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ABSTRACT

In its original form, the wavelet transform is a linear tool. However, it has been increas-

ingly recognized that nonlinear extensions are possible. A major impulse to the development

of nonlinear wavelet transforms has been given by the introduction of the lifting scheme by

Sweldens. The aim of this report, which is a sequel to a previous report devoted exclusively to

the pyramid transform, is to present an axiomatic framework encompassing most existing lin-

ear and nonlinear wavelet decompositions. Furthermore, it introduces some, thus far unknown,

wavelets based on mathematical morphology, such as the morphological Haar wavelet, both

in one and two dimensions. A general and flexible approach for the construction of nonlinear

(morphological) wavelets is provided by the lifting scheme. This paper discusses one example in

considerable detail, the max-lifting scheme, which has the intriguing property that it preserves

local maxima in a signal over a range of scales, depending on how local or global these maxima

are.
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1. Introduction

Today, it is generally accepted that multiresolution approaches are extremely important in many
signal and image processing applications. This is largely due to the fact that signals (and images
in particular) often contain physically relevant features at many different scales or resolutions.
For a proper understanding of such signals, multiresolution (or multiscale) techniques are indis-
pensable. But there exist other good reasons why taking recourse to multiresolution approaches.
A major one is that multiresolution algorithms may offer some attractive computational advan-
tages.

In a previous report [26], to be referred to here as Part 1, we have presented an axiomatic
framework for pyramid decompositions of signals which encompasses several existing approaches;
in particular, linear pyramids (such as the Laplacian pyramid proposed by Burt and Adelson [6]),
and morphological tools such as the skeleton and the granulometry [30, 37]. A short overview
of this framework is provided in Subsection 2.2.

Wavelet analysis is a relatively new tool developed over the past ten or fifteen years.
During this period, it has attracted the interest of scientists from various disciplines, in particular
mathematics, physics, computer science, and electrical engineering. Nowadays, it has reached a
certain level of maturity, as is clearly reflected by the existence of numerous textbooks, journals,
and conferences on this topic. A very interesting account on the emergence and development of
wavelet theory can be found in the monograph The World According to Wavelets by Barbara
Burke Hubbard [5].

Wavelet analysis is known as a linear tool. However, it is starting to be recognized that
nonlinear extensions are possible [8, 10, 11, 12, 13, 15, 18, 20, 21, 22, 23, 25, 26, 27, 28,
29, 31, 32, 40]. The lifting scheme, recently introduced by Sweldens [45, 46, 47] (see also [4]
for a predecessor of this scheme, known as a “ladder network”), has provided a useful tool for
constructing nonlinear wavelet transforms. The enormous flexibility and freedom that the lifting
scheme offers has challenged researchers to develop various nonlinear wavelet transforms [8, 10,
11, 12, 13, 18, 20, 21, 22, 23, 27, 28, 29, 31, 33]. We briefly discuss some of these works in the
concluding section of this report, and point out their relationship to our study.

The aim of this report is twofold. First, we present an axiomatic framework to wavelet-
type multiresolution signal decomposition that encompasses all known linear and nonlinear
wavelet decomposition schemes. Second, we introduce a family of nonlinear wavelets based on
morphological operators. The simplest nontrivial example of a morphological wavelet is the so-
called morphological Haar wavelet. As we said before, the lifting scheme opens a way to construct
more general wavelet decompositions. In this paper, we restrict ourselves to constructions based
on morphological operators. Particular attention is paid to the max-lifting scheme, which has
the interesting property that it preserves local maxima of a signal over several scales.

This report is organized as follows. In Section 2, we give a brief reminder of basic concepts
of mathematical morphology and of the pyramid transform introduced in Part 1. In Section 3, we
recall some known results about the linear wavelet transform and the concept of multiresolution
analysis. Then, in Section 4, we present a general definition of a wavelet transform, which we
refer to as the coupled wavelet decomposition scheme. A special case is the uncoupled wavelet
decomposition scheme, a class which the linear biorthogonal wavelets as well as the S-transform
belong to. Section 5 is devoted entirely to a simple nontrivial uncoupled wavelet decomposition
scheme based on morphological operators, the so-called morphological Haar wavelet. We discuss
the one-dimensional as well as the non-separable two-dimensional case. In Section 6, we discuss
the lifting scheme within the axiomatic context of this report. In particular, it is shown that
two nonlinear lifting steps generally lead to a coupled wavelet decomposition scheme. A number
of examples, based on morphological operators, are discussed. Another important example of
the lifting scheme is discussed in some detail in Section 7. This is referred to as the max-lifting
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scheme, the most striking property of which is that it preserves local maxima of a signal over
several scales, depending on how local or global these maxima are. Finally, in Section 8, we
put our results in a broader perspective, by discussing some related work recently found in the
literature.

2. Preliminaries

2.1. Some morphological concepts
We first recall some concepts from mathematical morphology that we use in the sequel. The
main concept is that of an adjunction. We refer to [30] for a comprehensive discussion.

2.1. Definition. Consider two partially ordered sets (posets) L,M and two operators ε:
L →M and δ: M→ L. The pair (ε, δ) defines an adjunction between L and M if

δ(y) ≤ x ⇐⇒ y ≤ ε(x), x ∈ L, y ∈M.

It is easy to show that, in an adjunction, both operators ε and δ are increasing; i.e., x1 ≤ x2

implies that ε(x1) ≤ ε(x2) (the same for δ). Recall that a poset L is called a lattice if every
finite subset in L has a supremum (least upper bound) and an infimum (greatest lower bound).
The set L is called a complete lattice if every (finite or infinite) subset of L has an infimum and
a supremum. If K ⊆ L, then we denote the supremum and infimum of K by

∨
K and

∧
K,

respectively. Instead of
∨
{x1, x2, ..., xn} we write x1 ∨ x2 ∨ · · · ∨ xn (same for the infimum). If

(ε, δ) is an adjunction between two lattices L and M, then

ε(x1 ∧ x2 ∧ · · · ∧ xn) = ε(x1) ∧ ε(x2) ∧ · · · ∧ ε(xn), x1, x2, ..., xn ∈ L

and, dually,

δ(y1 ∨ y2 ∨ · · · ∨ yn) = δ(y1) ∨ δ(y2) ∨ · · · ∨ δ(yn), y1, y2, ..., yn ∈M.

In a complete lattice, this relationship also holds for infinite infima and suprema, respectively.
Operators ε and δ, with the properties stated above, are called erosion and dilation, respectively.
In the following, id denotes the identity operator. The next result can be easily proved.

2.2. Proposition. Let (ε, δ) be an adjunction between two posets L and M; then:

εδε = ε and δεδ = δ

εδ ≥ id and δε ≤ id.

2.3. Definition. Let ψ be an operator from a poset L into itself.
(a) ψ is idempotent, if ψ2 = ψ.
(b) If ψ is increasing and idempotent, then ψ is called a (morphological) filter.
(c) A filter ψ which satisfies ψ ≤ id (ψ is anti-extensive) is called an opening.
(d) A filter ψ which satisfies ψ ≥ id (ψ is extensive) is called a closing.

Finally, we have the following result.

2.4. Proposition. Let (ε, δ) be an adjunction between two posets L and M. Then, εδ is a
closing on M and δε is an opening on L.
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2.2. A brief reminder on the pyramid transform
In Part 1, we have presented a comprehensive discussion on the pyramid transform. In this
section, we briefly recall the main ideas of that work.

Consider a family Vj of signal spaces. Here, j may range over a finite or an infinite index
set. Assume that we have two families of operators, a family ψ↑j of analysis operators mapping Vj
into Vj+1, and a family ψ↓j of synthesis operators mapping Vj+1 back into Vj . Here, the upward
arrow indicates that the corresponding operator maps a signal to the higher level, whereas the
downward arrow indicates that the operator maps a signal to a lower level. Refer to Figure 1 for
an illustration. The analysis operator ψ↑j is chosen to reduce information from a signal xj ∈ Vj ,
yielding a scaled signal xj+1 = ψ↑j (xj) in Vj+1. The synthesis operator ψ↓j maps the scaled signal
xj+1 back to x̂j = ψ↓j (xj+1) in Vj , in such a way that ψ↓jψ

↑
j (xj) is “close” to xj . By composing

analysis operators, we can travel from any level i to any higher level j. This gives an operator

ψ↑i,j = ψ↑j−1ψ
↑
j−2 · · ·ψ

↑
i , j > i,

which maps an element in Vi to an element in Vj . On the other hand, by composing synthesis
operators, we can travel from any level j to any lower level i. This gives an operator

ψ↓j,i = ψ↓i ψ
↓
i+1 · · ·ψ

↓
j−1, j > i,

which takes us from level j back to level i.

V0

V1

Vj+1

Vj

Analysis Synthesis

ψ0
A

ψj

A ψj

B

ψ0
B

M M

MM

Fig. 1. The pyramid decomposition scheme.

Since the analysis operators are designed to reduce the information content of a signal, they
are not invertible in general. In particular, ψ↓jψ

↑
j will not be the identity operator in general.

On the other hand, we always avoid synthesis operators ψ↓j that reduce information content. In
other words, ψ↓j is taken to be injective. In fact, both conditions are automatically satisfied if
we make the following assumption, which we refer to as the pyramid condition.
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2.5. Pyramid Condition. The analysis and synthesis operators ψ↑j , ψ↓j are said to satisfy the
pyramid condition if ψ↑jψ

↓
j = id on Vj+1.

It is easily seen that the pyramid condition implies that ψ↑jψ
↓
jψ
↑
j = ψ↑j , ψ↓jψ

↑
jψ
↓
j = ψ↓j , and

that ψ↓jψ
↑
j is idempotent. Now, suppose that all previous conditions are satisfied, and that we

have addition and subtraction operators +̇, −̇ on Vj , such that

x1 +̇ (x2 −̇ x1) = x2, for x1, x2 ∈ Vj

(note that, in Part 1, we have made an assumption which is slightly weaker). Given an input
signal x0 ∈ V0, we consider the following recursive signal analysis scheme, called the pyramid
transform:

x0 → {x1, y0} → {x2, y1, y0} → · · · → {xk+1, yk, yk−1, ..., y0} → · · ·

where xj+1 = ψ↑j (xj) ∈ Vj+1, j ≥ 0

yj = xj −̇ ψ↓j (xj+1).

The original signal x0 ∈ V0 can be exactly reconstructed from xk+1 and y0, y1, ..., yk by means
of the backward recursion

xj = ψ↓j (xj+1) +̇ yj , j = k, k − 1, ..., 0.

Refer to Figure 2 for an illustration.

ψ0
A

ψ1
A

x0

x1

x2

$x1

$x0
y0

y1

&−

&−

=

=

ψ1
B

ψ0
B

Fig. 2. An illustration of the pyramid transform.

Before we conclude this section, we point out here the relationship between our framework
and the nonlinear (convex) multiresolution analysis introduced by Combettes and Pesquet [15].
For simplicity, take j = 0 (however, the observations below are valid for arbitrary j). Define

πi = ψ↓i,0ψ
↑
0,i, for i > 0
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and
V

(i)
0 = Ran(πi).

In Part 1, we have shown that

πiπk = πkπi = πi, for i ≥ k, (2.1)

which yields that the sets V (i)
0 are nested, in the sense that

V
(i+1)
0 ⊆ V (i)

0 ⊆ V0, i > 0.

Following Combettes and Pesquet [15], we call such a family of nested spaces V (i)
0 , with corre-

sponding projections πi satisfying (2.1), a nonlinear multiresolution analysis.
In [15], Combettes and Pesquet introduce the concept of a convex multiresolution anal-

ysis. This consists of a family Cj of closed convex subsets of a Hilbert space, satisfying some
conditions, one of them being

Cj+1 ⊆ Cj , for j ∈ Z, (2.2)

and another one being
Pj+1Pj = Pj+1, for j ∈ Z, (2.3)

where Pj is the projection on Cj . It is easy to fit this case to our pyramid framework. Put
Vj = Cj , ψ

↑
j = Pj+1 and ψ↓j = Pj . Condition (2.2) trivially implies the required pyramid

condition Pj+1Pj = id on Cj+1 (notice that we do not need condition (2.3) for this to be true).
On the other hand, if we omit condition (2.2), then the pyramid condition amounts to

Pj+1PjPj+1 = Pj+1, for j ∈ Z,

which is weaker than (2.3).

3. Linear Wavelet Transform and Multiresolution Analysis

In this section, we briefly recall the basic theory of linear biorthogonal wavelets. For a compre-
hensive discussion, the reader is referred to existing textbooks [16, 35, 49].

x nj( )

~
h

~g B2

B2

x nj+1( )

y nj+1( )

Analysis

+
$ ( ) ( )x n x nj j=

hA2

gA2

Synthesis

Fig. 3. A two-channel linear filter bank: h̃, h are lowpass filters, whereas g̃, g

are highpass filters.
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Consider the two-channel linear filter bank depicted in Figure 3. For simplicity, we assume that
all filters have real coefficients. This filter bank is called a perfect reconstruction filter bank if
the output x̂j(n) equals the input xj(n). Denoting by F (z) the z-transform of a filter’s impulse
response f(n), it can be shown that perfect reconstruction is achieved if

H̃(z)H(z) + G̃(z)G(z) = 2 (3.1)

H̃(−z)H(z) + G̃(−z)G(z) = 0. (3.2)

If all filters are assumed to be FIR (finite impulse response), then there exists a k ∈ Z such that

H(z) = z2k+1G̃(−z) and G(z) = −z2k+1H̃(−z); (3.3)

see [49]. Z here denotes the set of integers. In this case, the following properties hold:

H̃(z)H(z) + H̃(−z)H(−z) = 2 (3.4)

H̃(z)G(z) + H̃(−z)G(−z) = 0 (3.5)

G̃(z)G(z) + G̃(−z)G(−z) = 2 (3.6)

G̃(z)H(z) + G̃(−z)H(−z) = 0. (3.7)

Notice that these properties imply that we have perfect reconstruction in the reverse synthe-
sis/analysis scheme depicted in Figure 4; i.e., x′j+1 = xj+1 and y′j+1 = yj+1.

x nj+1( )
~
h

~g B2

B2

′ =+ +x n x nj j1 1( ) ( )

′ =+ +y n y nj j1 1( ) ( )

Analysis

+

hA2

gA2

Synthesis

y nj+1( )

Fig. 4. The reverse linear synthesis/analysis scheme.

The aforementioned perfect reconstruction filter bank corresponds to a biorthogonal multiresolu-
tion analysis, generated by two scaling functions ṽ, v and two wavelet functions w̃,w in L2(IR);
i.e., the space of all finite energy functions on the real line IR. The scaling functions satisfy the
dilation equations

ṽ(t) =
√

2
∞∑

n=−∞
h̃(n)ṽ(2t− n) and v(t) =

√
2
∞∑

n=−∞
h(n)v(2t− n), (3.8)

whereas the wavelet functions are given by

w̃(t) =
√

2
∞∑

n=−∞
g̃(n)ṽ(2t− n) and w(t) =

√
2
∞∑

n=−∞
g(n)v(2t− n). (3.9)

Note that we use the following convention: functions defined on IR are printed in boldface to
distinguish them from functions defined on Z. Let us define by vj,n(t) the signal

vj,n(t) = 2−j/2v(2−jt− n), j, n ∈ Z (3.10)
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(same for ṽj,n,wj,n, w̃j,n). Let Vj be the linear subspace of L2(IR) spanned by the family
{vj,n | n ∈ Z}; the subspaces Ṽj ,Wj , W̃j are defined analogously. These spaces constitute a
biorthogonal multiresolution analysis, in the sense that {Vj}j∈Z and {Ṽj}j∈Z are two multireso-
lution approximations of L2(IR), and

Vj+1

⊕
Wj+1 = Vj and Ṽj+1

⊕
W̃j+1 = Ṽj (3.11)

Vj ⊥ W̃j and Ṽj ⊥Wj , (3.12)

where V
⊕
W denotes the direct sum of spaces V and W , whereas V ⊥ W denotes that space

V is orthogonal to space W . Moreover,

〈vj,m, ṽj,n〉 = 〈wj,m, w̃j,n〉 = δ(m− n), j,m, n ∈ Z,
where 〈·, ·〉 denotes the inner product on L2(IR), and δ(n) is the Dirac-delta sequence. Recall
that a sequence {Vj}j∈Z of closed subspaces of L2(IR) is called a multiresolution approximation
of L2(IR) if there exists a function u ∈ V0, with a nonvanishing integral, such that {u(t−n)}n∈Z
is a Riesz basis of V0, and

x(t) ∈ Vj ⇐⇒ x(t− 2jk) ∈ Vj , j, k ∈ Z
Vj+1 ⊆ Vj , j ∈ Z

x(t) ∈ Vj ⇐⇒ x(t/2) ∈ Vj+1, j ∈ Z

lim
j→∞

Vj =
∞⋂

j=−∞
Vj = {0}

lim
j→−∞

Vj =
∞⋃

j=−∞
Vj = L2(IR),

where A denotes the closure of a set A, and 0 denotes the signal which is identically zero [35,
36].

Consider now a signal xj ∈ Vj ; then xj can be written as a linear combination of vj,n,
n ∈ Z; i.e.,

xj =
∞∑

n=−∞
xj(n)vj,n with xj(n) = 〈xj , ṽj,n〉. (3.13)

Since Vj+1

⊕
Wj+1 = Vj , we may also write

xj =
∞∑

n=−∞
xj+1(n)vj+1,n +

∞∑
n=−∞

yj+1(n)wj+1,n,

where xj+1(n) = 〈xj , ṽj+1,n〉 and yj+1(n) = 〈xj , w̃j+1,n〉. The transformation that maps the
continuous signal xj onto the discrete signals xj+1(n), yj+1(n), is referred to as the biorthogonal
(linear) wavelet transform of xj . Using the facts that (see (3.8)–(3.10))

ṽj+1,n =
∞∑

k=−∞
h̃(k)ṽj,2n+k and w̃j+1,n =

∞∑
k=−∞

g̃(k)ṽj,2n+k,

we easily find that

xj+1(n) =
∞∑

k=−∞
h̃(k − 2n)xj(k) and yj+1(n) =

∞∑
k=−∞

g̃(k − 2n)xj(k).

A similar computation shows that the inverse transformation is given by

xj(n) =
∞∑

k=−∞
h(n− 2k)xj+1(k) +

∞∑
k=−∞

g(n− 2k)yj+1(k).

These expressions are in conformity with the perfect reconstruction filter bank scheme depicted
in Figure 3.
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4. General Wavelet Decomposition Schemes

In this section, we present a formal definition of a general wavelet decomposition scheme. This
scheme encompasses linear wavelet decompositions as a special case, but allows also a broad
class of nonlinear wavelet decomposition schemes. We start in Subsection 4.1 with the definition
of the so-called coupled wavelet decomposition scheme which comprises two analysis operators,
one for the signal and one for the detail, and one synthesis operator. The uncoupled wavelet
decomposition scheme introduced in Subsection 4.2 is a special case of the coupled wavelet
decomposition, in the sense that the synthesis operator is the sum of two synthesis operators,
the signal and the detail synthesis operators. The linear wavelet decomposition belongs to this
second class; in this case the signal and detail analysis (resp. synthesis) operators correspond to
lowpass and highpass analysis (resp. synthesis) operators.

4.1. Coupled wavelet decomposition
The coupled wavelet decomposition extends the pyramid scheme discussed in Part 1; see also
Subsection 2.2. Assume that there exist sets Vj and Wj . We refer to Vj as the signal space at
level j and to Wj as the detail space at level j. Signal analysis consists of decomposing a signal
in the direction of increasing j by means of signal analysis operators ψ↑j : Vj → Vj+1 and detail
analysis operators ω↑j : Vj →Wj+1. On the other hand, signal synthesis proceeds in the direction
of decreasing j, by means of synthesis operators Ψ↓j : Vj+1 ×Wj+1 → Vj . This is illustrated in
Figure 5.

Analysis Analysis

Synthesis

ψj

A ωj

A

Vj

Vj+1 Wj+1

Ψj

B

Fig. 5. One stage of the coupled wavelet decomposition scheme.

The previous decomposition scheme is required to yield a complete signal representation, in the
sense that the mappings (ψ↑j , ω

↑
j ): Vj → Vj+1 ×Wj+1 and Ψ↓j : Vj+1 ×Wj+1 → Vj are inverses

of each other. This leads to the following conditions:

Ψ↓j (ψ
↑
j (x), ω↑j (x)) = x, if x ∈ Vj , (4.1)

which is called the perfect reconstruction condition, andψ↑j (Ψ↓j (x, y)) = x, if x ∈ Vj+1, y ∈Wj+1

ω↑j (Ψ↓j (x, y)) = y, if x ∈ Vj+1, y ∈Wj+1.
(4.2)

The two conditions in (4.2) guarantee that the decomposition is non-redundant. Condition (4.1)
implies that the mapping Ψ↑j : Vj → Vj+1 ×Wj+1, given by

Ψ↑j (x) = (ψ↑j (x), ω↑j (x)),
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is injective (i.e., one-to-one) and that Ψ↓j is surjective (i.e., onto). On the other hand, (4.2)
implies that Ψ↑j is surjective and that Ψ↓j is injective. Furthermore, if (4.1) holds and if Ψ↑j is
surjective (or Ψ↓j is injective) then (4.2) holds as well. Also, if (4.2) holds and if Ψ↓j is surjective
(or Ψ↑j is injective), then (4.1) holds as well.

Now, given an input signal x0 ∈ V0, consider the following recursive analysis scheme:

x0 → {x1, y1} → {x2, y2, y1} → · · · → {xk, yk, yk−1, ..., y1} → · · · (4.3)

where xj+1 = ψ↑j (xj) ∈ Vj+1, j ≥ 0

yj+1 = ω↑j (xj) ∈Wj+1, j ≥ 0.
(4.4)

The original signal x0 can be exactly reconstructed from xk and y1, y2, ..., yk by means of the
following recursive synthesis scheme:

xj = Ψ↓j (xj+1, yj+1), j = k − 1, k − 2, ..., 0, (4.5)

which shows that the decomposition (4.3), (4.4) is invertible. We refer to the signal represen-
tation scheme governed by (4.1), (4.2), and (4.3)–(4.5) as the coupled wavelet decomposition
scheme. Block diagrams illustrating this scheme, for the case when k = 3, are depicted in
Figure 6.

(b)

y3

y2

y1

x3
x2

x1

Ψ2
B

Ψ1
B

Ψ0
B x0

(a)

x0

x1

x2

x3

y1

y2

y3
ψ0

A

ω0
A

ω1
A

ω2
A

ψ1
A

ψ2
A

Fig. 6. A 3-level coupled wavelet decomposition scheme: (a) signal

analysis, (b) signal synthesis.
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The relationship between the coupled wavelet decomposition scheme and the pyramid scheme
discussed in Part 1 can be easily established. Recall that the latter scheme is governed by the
pyramid condition

ψ↑jψ
↓
j = id on Vj+1. (4.6)

Let the operators ψ↑j , ω
↑
j ,Ψ

↓
j constitute a coupled wavelet decomposition. Fix an element y0

j ∈
Wj , for every j, and define ψ↓j : Vj+1 → Vj as

ψ↓j (x) = Ψ↓j (x, y
0
j+1), x ∈ Vj+1.

Now, the first identity in (4.2) gives ψ↑j (ψ↓j (x)) = x, x ∈ Vj+1. In other words, the pair (ψ↑j , ψ
↓
j )

satisfies the pyramid condition (4.6).

4.2. Uncoupled wavelet decomposition
Of particular interest is the case when there exists a binary operation +̇ on Vj , which we call
addition (notice that +̇ may also depend on j), and operators ψ↓j : Vj+1 → Vj and ω↓j : Wj+1 → Vj
such that

Ψ↓j (x, y) = ψ↓j (x) +̇ ω↓j (y), x ∈ Vj+1, y ∈Wj+1. (4.7)

We refer to ψ↓j , ω
↓
j as the signal synthesis and the detail synthesis operators, respectively. Con-

ditions (4.1), (4.2) become

ψ↓jψ
↑
j (x) +̇ ω↓jω

↑
j (x) = x, if x ∈ Vj (4.8)

ψ↑j (ψ↓j (x) +̇ ω↓j (y)) = x, if x ∈ Vj+1, y ∈Wj+1 (4.9)

ω↑j (ψ↓j (x) +̇ ω↓j (y)) = y, if x ∈ Vj+1, y ∈Wj+1. (4.10)

We refer to the signal representation scheme governed by (4.3)–(4.5), (4.7)–(4.10) as the uncou-
pled wavelet decomposition scheme. One stage of this scheme is illustrated in Figure 7.

&+Analysis Analysis

Synthesis

ψj

A ωj

A

Vj

Vj+1 Wj+1

ψj

B ωj

B

Fig. 7. One stage of the uncoupled wavelet decomposition scheme.

Given an input signal x0 ∈ V0 and the corresponding recursive analysis scheme given in (4.3),
(4.4), x0 can be perfectly reconstructed from xk and y1, y2, ..., yk by means of the following
recursive synthesis scheme:

xj = ψ↓j (xj+1) +̇ ω↓j (yj+1), j = k − 1, k − 2, ..., 0.

Therefore, signal xj at level j is reconstructed from information that is only available at level
j+ 1. First, signal xj+1 is mapped down to level j by means of the signal synthesis operator ψ↓j
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y3

y2

y1

&+

&+

&+

x3

x2

x1

x0

ψ2
B

ω2
B

ω1
B

ω0
B

ψ1
B

ψ0
B

Fig. 8. The signal synthesis part of a 3-level uncoupled wavelet de-

composition scheme.

so as to obtain an approximation x̂j = ψ↓j (xj+1) of xj ; then, the detail signal yj+1 is mapped
down to level j by means of the detail synthesis operator ω↓j so as to obtain the detail signal
ej = ω↓j (yj+1) at level j; finally, the results are combined by means of the addition operator +̇.

Equation (4.7) concerns only the structure of the synthesis part. A block diagram illus-
trating this part, for the case when k = 3, is depicted in Figure 8. The analysis part is the same
as in Figure 6(a).

In the examples provided below, we consider only one step in the decomposition; i.e., we
only consider decompositions between V0 and V1,W1. For simplicity, we delete the subindices
j = 0 in the corresponding analysis and synthesis operators.

4.1. Example (lazy wavelet). The simplest example of an uncoupled wavelet decomposition
is the transform that splits a one-dimensional discrete signal x(n) into its odd and even samples.
Let V0 = V1 = W1 = `2(Z); i.e., the space of all finite energy sequences on Z. Then, the analysis
operators are given by

ψ↑(x)(n) = x(2n) (4.11)

ω↑(x)(n) = x(2n + 1), (4.12)

whereas the synthesis operators are given by

ψ↓(x)(2n) = x(n) and ψ↓(x)(2n + 1) = 0 (4.13)

ω↓(y)(2n) = 0 and ω↓(y)(2n + 1) = y(n). (4.14)

It is obvious that conditions (4.8)–(4.10) are trivially satisfied, with +̇ being the standard ad-
dition. The lazy wavelet, better known in the signal processing community as the polyphase
transform of order 2 [49], is not of great interest by itself; the reason why it is treated here is
because it is often used as a starting point for the lifting scheme to be discussed in Section 6.

4.2. Example (Haar wavelet). The simplest non-trivial linear uncoupled wavelet decom-
position is the so-called Haar wavelet [16, 35]. As in the previous example, choose V0 = V1 =
W1 = `2(Z). Define the analysis operators

ψ↑(x)(n) =
1√
2

(x(2n) + x(2n+ 1)) (4.15)

ω↑(x)(n) =
1√
2

(x(2n)− x(2n + 1)), (4.16)
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and the synthesis operators

ψ↓(x)(2n) = ψ↓(x)(2n + 1) =
1√
2
x(n) (4.17)

ω↓(y)(2n) =
1√
2
y(n) and ω↓(y)(2n + 1) = − 1√

2
y(n). (4.18)

Again, it is easy to show that conditions (4.8)–(4.10) are all satisfied, provided that +̇ is taken
to be the standard addition.

4.3. Example (quantization). In the previous two (linear) examples, the signal ψ↑(x)
contains half the number of samples of the original signal x. We now present a simple nonlinear
example where the number of samples of x and ψ↑(x) are the same, but where ψ↑ reduces the
number of bits needed to represent a signal by one.

Let V0 = T ZN , V1 = T ZN−1, and W1 = {0, 1}Z, where Tk = {0, 1, ..., 2k − 1}. Define the
analysis operators

ψ↑(x)(n) = bx(n)/2c
ω↑(x)(n) = x(n)− 2bx(n)/2c,

where b·c denotes the floor function (i.e., for t ∈ IR, btc is the largest integer ≤ t), and the
synthesis operators

ψ↓(x)(n) = 2x(n)

ω↓(y)(n) = y(n).

Observe that the pair (ψ↑, ψ↓) defines an adjunction. The reader may readily verify that condi-
tions (4.8)–(4.10) are satisfied, with +̇ being the standard addition. The signal analysis operator
ψ↑ discards one bit of information in x(n). In fact, this bit is stored in the detail signal ω↑(x)(n),
thus enabling perfect reconstruction.

4.4. Example (S-transform). The S-transform can be considered as a nonlinear modification
of the Haar wavelet with the additional property that it maps integer-valued signals onto integer-
valued signals, but without abandoning the property of perfect reconstruction. In this case, the
analysis operators are given by

ψ↑(x)(n) =
⌊x(2n) + x(2n+ 1)

2

⌋
ω↑(x)(n) = x(2n + 1)− x(2n).

The corresponding synthesis operators are given by

ψ↓(x)(2n) = ψ↓(x)(2n + 1) = x(n)

ω↓(y)(2n) = −
⌊y(n)

2

⌋
and ω↓(y)(2n + 1) =

⌊y(n) + 1
2

⌋
.

Refer to Figure 9 for an illustration.
The specific character of these operators guarantee that integer signals are mapped onto integer
signals, and we may choose V0 = V1 = W1 = ZZ, i.e., all doubly infinite integer-valued sequences.
It is easy to show that conditions (4.8)–(4.10) are all satisfied here as well, provided that +̇ is
taken to be the standard addition.

The S-transform, where “S” stands for “sequential,” has been known in the literature for
several years, and has been successfully used in medical imaging for lossless compression [41].
During the years, several modifications and generalizations have been proposed; e.g., see [43]. In
Section 6, we consider the S-transform in the context of lifting and present a simple modification
to this scheme.
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Fig. 9. An illustration of the S-transform. The white and gray nodes correspond to

the even and odd samples, respectively.

4.3. Linear biorthogonal wavelets
The linear biorthogonal wavelet transform, discussed in Section 3, fits well into the framework
of uncoupled wavelet decompositions. We consider this case from two different perspectives.

First, let us choose Vj and Wj as in Section 3, and let ψ↑j , ω↑j be the projections of Vj onto
Vj+1 and Wj+1, respectively, corresponding with the decomposition

Vj = Vj+1

⊕
Wj+1.

In this case, every x ∈ Vj satisfies

x = ψ↑j (x) + ω↑j (x).

Now, if we choose for ψ↓j and ω↓j the identity operator (observe that Vj+1 and Wj+1 are subspaces
of Vj), then the conditions (4.8)–(4.10) are trivially satisfied, provided that +̇ is taken to be the
standard addition.

A different, but equivalent, perspective can be obtained by representing Vj , Wj in terms
of the bases {vj,n | n ∈ Z} and {wj,n | n ∈ Z}, respectively. With every signal x ∈ `2(Z) we can
associate a unique element xj ∈ Vj by putting

xj =
∞∑

n=−∞
xj(n)vj,n ;

see (3.13). Decomposing xj as xj+1 + yj+1, with xj+1 ∈ Vj+1 and yj+1 ∈Wj+1, and writing

xj+1 =
∞∑

n=−∞
xj+1(n)vj+1,n, yj+1 =

∞∑
n=−∞

yj+1(n)wj+1,n,

we obtain the analysis and synthesis operators (which are now operators mapping `2(Z) into
itself):

ψ↑j (x)(n) =
∞∑

k=−∞
h̃(k − 2n)x(k) (4.19)

ω↑j (x)(n) =
∞∑

k=−∞
g̃(k − 2n)x(k) (4.20)

ψ↓j (x)(n) =
∞∑

k=−∞
h(n− 2k)x(k) (4.21)

ω↓j (y)(n) =
∞∑

k=−∞
g(n− 2k)y(k). (4.22)
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If the z-transforms of the filters involved are related by means of (3.3), then all conditions in
(4.8)–(4.10) are satisfied (with Vj and Wj replaced by `2(Z)). In fact, the perfect reconstruction
condition (4.8) is equivalent to (3.1), (3.2), condition (4.9) is equivalent to (3.4), (3.5), and
condition (4.10) is equivalent to (3.6), (3.7).

In Part 1, Section 4, we have seen that, in the linear case, the pyramid condition ψ↑ψ↓ = id,
with ψ↑ and ψ↓ given by (4.19) and (4.21), respectively, amounts to the condition

∞∑
k=−∞

h̃(2n− k)h(k) = δ(n).

Multiplying both sides of this equation with z−2n and summing over n yields:

1 =
∞∑

n=−∞

∞∑
k=−∞

h̃(2n− k)h(k)z−2n

=
∞∑

k=−∞
h(2k)z−2k

∞∑
n=−∞

h̃(2n− 2k)z−2n+2k

+
∞∑

k=−∞
h(2k + 1)z−2k−1

∞∑
n=−∞

h̃(2n− 2k − 1)z−2n+2k+1,

which gives
He(z)H̃e(z) +Ho(z)H̃o(z) = 1. (4.23)

Here, He(z) is the even part of H(z) (i.e., He(z) = 1
2 (H(z)+H(−z))) and Ho(z) is the odd part

of H(z) (i.e., Ho(z) = 1
2 (H(z) −H(−z))). It is easy to verify that (4.23) is equivalent to

H̃(z)H(z) + H̃(−z)H(−z) = 2,

which coincides with (3.4). Defining G(z) and G̃(z) by means of equation (3.3), it is easy to
verify that conditions (3.1)–(3.7) are all satisfied. Thus, we have shown the following result (see
also [42]).

4.5. Proposition. Consider the signal analysis and synthesis operators

ψ↑(x)(n) =
∞∑

k=−∞
h̃(k − 2n)x(k) (4.24)

ψ↓(x)(n) =
∞∑

k=−∞
h(n− 2k)x(k) (4.25)

such that the pyramid condition ψ↑ψ↓ = id is satisfied; i.e.,

∞∑
k=−∞

h̃(2n− k)h(k) = δ(n), n ∈ Z.

Then, there exist detail analysis and synthesis operators

ω↑(x)(n) =
∞∑

k=−∞
g̃(k − 2n)x(k)

ω↓(y)(n) =
∞∑

k=−∞
g(n− 2k)y(k)

such that this system defines a linear biorthogonal wavelet decomposition.
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Basically, this result says that, in the linear case, any pyramid that satisfies the pyramid condi-
tion can be extended to a wavelet decomposition. Choosing k = 0 in (3.3), we get

g(n) = (−1)nh̃(n+ 1) and g̃(n) = (−1)nh(n− 1). (4.26)

4.6. Example (Burt-Adelson wavelet). Consider the Burt-Adelson pyramid discussed in
Example 4.2 of Part 1. The signal analysis and synthesis operators are given by

ψ↑(x)(n) =
1
8

(−x(2n− 2) + 2x(2n− 1) + 6x(2n) + 2x(2n + 1)− x(2n + 2)) (4.27)

ψ↓(x)(2n) = x(n) and ψ↓(x)(2n + 1) =
1
2

(x(n) + x(n+ 1)). (4.28)

From (4.24), (4.25), (4.27), and (4.28), we have that h̃(0) = 3/4, h̃(−1) = h̃(1) = 1/4, h̃(−2) = h̃(2) = −1/8, h̃(n) = 0, otherwise

h(0) = 1, h(−1) = h(1) = 1/2, h(n) = 0, otherwise.
(4.29)

Using (4.26) and (4.29), we find g(−3) = g(1) = 1/8, g(−2) = g(0) = 1/4, g(−1) = −3/4, g(n) = 0, otherwise

g̃(0) = 1/2, g̃(1) = −1, g̃(2) = 1/2, g̃(n) = 0, otherwise.

This leads to the following detail analysis and synthesis operators:

ω↑(x)(n) =
1
2
x(2n)− x(2n + 1) +

1
2
x(2n + 2)

ω↓(y)(2n) =
1
4
y(n) +

1
4
y(n+ 1)

ω↓(y)(2n + 1) =
1
8
y(n)− 3

4
y(n+ 1) +

1
8
y(n+ 2).

One can easily check that, indeed, the conditions (4.8)–(4.10) concerning the uncoupled wavelet
decomposition scheme are all satisfied. We may call the resulting linear signal decomposi-
tion scheme the Burt–Adelson wavelet decomposition. However, it is not difficult to see that
this example produces the four discrete analysis and synthesis filters associated with a spline
biorthogonal wavelet of order (2, 2) [16, Chapter 8] (see also [14]).

4.4. Nonlinear biorthogonal-like multiresolution analysis

The linear biorthogonal multiresolution analysis, discussed in Section 3, can be conceptually ex-
tended to the more general framework of the uncoupled wavelet decomposition scheme. Indeed,
consider V (j+1)

j = Ran(ψ̂j) and W (j+1)
j = Ran(ω̂j), where ψ̂j = ψ↓jψ

↑
j and ω̂j = ω↓jω

↑
j (recall our

discussion and notation in Subsection 2.2). From (4.8), we get that every signal x ∈ Vj has a
unique decomposition x = x′+̇y′, where x′ ∈ V (j+1)

j and y′ ∈W (j+1)
j , namely x = ψ̂j(x)+̇ω̂j(x).

Thus, we may write, in analogy with (3.11),

Vj = V
(j+1)
j

⊕
W

(j+1)
j .
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Let us assume that there exists an 0v ∈ Vj (which depends on j in general) such that x +̇ 0v =
0v +̇ x = x, for every x ∈ Vj , and ψ↓j (0v) = 0v. If there exists an 0w ∈ Wj (which also depends
on j in general) such that ω↓j (0w) = 0v, then (4.9) and (4.10) imply that

ψ↑jψ
↓
j (x) = x, for x ∈ Vj+1 (4.30)

ω↑jω
↓
j (y) = y, for y ∈Wj+1 (4.31)

ψ↑jω
↓
j (y) = 0v, for y ∈Wj+1 (4.32)

ω↑jψ
↓
j (x) = 0w, for x ∈ Vj+1. (4.33)

This implies that ψ̂j and ω̂j are idempotent operators on Vj (also called projections). Further-
more (4.32), (4.33) imply that

ψ̂jω̂j = ω̂jψ̂j = 0,

where 0 is the operator on Vj which is identically 0v. The projections ψ̂j and ω̂j are comple-
mentary in the sense that

ψ̂j +̇ ω̂j = id,

where (ψ̂j +̇ ω̂j)(x) = ψ̂j(x) +̇ ω̂j(x), for x ∈ Vj .

5. Morphological Haar Wavelet

5.1. The one-dimensional case
In this section, we discuss a morphological variant of the Haar wavelet in one dimension. The
major difference with the classical linear Haar wavelet, discussed in Example 4.2, is that the
linear signal analysis filter of the latter is replaced by an erosion (or dilation); i.e., by taking the
minimum (or maximum) over two samples. Let V0 = V1 = W1 = IRZ be the lattice of doubly
infinite real-valued sequences. Define the analysis and synthesis operators as (compare with
(4.15)–(4.18)):

ψ↑(x)(n) = x(2n) ∧ x(2n + 1) (5.1)

ω↑(x)(n) = x(2n)− x(2n+ 1) (5.2)

ψ↓(x)(2n) = ψ↓(x)(2n + 1) = x(n) (5.3)

ω↓(y)(2n) = y(n) ∨ 0 and ω↓(y)(2n + 1) = −(y(n) ∧ 0). (5.4)

In Part 1, we have seen that the operators ψ↑, ψ↓ satisfy the pyramid condition (4.6). The
corresponding pyramid was called the morphological Haar pyramid (see Example 5.5 in Part 1).
It can also be shown that (5.1)–(5.4) satisfy conditions (4.8)–(4.10), provided that +̇ is taken to
be the standard addition. Therefore, the morphological Haar wavelet is another example of an
uncoupled wavelet decomposition scheme.

Figure 10 illustrates the computations associated with the analysis and synthesis operators
of a 3-stage morphological Haar wavelet decomposition scheme. The gray nodes indicate the
detail signal.

Figure 11 depicts an example of the linear Haar wavelet decomposition scheme, given
by (4.15), (4.16), whereas Figure 12 depicts an example of the morphological Haar wavelet
decomposition scheme, given by (5.1), (5.2). In these figures, as well as other figures in this
report, we have normalized the vertical axis of plots depicting detail signals in such a way that
(almost) the entire range is used. To be precise, the vertical axis of the plot of a detail signal
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Fig. 10. Computations associated with a 3-stage morphological Haar wavelet decom-

position scheme: (a) signal analysis, (b) signal synthesis. The gray nodes indicate the

detail signal.

y runs from ymin − ε to ymax + ε, where ymin, ymax are the minimum and maximum values of
y, respectively, and ε = 0.1 ×max(|ymin|, |ymax|). For two dimensional detail images, we use a
similar convention: pixels where the detail signal matches its minimum (resp. maximum) value
are displayed in black (resp. white).

Notice that the signal analysis operator in the morphological case guarantees that the
range of values of the scaled signals {xj , j ≥ 1} is the same as the range of values of the
original signal x0. It furthermore guarantees that, if the original signal x0 is discrete-valued,
the scaled signals {xj , j ≥ 1} will be discrete-valued as well, a highly desirable property in
lossless coding applications [7]. Moreover, the morphological Haar wavelet decomposition scheme
does a better job in preserving the shape of the three main features (the three dips) in x0 as
compared to the linear case. This is expected, since the signal analysis filters in the linear Haar
wavelet decomposition scheme are linear lowpass filters, and as such smooth-out edges. The
signal analysis filters in the morphological Haar case are nonlinear, and as such preserve edge
information.

In (5.1), we have chosen to use minimum. It is obvious that we can also take maximum
instead; i.e., we can set

ψ↑(x)(n) = x(2n) ∨ x(2n + 1),

and leave ω↑ unchanged. In this case, the corresponding signal synthesis operator ψ↓ is the same
as in (5.3), but the detail synthesis operator becomes

ω↓(y)(2n) = y(n) ∧ 0 and ω↓(y)(2n + 1) = −(y(n) ∨ 0).

Notice that, when we use minimum in the signal analysis operator, (ψ↑, ψ↓) is an adjunction,
whereas when we use maximum, (ψ↓, ψ↑) is an adjunction.

It is not difficult to define a binary version of the wavelet decomposition scheme (5.1)–
(5.4). Indeed, let V0 = V1 = W1 = {0, 1}Z be the Boolean lattice of doubly infinite sequences of
0’s and 1’s. We choose the “exclusive OR” operation, denoted by 4, as the binary operation +̇
on V0. Then, we define analysis and synthesis operators (cf. (5.1)–(5.4)) as follows:

ψ↑(x)(n) = x(2n) (5.5)

ω↑(x)(n) = x(2n) 4 x(2n + 1) (5.6)

ψ↓(x)(2n) = ψ↓(x)(2n + 1) = x(n) (5.7)

ω↓(y)(2n) = 0 and ω↓(y)(2n + 1) = y(n). (5.8)
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Fig. 11. Multiresolution signal decomposition based on the linear Haar

wavelet transform: (a) A signal x0 and its scaled signal decomposition

{x1, x2, x3} obtained by means of the analysis operator ψ↑ in (4.15). (b) The

detail signals {y1, y2, y3} obtained from {x0, x1, x2} by means of the analysis

operator ω↑ in (4.16).
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Fig. 12. Multiresolution signal decomposition based on the morphological

Haar wavelet transform: (a) A signal x0 and its scaled signal decomposition

{x1, x2, x3} obtained by means of the analysis operator ψ↑ in (5.1). (b) The

detail signals {y1, y2, y3} obtained from {x0, x1, x2} by means of the analysis

operator ω↑ in (5.2).
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It is easy to verify that this defines an uncoupled wavelet decomposition scheme. Notice that
the detail signal ω↑(x) contains 1’s only at a transition (from 0 to 1 or vice versa) in signal x
that occurs at an even point. The decomposition is self-dual, in the sense that

ψ↑(x) = ψ↑(x) and ω↑(x) = ω↑(x),

where x(n) = 1 − x(n). An example is illustrated in Figure 13. Such a binary scheme can
be extended, without any serious effort, to finite-valued signals with values in {0, 1, ...,N − 1},
N <∞, and with 4 being replaced by “addition modulo N .”

5.2. The two-dimensional case
We can extend the morphological Haar wavelet decomposition scheme to two and higher di-
mensions by using a separable filter bank (e.g., by sequentially applying the one-dimensional
decomposition on the columns and rows of a two-dimensional image) [35, 49]. However, we can
also define a non-separable two-dimensional version of the morphological Haar wavelet.

Indeed, let V0 and V1 consist of all functions from Z2 into IR and let W1 consist of all
functions from Z2 into IR3. We introduce the following notation. By n, 2n we denote the
points (m,n), (2m, 2n) ∈ Z2, respectively, and by 2n+, 2n+, 2n+

+ we denote the points (2m +
1, 2n), (2m, 2n + 1), (2m + 1, 2n + 1), respectively. Define

ψ↑(x)(n) = x(2n) ∧ x(2n+) ∧ x(2n+) ∧ x(2n+
+) (5.9)

ω↑(x)(n) = (ωv(x)(n), ωh(x)(n), ωd(x)(n)), (5.10)

where ωv, ωh, ωd represent the vertical, horizontal, and diagonal detail signals, given by:

ωv(x)(n) =
1
2

(x(2n)− x(2n+) + x(2n+)− x(2n+
+)) (5.11)

ωh(x)(n) =
1
2

(x(2n)− x(2n+) + x(2n+)− x(2n+
+)) (5.12)

ωd(x)(n) =
1
2

(x(2n)− x(2n+)− x(2n+) + x(2n+
+)). (5.13)

The synthesis operators are now given by

ψ↓(x)(2n) = ψ↓(x)(2n+) = ψ↓(x)(2n+) = ψ↓(x)(2n+
+) = x(n), (5.14)

and

ω↓(y)(2n) = (yv(n) + yh(n)) ∨ (yv(n) + yd(n)) ∨ (yh(n) + yd(n)) ∨ 0

ω↓(y)(2n+) = (yv(n)− yh(n)) ∨ (yv(n)− yd(n)) ∨ (−yh(n)− yd(n)) ∨ 0

ω↓(y)(2n+) = (yh(n)− yv(n)) ∨ (−yv(n)− yd(n)) ∨ (yh(n)− yd(n)) ∨ 0

ω↓(y)(2n+
+) = (−yv(n)− yh(n)) ∨ (yd(n)− yv(n)) ∨ (yd(n)− yh(n)) ∨ 0,

where we write y ∈W1 as y = (yv, yh, yd). It is not difficult to show that conditions (4.8)–(4.10)
are all satisfied, provided that +̇ is taken to be the standard addition. Therefore, this is a
two-dimensional example of an uncoupled wavelet decomposition scheme.

The analysis operators ψ↑ and ω↑ in (5.9), (5.10) map a quadruple of signal values, as
the ones depicted in the left hand-side of Figure 14, to the quadruple at the right hand-side;
here x1 = ψ↑(x) and yv = ωv(x) (the same for yh, yd). An example, illustrating one step of this
decomposition is depicted in Figure 15.
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Fig. 13. Multiresolution signal decomposition based on the binary morphological

Haar wavelet transform: (a) A binary signal x0 and its scaled signal decomposition

{x1, x2, x3} obtained by means of the analysis operator ψ↑ in (5.5). (b) The detail

signals {y1, y2, y3} obtained from {x0, x1, x2} by means of the analysis operator

ω↑ in (5.6).
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Fig. 14. The two-dimensional Haar wavelet transforms an input sig-

nal x to a scaled signal x1 and the vertical, horizontal, and diagonal

detail signals yv , yh, yd, respectively.
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Fig. 15. Multiresolution image decomposition based on the two-dimensional morphological

Haar wavelet transform: (a) An image x, and (b) its decomposition into the scaled image

ψ↑(x), given by (5.9), and the detail images ωv(x), ωh(x) and ωd(x), given by (5.11)–(5.13).

As in the one-dimensional case, the minimum in the expression for ψ↑ can be replaced by a
maximum. Moreover, as we explain below, it can also be replaced by any (extension of a)
positive Boolean function without destroying the condition of perfect reconstruction. Recall
that every Boolean function b can be written as a sum-of-products, where the sum represents
the “OR” or “maximum” and where the product represents the “AND” or “minimum.” If the
Boolean function is positive, then this sum-of-products can be written without complemented
variables. Such a positive Boolean function can be easily extended from {0, 1} to IR by replacing
the sum by maximum and the product by minimum [30, Section 11.4].

Suppose now that b is a positive Boolean function of four variables and let ψ↑ be given by

ψ↑(x)(n) = b(x(2n), x(2n+), x(2n+), x(2n+
+)),

and take ω↑ to be the same as in (5.10). The value of b(u1, u2, u3, u4) equals one of its four
arguments; which one depends on the ranking of these four elements, and can be deduced from
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(the signs of) u1 − u2, u1 − u3, u1 − u4. Knowing the value of b(u1, u2, u3, u4), along with the
three differences u1−u2, u1−u3, u1−u4, we are able to compute u1, u2, u3, u4. This observation
can be used to recover the original signal x from ψ↑(x) and ω↑(x). Namely, using (5.11)–(5.13),
it is easy to show that

x(2n)− x(2n+) = ωh(x)(n) + ωd(x)(n)

x(2n)− x(2n+) = ωv(x)(n) + ωd(x)(n)

x(2n)− x(2n+
+) = ωv(x)(n) + ωh(x)(n).

This leads to the signal synthesis operator (5.14) and to detail synthesis operators that are
similar to the ones used by the two-dimensional version of the morphological Haar wavelet
decomposition scheme discussed above. The particular form of the detail synthesis operators
depends on the choice for the Boolean function b. Clearly, the resulting wavelet decomposition
will be uncoupled.

We can take b to be the k’th order statistic of u1, u2, u3, u4; i.e., the k’th value of the
sequence of length 4 obtained by arranging u1, u2, u3, u4 in decreasing order. Observe that, in
this case and for k = 4, we obtain the morphological Haar wavelet (and for k = 1 its dual). In
the following, and for the sake of illustration, we present a two-dimensional binary example that
is built by taking b to be the median of the sequence u1, u1, u2, u3, u4.

Consider an input signal x, with x(2n) = a, x(2n+) = b, x(2n+) = c, and x(2n+
+) = d.

The signal analysis operator is given by

ψ↑(x)(n) = median(x(2n), x(2n), x(2n+), x(2n+), x(2n+
+)). (5.15)

Take ω↑ as in (5.10), where

ωv(x)(n) = x(2n) 4 x(2n+) (5.16)

ωh(x)(n) = x(2n) 4 x(2n+) (5.17)

ωd(x)(n) = x(2n) 4 x(2n+
+). (5.18)

Referring to Figure 14, the coefficients in the matrix
[
a c
b d

]
are mapped to

[
t v
u w

]
, where

t = median(a, a, b, c, d), u = a 4 b, v = a 4 c, and w = a 4 d. It is not difficult to verify that

a = t 4 (u ∧ v ∧ w),

where t = median(a, a, b, c, d), u = a 4 b, v = a 4 c, and w = a 4 d. To understand this, we
distinguish two cases: (i) u∧ v ∧w = 0: this means that at least one of the values u, v,w equals
0, which implies that at least one of the values b, c, d equals a. This yields that t = a, which is
in agreement with a = t 4 0. (ii) u ∧ v ∧ w = 1: then u = v = w = 1, hence b = c = d = a.
This yields that t = a. Again, this is in agreement with a = t 4 1.

Having a recovered from t, u, v, w, we can recover b from b = (a 4 b) 4 a = u 4 t 4 (u ∧
v ∧w). Similarly, we can find c and d. This leads to synthesis operators, given by (5.14) and

ω↓(y)(2n) = yv(n) ∧ yh(n) ∧ yd(n)

ω↓(y)(2n+) = yh(n) 4 (yv(n) ∧ yh(n) ∧ yd(n))

ω↓(y)(2n+) = yv(n) 4 (yv(n) ∧ yh(n) ∧ yd(n))

ω↓(y)(2n+
+) = yd(n) 4 (yv(n) ∧ yh(n) ∧ yd(n)).

It is again not difficult to show that conditions (4.8)–(4.10) are all satisfied, provided that +̇ is
taken to be the “exclusive OR” operator. An example, illustrating one step of this decomposition,
is depicted in Figure 16.
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(a) (b)

Fig. 16. Multiresolution binary image decomposition based on the two-dimensional median

wavelet transform: (a) A binary image x, and (b) its decomposition into the scaled image

ψ↑(x), given by (5.15), and the detail images ωv(x), ωh(x) and ωd(x), given by (5.16)–(5.18).

5.3. Invariance properties
The morphological Haar wavelet has some specific invariance properties, besides of being trans-
lation invariant in the spatial domain. As we will see in Section 6 and Section 7, such invariance
properties (see below for a concrete definition) are typical in wavelet decompositions based on
morphological operators.

Consider a wavelet decomposition scheme between V0 and V1 ×W1 given by the analysis
operators ψ↑, ω↑ and the synthesis operator Ψ↓. For simplicity, we restrict ourselves here to
signals with values in IR, that is, elements of V0, V1,W1 are functions with values in IR. For a
function f : E → IR and a constant c ∈ IR we define the functions f + c and c · f by

(f + c)(p) = f(p) + c, (c · f)(p) = cf(p), p ∈ E.

5.1. Definition. The decomposition with analysis operators ψ↑, ω↑ is said to be gray-shift
invariant if

ψ↑(x+ c) = ψ↑(x) + c and ω↑(x+ c) = ω↑(x), x ∈ V0, c ∈ IR. (5.19)

The decomposition is called gray-multiplication invariant if

ψ↑(c · x) = c · ψ↑(x) and ω↑(c · x) = c · ω↑(x), x ∈ V0, c > 0.

It is easy to verify that the synthesis operator Ψ↓ of a coupled wavelet decomposition scheme
which is gray-shift (resp. gray-multiplication) invariant, satisfies

Ψ↓(x+ c, y) = Ψ↓(x, y) + c, x ∈ V1, y ∈W1, c ∈ IR (5.20)

(resp. Ψ↓(c · x, c · y) = c · Ψ↓(x, y), x ∈ V1, y ∈ W1, c > 0). Indeed, from (4.2) and (5.19), we
have that

ψ↑(Ψ↓(x+ c, y)) = x+ c = ψ↑(Ψ↓(x, y)) + c = ψ↑(Ψ↓(x, y) + c).
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On the other hand

ω↑(Ψ↓(x+ c, y)) = y = ω↑(Ψ↓(x, y)) = ω↑(Ψ↓(x, y) + c).

Since the mapping (ψ↑, ω↑): V0 → V1×W1 is injective, we have that Ψ↓(x+ c, y) = Ψ↓(x, y)+ c.
Suppose now that we have an uncoupled wavelet decomposition scheme with synthesis

operators ψ↓ and ω↓, and assume for simplicity that +̇ is the standard addition. In the gray-
shift invariant case, and from (5.20), we find

ψ↓(x+ c) = ψ↓(x) + c, x ∈ V1, c ∈ IR,

whereas in the gray-multiplication invariant case we find

ψ↓(c · x) = c · ψ↓(x) and ω↓(c · y) = c · ω↓(y), x ∈ V1, y ∈W1, c > 0.

It is easy to verify that the morphological Haar wavelet decomposition given by (5.1)–(5.4), as
well as the two-dimensional variant of Subsection 5.2, satisfies both of these invariance properties.

6. The Lifting Scheme

A useful and very general technique for constructing new wavelet decompositions from existing
ones has been recently proposed by Sweldens [45, 46, 47], and is known as the lifting scheme.
Lifting amounts to modifying the analysis and synthesis operators in such a way that the prop-
erties of the modified scheme are “better” than those of the original one. Here, “better” can be
interpreted in different ways. For example, in the linear case, it may mean that the number of
vanishing moments is larger.

Lifting can be used to construct wavelet decompositions for signals that are defined on
arbitrary domains, or to construct nonlinear wavelet decompositions, which is of interest to us.
Two types of lifting schemes can be distinguished:

• Prediction Lifting. This modifies the detail analysis operator ω↑ and the signal synthesis
operator Ψ↓ in the coupled case, or the signal synthesis operator ψ↓ in the uncoupled case.

• Update Lifting. This modifies the signal analysis operator ψ↑ and the signal synthesis
operator Ψ↓ in the coupled case, or the detail synthesis operator ω↓ in the uncoupled case.

We treat these two cases separately. In both cases, the lifting operator may differ from level to
level. However, for simplicity of presentation, we restrict ourselves to operators between levels
0 and 1.

6.1. Prediction lifting

Consider one level of a coupled wavelet decomposition scheme, governed by the analysis oper-
ators ψ↑: V0 → V1, ω↑: V0 → W1 and the synthesis operator Ψ↓: V1 ×W1 → V0, such that
the conditions (4.1), (4.2) are satisfied. In many applications, such as data compression, it is
desirable to develop wavelet schemes that produce small detail signals y1 = ω↑(x0). Starting
from a scheme like above, we might try to decrease the detail signal y1 by utilizing signal infor-
mation contained in x1 = ψ↑(x0). This may be accomplished by means of a prediction operator
π: V1 →W1 and a difference operator −̂ on W1 and by setting

y′1 = y1 −̂ π(x1), (6.1)
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Fig. 17. The analysis and synthesis steps of a prediction lifting scheme.

as the new detail signal. This leads to the analysis step depicted in Figure 17.
Assume now that there exists an addition operator +̂ on W1 such that

(y1 +̂ y2) −̂ y2 = (y1 −̂ y2) +̂ y2 = y1, y1, y2 ∈W1. (6.2)

It is evident that the original signal x0 can be reconstructed from x1 and y′1, since

x0 = Ψ↓(x1, y1) = Ψ↓(x1, y
′
1 +̂ π(x1)).

This leads to the synthesis step depicted in Figure 17. Thus, we arrive at the prediction lifting
scheme with analysis and synthesis operators given by:

ψ↑p(x) = ψ↑(x), x ∈ V0 (6.3)

ω↑p(x) = ω↑(x) −̂ πψ↑(x), x ∈ V0 (6.4)

Ψ↓p(x, y) = Ψ↓(x, y +̂ π(x)), x ∈ V1, y ∈W1. (6.5)

To show that this defines a coupled wavelet decomposition scheme, we must verify that ψ↑p, ω↑p,
and Ψ↓p satisfy conditions (4.1) and (4.2) as well. Indeed, let x ∈ V0; then

Ψ↓p(ψ
↑
p(x), ω↑p(x)) = Ψ↓

(
ψ↑p(x), ω↑p(x) +̂ πψ↑p(x)

)
= Ψ↓

(
ψ↑(x), (ω↑(x) −̂ πψ↑(x)) +̂ πψ↑(x)

)
= Ψ↓

(
ψ↑(x), ω↑(x)

)
= x,

where we have used (4.1) for the original scheme, and (6.2), (6.3)–(6.5). Now, let x ∈ V1, y ∈W1;
then

ψ↑p(Ψ↓p(x, y)) = ψ↑(Ψ↓(x, y +̂ π(x))) = x,

where we have used the first equation in (4.2) for the original scheme, and (6.3), (6.5). Finally,
let x ∈ V1, y ∈W1; then

ω↑p(Ψ↓p(x, y)) = ω↑(Ψ↓(x, y +̂ π(x))) −̂ πψ↑(Ψ↓(x, y +̂ π(x)))

= (y +̂ π(x)) −̂ π(x) = y,

where we have used (4.2), (6.2), (6.4), (6.5).
The following result provides some additional properties for the case when the initial

wavelet decomposition is uncoupled.
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6.1. Proposition. Consider an uncoupled wavelet decomposition scheme between V0 and
V1,W1, with synthesis operators ψ↓, ω↓, a prediction operator π : V1 → W1, and binary op-
erations +̂, −̂ on W1 such that (6.2) is satisfied. Furthermore, assume that:

(i) the binary operator +̇ on V0 is associative and commutative;
(ii) ω↓ : W1 → V0 is “linear,” in the sense that

ω↓(y1 +̂ y2) = ω↓(y1) +̇ ω↓(y2), y1, y2 ∈W1. (6.6)

Then, the prediction-lifted wavelet decomposition, given by (6.3)–(6.5), is uncoupled (with respect
to the same addition operator +̇) with synthesis operators

ψ↓p(x) = ψ↓(x) +̇ ω↓π(x)

ω↓p(y) = ω↓(y).

Proof. Under the given assumptions, we can write

Ψ↓p(x, y) = Ψ↓(x, y +̂ π(x))

= ψ↓(x) +̇ ω↓(y +̂ π(x))

= ψ↓(x) +̇ (ω↓(y) +̇ ω↓π(x))

= (ψ↓(x) +̇ ω↓π(x)) +̇ ω↓(y),

which proves the result.

6.2. Example (Lifting the lazy wavelet). Consider the case of the lazy wavelet, discussed
in Example 4.1. Set +̂, +̇ to be the standard addition and −̂ to be the standard subtraction,
and take π(x)(n) = x(n). From (4.11), (4.12) and (6.3), (6.4), we obtain the analysis operators:

ψ↑p(x)(n) = x(2n) (6.7)

ω↑p(x)(n) = x(2n + 1)− x(2n). (6.8)

From Proposition 6.1 we deduce that the synthesis operators associated with the lifting scheme
are given by

ψ↓p(x)(2n) = ψ↓p(x)(2n + 1) = x(n)

ω↓p(y)(2n) = 0 and ω↓p(y)(2n + 1) = y(n).

This decomposition produces a “better” detail signal than the one produced by the lazy wavelet
decomposition, in the sense that its most significant values appear only at locations of signal
discontinuity. This is illustrated in Figure 18.

6.3. Example (Lifting the morphological Haar wavelet). Consider the morphological
Haar wavelet discussed in Subsection 5.1. Recall that V0 = V1 = W1 = IRZ and that +̇ is the
standard addition. Let +̂ and −̂ on W1 be defined by

y1 +̇ y2 =
1
2

(y1 + y2) and y1 −̇ y2 = 2y1 − y2,

where +,− are the standard addition and subtraction. Obviously, the equalities in (6.2) are
satisfied. Define the prediction operator π: V1 →W1 by

π(x)(n) = x(n)− x(n+ 1).
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Fig. 18. The lazy wavelet decomposition scheme, with analysis operators ψ↑,

ω↑, as compared to the wavelet decomposition scheme (6.7), (6.8) obtained after

prediction lifting. The detail signal ω↑p(x) is “better” than the detail signal

ω↑(x), in the sense that the most significant values of ω↑p(x) appear only at

locations of signal discontinuity.

From (5.1)–(5.4) and (6.3)–(6.5), we obtain a coupled nonlinear wavelet decomposition scheme
with analysis and synthesis operators given by:

ψ↑p(x)(n) = x(2n) ∧ x(2n+ 1) (6.9)

ω↑p(x)(n) = 2
(
x(2n)− x(2n + 1)

)
−
(
x(2n) ∧ x(2n+ 1)

)
+
(
x(2n + 2) ∧ x(2n+ 3)

)
(6.10)

Ψ↓p(x, y)(2n) = x(n) +
[1
2
(
y(n) + x(n)− x(n+ 1)

)
∨ 0
]

(6.11)

Ψ↓p(x, y)(2n + 1) = x(n)−
[1
2
(
y(n) + x(n)− x(n+ 1)

)
∧ 0
]
. (6.12)

This scheme has two “vanishing moments” as opposed to the morphological Haar wavelet that
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has only one. By one “vanishing moment” we mean that a constant input signal x(n) = b

produces a zero detail signal, whereas by two “vanishing moments” we mean that a linear signal
x(n) = an + b produces a zero detail signal. This is illustrated in Figure 19. Observe that the
wavelet transform in (6.9), (6.10) maps integer-valued signals onto integer-valued signals.
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Fig. 19. The morphological Haar wavelet decomposition scheme, with analysis

operators ψ↑, ω↑, as compared to the wavelet decomposition scheme (6.9), (6.10)

obtained after prediction lifting. Notice that ω↑(x) is zero at points where the

input signal is constant, whereas ω↑p(x) is zero at points where the input signal

is linear.

6.2. Update lifting
Instead of modifying the detail signal y1, as we did in (6.1), we may choose to modify the scaled
signal x1 using the information in y1. We assume that there exist addition and subtraction
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operators +̌, −̌ on V1 such that

(x1 +̌ x2) −̌ x2 = (x1 −̌ x2) +̌ x2 = x1, x1, x2 ∈ V1. (6.13)

We get a modified scaled signal by setting

x′1 = x1 −̌ λ(y1). (6.14)

Here, λ is an operator, mapping W1 into V1, called the update operator. Although, in principle,
every mapping λ can be allowed as an update operator, in practice we choose λ in such a
way that the resulting scaled signal satisfies a certain constraint. In the linear case, it is often
required that the resulting analysis filter x0 7→ x′1 is a lowpass filter. Alternatively, we may
require that this mapping preserves a given signal attribute (e.g., average or maximum). If the
unmodified scaled signal x1 does not satisfy the constraint, we may choose λ in such a way that
x′1, given by (6.14), does satisfy this constraint. We refer to the work of Sweldens [45, 46, 47]
and Daubechies and Sweldens [17] for more details.
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Fig. 20. The analysis and synthesis steps of an update lifting scheme.

The update step in (6.14) gives rise to the diagrams depicted in Figure 20. It is clear that the
input signal x0 can be reconstructed from x′1 and y1, since

x0 = Ψ↓(x1, y1) = Ψ↓(x′1 +̌ λ(y1), y1).

Thus, we arrive at the update lifting scheme with analysis and synthesis operators given by:

ψ↑u(x) = ψ↑(x) −̌ λω↑(x), x ∈ V0 (6.15)

ω↑u(x) = ω↑(x), x ∈ V0 (6.16)

Ψ↓u(x, y) = Ψ↓(x +̌ λ(y), y), x ∈ V1, y ∈W1. (6.17)

In the same way as we did for the prediction lifting scheme, we can show that (6.15)–(6.17) defines
a coupled wavelet decomposition scheme. Furthermore, the following analogue to Proposition 6.1
can be established.

6.4. Proposition. Consider an uncoupled wavelet decomposition scheme between V0 and
V1,W1, with synthesis operators ψ↓, ω↓, an update operator λ : W1 → V1, and binary oper-
ations +̌, −̌ on V1 such that (6.13) is satisfied. Furthermore, assume that:
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(i) the binary operator +̇ on V0 is associative and commutative;
(ii) ψ↓ : V1 → V0 is “linear,” in the sense that

ψ↓(v1 +̌ v2) = ψ↓(v1) +̇ ψ↓(v2), v1, v2 ∈ V1. (6.18)

Then, the update-lifted wavelet decomposition, given by (6.15)–(6.17), is uncoupled (with respect
to the same addition operator +̇) with synthesis operators

ψ↓u(x) = ψ↓(x)

ω↓u(y) = ω↓(y) +̇ ψ↓λ(y).

6.5. Example. Consider the case of the wavelet decomposition scheme, discussed in Exam-
ple 6.2, obtained from lifting the lazy wavelet by means of linear prediction. Set +̌, +̇ to be the
standard addition and −̌ to be the standard subtraction, and take λ(y)(n) = −by(n)/2c. From
(6.7), (6.8) and (6.15), (6.16), we obtain the analysis operators:

ψ↑u(x)(n) = x(2n) +
⌊x(2n + 1)− x(2n)

2

⌋
(6.19)

ω↑u(x)(n) = x(2n + 1)− x(2n). (6.20)

From Proposition 6.4 we derive that the resulting decomposition is uncoupled, with synthesis
operators:

ψ↓u(x)(2n) = ψ↓u(x)(2n + 1) = x(n) (6.21)

ω↓u(y)(2n) = −
⌊y(n)

2

⌋
and ω↓u(y)(2n + 1) = y(n)−

⌊y(n)
2

⌋
. (6.22)

In the integer-valued case,

x(2n) +
⌊x(2n + 1)− x(2n)

2

⌋
=
⌊x(2n) + x(2n+ 1)

2

⌋
(6.23)

y(n)−
⌊y(n)

2

⌋
=
⌊y(n) + 1

2

⌋
; (6.24)

therefore, the previous wavelet decomposition scheme is the S-transform considered in Exam-
ple 4.4.

The previous example shows that, by update lifting the wavelet scheme obtained from
lifting the lazy wavelet by means of linear prediction, and by restricting ourselves to integer-
valued signals, we obtain a very useful wavelet decomposition scheme, known as the S-transform.
Therefore, by combining a prediction lifting step followed with an update step we obtain a
wavelet decomposition scheme that requires special consideration. This scheme, to be referred
to as prediction-update lifting, is discussed next.

6.3. Prediction-update lifting
If the lifting scheme comprises a prediction step π followed by an update step λ, then the
resulting decomposition is clearly given by

y′1 = y1 −̂ π(x1)

x′1 = x1 −̌ λ(y′1).
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Fig. 21. The analysis and synthesis steps of a prediction-update lifting scheme.

Refer to Figure 21 for an illustration. The original signal x0 can be reconstructed from x′1 and
y′1, since

x0 = Ψ↓(x1, y1) = Ψ↓(x′1 +̌ λ(y′1), y′1 +̂ π(x′1 +̌λ(y′1))).

This leads to the synthesis step depicted in Figure 21. Thus, we arrive at the prediction-update
lifting scheme with analysis and synthesis operators given by

ψ↑pu(x) = ψ↑(x) −̌ λ(ω↑(x) −̂ πψ↑(x)), x ∈ V0 (6.25)

ω↑pu(x) = ω↑(x) −̂ πψ↑(x), x ∈ V0 (6.26)

Ψ↓pu(x, y) = Ψ↓(x +̌ λ(y), y +̂ π(x +̌ λ(y))), x ∈ V1, y ∈W1. (6.27)

In general, prediction-update lifting gives rise to a coupled wavelet decomposition scheme, even
when the original wavelet transform is uncoupled. Similar results hold for the dual case of a
lifting scheme that comprises an update step λ followed by a prediction step π. This leads to
the so-called update-prediction lifting scheme.

6.6. Example. In this example, we show how to arrive at the morphological Haar wavelet
by a simple prediction-update lifting of the lazy wavelet. Let us take −̂, −̌ to be the standard
subtraction, and +̂, +̌, +̇ to be the standard addition and set

π(x)(n) = x(n) and λ(y)(n) = −(0 ∧ y(n)). (6.28)

Then, from (4.11), (4.12), (6.25), (6.26), and (6.28), we find

ψ↑pu(x)(n) = x(2n) + (0 ∧ (x(2n + 1)− x(2n))) = x(2n) ∧ x(2n+ 1) (6.29)

ω↑pu(x)(n) = x(2n + 1)− x(2n), (6.30)

which, apart from a minus sign in (6.30), coincides with the morphological Haar wavelet intro-
duced in Subsection 5.1.

6.7. Example (Lifting based on the median operator). Let us take −̂, −̌ to be the
standard subtraction, and +̂, +̌, +̇ to be the standard addition. Consider the case of a prediction-
update lifting scheme with initial signal decomposition given by means of the lazy wavelet, and
prediction and update operators given by:

π(x)(n) = x(n) (6.31)

λ(y)(n) = −median(0, y(n− 1), y(n)). (6.32)
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From (4.11)–(4.14) and (6.25)–(6.32), we obtain an uncoupled wavelet decomposition scheme,
with analysis and synthesis operators given by:

ψ↑pu(x)(n) = x(2n) + median(0, x(2n− 1)− x(2n− 2), x(2n + 1)− x(2n)) (6.33)

ω↑pu(x)(n) = x(2n + 1)− x(2n) (6.34)

ψ↓pu(x)(n) = x(n) (6.35)

ω↓pu(y)(2n) = −median(0, y(n− 1), y(n)) (6.36)

ω↓pu(y)(2n + 1) = y(n)−median(0, y(n− 1), y(n)). (6.37)

Notice that, the update operator adjusts the value of x(2n) based on the local structure of
the input signal x(n). If the difference x(2n − 1) − x(2n − 2) is negative (or positive) and the
difference x(2n+1)−x(2n) is positive (or negative), then no adjustment is made. This happens,
for example, when x(2n) is a local minimum (or maximum), as illustrated in Figure 22(a). If
however both differences x(2n−1)−x(2n−2) and x(2n+1)−x(2n) are negative (or positive), then
x(2n) is adjusted by adding the smallest (in absolute value) difference. For example, when x(n)
(locally) oscillates between two values, as depicted in Figure 22(b), then (6.33) will bring x(2n)
in line with x(2n−1), thus getting a scaled signal ψ↑pu(x) that approximates x “better” than the
scaled signal ψ↑(x) before prediction-update lifting. Finally, notice that the resulting wavelet
decomposition is gray-shift and gray-multiplication invariant (recall Definition 5.1). Concerning
the last property, one may observe that it holds for positive as well as for negative constants c.
Alternatively, we may choose

π(x)(n) =
1
2

(x(n) + x(n+ 1)), (6.38)

and λ(y) as in (6.32). This choice leads to an uncoupled wavelet decomposition scheme that
has two “vanishing moments.” In this case, the detail signal, resulting from an input signal
x(n) = an+ b, will be zero.

Finally, one can replace the previous linear prediction operator, with the nonlinear pre-
diction operator:

π(x)(n) = median(x(n− 1), x(n), x(n + 1)). (6.39)

This choice, together with (6.32) for the update operator, leads to a coupled wavelet decomposi-
tion scheme. Figure 23 depicts examples of such decompositions. Although the decompositions
depicted in Figure 23(a) and Figure 23(c) are very similar, the decomposition depicted in Fig-
ure 23(b) needs more attention. In this case, the detail signal ω↑pu(x) is small at points where
the input signal x is linear-like (e.g., at points 0 ≤ n ≤ 18 and 60 ≤ n ≤ 80). This is expected,
since the resulting decomposition has two “vanishing moments,” as it was explained above.

6.8. Example (Lifting binary wavelets). Let us now consider the binary case, for which
V0 = V1 = W1 = {0, 1}Z. The previous example, based on the median operator, can be
reformulated for binary signals as well. For this case, we take −̂, −̌, +̂, +̌, +̇ to be the “exclusive
OR” operator4. We can now proceed with a prediction-update lifting scheme, with initial signal
decomposition given by means of the lazy wavelet and prediction and update operators given
by:

π(x)(n) = x(n)

λ(y)(n) = median(0, y(n− 1), y(n)) = y(n) ∧ y(n− 1).
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A ( )x

Fig. 22. An illustration of update lifting by means of (6.33): (a) Since x(2n) is a local minimum

in x, (6.33) maps x(2n) into itself. (b) Since x(2n− 1)− x(2n− 2) = x(2n+ 1)− x(2n) = −1, the

value x(2n) is reduced by one, thus obtaining a scaled signal ψ↑pu(x) that approximates x “better”

than the scaled signal ψ↑(x) before prediction-update lifting

Notice that median(0, s, t) = s∧t, for s, t ∈ {0, 1}. The analysis and synthesis operators resulting
from this lifting scheme can be expressed as:

ψ↑pu(x)(n) = a↑(x(2n− 2), x(2n − 1), x(2n), x(2n + 1))

ω↑pu(x)(n) = b↑(x(2n− 2), x(2n − 1), x(2n), x(2n + 1))

Ψ↓pu(x, y)(2n) = a↓(x(n), y(n− 1), y(n))

Ψ↓pu(x, y)(2n + 1) = b↓(x(n), y(n− 1), y(n)),

where a↑, b↑, a↓, b↓ are Boolean functions given by:

a↑(u1, u2, u3, u4) = u3 + (u1 + u2 − 2u1u2)(u4 − u3)

b↑(u1, u2, u3, u4) = u3 + u4 − 2u3u4

a↓(u1, u2, u3) = u1 + (1− 2u1)u2u3

b↓(u1, u2, u3) = u1 + (1− 2u1)(1− u2)u3.
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Fig. 23. One-stage decomposition of a signal x by means of predic-

tion-update lifting based on the median operator. Prediction and up-

date operators are given by: (a) (6.31), (6.32), (b) (6.38), (6.32), and

(c) (6.39), (6.32). Notice that the detail signal in (b) is small at points

where the input signal is linear-like. This is due to the fact that, in

(b), the decomposition has two “vanishing moments.”
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Clearly, the resulting wavelet decomposition scheme is coupled and self-dual, in the sense that

ψ↑pu(x) = ψ↑pu(x) and ω↑pu(x) = ω↑pu(x),

where x(n) = 1− x(n). An example is illustrated in Figure 24.

We now mention the following important consequence of Proposition 6.1 and Proposition 6.4.
If the wavelet decomposition used as a starting point for lifting is uncoupled and “linear,” in
the sense that the synthesis operators ω↓, ψ↓ satisfy (6.6), (6.18), if the binary operators +̂,
+̌ (on W1 and V1) satisfy (6.2), (6.13), and if the binary operator +̇ on V0 is associative and
commutative, then the resulting scheme after one lifting step (prediction or update) is also
uncoupled. However, after a second lifting step (of the opposite type) the scheme will become
coupled in general. This implies that the prediction-update and the update-prediction lifting
schemes will in general give rise to coupled wavelet decompositions, even if all assumptions
associated with Proposition 6.1 and Proposition 6.4 are satisfied. This is illustrated in the
following example.

6.9. Example (Lifting the S-transform). Let us take −̂, −̌ to be the standard subtraction,
+̂, +̌, +̇ to be the standard addition, and let us limit our interest to integer-valued signals.
In Example 6.5 we showed that the S-transform can be obtained by update lifting the wavelet
decomposition scheme discussed in Example 6.2. If we further lift the S-transform by means of
prediction lifting, with

π(x)(n) =
⌊x(n+ 1)− x(n)

2

⌋
,

we obtain a wavelet decomposition scheme with analysis and synthesis operators given by (recall
(6.3)–(6.5) and (6.19)–(6.24)):

ψ↑up(x)(n) =
⌊x(2n) + x(2n + 1)

2

⌋
ω↑up(x)(n) =

⌊1
2
b5

2
x(2n + 1)− 3

2
x(2n)c − 1

2
b1

2
x(2n+ 2) +

1
2
x(2n+ 3)c

⌋
Ψ↓up(x, y)(2n) = −

⌊1
2
y(n) +

1
2
b−5

2
x(n) +

1
2
x(n + 1)c

⌋
Ψ↓up(x, y)(2n + 1) = −

⌊
−1

2
y(n)− b1

2
x(n+ 1)− 1

2
x(n)c+

1
2
b−5

2
x(n) +

1
2
x(n+ 1)c

⌋
,

which is clearly coupled. Notice that the resulting scheme has two “vanishing moments,” as
compared to the S-transform which has only one.

7. The Max- and Min-Lifting Schemes

In this section, we discuss a particular example of a wavelet decomposition by means of
prediction-update lifting that leads to the so-called max-lifting scheme. Its structure is the same
as in Figure 21, with −̂, −̌ being the standard subtraction, +̂, +̌, +̇ being the standard addition,
and prediction and update operators given by:

π(x)(n) = x(n) ∨ x(n + 1) and λ(y)(n) = −(0 ∨ y(n− 1) ∨ y(n)).

In this case,

y′1(n) = y1(n)− (x1(n) ∨ x1(n+ 1)) (prediction) (7.1)

x′1(n) = x1(n) + (0 ∨ y′1(n− 1) ∨ y′1(n)) (update). (7.2)
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Fig. 24. Multiresolution signal decomposition based on the binary wavelet trans-

form of Example 6.8 obtained by means of prediction-update lifting: (a) A binary

signal x0 and its scaled signal decomposition {x1, x2, x3} obtained by means of the

analysis operator ψ↑pu. (b) The detail signals {y1, y2, y3} obtained from {x0, x1, x2}
by means of the analysis operator ω↑pu.
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Fig. 25. Illustration of one step of the max-lifting scheme. The white

and gray nodes correspond to the scaled and detail signals, respec-

tively. Notice that the value 8, which is a local maximum of the input

signal x1, is directly mapped to the scaled signal x′1.

Thus, as a prediction for y1(n) we choose the maximum of its two neighbors in x1, i.e., x1(n)
and x1(n + 1). The update step is chosen in such a way that local maxima of the input signal
x1 are mapped to the scaled signal x′1 (see Proposition 7.1). This is illustrated in Figure 25.

Rather than formulating properties of this one-dimensional scheme, we first explain how
this scheme can be generalized to a much larger family of signal spaces, and then prove some
results for this more general case. We return to the one-dimensional case in Subsection 7.2.

7.1. General max-lifting scheme
Consider a set E of points, which can be expressed as a disjoint union of two sets Ex and Ey,
that is E = Ex ∪Ey and Ex ∩Ey = ∅. Consider a symmetric binary adjacency relation ∼ on E
such that p ∼ q is never satisfied if p, q lie both in Ex or Ey. This relation defines a so-called
bi-graph with vertex sets Ex and Ey; see Figure 26. If p ∼ q, then we say that p and q are
neighbors. Neighbors are connected with edges, as depicted in Figure 26.

Throughout this section, we assume that every point has finitely many neighbors. We
write p ∼∼ r if there exists an element q such that p ∼ q and q ∼ r; see Figure 26. In particular,
p ∼∼ p if p has at least one neighbor. Consider the signals mapping E into IR. Given an input
signal x0, define {

x1(p) = x0(p), p ∈ Ex
y1(q) = x0(q), q ∈ Ey.

(7.3)

The max-lifting scheme can now be defined as follows:

y′1(q) = y1(q)−
∨
p∼q

x1(p), q ∈ Ey (prediction) (7.4)

x′1(p) = x1(p) +
(

0 ∨
∨
q∼p

y′1(q)
)
, p ∈ Ex (update). (7.5)

Here, the expression
∨
p∼q x1(p) means the supremum of x1(p) over all neighbors p of q. Clearly,

in this general framework, the prediction and update operators are given by

π(x)(q) =
∨
p∼q

x(p), q ∈ Ey, and λ(y)(p) = −
(

0 ∨
∨
q∼p

y(q)
)
, p ∈ Ex. (7.6)
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Fig. 26. A bi-graph with vertex sets Ex (white nodes) and Ey

(gray nodes). Neighbors are connected with edges.

We also introduce the following notation: given q ∈ E, A(x | q) is the set of all neighbors p of q
such that x(p) =

∨
s∼q x(s). Note that this set is nonempty, since q has finitely many neighbors.

We now have the following result.

7.1. Proposition.
(a) For p ∈ Ex, x0(p) ≤ x′1(p) ≤

∨
{x0(q) | q = p or q ∼ p}.

(b) For q ∈ Ey, x0(q) ≤
∨
p∼q x

′
1(p).

(c) Assume that q ∈ Ey is such that x0(q) ≥ x0(p), for q ∼ p and q ∼∼ p; then, x′1(p) = x0(q),
for every p ∈ A(x0 | q).

Proof. (a) From (7.3), (7.5), we have that x′1(p) ≥ x1(p) = x0(p), for p ∈ Ex, which shows the
first inequality. Furthermore (see (7.5)),

x′1(p) = x1(p) ∨
∨
q∼p

(x1(p) + y′1(q)), p ∈ Ex. (7.7)

On the other hand, we have that (see (7.4))

y′1(q) = y1(q)−
∨
r∼q

x1(r) ≤ y1(q)− x1(p), q ∼ p, (7.8)

since p ∈ Ex and q ∼ p implies that q ∈ Ey. From (7.3), (7.7), and (7.8), we obtain the second
inequality.

(b) Let q ∈ Ey and p ∈ A(x1 | q); then y′1(q) = y1(q)−x1(p), which is a direct consequence
of (7.4) and the definition of A(x1 | q). Hence (see (7.3) and (7.5)),

x0(q) = y1(q)

= y′1(q) + x1(p)

= y′1(q) + x′1(p)−
(

0 ∨
∨
r∼p

y′1(r)
)

≤ y′1(q) + x′1(p)− y′1(q) = x′1(p).
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This shows that x0(q) ≤
∨
p∼q x

′
1(p), for every q ∈ Ey.

(c) Let q ∈ Ey be such that x0(q) ≥ x0(p), for q ∼ p and q ∼∼ p, and take p ∈ A(x0 | q).
We must show that x′1(p) = x0(q). From (7.5) we know that

x′1(p) = x1(p) +
(

0 ∨
∨
r∼p

y′1(r)
)

= x0(p) +
(

0 ∨
∨
r∼p

y′1(r)
)
, p ∈ Ex. (7.9)

From (7.4), we get that

y′1(r) = y1(r)−
∨
s∼r

x1(s) = x0(r)−
∨
s∼r

x0(s), r ∈ Ey. (7.10)

If r = q, then
y′1(q) = x0(q)− x0(p) ≥ 0,

since p ∈ A(x0 | q) and x0(q) ≥ x0(p) by assumption. If r 6= q, then

y′1(r) ≤ x0(r)− x0(p) ≤ x0(q)− x0(p)

= x0(q)−
∨
s∼q

x0(s) = y′1(q),

where we have used that x0(r) ≤ x0(q), if r ∼ p, that x0(p) =
∨
s∼q x0(s), since p ∈ A(x0 | q),

and (7.10). Substitution in (7.9) yields that

x′1(p) = x0(p) + y′1(q) = x0(p) + x0(q)− x0(p) = x0(q),

which was to be shown.

From the previous proposition, it is clear that the max-lifting scheme preserves local maxima.
The next result states that this scheme does not create new maxima.

7.2. Proposition. Suppose that the scaled signal x′1 has a local maximum at p ∈ Ex; i.e.,
x′1(p) ≥ x′1(r), for r ∈ Ex, with r ∼∼ p. Then, x0 has a local maximum at some s ∈ E, with
s = p or s ∼ p, and x0(s) = x′1(p).

Proof. We distinguish between two cases:

(i) x0(p) ≥ x0(q), for q ∼ p. From (7.4), it is clear that y′1(q) = x0(q) −
∨
p∼q x0(p) =

x0(q) − x0(p) ≤ 0, for q ∼ p. Therefore, x′1(p) = x0(p), by virtue of (7.5). The assertion holds
for s = p.

(ii) x0(p) < x0(q), for q ∈ A(x0 | p). By Proposition 7.1(a) we have that x′1(p) ≤ x0(q),
and by Proposition 7.1(b) we have that

x0(q) ≤
∨
r∼q

x′1(r) = x′1(p).

The equality holds since r ∼ q implies r ∼∼ p and x′1 has a local maximum at p. Thus, we
conclude that x0(q) = x′1(p). We must now show that x0 has a local maximum at q; i.e.,
x0(q) ≥ x0(r), for r ∼ q. By Proposition 7.1(a), x0(r) ≤ x′1(r); hence

x0(q) = x′1(p) ≥ x′1(r) ≥ x0(r), r ∼ q.

Here, x′1(p) ≥ x′1(r), since x′1 has a local maximum at p and p ∼∼ r. Therefore, the assertion
holds for s = q ∼ p.
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The max-lifting scheme yields a coupled wavelet decomposition. This is in agreement with
the observations of Subsection 6.3, since the max-lifting scheme is constructed by means of
two nonlinear lifting steps. It is easy to demonstrate that the resulting wavelet decomposition
scheme is both gray-shift and gray-multiplication invariant.

The analysis and synthesis operators associated with the max-lifting scheme are denoted
by ψ↑max, ω

↑
max and Ψ↓max, respectively. That is

x′1 = ψ↑max(x0), y′1 = ω↑max(x0), and x0 = Ψ↓max(x′1, y
′
1).

If we replace the supremum in (7.3)–(7.6) with infimum, we obtain the dual scheme, which we
refer to as the min-lifting scheme. Propositions 7.1 and 7.2 can be modified accordingly, by
replacing ∨ with ∧, ≤ with ≥, and “maximum” with “minimum.”

7.2. One-dimensional scheme

The one-dimensional scheme, introduced at the beginning of this section (see (7.1), (7.2)), is a
simple example of the previous general framework: take for Ex, Ey the even and odd samples
of Z, respectively, and define p ∼ q if |p − q| = 1. From Proposition 7.1, we deduce that
a value x0(2n) is mapped to x′1(n) provided that x0(2n) ≥ x0(2n ± 1). A value x0(2n + 1)
is mapped to x′1(n) or x′1(n + 1) if it is maximal in a neighborhood of five points; i.e., if
x0(2n + 1) ≥ x0(2n + 1 − i), for i = −2,−1, 0, 1, 2. Depending on which value is the largest,
x0(2n) or x0(2n+2), x0(2n+1) is mapped to x′1(n) or x′1(n+1), respectively. Refer to Figure 27
for an illustration.

maximumeven samplesmaximum maximum

PREDICTION

UPDATE

6 44496 6 9 1 4 28473

444966 8473 6 9 1 4 2

x

x y1 1,

3304−59−36 2213624x y1 1, ′

′ ′x y1 1, 9273604−59−3 3 4 26 4

Fig. 27. A diagram illustrating the one-dimensional max-lifting scheme. The white nodes

contain the scaled signal x1 (resp. x′1), whereas, the gray nodes contain the detail signal y1

(resp. y′1). The first lifting step (prediction) modifies the detail signal, whereas the second

lifting step (update) modifies the scaled signal such that local maxima are preserved. The

initial decomposition x 7→ x1, y1 is done by means of the lazy wavelet.

We can extend the max- and min-lifting schemes to two dimensions by sequentially applying
the one-dimensional decomposition on the columns and rows of a two-dimensional image. Fig-
ure 28(a) depicts the result of a single level wavelet image decomposition by means of max-lifting,
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(a)

(b)

Fig. 28. Single-level separable image decomposition by means of: (a) max-lifting, and (b)

min-lifting.

whereas, Figure 28(b) depicts the result of a single level image decomposition by means of min-
lifting. Notice that each decomposition produces one scaled image and three detail images (a
horizontal, vertical, and diagonal detail image). Notice also that the detail signals are zero (or
almost zero) at areas of smooth graylevel variation. In the case of max-lifting (Figure 28(a)),
sharp graylevel variations are mapped to negative (black) detail signal values, whereas, in the
case of min-lifting (Figure 28(b)), sharp graylevel variations are mapped to positive (white val-
ues). These results are due to the following observations. In the case of max-lifting, a constant
input signal x(n) = b produces a zero detail signal, whereas, a linear signal x(n) = an + b

produces a constant detail signal with value equal to −|a|. Moreover, a step signal x0 with an
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upward step between locations 2n− 1 and 2n produces a negative spike for the detail signal at
location n− 1. Similarly, a downward step between locations 2n and 2n+ 1 produces a negative
spike for the detail signal at location n. The amplitude of such spikes equals the strength of the
step. On the other hand, if the upward step occurs between locations 2n and 2n+ 1, the detail
signal will be zero. The same is true for a downward step from 2n − 1 to 2n. This is clearly
illustrated in Figure 29.

However, keep in mind that the detail signal may contain “positive spikes” as well, which
is the case when the scaled signal contains a narrow peak. Similar results for the min-lifting
scheme are depicted in Figure 30.

Figure 31 depicts the scaled signals obtained by means of a 3-level linear wavelet decom-
position scheme, based on a biorthogonal pair of signal and detail analysis operators (in the
first column), a 3-level max-lifting decomposition scheme (in the second column), and a 3-level
min-lifting decomposition scheme (in the third column). Notice the sharpness of the scaled
signals, generated by means of the max- and min-lifting schemes, as compared to the scaled
signals generated by means of the linear decomposition scheme. Notice also that the max-lifting
scheme preserves quite well local maxima (e.g., the cornea in the two eyes), as opposed to the
min-lifting scheme which preserves very well local minima (e.g., the iris and the lens of the two
eyes).

As we said before, the min-lifting scheme preserves local minima over scale. Moreover, it does
not generate any new local minima. For these reasons, it may be used for developing a multiscale
algorithm for image segmentation. We illustrate this idea in the example depicted in Figure 32.

The bone marrow image, depicted in Figure 32(a), is to be segmented into nonoverlapping
regions of interest. One way to do this is to employ an effective tool for image segmentation
known as the watershed algorithm [2]. A popular version of this algorithm relies on the local
minima of the image to be segmented. The subgraph of the image is flooded from below by
first piercing it at the location of the local minima, and by then immersing it into water. The
water will progressively flood the basins of the subgraph that correspond to the local minima. To
prevent water, coming from two adjacent basins, from merging, we erect a dam. The collection of
all such dams form the so-called watershed lines, which segment the image into desirable regions
of interest (see [50] for more details). Figure 32(b) depicts the location of the watershed lines (in
white) obtained by applying such an algorithm on the image depicted in Figure 32(a), or more
precisely on its inverse x0. The local minima, required by the watershed algorithm, have been
computed by subtracting x0 from its morphological closing x0•B = (x0⊕B)	B, with B being
the square structuring element, where ⊕ and 	 denote translation invariant flat dilation and flat
erosion, respectively [30]. Unfortunately, this technique frequently leads to oversegmentation,
as is clear from Figure 32(b). This is primarily due to the fact that x0 contains a large number
of local minima. However, we can reduce oversegmentation by coarsening x0. We will do this
here by means of the min-lifting scheme. Image x0 is first decomposed into a sequence of scaled
images {x1, x2, ..., xK}, for some K, by means of a K-level min-lifting scheme. At each level k,
we compute the local minima of xk by subtracting xk from the morphological closing xk•B.
We then replace xk with xk•B − xk, we set all detail signals equal to zero, and we finally
reconstruct signal zK by means of the inverse min-lifting scheme. zK can now be thought of
as a coarse version of the local minima marker z0 = x0•B − x0. Figure 32(c) to Figure 32(f)
depict the watershed lines obtained by applying the watershed algorithm, with marker zK , on
the image depicted in Figure 32(a), with K = 1, 2, 3, 4, respectively. Clearly, as K increases,
oversegmentation decreases. Evidently, our modified segmentation algorithm is far from optimal
in several respects. But the results in Figure 32 give a strong indication that marker extraction
based on the min-lifting scheme may lead to a substantial improvement in the final segmentation.
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Fig. 29. Multiresolution signal decomposition based on max-lifting the lazy

wavelet: (a) A signal x0 and its scaled signal decomposition {x1, x2, x3}. (b) The

corresponding detail signals {y1, y2, y3}.
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Fig. 30. Multiresolution signal decomposition based on min-lifting the lazy

wavelet: (a) A signal x0 and its scaled signal decomposition {x1, x2, x3}. (b) The

corresponding detail signals {y1, y2, y3}.
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(b) (c)(a)

Fig. 31. The scaled images obtained by means of: (a) a 3-level linear wavelet decomposition

scheme, (b) a 3-level max-lifting scheme, (c) a 3-level min-lifting scheme.
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(a)

(d)(c)

(b)

(e) (f)

Fig. 32. An original bone marrow image that needs to be segmented

(in (a)). The watershed lines (in white) obtained by applying the wa-

tershed transform on the inverse x0 of the image in (a) using a marker

z0 = x0•B−x0 (in (b)) and a marker zK obtained by means of a K-level

min-lifting scheme with: K = 1 (in (c)), K = 2 (in (d)), K = 3 (in (e)),

and K = 4 (in (f)).



49

7.3. Two-dimensional scheme (with quincunx sampling)
A second application of the bi-graph framework is the two-dimensional discrete space Z2 with
the quincunx sampling scheme. The corresponding bi-graph is shown in Figure 33.

Ey

Ex

p

q

p q~

r

q r~

p r~~

Fig. 33. A bi-graph for Z2, with the quincunx sampling

scheme, and the vertex sets Ex (white points) and Ey (gray

points).

Here, Ex and Ey comprise of points (m,n) ∈ Z2, with m + n even and odd, respectively.
Moreover, (m1, n1) ∼ (m2, n2) if and only if |m1 −m2|+ |n1 − n2| = 1.
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Fig. 34. A diagram illustrating the two-dimensional max-lifting scheme. The white nodes

contain the scaled signal x1 (resp. x′1), whereas, the gray nodes contain the detail signal y1

(resp. y′1). The first lifting step (prediction) modifies the detail signal, whereas the second

lifting step (update) modifies the scaled signal such that local maxima (indicated by circles)

are preserved.
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This leads to pure two-dimensional max- and min-lifting schemes, as opposed to the sep-
arable ones discussed in Subsection 7.2.

An important feature of lifting schemes is that they allow in-place calculations. In this
case, the original signal values can be replaced by the transformed ones without having to allocate
additional memory. This is illustrated in Figure 34, where we apply the two-dimensional max-
lifting scheme on the quincunx lattice to a 6 × 6 square matrix. As expected, this scheme
preserves the local maxima indicated by circles.

x0

′x1 ′y1

′′x1 ′′y1

Fig. 35. Image decomposition based on the two-dimensional max-lifting

scheme with quincunx sampling. Bottom row: original image x0. Middle

row: wavelet transformed images x′1 and y′1 (after 45◦ counterclockwise rota-

tion). Top row: images x′′1 and y′′1 resulting from the wavelet transform of x′1.

Notice that the detail image may contain positive (bright) as well as negative

(dark) values.
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In Figure 35, we apply the two-dimensional max-lifting scheme to a particular image. Here the
scaled signal x1 and the detail signal y1 are both defined on a quincunx grid. To properly depict
these signals, we perform a 45◦ counterclockwise rotation.

7.4. Filtering
Wavelet decompositions can be used for signal filtering and, more specifically, denoising; for
example, see [19]. The basic idea is to compute the wavelet decomposition (up to a given level)
and to apply (possibly different) filters to the various parts of the decomposition. Finally, we
reconstruct an output signal by applying the inverse wavelet transform to the filtered coefficients.
We formalize this method for the simple case when we use one level of the decomposition (see
Figure 36).

0
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1
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1
W
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↑ψ
max

↓Ψ
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↑ω

0
x

1
x

1
x 1

y
1
y

0
x

ξ η

Fig. 36. Wavelet filtering scheme. The wavelet transform maps an input signal x0 to

(x1, y1). The scaled signal is filtered by ξ yielding x1 = ξ(x1) and the detail signal is

filtered by η yielding y1 = η(y1). By applying the synthesis operator Ψ↓max, we obtain

a filtered signal x0 = Ψ↓max(x1, y1).

Here, the input signal x0 is mapped to (x1, y1) ∈ V1 × W1 by the max-lifting wavelet
scheme; that is, x1 = ψ↑max(x0) and y1 = ω↑max(x0). Notice that we have deleted the accents for
convenience. The scaled signal x1 ∈ V1 is “filtered” by an operator ξ: V1 → V1, whereas the
detail signal y1 ∈W1 is “filtered” by an operator η: W1 →W1. Thus, the synthesized signal x0

is given by
x0 = Ψ↓max

(
ξψ↑max(x0), ηω↑max(x0)

)
=: φξ,η(x0).

We are interested in the (morphological) properties of the operator φ = φξ,η: V0 → V0 in relation
to properties of ξ and η. Recall that V0 = IRE, V1 = IREx , and W1 = IREy , and as such, these
spaces are lattices. We now have the following proposition, whose proof is a direct consequence
of (4.2).

7.3. Proposition. If the operators ξ, η are both idempotent, then φξ,η is idempotent as well.

In the following, we consider three idempotent operators η on W1, namely

η+(y)(q) = y(q) ∨ 0

η−(y)(q) = y(q) ∧ 0

η0(y)(q) = 0,

for y ∈ W1 and q ∈ Ey. Thus, η+, η− preserve positive and negative detail coefficients, respec-
tively, whereas η0 sets all detail coefficients to zero. Recall that id denotes the identity operator.
We have the following proposition.
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7.4. Proposition.
(a) φξ,η+ is extensive if ξ is extensive.
(b) φid,η− is extensive.
(c) φid,η0

is extensive.

Proof. The transformed signals x1, y1 are computed from (cf. (7.3)–(7.5)):

y1(q) = x0(q)−
∨
p∼q

x0(p), q ∈ Ey (7.11)

x1(p) = x0(p) + (0 ∨
∨
q∼p

y1(q)), p ∈ Ex, (7.12)

whereas x0 = φξ,η(x0) is computed from

x0(p) = x1(p)− (0 ∨
∨
q∼p

y1(q)), p ∈ Ex (7.13)

x0(q) = y1(q) +
∨
p∼q

x0(p), q ∈ Ey, (7.14)

where x1 = ξ(x1) and y1 = η(y1).
(a) If η = η+, then 0 ∨

∨
q∼p y1(q) = 0 ∨

∨
q∼p y1(q). Since x1 = ξ(x1) ≥ x1, we find that

x0(p) ≥ x0(p), for p ∈ Ex. Then, since y1(q) ≥ y1(q), we have that x0(q) ≥ y1(q)+
∨
p∼q x0(p) =

x0(q). This proves the result.
(b) Assume that ξ = id and η = η−. It is obvious that 0 ∨

∨
q∼p y1(q) = 0, for every

p ∈ Ex; hence x0(p) = x1(p) = x1(p) ≥ x0(p). For q ∈ Ey, we have that

x0(q) = y1(q) +
∨
p∼q

x0(p) = y1(q) +
∨
p∼q

x1(p).

We distinguish between two cases:
(i) y1(q) < 0: then y1(q) = y1(q) and

x0(q) = y1(q) +
∨
p∼q

x1(p) ≥ y1(q) +
∨
p∼q

x0(p) = x0(q).

(ii) y1(q) ≥ 0: then y1(q) = 0 and

x0(q) =
∨
p∼q

x1(p) =
∨
p∼q

[
x0(p) + (0 ∨

∨
r∼p

y1(r))
]
.

Choose p ∈ A(x0 | q). Then, by using (7.11), we obtain

x0(q) ≥ x0(p) + (0 ∨
∨
r∼p

y1(r))

≥ x0(p) + (0 ∨ y1(q)) = x0(p) + y1(q)

= x0(p) + (x0(q)− x0(p)) = x0(q).

This concludes the proof of (b).
(c) Assume that ξ = id and η = η0. Then, x1(p) = x1(p) and y1(q) = 0. From (7.13), we

have that
x0(p) = x1(p) = x1(p) ≥ x0(p),

and from (7.14), we have that

x0(q) =
∨
p∼q

x0(p) =
∨
p∼q

x1(p) ≥ x0(q),

where we have used Proposition 7.1(b) to obtain the last inequality.
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We now consider the operator φid,η+
in more detail. The output signal x0 = φid,η+

(x0)
is obtained by synthesis of the scaled signal x1 and the thresholded detail signal y1 = η+(y1).
This yields

x0(p) = x1(p)− (0 ∨
∨
q∼p

y1(q)) = x1(p)− (0 ∨
∨
q∼p

y1(q)) = x0(p), p ∈ Ex.

For q ∈ Ey, we have that

x0(q) = y1(q) +
∨
p∼q

x0(p)

= (y1(q) ∨ 0) +
∨
p∼q

x0(p)

=
[
(x0(q)−

∨
p∼q

x0(p)) ∨ 0
]

+
∨
p∼q

x0(p)

= x0(q) ∨
∨
p∼q

x0(p).

From these expressions for x0, it follows immediately that φid,η+
is increasing. Combining

this result with the results in Proposition 7.3 and Proposition 7.4(a) we arrive at the following
corollary.

7.5. Corollary. The operator φid,η+
is a closing.

In fact, this result follows easily if one uses the explicit expressions for x0 given above. Dual
results hold for the min-lifting scheme. The operators φid,η− and φid,η0

, however, are not
increasing.

7.6. Example (One-dimensional signal segmentation). In this example, we illustrate the
one-dimensional max-lifting and min-lifting schemes, applied on a signal x0(n) of 512 samples,
and demonstrate the potential of these schemes for signal segmentation. Signal segmentation
is the problem of partitioning a given signal into nonoverlapping regions of stationary signal
behavior. We may assume that a signal x0(n) consists of noise, representing signal variation
within a region, superimposed on a piecewise constant signal s0(n), representing regions of
stationary signal behavior. The problem of signal segmentation is to obtain an approximation
ŝ0 of s from given data x0.

Figure 29(a) depicts a piecewise constant signal and the resulting scaled signals produced
by a 3-level max-lifting scheme. The corresponding detail signals are depicted in Figure 29(b).
A very important observation here is that the max-lifting scheme preserves the number and
shapes of flat regions in a piecewise constant signal. This is a direct consequence of the fact that
this scheme preserves local maxima and, moreover, it does not create new ones. It is therefore
expected that max-lifting will preserve, over a range of scales, the number and shapes of regions
of constant signal value, and it may therefore be used for signal segmentation. Similar results
for the min-lifting scheme are depicted in Figure 30.

Figure 37 depicts the results of seven segmentation experiments based on a 3-level linear
wavelet decomposition scheme, a 4-level max-lifting scheme, and a 4-level min-lifting scheme.
Our computations consist of three steps: (i) signal analysis x0 7→ {xk, yk, yk−1, ..., y1}, (i)
filtering yj 7→ yj = η(yj), for j = 1, 2, ..., k, and (iii) signal synthesis {xk, yk, yk−1, ..., y1} 7→
x0 = ŝ0. Figure 37(a) depicts a signal x0 to be segmented into regions of stationary signal
behavior, depicted by the signal s0(n) plotted with a thick line. Figure 37(b) depicts the signal
ŝ0 (plotted with a thick line), obtained by means of a 3-level linear denoising scheme (the use of
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Fig. 37. (a) A signal x0 to be segmented into regions of stationary signal behav-

ior (plotted with a thick line). The result of applying on x0 a denoising scheme

based on: (b) the Symmlet-8 wavelet with soft thresholding, (c) max-lifting

with max-thresholding, (d) min-lifting with min-thresholding, (e) max-lifting

with soft thresholding, (f) min-lifting with soft thresholding, (g) max-lifting with

max-thresholding followed by min-lifting with min-thresholding, (h) max-lifting

with soft thresholding followed by min-lifting with soft thresholding.
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a denoising scheme for signal segmentation is justified here by considering s0(n) as the noise-free
signal to be recovered by means of denoising, and the signal variation within a particular signal
region as noise to be removed by denoising). This scheme performs a 3-level signal analysis
by using the Symmlet-8 wavelet [35], filters the detail signals by means of the soft thresholding
operator η(y)(n) = sign(y(n))(|y(n)| − t), if |y(n)| > t, and η(y)(n) = 0, if |y(n)| ≤ t, where
t = γ

√
2 ∗ ln N [19], and produces signal ŝ0 by means of signal synthesis based on the filtered

detail signals. We set γ = 1. It is worthwhile noticing that, although signal variation has been
substantially reduced, the reconstructed signal ŝ0 fails to capture the staircase structure of signal
s0. This is mainly due to the linear nature of the wavelet decomposition scheme used. The signal
ŝ0 depicted in Figure 37(c) has been obtained by using the max-lifting scheme with η = η+,
whereas, Figure 37(d) depicts the signal ŝ0 obtained by using the min-lifting scheme with η = η−.
By taking η = η+, we preserve positive detail signal information, whereas we discard negative
information (i.e., we apply max-thresholding). By taking η = η−, we preserve negative detail
signal information, whereas we discard positive information (i.e., we apply min-thresholding).
Notice that the signal ŝ0 depicted in Figure 37(c) is larger than the original signal x0(n) (i.e.,
ŝ0 is like an “upper envelope” for x0(n)), which is in correspondence with the fact that φid,η+

is
a closing (Corollary 7.5), whereas the signal ŝ0 depicted in Figure 37(d) is smaller than signal
x0(n) (i.e., ŝ0 is like a “lower envelope” for x0(n)). On the other hand, Figure 37(e) depicts the
signal ŝ0 obtained by using the max-lifting scheme with soft thresholding (with γ = 1), whereas
the signal ŝ0 depicted in Figure 37(f) has been obtained by means of the min-lifting scheme with
soft thresholding (with γ = 1). Figure 37(g) depicts the signal ŝ0 obtained by means of applying
max-lifting on x0 with max-thresholding, followed by min-lifting with min-thresholding. On the
other hand, Figure 37(h) depicts the signal ŝ0 obtained by means of applying max-lifting on x0,
followed by min-lifting. Denoising is obtained by applying soft thresholding on the detail signals
(with γ = 0.4), in the same manner as in Figure 37(e), (f). Notice that, in both cases, signal
variation has been substantially reduced, whereas the resulting signal successfully captures the
staircase nature of signal s0.

8. Conclusions and Final Remarks

The literature on nonlinear wavelet decompositions, or critically decimated nonlinear filter banks
as they are sometimes called, is not very extensive. In 1991, Pei and Chen [38, 39] were among
the first authors to propose a non-redundant (in the sense that it preserves the number of pixels
in the original image) nonlinear subband decomposition scheme based on mathematical mor-
phology. Their approach however does not guarantee perfect reconstruction. In 1994, Egger and
Li [20] proposed a nonlinear decomposition scheme with perfect reconstruction (see also [21]).
Rephrased in the terminology introduced in this paper, it comprises a lazy wavelet decomposi-
tion followed by one nonlinear prediction lifting step. In this case, prediction is implemented by
means of a median-type operator. Independently, Florêncio and Schafer [23] have presented a
similar filter bank decomposition based on a median-type operator; see also [22, Chapter 7]. In
particular, the “Type I” structure proposed in Section 5.3 of [22] (and in [24]) comprises a lazy
wavelet decomposition followed by a nonlinear prediction lifting step. More recently, Queiroz,
Florêncio and Schafer [18] proposed a nonlinear wavelet decomposition for low-complexity image
coding; see also [22, Chapter 8]. This scheme consists of a lazy wavelet decomposition, corre-
sponding to the quincunx sampling grid, followed by a prediction lifting step using a median type
of operator. In his thesis [22], Florêncio discusses nonlinear perfect reconstruction filter banks
in more detail, and attempts to give a better understanding of these issues by relating them to
the so-called critical morphological sampling theorem. In [8], Cha and Chaparro constructed a
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nonlinear wavelet decomposition scheme with the scaled signal being a subsampled version of the
original signal and the detail signal calculated by means of a morphological opening applied on
the scaled signal. The resulting signal decomposition scheme guarantees perfect reconstruction.
Using the terminology of this report, the Cha and Chaparro scheme consists of a lazy wavelet
decomposition followed by prediction lifting. In this case, the prediction lifting operator is a
morphological opening.

It is important to point out here that the aforementioned authors did not have at their
disposal the lifting scheme, which was developed during the same period [45, 46, 47]. The same
remark applies to the work of Hampson and Pesquet [27, 28, 29] who developed nonlinear perfect
reconstruction filter banks by considering a triangular form of the polyphase representation of
a filter bank. The resulting approach is more or less identical to the lifting scheme.

In four recent papers [10, 11, 12, 13], Claypoole and co-workers also use the lifting scheme
to build nonlinear wavelet transforms. In the first paper [10], they use a set of linear predictors
which are chosen adaptively using a nonlinear selection criterion. In the other three papers [11,
12, 13], they use combinations of linear and nonlinear lifting steps (based on a median operator),
and discuss applications in compression and denoising.

Many of the schemes proposed in the previously mentioned papers are special cases of the
general schemes discussed in this report. Therefore, the theory presented here provides a rather
general framework for constructing nonlinear filter banks with perfect reconstruction. It is worth
noticing however that the proposed theory depends on three conditions, namely the condition
of perfect reconstruction (4.1) (or (4.8), for the uncoupled case) and the two conditions of non-
redundancy (4.2) (or (4.9) and (4.10), for the uncoupled case). These conditions are required in
order for the proposed multiresolution schemes to guarantee perfect reconstruction and be non-
redundant (in the sense that repeated applications of these schemes produce the same result).
Moreover, these conditions lead to the concept of nonlinear biorthogonal-like multiresolution
analysis, discussed in Subsection 4.4, which is a natural extension of the concept of biorthogonal
multiresolution analysis associated with linear wavelet decompositions.

The main objective of the work presented in this report was to provide a rigorous the-
oretical approach to the problem of nonlinear wavelet decomposition and develop tools that
can be effectively used for building nonlinear multiresolution signal decomposition schemes that
are non-redundant and guarantee perfect reconstruction. The nonlinear schemes discussed as
examples in this report enjoy some useful and attractive properties:

(a) Implementation can be done extremely fast by means of simple operations (e.g., addi-
tion, subtraction, max, min, median, etc.). This is partially due to the fact that only
integer arithmetic is used in calculations and that use of prediction/update steps in the
decomposition produces computationally efficient implementations.

(b) If the input to the proposed schemes is integer-valued, the output will be integer-valued
as well. Clearly, these schemes can avoid quantization, an attractive property for lossless
data compression.

(c) The proposed schemes can be easily adopted to the case of binary images. This is of
particular interest to document image processing, analysis, and compression applications
(and other industrial applications) and is important on its own right (e.g., see [44] for a
recent work on constructing wavelet decomposition schemes for binary images).

(d) Due to the nonlinear nature of the proposed signal analysis operators, important geometric
information (e.g., edges) is well preserved at lower resolutions. In the case of the max-
(min-) lifting schemes, for example, local maxima (minima) are well preserved at lower
resolutions. This property may turn out to be particularly useful in wavelet-based pattern
recognition approaches as, for example, wavelet-based face recognition schemes [9], as is
clear from the results depicted in Figure 31.
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Despite all these attractive properties, a number of open theoretical and practical ques-
tions need to be addressed before such tools become useful in signal processing and analysis
applications. For example, we need to better understand how to design prediction and update
operators that lead to nonlinear wavelet decompositions that satisfy properties key to a given
application at hand; e.g., see the max-lifting scheme discussed in Section 7. Another problem of
interest is to investigate the relationship between the discrete nonlinear approach presented in
this report and another nonlinear multiresolution approach to signal analysis known as nonlinear
(morphological) scale spaces [1, 3, 34, 48, 51]. In fact, due to the popularity of nonlinear scale
spaces in signal analysis, it may be attractive to investigate the design of nonlinear filter banks
by means of discretizing continuous morphological scale spaces. Towards this direction, Pouye
et. al. [40] have recently proposed a nonlinear filter bank that is built by discretizing nonlinear
partial differential equations (PDEs) used in scale-space theory. This is a very interesting ap-
proach for constructing nonlinear filter banks that may be compatible with current multiscale
signal analysis techniques based on nonlinear PDEs.
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