322 research outputs found

    Cartilage can be thicker in advanced osteoarthritic knees: a tridimensional quantitative analysis of cartilage thickness at posterior aspect of femoral condyles.

    Get PDF
    To test, through tridimensional analysis, whether (1) cartilage thickness at the posterior aspect of femoral condyles differs in knees with medial femorotibial osteoarthritis (OA) compared to non-OA knees; (2) the location of the thickest cartilage at the posterior aspect of femoral condyles differs between OA and non-OA knees. CT arthrograms of knees without radiographic OA (n = 30) and with severe medial femorotibial OA (n = 30) were selected retrospectively from patients over 50 years of age. The groups did not differ in gender, age and femoral size. CT arthrograms were segmented to measure the mean cartilage thickness, the maximal cartilage thickness and its location in a region of interest at the posterior aspect of condyles. For the medial condyle, mean and maximum cartilage thicknesses were statistically significantly higher in OA knees compared to non-OA knees [1.66 vs 1.46 mm (p = 0.03) and 2.56 vs 2.14 mm (p = 0.003), respectively]. The thickest cartilage was located in the half most medial aspect of the posterior medial condyle for both groups, without significant difference between groups. For the lateral condyle, no statistically significant difference between non-OA and OA knees was found (p ≥ 0.17). Cartilage at the posterior aspect of the medial condyle, but not the lateral condyle, is statistically significantly thicker in advanced medial femorotibial OA knees compared to non-OA knees. The thickest cartilage was located in the half most medial aspect of the posterior medial condyle. These results will serve as the basis for future research to determine the histobiological processes involved in this thicker cartilage. Advances in knowledge: This study, through a quantitative tridimensional approach, shows that cartilage at the posterior aspect of the medial condyles is thicker in severe femorotibial osteoarthritic knees compared to non-OA knees. In the posterior aspect of the medial condyle, the thickest cartilage is located in the vicinity of the center of the half most medial aspect of the posterior medial condyle. These results will serve as the basis for future research to determine the histobiological processes involved in this thicker cartilage

    Advanced Imaging of Glenohumeral Instability: It May Be Less Complicated than It Seems.

    Get PDF
    Glenohumeral joint instability is usually an intimidating topic for most radiologists due to both the complexity of related anatomical and biomechanical considerations and the increasing number of classifications and acronyms reported in the literature in association with this condition. In this short review, we aim to demystify glenohumeral instability by first focusing on the relevant anatomy and pathophysiology. Second, we will review what the important imaging findings are and how to describe them for the clinician in the most relevant yet simple way. The role of the radiologist in assessing glenohumeral instability lesions is to properly describe the stabilizing structures involved (bone, soft-tissue stabilizers, and their periosteal insertion) to localize them and to attempt to characterize them as acute or chronic. Impaction fractures on the glenoid and humeral sides are important to specify, locate, and quantify. In particular, the description of soft-tissue stabilizers should include the status of the periosteal insertion of the capsulo-labro-ligamentous complex. Finally, any associated cartilaginous or rotator cuff tendon lesion should be reported to the clinician

    Subjective Evaluation of the In-Line Phase-Sensitive Imaging Systems in Breast Cancer Screening and Diagnosis

    Get PDF
    Breast x-ray imaging remains the gold standard screening tool despite the various imaging modalities. The phase-sensitive breast imaging is an evolving technology that may provide higher diagnostic accuracy and potentially reduce the patient radiation dose. Many studies evaluate the performance of the In-line phase-sensitive breast imaging to improve this imaging modality further. Whereas radiologists are the end-users of this imaging technology, the primary goal of this dissertation project is to investigate the performance of human observers in varying conditions for further improvement of the in-line phase-sensitive x-ray imaging system. A CDMAM phantom and an ACR mammography phantom are used in the observer performance study to compare the high-energy in-line phase-sensitive system with a mid-energy system as an alternative approach to balancing the attenuation-based image contrast with the accuracy of single-projection PAD-base phase-retrieval. Additionally, a series of ROC studies are designed by a contrast-detail phantom to evaluate the diagnostic accuracy of digital breast tomosynthesis (DBT) and the phase-sensitive prototype imaging system (PBT). The area under the ROC curves (AUC) and partial area under the ROC curves (pAUC) are estimated as a figure of merits in the two systems, delivering the equivalent radiation doses. A two-alternative-forced choice (2AFC) study is also designed to determine the preferred image in identifying the suspicious lesions within a heterogeneous pattern acquired by the DBT and PBT systems under an equivalent radiation dose. The observer performance studies show that the mid-energy system has a potential advantage in providing a relatively higher image quality while the radiation dose is reduced in the mid-energy system compared with a high-energy system. The ROC study shows that the diagnostic accuracy of observers is more significant in the prototype PBT system than in a commercial DBT system, delivering the same radiation dose. The 2AFC study also revealed that observers prefer the PBT system in detecting and distinguishing the conspicuity of tumors in the images with structural noise, and the results were statistically significant. The dissertation also introduces a mathematical approach for estimating the half-value-layer (HVL) from measured or simulated x-ray spectra. The HVL measurement is expected to be less accurate or experimentally challenging in some clinical equipment or when a quick beam quality evaluation is needed. Additionally, the impact of varying thicknesses of external filtration is subjectively and objectively investigated to evaluate the feasibility of reducing the image acquisition time in a mid-energy system without compromising the observer's performance and detectability. The preliminary results from phase-contrast images suggest that an in-line phase-sensitive system operated at 59 kV shows a comparable image quality with the x-ray beams filtered by 1.3 mm and 2.5 mm-thick aluminum filters. This finding could help shorten the exposure time by 34% in the mid-energy system, where image blurring is a concern due to patient movement in a longer image acquisition time. In summary, and as expected, the subjective analyses of the in-line phase-sensitive imaging system align with the previous findings. However, the PBT imaging system may benefit from further improvement in image processing algorithms and optimizing the system with the most appropriate x-ray beam quality, considering the acquisition time, breast glandular composition, breast thickness, and different x-ray energies. Keywords: Phase-sensitive X-ray Imaging, Breast Imaging, Image Quality, Human Observer Performance Stud

    Quantitative Content Analysis of the Impact of Utilizing the "Virtual-Object" on the Engineering Students' Pedagogy

    Get PDF
    The objective of this study was to investigate the impact of utilizing the specially designed "Virtual-Object" and project-based learning instruction in the Thermodynamics course on engineering students' performance. Rubric based grading and Quantitative data analysis have been used as two different evaluation methods in order to identify the preferred evaluation method based on learning goals. Also, this research observed the possible complementary effect of applying different assessment methods on students' pedagogy. The students who enrolled in the Thermodynamics course in the sophomore-level at the University of Oklahoma for three consecutive years (2017 to 2019) were asked to design a power plant as a class project. The specially designed Virtual-Object (V-object), by Virginia Tech University research group, was provided to the students in 2018 and 2019, where the students in 2017 were taught the course without using the V-object. Additionally, some assessment methods were applied to the students who enrolled in 2019. The mean value of grades among the students was used as a descriptive measure in Rubric based grading method. This mean value among students enrolled in 2017 was 12.64 on 1 to 20 scale, and 14.27 and 17.91 in classes of 2018 and 2019, respectively. The results of the statistical analysis of the normalized mean of each category in the quantitative content analysis were consonant with the results of rubric-based grading and supported the improvements in the performance of the students in most of the defined categories. Content analysis is the preferred method and provides more detailed data in project-based learning when we want to evaluate cognitive thinking or the high level of educational goals, evaluating or creating; however, it is probably not a suitable method in analyzing the basic levels of learning goals like remembering

    Adverse tissue reaction to corrosion at the neck-stem junction after modular primary total hip arthroplasty

    Get PDF
    AbstractComplications related to the neck-stem junction of modular stems used for total hip arthroplasty (THA) are generating increasing concern. A 74-year-old male had increasing pain and a cutaneous reaction around the scar 1 year after THA with a modular neck-stem. Imaging revealed osteolysis of the calcar and a pseudo-tumour adjacent to the neck-stem junction. Serum cobalt levels were elevated. Revision surgery to exchange the stem and liner and to resect the pseudo-tumour was performed. Analysis of the stem by scanning electron microscopy and by energy dispersive X-ray and white light interferometry showed fretting corrosion at the neck-stem junction contrasting with minimal changes at the head-neck junction. Thus, despite dry assembly of the neck and stem on the back table at primary THA, full neck-stem contact was not achieved, and the resulting micromotion at the interface led to fretting corrosion. This case highlights the mechanism of fretting corrosion at the neck-stem interface responsible for adverse local tissue reactions. Clinical and radiological follow-up is mandatory in patients with dual-modular stems

    A prospective evaluation of ultrasound as a diagnostic tool in acute microcrystalline arthritis.

    Get PDF
    The performance of ultrasound (US) in the diagnosis of acute gouty (MSU) arthritis and calcium pyrophosphate (CPP) arthritis is not yet well defined. Most studies evaluated US as the basis for diagnosing crystal arthritis in already diagnosed cases of gout and few prospective studies have been performed. One hundred nine consecutive patients who presented an acute arthritis of suspected microcrystalline arthritis were prospectively included. All underwent an US of the symptomatic joints(s) and of knees, ankles and 1(st) metatarsopalangeal (MTP) joints by a rheumatologist "blinded" to the clinical history. 92 also had standard X-rays. Crystal identification was the gold standard. Fifty-one patients had MSU, 28 CPP and 9 had both crystals by microscopic analysis. No crystals were detected in 21. One had septic arthritis. Based on US signs in the symptomatic joint, the sensitivity of US for both gout and CPP was low (60% for both). In gout, the presence of US signs in the symptomatic joint was highly predictive of the diagnosis (PPV = 92%). When US diagnosis was based on an examination of multiple joints, the sensitivity for both gout and CPP rose significantly but the specificity and the PPV decreased. In the absence of US signs in all the joints studied, CPP arthritis was unlikely (NPV = 87%) particularly in patients with no previous crisis (NPV = 94%). X-ray of the symptomatic joints was confirmed to be not useful in diagnosing gout and was equally sensitive or specific as US in CPP arthritis. Arthrocenthesis remains the key investigation for the diagnosis of microcrystalline acute arthritis. Although US can help in the diagnostic process, its diagnostic performance is only moderate. US should not be limited to the symptomatic joint. Examination of multiple joints gives a better diagnostic sensitivity but lower specificity

    Practical ultrasonographic technique to precisely identify and differentiate tendons and ligaments of the elbow at the level of the humeral epicondyles: anatomical study.

    Get PDF
    To develop a practical step-by-step technique to precisely identify and differentiate tendons and ligaments attaching to the humeral epicondyles, to confirm through gross anatomical study the accurate structure identification provided by this technique and to determine the frequency at which each structure can be identified in healthy volunteers. First, ten fresh frozen cadavers (6 men, age at death = 58-92 years) were examined by two musculoskeletal radiologists and a step-by-step technique for the identification of tendons and ligaments at the level of humeral epicondyles was developed. Second, the accurate identification of structures was confirmed through gross anatomical study including anatomical sections on five specimens and layer-by-layer dissection technique on five others. Finally, 12 healthy volunteers (6 men, average age = 36, range = 28-52) were scanned by two radiologists following the same technique. An ultrasonographic technique based on the recognition of bony landmarks and the use of ultrasonographic signs to differentiate overlapping structures was developed and validated through gross anatomical study. In healthy volunteers, most tendons and ligaments were identified and well-defined in ≥ 80% of cases, except for the extensor carpi radialis brevis and extensor digiti minimi tendons on the lateral epicondyle (having common attachments with the extensor digitorum communis) and the palmaris longus tendon on the medial epicondyle (absent, or common attachment with the flexor carpi radialis). A step-by-step approach to the ultrasonographic assessment of tendons and ligaments at the humeral epicondyles allowed accurate identification of and differentiation among these structures, in particular those relevant to pathological conditions
    corecore