968 research outputs found

    Isotropic three-dimensional T<sub>2</sub> mapping of knee cartilage: Development and validation.

    Get PDF
    1) To implement a higher-resolution isotropic 3D T &lt;sub&gt;2&lt;/sub&gt; mapping technique that uses sequential T &lt;sub&gt;2&lt;/sub&gt; -prepared segmented gradient-recalled echo (Iso3DGRE) images for knee cartilage evaluation, and 2) to validate it both in vitro and in vivo in healthy volunteers and patients with knee osteoarthritis. The Iso3DGRE sequence with an isotropic 0.6 mm spatial resolution was developed on a clinical 3T MR scanner. Numerical simulations were performed to optimize the pulse sequence parameters. A phantom study was performed to validate the T &lt;sub&gt;2&lt;/sub&gt; estimation accuracy. The repeatability of the sequence was assessed in healthy volunteers (n = 7). T &lt;sub&gt;2&lt;/sub&gt; values were compared with those from a clinical standard 2D multislice multiecho (MSME) T &lt;sub&gt;2&lt;/sub&gt; mapping sequence in knees of healthy volunteers (n = 13) and in patients with knee osteoarthritis (OA, n = 5). The numerical simulations resulted in 100 excitations per segment and an optimal radiofrequency (RF) excitation angle of 15°. The phantom study demonstrated a good correlation of the technique with the reference standard (slope 0.9 ± 0.05, intercept 0.2 ± 1.7 msec, R &lt;sup&gt;2&lt;/sup&gt; ≥ 0.99). Repeated measurements of cartilage T &lt;sub&gt;2&lt;/sub&gt; values in healthy volunteers showed a coefficient of variation of 5.6%. Both Iso3DGRE and MSME techniques found significantly higher cartilage T &lt;sub&gt;2&lt;/sub&gt; values (P &lt; 0.03) in OA patients. Iso3DGRE precision was equal to that of the MSME T &lt;sub&gt;2&lt;/sub&gt; mapping in healthy volunteers, and significantly higher in OA (P = 0.01). This study successfully demonstrated that high-resolution isotropic 3D T &lt;sub&gt;2&lt;/sub&gt; mapping for knee cartilage characterization is feasible, accurate, repeatable, and precise. The technique allows for multiplanar reformatting and thus T &lt;sub&gt;2&lt;/sub&gt; quantification in any plane of interest. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:362-371

    Mitigating the limited view problem in photoacoustic tomography for a planar detection geometry by regularised iterative reconstruction

    Get PDF
    The use of a planar detection geometry in photoacoustic tomography results in the so-called limited-view problem due to the finite extent of the acoustic detection aperture. When images are reconstructed using one-step reconstruction algorithms, image quality is compromised by the presence of streaking artefacts, reduced contrast, image distortion and reduced signal-to-noise ratio. To mitigate this, model-based iterative reconstruction approaches based on least squares minimisation with and without total variation regularisation were evaluated using in-silico , experimental phantom, ex vivo and in vivo data. Compared to one-step reconstruction methods, it has been shown that iterative methods provide better image quality in terms of enhanced signal-to-artefact ratio, signal-to-noise ratio, amplitude accuracy and spatial fidelity. For the total variation approaches, the impact of the regularisation parameter on image feature scale and amplitude distribution was evaluated. In addition, the extent to which the use of Bregman iterations can compensate for the systematic amplitude bias introduced by total variation was studied. This investigation is expected to inform the practical application of model-based iterative image reconstruction approaches for improving photoacoustic image quality when using finite aperture planar detection geometries

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Self-navigated 3D diffusion MRI using an optimized CAIPI sampling and structured low-rank reconstruction

    Full text link
    3D multi-slab acquisitions are an appealing approach for diffusion MRI because they are compatible with the imaging regime delivering optimal SNR efficiency. In conventional 3D multi-slab imaging, shot-to-shot phase variations caused by motion pose challenges due to the use of multi-shot k-space acquisition. Navigator acquisition after each imaging echo is typically employed to correct phase variations, which prolongs scan time and increases the specific absorption rate (SAR). The aim of this study is to develop a highly efficient, self-navigated method to correct for phase variations in 3D multi-slab diffusion MRI without explicitly acquiring navigators. The sampling of each shot is carefully designed to intersect with the central kz plane of each slab, and the multi-shot sampling is optimized for self-navigation performance while retaining decent reconstruction quality. The central kz intersections from all shots are jointly used to reconstruct a 2D phase map for each shot using a structured low-rank constrained reconstruction that leverages the redundancy in shot and coil dimensions. The phase maps are used to eliminate the shot-to-shot phase inconsistency in the final 3D multi-shot reconstruction. We demonstrate the method's efficacy using retrospective simulations and prospectively acquired in-vivo experiments at 1.22 mm and 1.09 mm isotropic resolutions. Compared to conventional navigated 3D multi-slab imaging, the proposed self-navigated method achieves comparable image quality while shortening the scan time by 31.7% and improving the SNR efficiency by 15.5%. The proposed method produces comparable quality of DTI and white matter tractography to conventional navigated 3D multi-slab acquisition with a much shorter scan time.Comment: 10 pages, 11 figures, 2 tables. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Approches tomographiques structurelles pour l'analyse du milieu urbain par tomographie SAR THR : TomoSAR

    No full text
    SAR tomography consists in exploiting multiple images from the same area acquired from a slightly different angle to retrieve the 3-D distribution of the complex reflectivity on the ground. As the transmitted waves are coherent, the desired spatial information (along with the vertical axis) is coded in the phase of the pixels. Many methods have been proposed to retrieve this information in the past years. However, the natural redundancies of the scene are generally not exploited to improve the tomographic estimation step. This Ph.D. presents new approaches to regularize the estimated reflectivity density obtained through SAR tomography by exploiting the urban geometrical structures.La tomographie SAR exploite plusieurs acquisitions d'une même zone acquises d'un point de vue légerement différent pour reconstruire la densité complexe de réflectivité au sol. Cette technique d'imagerie s'appuyant sur l'émission et la réception d'ondes électromagnétiques cohérentes, les données analysées sont complexes et l'information spatiale manquante (selon la verticale) est codée dans la phase. De nombreuse méthodes ont pu être proposées pour retrouver cette information. L'utilisation des redondances naturelles à certains milieux n'est toutefois généralement pas exploitée pour améliorer l'estimation tomographique. Cette thèse propose d'utiliser l'information structurelle propre aux structures urbaines pour régulariser les densités de réflecteurs obtenues par cette technique

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method
    corecore