814 research outputs found

    Fast pseudo-CT synthesis from MRI T1-weighted images using a patch-based approach

    Get PDF
    MRI-based bone segmentation is a challenging task because bone tissue and air both present low signal intensity on MR images, making it difficult to accurately delimit the bone boundaries. However, estimating bone from MRI images may allow decreasing patient ionization by removing the need of patient-specific CT acquisition in several applications. In this work, we propose a fast GPU-based pseudo-CT generation from a patient-specific MRI T1-weighted image using a group-wise patch-based approach and a limited MRI and CT atlas dictionary. For every voxel in the input MR image, we compute the similarity of the patch containing that voxel with the patches of all MR images in the database, which lie in a certain anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear combination of the CT values of the corresponding patches. The algorithm was implemented in a GPU. The use of patch-based techniques allows a fast and accurate estimation of the pseudo-CT from MR T1-weighted images, with a similar accuracy as the patient-specific CT. The experimental normalized cross correlation reaches 0.9324±0.0048 for an atlas with 10 datasets. The high NCC values indicate how our method can accurately approximate the patient-specific CT. The GPU implementation led to a substantial decrease in computational time making the approach suitable for real applications

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Combining global and local information for the segmentation of MR images of the brain

    Get PDF
    Magnetic resonance imaging can provide high resolution volumetric images of the brain with exceptional soft tissue contrast. These factors allow the complex structure of the brain to be clearly visualised. This has lead to the development of quantitative methods to analyse neuroanatomical structures. In turn, this has promoted the use of computational methods to automate and improve these techniques. This thesis investigates methods to accurately segment MRI images of the brain. The use of global and local image information is considered, where global information includes image intensity distributions, means and variances and local information is based on the relationship between spatially neighbouring voxels. Methods are explored that aim to improve the classification and segmentation of MR images of the brain by combining these elements. Some common artefacts exist in MR brain images that can be seriously detrimental to image analysis methods. Methods to correct for these artifacts are assessed by exploring their effect, first with some well established classification methods and then with methods that combine global information with local information in the form of a Markov random field model. Another characteristic of MR images is the partial volume effect that occurs where signals from different tissues become mixed over the finite volume of a voxel. This effect is demonstrated and quantified using a simulation. Analysis methods that address these issues are tested on simulated and real MR images. They are also applied to study the structure of the temporal lobes in a group of patients with temporal lobe epilepsy. The results emphasise the benefits and limitations of applying these methods to a problem of this nature. The work in this thesis demonstrates the advantages of using global and local information together in the segmentation of MR brain images and proposes a generalised framework that allows this information to be combined in a flexible way

    Fast and robust hybrid framework for infant brain classification from structural MRI : a case study for early diagnosis of autism.

    Get PDF
    The ultimate goal of this work is to develop a computer-aided diagnosis (CAD) system for early autism diagnosis from infant structural magnetic resonance imaging (MRI). The vital step to achieve this goal is to get accurate segmentation of the different brain structures: whitematter, graymatter, and cerebrospinal fluid, which will be the main focus of this thesis. The proposed brain classification approach consists of two major steps. First, the brain is extracted based on the integration of a stochastic model that serves to learn the visual appearance of the brain texture, and a geometric model that preserves the brain geometry during the extraction process. Secondly, the brain tissues are segmented based on shape priors, built using a subset of co-aligned training images, that is adapted during the segmentation process using first- and second-order visual appearance features of infant MRIs. The accuracy of the presented segmentation approach has been tested on 300 infant subjects and evaluated blindly on 15 adult subjects. The experimental results have been evaluated by the MICCAI MR Brain Image Segmentation (MRBrainS13) challenge organizers using three metrics: Dice coefficient, 95-percentile Hausdorff distance, and absolute volume difference. The proposed method has been ranked the first in terms of performance and speed

    Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Biofísica Médica e Fisiologia de Sistemas), 2021, Universidade de Lisboa, Faculdade de CiênciasThe assessment of Computed Tomography (CT) scans for Traumatic Brain Injury (TBI) management remains a time consuming and challenging task for physicians. Computational methods for quantitative lesion segmentation and localisation may increase consistency in diagnosis and prognosis criteria. Our goal was to develop a registration-based tool to accurately localise several lesion classes (i.e., calculate the volume of lesion per brain region), as an extension of the Brain Lesion Analysis and Segmentation Tool for CT (BLAST-CT). Lesions were located by projecting a Magnetic Resonance Imaging (MRI) labelled atlas from the Montreal Neurological Institute (MNI MRI atlas) to a lesion map in native space. We created a CT template to work as an intermediate step between the two imaging spaces, using 182 non-lesioned CT scans and an unbiased iterative registration approach. We then non-linearly registered the parcellated atlas to the CT template, subsequently registering (affine) the result to native space. From the final atlas alignment, it was possible to calculate the volume of each lesion class per brain region. This pipeline was validated on a multi-centre dataset (n=839 scans), and defined three methods to flag any scans that presented sub-optimal results. The first one was based on the similarity metric of the registration of every scan to the study-specific CT template, the second aimed to identify any scans with regions that were completely collapsed post registration, and the final one identified scans with a significant volume of intra-ventricular haemorrhage outside of the ventricles. Additionally, an assessment of lesion prevalence and of the false negative and false positive rates of the algorithm, per anatomical region, was conducted, along with a bias assessment of the BLAST-CT tool. Our results show that the constructed pipeline is able to successfully localise TBI lesions across the whole brain, although without voxel-wise accuracy. We found the error rates calculated for each brain region to be inversely correlated with the lesion volume within that region. No considerable bias was identified on BLAST-CT, as all the significant correlation coefficients calculated between the Dice scores and clinical variables (i.e., age, Glasgow Coma Scale, Extended Glasgow Outcome Scale and Injury Severity Score) were below 0.2. Our results also suggest that the variation in DSC between male and female patients within a specific age range was caused by the discrepancy in lesion volume presented by the scans included in each sample

    A CAD system for early diagnosis of autism using different imaging modalities.

    Get PDF
    The term “autism spectrum disorder” (ASD) refers to a collection of neuro-developmental disorders that affect linguistic, behavioral, and social skills. Autism has many symptoms, most prominently, social impairment and repetitive behaviors. It is crucial to diagnose autism at an early stage for better assessment and investigation of this complex syndrome. There have been a lot of efforts to diagnose ASD using different techniques, such as imaging modalities, genetic techniques, and behavior reports. Imaging modalities have been extensively exploited for ASD diagnosis, and one of the most successful ones is Magnetic resonance imaging(MRI),where it has shown promise for the early diagnosis of the ASD related abnormalities in particular. Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. After the advent in the nineteen eighties, MRI soon became one of the most promising non- invasive modalities for visualization and diagnostics of ASD-related abnormalities. Along with its main advantage of no exposure to radiation, high contrast, and spatial resolution, the recent advances to MRI modalities have notably increased diagnostic certainty. Multiple MRI modalities, such as different types of structural MRI (sMRI) that examines anatomical changes, and functional MRI (fMRI) that examines brain activity by monitoring blood flow changes,have been employed to investigate facets of ASD in order to better understand this complex syndrome. This work aims at developing a new computer-aided diagnostic (CAD) system for autism diagnosis using different imaging modalities. It mainly relies on making use of structural magnetic resonance images for extracting notable shape features from parts of the brainthat proved to correlate with ASD from previous neuropathological studies. Shape features from both the cerebral cortex (Cx) and cerebral white matter(CWM)are extracted. Fusion of features from these two structures is conducted based on the recent findings suggesting that Cx changes in autism are related to CWM abnormalities. Also, when fusing features from more than one structure, this would increase the robustness of the CAD system. Moreover, fMRI experiments are done and analyzed to find areas of activation in the brains of autistic and typically developing individuals that are related to a specific task. All sMRI findings are fused with those of fMRI to better understand ASD in terms of both anatomy and functionality,and thus better classify the two groups. This is one aspect of the novelty of this CAD system, where sMRI and fMRI studies are both applied on subjects from different ages to diagnose ASD. In order to build such a CAD system, three main blocks are required. First, 3D brain segmentation is applied using a novel hybrid model that combines shape, intensity, and spatial information. Second, shape features from both Cx and CWM are extracted and anf MRI reward experiment is conducted from which areas of activation that are related to the task of this experiment are identified. Those features were extracted from local areas of the brain to provide an accurate analysis of ASD and correlate it with certain anatomical areas. Third and last, fusion of all the extracted features is done using a deep-fusion classification network to perform classification and obtain the diagnosis report. Fusing features from all modalities achieved a classification accuracy of 94.7%, which emphasizes the significance of combining structures/modalities for ASD diagnosis. To conclude, this work could pave the pathway for better understanding of the autism spectrum by finding local areas that correlate to the disease. The idea of personalized medicine is emphasized in this work, where the proposed CAD system holds the promise to resolve autism endophenotypes and help clinicians deliver personalized treatment to individuals affected with this complex syndrome

    Determining the partial volumes of brain tissue from spectroscopy voxels

    Get PDF
    MS tai magneettispektroskopia on kuvantamistekniikka, jolla saadaan tietoa kudosten metaboli ittikonsentraatioista tietystä tilavuudesta. Näistä konsentraatioarvoista voidaan tehdä potilaan diagnostiikkaan vaikuttavia johtopäätöksiä. Tekniikkaa voidaan käyttää myös aivokuvantamisessa. Aivot koostuvat pääasiassa kolmesta kudoksesta, jotka ovat selkäydinneste, valkoinen ja harmaa aine. MS:n kannalta on tärkeä tietää näiden aivokudosten suhteelliset tilavuusosuudet, koska tekni ikan resoluutio on huomattavasti pienempi kuin perinteisen magneettikuvantamisen. Jokaisella kudostyypillä on erilainen metaboliittiprofiili. Saadakseen merkityksellistä dataa, on otettava huomioon kudosten suhteelliset määrät. Tämä tieto voidaan saada segmentoimalla magneettiku vauksella muodostetut kuvat. Tässä työssä luotiin ohjelma, joka pystyy määrittämään suhteelliset tilavuusosuudet kuvauslait teen tuottamasta .rda-tiedostosta ja Nifti-tiedostosta. Nifti-tiedosto on magneettikuvauksella muo dostettu kolmiulotteinen kuvatiedosto ja .rda-tiedosto on valmistajan raakadataformaatti spek troskopiadatalle, jossa on tarvittava informaatio valitusta tilavuudesta. Ohjelma on toteutettu käyttäen Python ja JavaScript ohjelmointikieliä sekä FSL:n eri toimintoja. FSL on kattava kirjasto analyysityökaluja, joka on tarkoitettu aivojen kuvantamisdatan käsittelyyn. Ohjelman toimintavaiheet ovat: valitun tilavuuden koordinaattien määrittäminen FSL:n vokseli koordinaateissa, maskin luominen oikeaan orientaatioon ja sijaintiin, aivokudoksen erottaminen käyttäen FSL:n siihen tarkoitettua työkalua (BET), kuvan segmentointi käyttäen FSL:n segmen tointi työkalua (FAST), maskin rekisteröinti segmentoituihin kuviin ja suhteellisten tilavuuksien laskeminen. Ohjelmaa testattiin Meilahden Kolmiosairaalassa tätä työtä varten kuvattuun dataan. Dataan ku ului viisi eri spektroskopiatilavuutta eri osista aivoja ja T1-painoitteinen aivokuva. Ohjelmalle an nettiin tarvittavat tiedot .rda-tiedoston muodossa ja T1-painoitteinen aivokuva Nifti-tiedoston muo dossa. Ohjelma määritti näiden tiedostojen perusteella suhteelliset tilavuusosuudet jokaisesta vii destä tilavuudesta. Aivojen eri alueiden suhteellisissa tilavuusosuuksissa on yksilöllisiä vaihteluita, joten absoluuttista vertailuarvoa ei voi määrittää. Tulokset vastasivat valittujen tilavuuksien mah dollisia suhteellisia tilavuusosuuksia. Kehitettyä ohjelmaa voidaan käyttää tutkimuksissa, jotka tarvitsevat aivokudosten suhteelliset tilavuusosuudet spektroskopiatilavuudesta. Kliinisen käytön mahdollisuus vaatisi ohjelmalta DICOM-standardi tukea.MRS or magnetic resonance spectroscopy is an imagining technique which can be used to gain information about the metabolite concentration within a certain volume of interest. This can be used for example in brain imagining. The brain consists of three main types of tissue: cerebrospinal fluid, white and gray matter. It is important to know the different volume fractions of these tissues as the resolution in MRS is significantly lower than that of magnetic resonance imagining (MRI). The tissues all have different metabolite profiles and in order to get meaningful data the volume fractions need to be taken into account. This information can be gained from the segmentation of an image formed by using MRI. In this work a software tool was created to find these volume fractions with the input of a .rda file that is created by the scanner and Nifti file. The Nifti file is the image formed by using MRI and the .rda file is the manufacturers raw data format for spectroscopy data which has the relevant information about the volumes of interest. The software tool was created using Python and JavaScript programming languages and different functions of FSL. FSL is a comprehensive library of analysis tools used in brain imaging data processing. The steps for the software tool are: determining the coordinates of the volume of interest in FSL voxel coordinates, creating a mask in the correct orientation and location, removing non-brain tissue from the image using FSL’s tool tailored for that purpose (BET), segmenting the image using FSL’s segmenting tool (FAST), registering the mask on the segmented images and calculating the volume fractions. The software tool was tested on imaging data that was obtained at Meilahti Kolmiosairaala for the purpose of the testing. The testing data set included five different spectroscopy volumes from different parts of the brain and a T1 weighted image. The software tool was given the relevant information about the volume of interest in the form of a .rda file and the T1 weighted image in the form of a Nifti file. The software tool then determined the different volume fractions from all of the five volumes of interest. There is variation on the volume fraction of different brain areas within different brains and it is not possible to have an absolute reference value. The results of the test corresponded to the possible volume fractions that can be expected from the volumes in question

    Shape analysis of the human brain.

    Get PDF
    Autism is a complex developmental disability that has dramatically increased in prevalence, having a decisive impact on the health and behavior of children. Methods used to detect and recommend therapies have been much debated in the medical community because of the subjective nature of diagnosing autism. In order to provide an alternative method for understanding autism, the current work has developed a 3-dimensional state-of-the-art shape based analysis of the human brain to aid in creating more accurate diagnostic assessments and guided risk analyses for individuals with neurological conditions, such as autism. Methods: The aim of this work was to assess whether the shape of the human brain can be used as a reliable source of information for determining whether an individual will be diagnosed with autism. The study was conducted using multi-center databases of magnetic resonance images of the human brain. The subjects in the databases were analyzed using a series of algorithms consisting of bias correction, skull stripping, multi-label brain segmentation, 3-dimensional mesh construction, spherical harmonic decomposition, registration, and classification. The software algorithms were developed as an original contribution of this dissertation in collaboration with the BioImaging Laboratory at the University of Louisville Speed School of Engineering. The classification of each subject was used to construct diagnoses and therapeutic risk assessments for each patient. Results: A reliable metric for making neurological diagnoses and constructing therapeutic risk assessment for individuals has been identified. The metric was explored in populations of individuals having autism spectrum disorders, dyslexia, Alzheimers disease, and lung cancer. Conclusion: Currently, the clinical applicability and benefits of the proposed software approach are being discussed by the broader community of doctors, therapists, and parents for use in improving current methods by which autism spectrum disorders are diagnosed and understood
    corecore