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Abstract— The use of a planar detection geometry in 
photoacoustic tomography results in the so-called limited-
view problem due to the finite extent of the acoustic 
detection aperture. When images are reconstructed using 
one-step reconstruction algorithms, image quality is 
compromised by the presence of streaking artefacts, 
reduced contrast, image distortion and reduced signal-to-
noise ratio. To mitigate this, model-based iterative 
reconstruction approaches based on least squares 
minimisation with and without total variation regularisation 
were evaluated using in-silico, experimental phantom, ex 
vivo and in vivo data. Compared to one-step reconstruction 
methods, it has been shown that iterative methods provide 
better image quality in terms of enhanced signal-to-artefact 
ratio, signal-to-noise ratio, amplitude accuracy and spatial 
fidelity. For the total variation approaches, the impact of the 
regularisation parameter on image feature scale and 
amplitude distribution was evaluated. In addition, the extent 
to which the use of Bregman iterations can compensate for 
the systematic amplitude bias introduced by total variation 
was studied. This investigation is expected to inform the 
practical application of model-based iterative image 
reconstruction approaches for improving photoacoustic 
image quality when using finite aperture planar detection 
geometries.  

 
Index Terms—Photoacoustic image reconstruction, 

planar detection geometry, iterative image reconstruction, 
total variation regularization, Bregman iteration  

I. INTRODUCTION 

Photoacoustic imaging which utilises both optical and 

ultrasound energy is an emerging  modality [1]–[3] with a broad 

range of potential pre-clinical [4]–[10] and clinical applications  

[11]–[15]. In photoacoustic tomography, widefield pulsed laser 

light is delivered through the surface of tissue and absorbed by 

light-absorbing chromophores. The optical absorption produces 

a temperature rise and a corresponding pressure increase 

resulting in the generation of acoustic waves. The induced 

acoustic waves then propagate to the surface of the tissue and 

are detected at different spatial points with point-like detectors. 

The image reconstructed from the detected acoustic waves 
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provides a representation of the distribution of absorbed optical 

energy density.  

Theoretically, an exact photoacoustic image can be 

reconstructed when the detector array fully encloses the object. 

If the object is partially enclosed and there exists a so-called 

‘visible’ region[16] where the normal ray from any point on the 

boundary of an absorbing feature intersects the detector array, 

it is also possible in principle to reconstruct an exact image in 

that region. However, many practical in vivo applications do not 

permit enclosure of the target tissue or organ and require the use 

of a planar detection array of limited aperture. In this case, the 

photoacoustic signals can only be recorded over a limited solid 

angular aperture and there is no visible region so an exact image 

can never be found. In this “limited view” scenario, image 

quality is compromised by artefacts [17], blurring, structural 

distortion and amplitude scaling errors. The extent of this image 

degradation depends on the image reconstruction algorithm 

used. Commonly used one-step (i.e. non-iterative) 

reconstruction algorithms for a planar detection geometry such 

as those based on k-space [18] or time reversal methods [19]–

[21] can only give the exact solution if the detection surface has 

an infinite detection aperture. When data from a finite aperture 

is used to reconstruct the image, image quality is compromised. 

Model-based iterative methods form an image by iteratively 

adjusting the reconstructed image until it best matches the 

measured photoacoustic times series. They can be regarded as 

finding the image that best “explains” the data acquired over a 

finite aperture. In doing so, they implicitly account for the 

limited view in a way that single-step methods do not and offer 

the prospect of improved image accuracy. 

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3271390

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on May 03,2023 at 15:42:04 UTC from IEEE Xplore.  Restrictions apply. 

mailto:rmapzhu@ucl.ac.uk
mailto:r.abdul@ucl.ac.uk
mailto:b.cox@ucl.ac.uk
mailto:n.huynh@ucl.ac.uk
mailto:o.ogunlade@ucl.ac.uk
mailto:paul.beard@ucl.ac.uk
mailto:Felix.Lucka@cwi.nl


2 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2020 

 

Model-based iterative image reconstruction methods have 

been investigated for removing artefacts and improving image 

quality of photoacoustic tomography for semi-circular[22], 

hemispherical[22], cylindrical [22], [23], arc-shape [24], [25] 

and linear [26], [27] detection geometries. For a planar 

detection geometry, iterative methods have been used to 

reconstruct images using spatially sub-sampled data [28], [29]. 

However, for fully sampled data, there remains a need for a 

comprehensive investigation of iterative reconstruction 

approaches and a rigorous assessment of their performance in 

terms of artefact level, geometrical distortion, amplitude 

accuracy and robustness to noise. In addition, an understanding 

of the impact of regularisation parameters on image fidelity and 

signal-to-noise ratio (SNR) as a function of the target geometry 

and instrument noise is required. The aim of this study is to 

explore these factors and advance the practical application of 

model-based iterative reconstruction methods for improving the 

quality of images acquired using a planar detection geometry. 

This involved evaluating the efficacy and limitations of model-

based iterative image reconstruction techniques using both 

numerical and experimental datasets and comparing them to an 

existing one-step reconstruction algorithm based on time-

reversal.  

II. METHODS 

Iterative and non-iterative (i.e. one-step) reconstruction 

approaches were applied to various in-silico, phantom, ex-vivo 

and in-vivo data sets. Their performances were compared 

visually and evaluated quantitatively using a set of metrics.  

A. Image reconstruction strategies 

To study the performance of model-based iterative image 

reconstruction methods for a planar detection geometry, various 

non-iterative and iterative methods were used to reconstruct 

photoacoustic images (see Table 1 for abbreviations). For the 

non-iterative method, time-reversal (TR) was used because it 

uses the same propagation model as the iterative method, so any 

differences in the reconstructed images do not arise from 

differences in the propagation model but in the reconstruction 

approach only [30][31][32]. We used two variants: (i) TR with 

a non-negativity constraint (TR+) since physically the initial 

pressure distribution is not negative  [33], [34] and (ii) TR with 

total variation de-noising [35] implemented as a post-

processing step on the reconstructed image (TR+TVdenoising);  

For the model-based iterative methods, the image 

reconstruction was posed as a regularised non-negative least-

squares minimisation problem which matches the solution to 

the measurement (equation 1). By using this format, it provides 

a flexible framework for incorporating prior knowledge. 

 

 

 

The first part of equation 1 is the data fidelity term which 

matches the estimate of the initial pressure distribution 𝑝0 to the 

measured photoacoustic time series𝑓. The forward operator 𝒜 

describes the mapping of the pressure distribution to the 

pressure time series. A more detailed discussion of the operator 

𝒜 and its adjoint can be found in [36]. The forward and adjoint 

models were implemented using the k-Wave Matlab Toolbox 

[37]. The second term in equation 1 is the regularisation 

functional ℛ  which encodes a-priori knowledge about the 

solution. The regularisation parameter λ controls the balance 

between the data fidelity term and the regularisation functional. 

The final prediction of the initial pressure distribution 𝑝0 is then 

achieved by iteratively minimizing the difference between the 

measured time series and the modelled time series.  

Three model-based iterative image reconstruction methods 

based on equation 1 were explored.  

(i) Iterative least squares (iLS+) with a non-negativity 

constraint but no regularisation; 

Thus, iLS+ is equation 1 with 𝜆ℛ(𝑝0) =0.  

(ii) Iterative reconstruction with a total variation 

regularisation term and a non-negativity constraint (TV+) [28];  

TV+ is equation 1 with ℛ(𝑝0)  set to 𝑇𝑉(𝑝0)  where the 

discrete generalization of the isotropic 𝑇𝑉(𝑝0) is given by  

 

 

 

 

 

 

𝑇𝑉(𝑝0) is a measure of the L1 norm of the amplitude of the 

gradient field of 𝑝0. In general, it quantifies how much an image 

varies across pixels. A highly textured or noisy image will have 

𝑝0 = argmin
𝑝0≥0

1

2
‖𝒜𝑝0 − 𝑓‖2

2 + 𝜆ℛ(𝑝0)             (1) 

TV(𝑝0) = ∑ √
(𝑝0(𝒊+𝟏,𝒋,𝑘) − 𝑝0(𝒊,𝒋,𝒌))

2

+ (𝑝0(𝒊,𝒋+1,𝑘) − 𝑝0(𝒊,𝒋,𝑘))
2

+ (𝑝0(𝒊,𝒋,𝑘+1) − 𝑝0(𝒊,𝒋,𝑘))
2(𝑖,𝑗,𝑘) (2) 

 

Fig 1: Illustration of the numerical phantom geometries: a, 10-cylinder 

phantom; b, 20-cylinder phantom; c, vascular-like phantom. The planes on 
the top of each image illustrate the planar region over which the 

photoacoustic waves are detected. Fig 2: Experimental set-up. a, FP scanner and wall-less agar phantom; b, 
In-vivo imaging of human finger joint and wrist 

Table 1 

Abbreviations of reconstruction methods 
Abbreviation Meaning 

TR Time reversal 

TR+ Non-negativity constrained TR 

TR+TVdenoising TR post-processed by total variation denoising 

iLS+ Non-negativity constrained Iterative least square 

TV+ Non-negativity constrained total variation regularisation 

TV+Breg Bregman iteration enhanced TV+ 
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a large TV energy, while a smooth or piecewise constant image 

would have a relatively small TV. Hence, TV regularisation 

encourages piecewise smooth regions yet preserves their edges 

while rejecting noise. TV regularisation has previously been 

used in the reconstruction of photoacoustic images from 

incomplete data to suppress limited view artefacts[22], [38] and 

minimise image degradation[28], [39]. 

(iii) Bregman iteration enhanced TV (TV+Bregman);  

A potential drawback of TV is that it can lead to  

regularisation bias resulting in amplitude error and loss of fine 

structures [40]. To overcome this drawback, an iterative 

enhancement of variational solutions by the Bregman 

iteration[41], [42] was applied with the following reformulated 

form: 

 

 

 

 

 

As can be seen from equation (3) & (4), unlike TV+, the time 

series is iteratively updated by adding the difference between 

the measured and the simulated time series. By adding the 

difference back, the amplitude error and loss of fine structures 

can be mitigated. In each Bregman iteration, TV+ iteration is 

re-run to update the estimate of 𝑝0.  

To solve the optimisation problem (equation 1), an 

accelerated proximal gradient descent scheme was used 

because the proximal operator (here the operator that solves the 

3D non-negativity constrained TV denoising problem) is cheap 

to compute compared to the forward 𝒜  and adjoint 𝒜𝑇 

operations [28]. The basic proximal gradient scheme is 

represented by 

𝑝0
𝑖+1 = prox𝑇𝑉+,𝜂𝜆 (𝑝0

𝑖 − 𝜂𝒜𝑇(𝐴𝑝0
𝑖 − 𝑓)),                        

 𝑝0
0 = 0, 𝑖 = 1, … , 𝐿 

 

A FISTA-type acceleration extends this scheme [43]. The 

positivity-constrained TV denoising is implemented by a 

primal-dual hybrid gradient algorithm as described in [44]. 

More details about the optimisation algorithms can be found in 

[28].  

 

B. Experiments 

In-silico, phantom, ex-vivo and in-vivo studies were 

undertaken to examine the performance of the different 

reconstruction methods. 

1) In-silico studies 
To evaluate the different image reconstruction methods, a 

range of 3D numerical phantoms comprising cylinders of 

different dimensions and vascular-like structures were used in 

conjunction with an acoustic propagation model to generate 

photoacoustic time series data. 

As shown in Fig1a-c, three phantom geometries were used: 

10-cylinder phantom, 20-cylinder phantom and vascular-like 

phantom. In the 10-cylinder phantom, ten cylindrical targets 

with identical radii of 0.4 mm were equally spaced in depth. 

The 20-cylinder phantom comprised twenty equally spaced 

cylinders with different radii of 0.4, 0.3, 0.2 and 0.1 mm. The 

vascular-like phantom was based on a segmentation of a micro-

CT scan of a rabbit lymph node. The initial pressure 𝑝0 was set 

to be constant within the cylinders (or vessels) and zero 

elsewhere.  

A variation of the 10-cylinder phantom in which a non-

uniform 𝑝0  distribution was produced was also used and is 

referred to as the non-constant 10-cylinder phantom in this 

paper. This was formed by using a Monte Carlo model of light 

transport (MCXLAB [45]) to simulate the fluence distribution 

in the phantom. The optical coefficients of the cylinders and the 

background are given in (Table 2) [46]. The optical properties 

of the cylinders were set to those of blood. The background was 

mimicking a capillary bed, modelled as 55% water and 45% 

blood with a total haemoglobin 

concentration, 𝑐𝐻𝑏𝑇
𝑏𝑔

=5.6g l−13   and 60.7% oxygenation (cHbO2
 

=3.42  g l−1 and 𝑐𝐻𝑏=2.11  g l−1). All optical coefficients were 

chosen to be those at a wavelength of 784 nm.   The volume 

was illuminated from the top with a collimated Gaussian beam 

with 5 mm waist radius. The fluence distribution was then 

multiplied pixel-wise by an image of the corresponding optical 

absorption coefficient to produce images of the absorbed 

energy distribution and thus 𝑝0  (assuming a Grueneisen 

coefficient of one).  

The same simulation grid consisting of 100x100x100 cubic 

voxels of length 20 mm was used in all the simulation studies 

and the speed of sound was assumed to be homogeneous at 

1500 m/s. 2D planar sensor arrays with identical size of 20 x 20 

mm were positioned at the top of each simulation grids to 

𝑝0
𝑘+1 = argmin

𝑝0≥0

1

2
‖𝒜𝑝0

𝑘 − (𝑓 + 𝑏𝑘)‖
2

2
+ 𝜆ℛ(𝑝0

𝑘)     (3) 

 
𝑏𝑘+1 = 𝑏𝑘 + (𝑓 − 𝒜𝑝0

𝑘+1)                                   (4) 

Fig 3: Illustration of image segmentation to quantify artefact and noise 

level: a, 1-cylinder phantom; b, TR+ reconstructed image; c, feature ROI 

(K-means segmented) indicated by white dashed contour; d, TR+ image 
overlaid with boundaries of artefact ROI (K-means segmented); e, TR+ 

image overlaid with red mask of noise ROI (K-means segmented); f, 

manually selected ROIs for artefact (red) and noise (yellow).  

Table 2 

Optical properties in light transport modelling 
Optical properties Background Tube 
Absorption coefficient (𝑚𝑚−1) 0.001 0.4049 
Scattering coefficient (𝑚𝑚−1) 12.3965 272.49 
Anisotropy 0.9 0.994 
Refractive index 1.376 1.36 
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acquire the time series data. The distance between detector 

elements was 200 µm, the same as the grid size. The temporal 

sampling interval was set to be 40 ns. The sensor bandwidth 

was not explicitly limited but due to the grid size, the bandwidth 

of the photoacoustic signals is limited to 5.5 MHz. The 

photoacoustic wave propagation from the initial pressure 

distribution and its subsequent detection by the 2D planar array 

was simulated using k-Wave [37]. Gaussian noise was added to 

the detected pressure time series to achieve a range of SNRs 

from 10dB to -10dB.  

2) Experimental studies 
 Measured photoacoustic  data was  obtained in a phantom (Fig. 

2b), ex vivo tissue and in vivo using a Fabry-Pérot (FP) planar 

scanner [47]. Fig 2a shows a schematic of the scanner. The 

excitation light is emitted by a fibre coupled, Nd:YAG laser in 

the phantom experiment or a OPO laser system in ex-vivo and 

in-vivo experiments. The light is transmitted through the sensor 

head, which is designed to be transparent to the excitation 

wavelengths. The absorption of the excitation light generates 

photoacoustic waves, which propagate to the FP sensor and 

modulate its optical thickness and thus its reflectivity. The latter 

is detected using a focused interrogation laser beam, that is 

raster scanned over the sensor surface. The interrogation beam 

is reflected from the sensor and is incident on a photodiode, 

which is connected to a digitizer to record the photoacoustic 

waveforms. The FP sensor provides a near-uniform broadband 

frequency response from 50 kHz to 22 MHz (-3dB). The lateral 

resolution of the FP scanner is spatially variant. It increases 

with depth and the horizontal distance from the centre of the 

scan. The lateral resolution is in the range of 50 to 125 μm and 

the axial resolution is 27 μm. The scanner was used to image a 

phantom comprising a pure agar background containing 10 

absorbing wall-less cylindrical agar inclusions 𝜇𝑎 = 2 𝑚𝑚−1 

of diameter 1 mm. The agar background has negligible optical 

absorption and optical scattering [48]. The phantom was 

illuminated with a 3 cm beam diameter at an excitation 

wavelength of 1064nm. An area of 14 mm × 16 mm was 

scanned, with a step size of 120 μm, to yield ≈16,000 time 

series. Each time series contained 1200 time points, with a 

temporal resolution of 20 ns. Photoacoustic signals were 

initially acquired with the phantom in a single fixed position in 

order to reconstruct a limited view image. Thereafter, the 

phantom was rotated enabling signals to be acquired from 6 

planes equally distributed around the phantom. The sensor 

coordinates were obtained from a registration procedure [49]. 

The combined time series from all 6 planes were then used to 

reconstruct a full view image for comparison with the single 

view image. 

Fig 4: Cross-sectional single-slice image of the 10-cylinder phantom: a, phantom p0; b, TR+; c, TR+TVdenoising; d, iLS+; e, 

TV+; Quantitative comparison of reconstructed images achieved by non-iterative and iterative methods for different pressure time 
series SNRs: f, mean squared error (MSE); g, h, intensity profiles; i, SAR; j, k, Hausdorff distance. 

. 
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An image of a human placenta was acquired at a single plane 

using the FP planar scanner. The tissue was illuminated with a 

6 mm diameter laser beam at an excitation wavelength of 

850nm. An area of 8.2 mm × 8.1 mm was scanned, with a step 

size of 100 μm. Each time series contained 1000 timepoints 

with a temporal resolution of 20 ns. 

The skin vasculature in the finger and wrist region of a 

volunteer were imaged at a single plane using the FP planar 

scanner (as shown in Fig 2b) [50]. The data was acquired with 

an excitation wavelength of 850 nm. An area of 15.26 mm × 

14.95 mm was scanned, with a step size of 106 μm. Each time 

series contained 500 time points with a temporal resolution of 

16.67 ns. Ethical permission was granted for this prospective 

single-centre study by the University College London Research 

Ethics Committee (Project ID: 1133/001). 

C. Quantitative metrics 

In order to quantitatively compare the images reconstructed 

by the different methods, the following metrics were variously 

used. In the simulation studies, mean squared error (MSE) was 

calculated to evaluate the extent to which the reconstructed 

image differs from the ground truth. MSE was estimated from 

the reconstructed solution 𝑝 and the ground truth phantom 𝑝0 

as follows: 

 

 

Signal-to-noise ratio (SNR) was estimated to account for the 

random noise generated by the acoustic detection 

instrumentation that is mapped on to the image. SNR is defined 

as the ratio of the mean intensities of a reconstructed image 

feature and a region of random noise selected such that it does 

not overlap with any reconstructed features and their associated 

artefacts: 

 

 

 

Additionally, signal-to-artefact ratio (SAR) was evaluated to 

provide a measure of the level of artefacts in the image. SAR 

was defined as the ratio between the mean intensities over the 

feature region and the artefact region: 

 

 

 

The methods used to identify regions of feature, artefact and 

noise differed depending on whether the images were 

reconstructed using simulated or experimental data. Fig 3 

illustrates the different approaches. Fig 3 a&b show the cross-

sectional image of the initial pressure distribution 𝑝0  and the 

corresponding TR+ reconstructed image. For the in-silico 

studies, K-means clustering image segmentation was applied to 

identify the feature, artefact and noise regions. As shown in Fig 

3c, the dashed contour indicates the feature region segmented 

by K-means method. In Fig 3d&e, TR reconstructed images are 

overlaid with masks of artefact and noise ROIs detected by K-

means segmentation[51]. For the images of the experimental 

phantom, feature regions were segmented similarly by the K-

means method while artefact and noise regions were manually 

selected. For ex-vivo and in-vivo experiments, the feature, 

artefact and noise regions were manually identified. An 

example of the manual selection of artefact and noise regions is 

illustrated in Fig 3f. 

The Hausdorff distance was used to evaluate the geometrical 

distortion, the difference between a distorted feature and the 

ground truth [52]. A smaller Hausdorff distance means the  

reconstructed geometry is closer to the ground truth.  

𝑆𝐴𝑅 = 20log (
𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑣𝑒𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑔𝑖𝑜𝑛

𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑣𝑒𝑟 𝑎𝑟𝑡𝑒𝑓𝑎𝑐𝑡 𝑟𝑒𝑔𝑖𝑜𝑛
)                (7) 

𝑆𝑁𝑅 = 20 log (
𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑣𝑒𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑔𝑖𝑜𝑛

𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑣𝑒𝑟 𝑛𝑜𝑖𝑠𝑒 𝑟𝑒𝑔𝑖𝑜𝑛
).              (6) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑝𝑖 − 𝑝0𝑖

)2
2𝑁

𝑖                                                                (5) 
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III. RESULTS 

Fig 5: Comparison of images reconstructed using TV+ for different regularisation parameters: (i), 

10-cylinder phantom λ1= 10−1 , λ2= 10−2 , λ3= 10−3 , λ4= 10−4 ; (ii), 20-cylinder phantom 

λ1=5 × 10−1, λ2=10−1, λ3=10−2, λ4=10−3; (iii), Non-constant 10-cylinder λ1=10−2, λ2=10−3, 

λ3=10−4, λ4=10−5. 
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A. In-silico results 

1) 10-cylinder phantom 
The numerical phantom composed of 10 identical cylinders 

of uniform 𝑝0 was first used to compare the non-iterative and 

iterative reconstruction methods. Fig 4a-e shows the cross-

sectional images reconstructed from simulated pressure time 

series with an SNR of 5dB. As Fig 4b shows, the image 

reconstructed using TR+ exhibits significant streaking artefacts 

around the cylinders. The latter are also distorted, and the 

amplitudes of the features are far from the true values. These 

distortion and amplitude errors increase with increasing depth. 

TVdenoising was applied to non-iterative TR+ to determine 

whether TV+ achieves more than just smoothing out the noise 

which TVdenoising can achieve with similar effectiveness. As 

Fig 4c shows, the noise and the streaking artefacts apparent in 

TR+ are partially reduced by TVdenoising. However, the 

geometrical distortion and the reduction in amplitude with  

depth remain. Both are mitigated by the two iterative methods., 

iLS+ exhibits higher noise and greater artefacts than 

TV+ (λ =10−1 ) which supresses the streaking artefacts and 

reduces the geometrical distortion.  

Fig 4f-k provides a quantitative comparison of images of the 

10-cylinder phantom reconstructed using pressure time-series 

data of different SNRs. As shown by the MSE (Fig 4f), in 

contrast to TR+ and TR+TVdenoisng, the reconstructions 

achieved by the iterative methods (iLS+ and TV+) are closer to 

the ground truth for time series SNRs in the range 10dB to -

5dB. It is only at the lowest time series SNR (-10dB) that 

TR+TVdenoising provided lower MSE than iLS+. TV+ 

outperforms the other methods and achieves the lowest MSE at 

all time series SNRs. To permit a comparison of the amplitude 

accuracy, profiles along the vertical and horizontal dashed lines 

shown in Fig 4a are plotted in Fig 4g&h. This plot shows that, 

compared to the non-iterative methods, the two iterative 

methods (iLS+ and TV+) achieve higher amplitude accuracy, 

although both still tend to under-estimate the amplitude. For 

TV+, this is likely to be due to the TV regularisation bias and is 

discussed further in the following section (Enhancement via 

Bregman iteration). As shown Fig 4i, iterative methods provide 

higher SAR than the non-iterative methods for the SNRs in the 

range 10dB to -5dB reflecting higher artefact suppression. Only 

at the lowest time series SNR (-10dB) did TR+TVdenoising 

achieve higher SAR than iLS+. However, TV+ outperforms the 

other methods and obtains the highest SAR at all time series 

SNRs.  

The Hausdorff distances of the features indicated by the white 

dashed boxes in Fig 4a were calculated to evaluate the 

geometrical distortion introduced by the different 

reconstruction methods. As we can see from Fig 4d & 4e, the 

correction of geometrical distortion is less effective with 

increasing depth. This is  

illustrated quantitatively by the Hausdorff distances in Fig 

4j&k.  Fig 4j corresponds to the feature in the second row and 

shows that the Hausdorff distance of the iterative reconstruction 

methods (iLS+ and TV+) are zero at all time series SNRs. Fig 

4k corresponds to the deeper lying feature in the lowest row and 

suggests there is no clear advantage of iLS+ over non-iterative 

methods. TV+ however, outperforms the other methods, 

although is increasingly less effective as the SNR decreases. 

2) Impact of regularisation parameter 
For TV+, the regularisation parameter λ controls the balance 

between the data fidelity term and the regularisation functional 

and thus has a significant impact on image fidelity. Small λ 

values can result in a reconstruction result similar to that 

achieved by iLS+ where noise and artefacts remain. On the 

other hand, if λ is too large, fine structures can be lost and 

amplitude accuracy compromised. To explore this, three 

numerical phantoms were used to evaluate the impact of the 

regularisation parameter on image fidelity and contrast as a 

function of the target geometry and intensity distribution. In Fig 

5, images reconstructed using TV+ for four different λ values 

(λ1>λ2>λ3>λ4) are compared qualitatively and quantitatively.  

The first numerical phantom was the 10-cylinder phantom 

where each cylinder is assigned the same 𝑝0. The corresponding 

reconstructed cross-sectional images are shown in the first 

subgroup (i) of Fig 5 (Fig 5(i)a-e). This shows that the 

suppression of noise and artefacts as well as the correction of 

distortion are less effective for smaller λ values. Fig 5(i)f-h 

show the corresponding MSE, SAR and Hausdorff distance. 

These results show that the lowest MSE is achieved with the 

largest λ value (Fig 5(i)f) while the SAR reduces with 

decreasing λ (Fig 5(i)g) due to the reduced artefact suppression 

associated with small λ. The feature used to calculate the 

Hausdorff distance is indicated by the white dashed box in Fig 

5 (i)a. The higher level of geometrical distortion produced by 

λ3 & λ4 is reflected by the larger Hausdorff distance values in 

Fig 5(i)h. 

In the above simple 10-cylinder phantom where the image 

features are identical and of large dimensions, the use of a large 

λ is optimal and a relatively straightforward choice. However, 

in images comprising different sized features the selection of λ 

can be more nuanced and challenging. This is because TV can 

suppress small features on account of their relatively higher 

edge-densities which result in higher TV energy[53]. When the 

TV energy of the entire image is minimised, such features are 

Fig 6: Total variation regularisation enhanced by Bregman iteration: a-c, 
visual comparison of cross-sectional reconstructed images; d, intensity 

profile along 1st column. λTV+=10−1, λTV+Breg=5 × 10−1 
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at higher risk of partial or complete removal by regularisation 

while large-scale features remain relatively unaffected. 

 To assess the scale-dependent nature of TV regularization 

[53], the effect of varying λ was studied using the 20-cylinder 

phantom which comprises differently sized cylinders. The 

reconstructed images are shown in the second subgroup (ii) of 

Figs 5 (Fig 5(ii)a-e). As λ increases, targets of smaller size or at 

greater depth are poorly reconstructed or missing altogether.  

As Fig 5(ii)b (largest λ value) shows, if we compare cylinders 

at the same depth, targets of smaller size are poorly 

reconstructed or missing, a consequence of the above 

mentioned scale-dependent property of TV regularisation. For 

cylinders of the same size and at different depths (each column), 

those at greater depth were poorly reconstructed or missing due 

to the lower SNR associated with them. The MSE values (Fig 

5(ii)f) suggest that λ3 is the optimal regularisation parameter 

value for this phantom. This is further evidenced by the 

amplitude profiles along the dashed lines (Fig 5(ii)a) shown in 

Fig 5(ii)g & h which are the most accurate for λ3. By contrast 

the larger λ1 results in significant amplitude errors and the 

smaller cylinders and cylinders at greater depth are invisible. λ4 

enables all features to be visualised but yielded the highest 

noise as well as lower amplitude accuracy than λ3. These results 

show that choosing a value of λ that is too large results in the 

loss of small features. However, selecting λ that is too small 

results not only in more noise but greater amplitude errors. 

Hence there is a compromise to be made to find the best trade-

off between small feature visibility and amplitude accuracy. 

   Furthermore, it is known that TV encourages piece-wise 

smooth regions. The 10-cylinder and 20-cylinder phantoms, 

where the image features have a uniform amplitude distribution,   

may not therefore be a sufficient test since real photoacoustic 

images are rarely piece-wise constant, not least because of the 

spatially varying light fluence. Under these conditions, there is 

risk of TV regularisation biasing the reconstruction towards 

constant 𝑝0  and reducing image amplitude accuracy. To 

investigate this, the non-constant 10-cylinder phantom 

described in section B was used; with this phantom the light 

fluence is simulated resulting in a non-uniform 𝑝0 both within 

each cylinder and the background. Fig 5(iii)a shows the 𝑝0 

distribution.  Since the volume was illuminated from the top, 

the light fluence decreases with depth. Hence, a depth 

dependent decrease in 𝑝0 within each cylinder can be observed. 

Fig 5(iii)a-e shows the corresponding cross-sectional images 

obtained for different λ values. For the smallest λ used (λ4), the 

image shown in Fig 5(iii)e and the profiles in Figs 5(iii)g&h 

suggest the amplitude accuracy is high, although for the deeper 

cylinders there is significant noise and evidence of streaking 

artefacts. As λ increases to λ3 the amplitude accuracy increases 

and the noise decreases, as evidenced not only by the profiles 

in Fig 5(iii)g&h but also by the MSE which is the lowest for all 

λ (fig 5(iii)f). For higher λ, the noise and streaking artefacts 

decrease further but at the cost of amplitude accuracy and the 

visibility of deeper lying features. For example, for the highest 

λ value (λ1), the top row of cylinders are almost piecewise 

constant and thus do not reflect the variation of 𝑝0 within each 

cylinder while the deeper lying features are invisible. For this 

example, λ3 appears to provide the best compromise in terms of 

Fig 7: Comparison of non-iterative and iterative 
reconstruction methods using vascular-like phantom: a-f, x-

y MIP; g-l, cross-sectional x-z single slice images. 
λTV+=10−1, λTV+Breg=10−1. White dotted rectangle indicates 

vessel selected for size measurement provided in Table 3. 
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noise reduction, artefact suppression and amplitude accuracy. 

Notably, these results show that, although TV promotes a piece-

wise constant solution, a realistic non-uniform 𝑝0 distribution 

can still be accurately recovered with a carefully selected 

regularisation parameter.  

3) Enhancement via Bregman iteration  
The amplitude errors (observed in Fig 5d&e) introduced by 

TV regularisation can be compensated through the use of 

Bregman iteration (equations (3) & (4)). The effectiveness of 

this approach was investigated using the 10-cylinder phantom 

with uniform pressure distribution. Fig 6 compares the results 

achieved by TV+ and TV+Breg. As illustrated by Figs 6a-c, 

Bregman iterations act to reduce the amplitude errors due to TV 

regularisation. This further evidenced by the profiles along the 

dashed line in Fig 6a which are plotted in Fig 6d. The images 

reconstructed with Bregman iterations achieved the most 

accurate amplitude, although the improvement decreases at the 

greater depth. A total of 5 Bregman iterations were performed 

in this and all the following experiments. 

4) Vascular-like phantom  
In the previous simulation studies, numerical phantoms 

composed of simple cylindrical objects were used. Although 

they can provide insights in the basic properties of 

reconstruction methods, it is often unclear how their results will 

translate to more complex targets. Hence, the vascular-like 

phantom described in section 2B(1) was used to study how the 

different image reconstruction methods are likely to perform 

when imaging blood vessels. Fig 7a-f show the depth colour-

coded x-y en-face MIP images. In the images reconstructed by 

non-iterative methods (TR+ and TR+TVdenoising), only large 

vessels are clearly visualised while the iterative methods (iLS+, 

TV+ and TV+Bregman) permit visualisation of smaller vessels. 

Fig 7g-l shows cross-sectional x-z single-slice images. In the 

Fig 8: Cross-sectional single-slice images of the agar phantom. a-e, single slice images with ROI contours: white dashed boxes 

indicated the three features used to compare hausdorff distance. In the white dashed boxes, red dashed contours indicate artefact 

region, white dashed contours indicate feature region. Outside the white dashed boxes, yellow contours indicate noise region; f-j, 
corresponding zoomed-in images of the white dashed boxes in a-e; k, SAR comparison; l, SNR comparison; m, Hausdorff distance 

comparison. λTV+=10−2, λTV+Breg=5 × 10−2 
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images reconstructed by TR+, TR+TVdenoising and iLS+, the 

true vascular structure is not visualised due to the artefacts. TV+ 

and TV+Bregman provides images with significantly fewer 

artefacts and thus a vascular structure that corresponds more 

closely to the ground truth. Furthermore, the size of the vessel 

in the white dashed box was quantified by the full width half 

maximum (FWHM). As we can see from Table 3, 

TV+Bregman achieves the most accurate FWHM. 

B. Experimental phantom 

To evaluate the reconstruction methods using experimental 

data, the wall-less agar phantom containing 10 absorbing 

cylindrical inclusions each of diameter 1 mm shown in Fig2a 

was used. The phantom is located in front of the sensor and 

rotated by a stepper motor to obtain photoacoustic time series 

data over 6 different planes as shown in Fig 8. A full-view 

image was then reconstructed using time-reversal from this 

data. This image does not suffer from limited view artefacts. 

Hence, it is taken to represent the ground truth but only in terms 

of the image structure – the amplitude distribution is subject to 

errors because the illumination of the phantom is not the same 

for each plane. Thereafter images were reconstructed from 

photoacoustic time series data acquired over a single plane 

using non-iterative and iterative methods. The regularisation 

parameter λ was chosen to be large enough to suppress most 

visible artefacts and the most visually apparent geometrical 

distortion without compromising the visualisation of low SNR 

features. Fig 8a-e show the cross-sectional single-slice images 

of the entire phantom while Fig 8f-j show the zoomed-in images 

of the top three features within the white dashed boxes. 

Compared to TR+, iLS+ enhances the visibility of deeper 

targets but the artefacts and geometrical distortion remain. TV+ 

and TV+Bregman suppress the artefacts and reduce the 

geometrical distortion, albeit with reduced effectiveness with 

increasing depth. From the zoomed-in images (Fig 8g-j) it is 

apparent that the large streaking artefact region indicated by the 

white arrow has been transformed to a relatively high amplitude 

uniform feature by TV regularisation. This is because the 

artefact region is of similar scale as the image feature from 

which it originates. Furthermore, the artefact region has higher 

intensity than the image features at deeper depth. If a larger 

regularisation parameter is used to suppress the artefact, image 

features at deeper depth will be removed as well. 

 The SAR and SNR were measured within the ROIs indicated 

in Fig 8a-e. The white, red and yellow dotted line contours 

represent the feature, artefact and noise ROIs respectively. As 

shown in Fig 8k, TV+ achieves the best SAR as it most 

effectively suppresses the artefacts whereas TV+Bregman 

provides highest SNR (Fig 8l). The Hausdorff distance for the 

top three features was calculated using the full-view image as 

the reference image. As can be seen from Fig 8m, TV+ and 

TV+Bregman provide more accurate target geometry while 

iLS+ achieves the least accurate target geometry. MSE and 

intensity profiles are not provided. As mentioned above this is 

because, for the full-view image, the ground truth amplitude 

distribution in the cylindrical inclusions is unknown. 

C. Ex-vivo and In-vivo  results 

The performance of the iterative reconstruction methods was 

further evaluated by acquiring measured data from an ex vivo 

human placenta and the superficial vasculature in the finger and 

wrist of a human volunteer. There is no absolute ground truth 

Fig 9: Ex-vivo placenta images; a, x-y MIP image reconstructed from 

signals acquired over the full aperture (8 × 8 mm), b-e, y-z cross-sectional 

single-slice full aperture images of region indicated by white line in (a), f-
i, corresponding y-z images reconstructed from signals acquired over the 

reduced 2 × 2 aperture indicated by yellow rectangle in (a). λTV+=10−3, 

λTV+Breg=5.5 × 10−3 

Fig 10: In-vivo human finger joint images: a-d, x-y MIP images 

reconstructed by non-iterative and iterative methods; e-h, cross-sectional 

single-slice images reconstructed by non-iterative and iterative methods. 
The arrows indicate the same small vessel. The dotted white line in (a) 

indicates the location of the single-slice images e-h. λTV+= 10−3 , 

λTV+Breg=5.5 × 10−3 

Table 3 

Full width half maximum (FWHM) value measured the size of the vessel 

in the white dashed box in Fig 8 g-l. 
Phantom TR+ TR+TVdenoising 

0.273 0.385 0.327 

iLS+ TV+ TV+Breg 

0.338 0.278 0.274 
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in these examples. However, they can still provide an insight 

into the effectiveness of the different reconstruction methods if 

reasonable assumptions are made about the tissue anatomy; for 

example, that vessels are near cylindrical in shape. To quantify 

the suppression of noise and artefacts, metrics such as SNR and 

SAR can still be used to evaluate performance.  

From the simulation and experimental phantom results, it is 

clear that the regularisation parameter λ must be appropriately 

chosen. This was performed by selecting a value of λ that was 

large enough to 1) suppress most visible reconstruction 

artefacts 2) retain most visible small vessels and 3) correct the 

most obvious geometrical distortion of clearly visualised 

vessels.  

Fig 9 shows the ex-vivo human placenta images. Fig 9a shows 

the image reconstructed by TR+ using the photoacoustic signals 

acquired over the full detection aperture of 8 mm x 8 mm. 

Signals from a reduced aperture of 2mm x 2mm (indicated by 

the yellow box in Fig 9a) were then extracted from the full 

aperture data set.  This was done because, when using the full 

detection aperture, the image distortion and artefact level due to 

limited view was found to be modest, a consequence of the 

superficial nature of the blood vessels in the tissue sample used. 

By artificially reducing the detection aperture, the limited view 

problem is exacerbated. The artefacts therefore become more 

severe and thus the extent to which they are reduced by the 

iterative methods more obvious. 

 Fig 9b-e show cross-sectional single-slice images of a blood 

vessel taken from the full aperture while Fig 9f-i show images 

of the same region from the reduced aperture image. The white 

line in Fig 9a indicates the location of the single slice. As we 

can see from the comparison between Fig 9b and Fig 9f, the 

TR+ image obtained from the reduced aperture exhibits more 

distortion than the full aperture image. In both cases the 

iterative reconstruction methods reduce the distortion although 

it is more apparent in the reduced aperture images. The in-vivo 

images of the finger vasculature are shown in Fig 10. Fig 10a-

d show the x-y MIP images. The small vessel indicated by the 

white arrow can be clearly visualised in the images 

reconstructed by iterative methods (iLS+, TV+ and 

TV+Bregman), while the same vessel is poorly visualised in 

TR+. Fig 10e-h show cross-sectional single-slice images  

extracted from the reconstructed 3D image at the location 

indicated by the dotted horizontal white line in Fig 10a. For the 

large vessel in the middle of the single slice images, the iterative 

methods (iLS+, TV+ and TV+Bregman) correct the 

geometrical distortion apparent in the TR+ image. Additionally, 

the visibility of the small vessel indicated by the white arrows 

is enhanced by the TV+ and TV+Bregman methods. 

Fig 9 and Fig 10 demonstrate the advantages of iterative 

reconstruction methods in the correction of geometrical 

distortion. Fig 11 shows the performance of the iterative 

reconstruction methods in artefact reduction and enhancement. 

In the TR+ image (Fig 11a), the streaking artefacts are indicated 

by the red arrow. As can be seen from Fig 11c&d, TV+ and 

TV+Bregman significantly remove the artefacts. SAR and SNR 

were measured using the ROIs indicated in Fig 11a. The white, 

red and yellow arrows and dotted line contours represent the 

feature, artefact and noise ROIs respectively. As can be seen 

from Fig 11e&f, the results agree with that of the phantom 

experimental results. TV+ achieves the best SAR while 

TV+Bregman provides the highest SNR.  

IV. DISCUSSION AND CONCLUSIOND 

In conclusion, we have investigated the application of model-

based iterative reconstruction methods in photoacoustic 

tomography for a planar detection geometry. The performance 

was assessed objectively and quantitatively using simulated and 

experimental datasets. Furthermore, the impact of 

regularisation was studied and the compensation of TV 

regularisation bias by Bregman iteration was evaluated. It has 

been demonstrated that the iterative reconstruction methods can 

provide better image quality and suppress artefacts due to the 

incomplete data acquired using a finite detection aperture. 

Amongst the iterative methods, iLS+ is unregularised so avoids 

the challenges involved in selecting the regularisation 

parameter λ. However, it is least effective in reducing noise and 

artefacts as well as the correction of geometrical distortion. 

TV+ achieves better SAR by suppressing limited view artefacts 

while TV+Bregman achieves more accurate amplitude 

accuracy and better SNR but incurs additional computational 

cost. Both require regularisation and thus involve the non-trivial 

task of selecting an appropriate λ as discussed below. The 

choice of iterative reconstruction method for any particular 

situation will therefore depend on requirements. iLS+ lends 

itself to scenarios where few assumptions about the imaging 

target can be made. TV+ is applicable where spatial fidelity is 

key and sufficient prior information exists to make an informed 

choice of λ. The higher amplitude accuracy of TV+Bregman 

could lend it to quantitative photoacoustic imaging [54] where 

an accurate representation of the fluence-encoded image 

contrast distribution is an important requirement.  

Appropriate choice of λ is clearly key to the effective use of 

TV+ and TV+Bregman. In the absence of a ground truth, as is 

invariably the case in practice, this presents a challenge. As 

evidenced by Fig 6, when λ is too high, the scale-dependent and 

piecewise constant nature of TV regularisation means smaller 

Fig 11: In-vivo human wrist images; a-d, cross-sectional single-slice 

images achieved by non-iterative and iterative methods; ROI indication, 
white, red and yellow arrows and boxes indicate the feature, artefact and 

noise ROIs; e, SAR comparison; f, signal-noise-ratio comparison. 

λTV+=10−3, λTV+Breg=5.5 × 10−3 
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features or subtle variations in 𝑝0 can be removed. On the other 

hand, when λ is set too small, the artefacts and noise remain 

high, and the geometrical distortion cannot be effectively 

corrected. The challenge becomes particularly acute when there 

is significant geometrical and SNR diversity in the image as the 

trade-off between retaining small feature visibility, minimising 

noise and maximising amplitude accuracy becomes finely 

balanced. Knowledge of the expected imaging scenario can be 

used to pragmatically inform the selection of λ. For example, if 

the anticipated target is a vascularised tumour, in-silico studies 

using numerical phantoms with tumour-realistic vascular 

architectures can be used to identify a regularisation parameter 

space from which a hand-crafted value of λ can be selected for 

a specific in vivo data set. The demands of the specific 

application will further inform the choice of λ. If suppressing 

artefacts and minimizing spatial distortion is important in order 

to achieve high structural accuracy, a relatively large λ might 

be used. However, if high amplitude accuracy is the priority, as 

is the case for quantitative imaging, selecting a smaller λ may 

be prudent to avoid the promotion of an inappropriately piece-

wise constant image, albeit at the cost of increased noise. 

Although this somewhat ad hoc approach has the advantages of 

simplicity and pragmatism, it suffers from several limitations. 

Firstly, it relies on the use of a global regularisation parameter 

which will compromise image quality if there is a range of 

differently sized image features. To address this, a scheme 

could be developed to spatially adapt the regularisation 

parameter [55]. Secondly, it requires an element of prior 

knowledge which may not always be available and the hand-

crafting element associated with selecting λ is subjective to 

some extent. More objective selection of λ without the need for 

priors could potentially be achieved using selection methods 

based on the statistical properties of the data[56].  

The model-based framework discussed in our study can 

incorporate frequency and directional responses of arbitrary 

complexity. While we focused on broadband, omni-directional 

detectors in this work, an interesting extension would be to 

consider more realistic detector models, e.g., directional, 

narrow-band ones and see how this affect the choice of 

regularisation parameter. In the specific case of narrowband 

detectors with a peaked frequency response, TV regularisation 

could mitigate reconstruction artefacts, such as the loss of the 

contrast in the interior of objects as well as limited view.  

It has been shown that the iterative model-based approach 

described in this study can accommodate the large data sets 

(>106) associated with high resolution 3D PAT. In principle, 

iterative matrix-based model inversion schemes could also be 

used but at present are intractable for the large number of voxels 

encountered in high resolution 3D imaging. They are better 

suited to the much smaller data sets (<103) associated with 2D 

PAT and have been used with the aim of mitigating the limited 

view problem for a linear array geometry[27]. For this 

geometry they may be faster than the current approach, albeit at 

the cost of flexibility since the model matrix has to be pre-

computed for a specific set of imaging parameters. If the latter 

change, then matrix has to be re-computed at significant 

computational cost.  

A limitation of iterative model-based reconstruction methods 

is that they are typically computationally intensive, especially 

for 3D image reconstruction. For example, computing the 

reconstruction of the finger joint images in Fig 10 (486*71*71 

voxels) took 1h18m using TV+ (50 iterations) and 4h22m using 

TV+Breg (71 iterations). Each iteration takes 95s using the 

optimized CUDA code on a NVIDIA Titan×Maxwell GPU. We 

computed a maximum of 50 iterations for all iLS+ and TV+ 

except for TV+Breg. A total of 5 Bregman iterations were 

performed. Within each Bregman iteration, the TV+ iterations 

were stopped when either relative or normalised residual falls 

below a tolerance of 0.01.  A more detailed discussion of the 

stopping condition can be found in [57]. In order to reduce the 

computation time, deep learning provides opportunities to 

accelerate the forward model calculations by enabling the use 

of fast but approximate forward models [58] or increasing the 

rate of convergence [59].  

The current study is expected to inform the practical 

application of model-based iterative image reconstruction 

approaches for improving photoacoustic image quality when 

using finite aperture planar detection geometries. 
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