet, but with less trainable parameters and hyperparameters to tune.

For the case of the SEM dataset best results are achieved by pre-training the DAWN c

architecture and keeping all the layer trainable, having an F1-score of 0.864.
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6.1. Conclusions

The research in texture analysis by using computer vision has been based on finding different

methods to extract handcrafted features from the data. The most common of these methods

are the gray level co-occurrence matrix, the Markov random fields, the local binary patterns

and different filters as Gabor or wavelet. Due to the importance in different applications,

texture is an active field of investigation. However, it is not an easy problem to approach.

Though the texture is a property of the objects easily identified by the human visual system,

it does not have a precise definition. Recent researches focus on learning the features directly

from the data by using an approach denominated Deep Neural Networks which is based on

the mammal brain, and it extracts features trough many layers and a big amount of input

data. When the application has a limited amount of data, it is necessary to implement a

transfer learning or data augmentation algorithm. Even though these methods have been

successful in applications such as object recognition, when it comes to real world texture it

is not so intuitive.

As a specific application of the textural architecture, this work is centered on the classifica-

tion of mechanical fractures modes to be a resource in failure analysis. More specifically, it

focuses on the fractographic analysis, which is a visual analysis of the surface of mechanical

fractures, looking for particular features like propagation patterns and the fracture’s origin.

Through the characterization of the fracture surface, it is possible to show the history before

the flaw, which allows us to find the causes of the failure. Among the possible causes for the

failure of the piece, for example, is a wrong selection of materials (E.g. it does not perform

correctly in the environmental conditions), a bad design of the element (E.g. bad decision

with the effort or corrosive substances considerations), and installation or maintenance pro-

blems.

To tackle this issues, we presented two different approaches focused on texture recognition,

i) Deep learning combined with handrafted features and ii) Deep Adaptive Wavelet Network:

Deep learning combined with handrafted features The first approach uses a common

pre-trained CNN architecture, namely VGG-19, and extracts feature maps from different
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hidden layers. Then three different sets of handcrafted features, called Haralick’s features,

Fractal dimension and Local Binary Patterns, commonly used in textural problems were ob-

tained from these feature maps. For KTH-TIPS2-b dataset a F1-score of 0.77 was obtained

compared against 0.64 obtained by VGG; For the fractographic problem, a F1-score of 0.72

and 0.73 for real-scale and SEM architecture were obtained, respectively, compared against

a F1-score of 0.55 and 0.47 of VGG trained on the same datasets. The experimental results

allowed us to conclude that by combining these two approaches, it is possible to improve the

results obtained by training VGG in an end-to-end manner, without transfer learning. This

assumption lead us to propose an architecture able to extract textural features by learning

them from the input data.

Deep Adaptive Wavelet Network The second approach, proposed an architecture by

analysing the relationship between multiresolution analysis and deep learning. Furthermore,

wavelet approaches had been widely used in texture analysis problems. The designed ar-

chitecture uses the second wavelet construction denominated lifting scheme. This approach

allowed us to construct wavelets with the same properties of the first generation wavelet but

in a spatial analysis. Also, we proposed an architecture to obtain the lifting scheme coeffi-

cients by using backpropagation. By doing so, it was possible to learn the wavelet coefficients

and to adapt them to the input datasets. The proposed architecture was built by using the

adaptive lifting scheme and the multiresolution analysis in a classification problem and has

the following properties:

• Different to other Wavlelet-CNN methods, the wavelet coefficients are learned during the

backpropagation process.

• The hyperparameter tunning is smaller than other CNN based architectures, as the num-

ber of layers is given by the number of levels on the multiresolution analysis.

• The loss function constrains proposed regularization methods to maintain the wavelet

properties during training.

• The proposed variation of DAWN for complex models, DAWN c, allowed us to train the

architecture in more complex datasets such as ImageNet.

Finally, the results obtained with this architecture showed that it is possible to have si-

milar performances to the state-of-the-art for CIFAR 10 and CIFAR 100 datasets. And for

ImageNet, the proposed model outperforms AlexNet, Scatter + Resnet 10 and WCNN archi-

tecture. In terms of texture classification, for KTH-TIPS2-b dataset it is possible to obtain

state-of-the-art results with a considerable small number of parameters; and for the fracture

datasets, DAWN architecture obtains better results than other traditional and textural ba-

sed architectures, and performs similarly to handcrafted features with a considerably smaller

number of parameters; finally, DAWNc pre-trained with ImageNet weights, got a F1-score

of 0.864, and it is better than the one obtained with traditional deep learning architectures.
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6.2. Future Work

Data recollection It is well known that for, deep neural networks to work well, a big

amount of data it is necessary. Even though in this work we did a big effort to obtain

fracture real-scale images and SEM images, we acknowledge that it is important to get more

data to obtain better results. In the case of SEM images it is important to obtain images at

different scales as the visual perception of the texture change depending on the scale of the

image.

Multiresolution analysis as a deep learning architecture Similarly to the DAWN archi-

tecture, Bruna and Mallat [16] used a multiresolution analysis based on wavelet transform

as a backbone of their architecture. Both this work and ours focus on the wavelet extraction

as an operation invariant to deformation. In Bruna’s work, the modulus is obtained from

each wavelet coefficient at different levels. In DAWN architecture, the details coefficients per

level of the wavelet transform are carried out to the end of the network. One big difference

between DAWN and the Scattering handcrafted representation is the ability of DAWN to

learn the wavelet configuration. It is this ability that allows it to adapt to the data and

perform equivalently across different datasets, as it was shown in Tables 4-4 and 4-1.

Combining Multiresolution analysis with more traditional CNNs architectures The

hybrid network with the proposed 2D lifting scheme shows the potential of improving the

accuracy or reducing the number of trainable parameters for other networks. How to combine

or incorporate more CNN features in the proposed network and keeping performances across

the different datasets is an interesting work avenue.

Initial convolutions At the moment, the architecture uses initial convolutional layers to

increase the number of channels from the input image, which is a simple approach. Research

using more advanced architectures for this part of the proposed network is left as future

work. Moreover, multiresolution analysis is usually applied on an image instead on a CNN

output. Changing the order of the initial convolutions and the different lifting scheme might

conduct to some exciting new architectures.



A. Appendix: Generative Adversarial

Networks and Data Augmentation

Summary

Deep learning approaches have had an outstanding success in many task, including image

classification, however it is undeniable that this could not be possible without the existence

of big enough datasets, that allow the networks to learn different features from the data.

There are some strategies on the state-of-the-art to overcome the problem when the available

data is not enough to improve the performance. This is the case of texture datasets, where

the available data is not enough to obtain or improve the performance generated by hand-

crafted features. In this work, we use the Progressive Growing GANs approach to perform

Data Augmentation into generate new samples for texture classification task. As particular

case of this analysis we work on surface fracture recognition. In the recent years, an interest

on Generative Adversarial Networks (GANs) has been increasing. This approach, introdu-

ced in 2014 by Ian Godfellow [44], is able to produce new content from a starting training

dataset. Usually, the GAN is form from two networks, The generator that will generate

the new samples form some random noise, trying to fit some training distribution; and the

discriminator which will discriminate among the new and old samples. These two networks

encounter themselves in an adversarial training, where the winning of one of them, will re-

present the losing of the other. The final aim will be to generate samples undistinguished

from the training samples.

Generative Adversarial Networks Deep Learning, has become in a widely used approach

for image classification, since AlexNet [68] beat the ImageNet Challenge [27] in 2012 by a

big margin. However its need for a huge training datasets to perform well it is a limitation

in several real world problems, such as texture analysis, where the datasets do not contain

many samples per class. Many GANs studies have been proposed for low image resolution

generation [61], however, with the aim of using this approach in data augmentation for

real world problems, it is important to obtain some high quality samples. Among all the

GANs used to tackled this problem we can highlight the Cycle-GAN [60] which uses a

pair of generators and discriminators in order to produce image to image translation; it

was later used by Wang and Perez [115] where they compere several techniques to treat
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Figure A-1.: Progressive Growing GAN architecture. Both, the generator (G) and the dis-

criminator (D) start with a resolution of 4 × 4 and progressively grows until

achieve the spatial resolution needed for the new samples [61].

the problem before mentioned. ACGAN [87] which, different to traditional GAN, uses an

auxiliary classifier giving to each generated sample a class label and the discriminator predicts

not only between real or fake samples but also among the classification labels. DAGAN [8]

in this approach the generator uses an autoencoder to obtain new samples, here first the

training samples pass trough an encoder, then some noise is added and finally the new

images are obtained through the decoder. More recently, the Progressive GAN [61] proposed

by NVIDIA researchers, has shown very good results in generating high resolution images.

This approach is the one use in this study, in order to augment data for textural benchmark

datasets and Fracture surfaces dataset.

Progressive Growing GAN In this approach proposed by Karras et al. [61] the generator

and discriminator start by a obtaining some low resolution images (of 4× 4 size pixels), and

then adding layers to the network, to progressively increase the resolution of the images.

By doing so, the network learns features in a multi-scale analysis, by obtaining low level

features in the first steps, and finally obtaining finer details as the network grows. In this

approach the discriminator and generator are a mirror of each other and always grow in the

same amount of layers and filters. Fig. A-1 illustrates the process before mentioned. In the

training process all layers remain trainable, and to avoid some issues with the already trained

weights, a transition between scale changes is performed. This process is shown in Fig. A-2.

It consists in perform a nearest neighbor interpolation to project the previous scale layer to

the new layer added with the new spatial resolution. The projected layer is multiplied by a

factor of 1 − α and concatenated with the new output layer multiplied by an α factor, to

form the new image with the new spatial resolution.
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Figure A-2.: A transition among spatial resolution of 16 × 16 (a) to 32 × 32 (c) pixels is

presented. [61].

To avoid repetition and similarities in the generated samples, and to increase variation on

them, researchers use the approach proposed by Salimans et al. [100], where the use of mi-

nibatch discrimination is applied. At the end of the discriminator a layer with this purpose

is added. Its main function is to discriminate among minibatches rather than discriminate

among one sample. This layer projects the input vector into a tensor of the standard de-

viation of each feature in each spatial location over the minibatch, and then the average of

these features is obtain to get one single value, obtaining an non-trainable feature map.

Setup Configuration One of the problems of GANs is that they need heavily and complex

computation, thus it needs a huge amounts of memory to obtain high resolution images. In

this work we obtain images of size 128× 128 pixels due to memory constrains. The architec-

ture configuration for the generator and discriminator is shown in Table A-1.

The images obtained in this process are presented in Fig. A-3 for the real-scale dataset. It

can be observed that even though the image presents a high-quality visualization, they look

to much alike to the training images, thous when training the classification system adding

this images, it tends to overfit easier than without this data augmentation. Then, some

modifications have to be done to use this kind of networks as data augmentation system for

texture analysis, and we leave it as future work. This research stage it is left then as future

work.
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Figure A-3.: Results of Pregressive GAN applied to the real fracture dataset
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Table A-1.: Generator and discriminator used for the Real-scale Fracture Dataset to gene-

rate images with 128× 128 pixels

Generator Output Shape

Latent vector 512× 1× 1

Conv 4× 4 512× 4× 4

Upsample 512× 8× 8

Conv 3× 3 256× 8× 8

Conv 3× 3 256× 8× 8

Upsampling 256× 16× 16

Conv 3× 3 128× 16× 16

Conv 3× 3 128× 16× 16

Upsampling 128× 32× 32

Conv 3× 3 64× 32× 32

Conv 3× 3 64× 32× 32

Upsampling 64× 16× 16

Conv 3× 3 32× 64× 64

Conv 3× 3 32× 64× 64

Upsampling 32× 128× 128

Conv 3× 3 16× 128× 128

Conv 3× 3 16× 128× 128

Conv 1× 1 3× 128× 128

Discriminator Output Shape

Input Image 3× 128× 128

Conv 1× 1 16× 128× 128

Conv 3× 3 16× 128× 128

Conv 3× 3 32× 128× 128

Dawnsample 32× 64× 64

Conv 3× 3 32× 64× 64

Conv 3× 3 64× 64× 64

Dawnsample 64× 32× 32

Conv 3× 3 64× 32× 32

Conv 3× 3 128× 32× 32

Dawnsample 256× 16× 16

Conv 3× 3 256× 16× 16

Conv 3× 3 512× 16× 16

Dawnsample 512× 8× 8

Conv 3× 3 512× 8× 8

Conv 3× 3 512× 8× 8

Dawnsample 512× 4× 4

Minibatch stddv 512× 4× 4

Conv 3× 3 512× 4× 4

Conv 4× 4 512× 1× 1

Fully-connected 1× 1× 1
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