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Abstract

The assessment of Computed Tomography (CT) scans for Traumatic Brain Injury (TBI) manage-
ment remains a time consuming and challenging task for physicians. Computational methods for quanti-
tative lesion segmentation and localisation may increase consistency in diagnosis and prognosis criteria.
Our goal was to develop a registration-based tool to accurately localise several lesion classes (i.e., calcu-
late the volume of lesion per brain region), as an extension of the Brain Lesion Analysis and Segmenta-
tion Tool for CT (BLAST-CT).

Lesions were located by projecting a Magnetic Resonance Imaging (MRI) labelled atlas from the
Montreal Neurological Institute (MNI MRI atlas) to a lesion map in native space. We created a CT
template to work as an intermediate step between the two imaging spaces, using 182 non-lesioned CT
scans and an unbiased iterative registration approach. We then non-linearly registered the parcellated
atlas to the CT template, subsequently registering (affine) the result to native space. From the final atlas
alignment, it was possible to calculate the volume of each lesion class per brain region. This pipeline
was validated on a multi-centre dataset (n=839 scans), and defined three methods to flag any scans that
presented sub-optimal results. The first one was based on the similarity metric of the registration of every
scan to the study-specific CT template, the second aimed to identify any scans with regions that were
completely collapsed post registration, and the final one identified scans with a significant volume of
intra-ventricular haemorrhage outside of the ventricles. Additionally, an assessment of lesion prevalence
and of the false negative and false positive rates of the algorithm, per anatomical region, was conducted,
along with a bias assessment of the BLAST-CT tool.

Our results show that the constructed pipeline is able to successfully localise TBI lesions across
the whole brain, although without voxel-wise accuracy. We found the error rates calculated for each
brain region to be inversely correlated with the lesion volume within that region. No considerable bias
was identified on BLAST-CT, as all the significant correlation coefficients calculated between the Dice
scores and clinical variables (i.e., age, Glasgow Coma Scale, Extended Glasgow Outcome Scale and
Injury Severity Score) were below 0.2. Our results also suggest that the variation in DSC between male
and female patients within a specific age range was caused by the discrepancy in lesion volume presented
by the scans included in each sample.

Keywords: traumatic brain injury, computed tomography, lesion localisation, lesion segmentation
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Resumo

Os traumatismos cranioencefálicos (TCEs) constituem uma das principais causas de morte a nı́vel
mundial e em todas as idades, com uma incidência de cerca de 69 milhões de casos e uma carga
económica de 400 mil milhões de dólares americanos por ano. A tomografia axial computorizada (TAC)
é a modalidade de imagem mais utilizada não só para a avaliação inicial das lesões, como também para
gestão do tratamento a realizar. análise de TACs com este objectivo ainda é, na prática clı́nica corrente,
uma tarefa morosa e desafiante para médicos e radiologistas.

Vários métodos computacionais têm sido desenvolvidos ao longo dos últimos anos para segmentação
e localização de lesões, no sentido de aumentar a eficiência destes processos e a coerência dos critérios
de diagnóstico e prognóstico. No entanto, os métodos desenvolvidos apresentam algumas limitações,
incluindo apenas um tipo especı́fico de lesão, ou indicando apenas em que lobo do cérebro a lesão se
encontra. O intuito deste projecto é, desta forma, desenvolver uma ferramenta baseada no registo de
imagens de TAC para localizar quantitativamente várias classes de lesões de TCEs (hemorragia extra-
axial (HEA), hemorragia intra-parenquimal (HIP), hemorragia intra-ventricular (HIV) e edema) em 31
regiões cerebrais. A ferramenta proposta surge como uma extensão da Brain Lesion Analysis and Seg-
mentation Tool for CT (BLAST-CT), uma ferramenta de segmentação automática de lesões de TCE em
TAC, baseada numa rede neuronal convolucional.

A localização das lesões foi feita através da projecção de um atlas de ressonância magnética, no
espaço do Montreal Neurological Institute (MNI), para um mapa de lesão, resultante da segmentação
da mesma, que se encontra no espaço especı́fico de cada sujeito. Tendo em conta a diferença entre os
espaços em que as duas imagens se encontram, foi necessário criar um template de TAC, que funciona
como um passo intermédio entre os dois espaços. Este template foi criado com 182 tomografias sem
lesões detetáveis, e várias iterações de registo de imagem. Inicialmente, todas as imagens foram lin-
earmente (affine) registadas para o espaço padrão, ponderado em T1, do MNI, sendo posteriormente
alinhadas e calculada a sua média, de forma a criar uma primeira versão do template. De seguida,
realizaram-se seis iterações de registo: três affine e três não lineares. Em cada iteração, todos os scans
foram registados para o template criado na iteração anterior, sendo depois alinhados e a sua média cal-
culada, formando um novo template, mais nı́tido do que o anterior. Em comparação com o template de
TAC anteriormente disponı́vel, o resultado deste processo é significativamente melhor, com contornos
mais precisos e melhor alinhamento das estruturas anatómicas.

O atlas segmentado foi então registado, de forma não linear, para o espaço do template de TAC,
sendo o resultado posteriormente registado (affine) para o espaço especı́fico de cada sujeito. Como o at-
las foi segmentado no mesmo espaço do mapa de lesão, foi possı́vel sobrepor as duas imagens e calcular
não só o volume de cada classe de lesão por região cerebral, como também os volumes totais do cérebro
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e de cada região. Esta metodologia foi validada com um dataset constituı́do por 839 exames de TAC com
lesões detetáveis, oriundos de 38 centros europeus. Para cada exame estava disponı́vel a segmentação
automática, feita pelo BLAST-CT, e uma segmentação de referência, conduzida por médicos especial-
istas. Este dataset será referido como Dataset 2. Todos os dados utilizados são provenientes do estudo
Collaborative European Neuro Trauma Effectiveness Research in TBI (CENTER-TBI).

De forma a sinalizar os exames cuja localização poderá ter tido resultados abaixo do esperado, três
métodos foram definidos. O primeiro baseou-se na métrica de similaridade, calculada no registo do atlas
segmentado (no espaço do template de TAC) para o mapa da lesão, e que classifica a qualidade do mesmo.
Foram sinalizados todos as imagens com uma métrica abaixo de 0,65, tendo sido este um limiar definido
empiricamente. No segundo método foram utilizados os volumes de cada região anatómica, calculados
para cada paciente, para construir um box-plot por região, com o objetivo de identificar os outliers de
box-plot. Os exames que apresentassem mais de cinco regiões com volumes que constituı́ssem outliers
foram inspecionados visualmente, sendo desta forma identificados os resultados sub-ótimos. Por fim,
foram identificados quaisquer exames que apresentassem um volume significativo (>1mL) de hemor-
ragia intra-ventricular fora dos ventrı́culos do cérebro. 96 exames foram identificados com o primeiro
método, 12 com o segundo e 10 com o terceiro. 9 dos exames identificados com o segundo método foram
igualmente identificados pelo primeiro, o que indica que o segundo método poderá ser redundante.

Adicionalmente, com o objectivo de analisar quais as regiões anatómicas mais afetadas por cada
tipo de lesão, foram construı́dos mapas visuais de prevalência, utilizando os volumes da localização das
lesões nos exames do Dataset 2, excluindo os exames previamente identificados como tendo resultados
“sub-ótimos”. Estes mapas destinaram-se também a apoiar a análise de erros de localização, descrita
em seguida, dado que a gravidade de uma taxa de erro especı́fica varia em função da prevalência da
lesão numa dada região. Assim, para maximizar a sua precisão, todos os mapas de prevalência foram
construı́dos utilizando os volumes por região obtidos com os mapas de lesão de referência (segmentados
por médicos especialistas). Para criar cada mapa de prevalência (um por classe de lesão), foi inicializado
um contador para cada região do atlas. Percorrendo todos os sujeitos, o contador é incrementado por um
se o sujeito tiver um volume de lesão naquela região superior a um limiar definido. Foram aplicados dois
limiares: 0,1mL e 1mL. O primeiro limiar foi estabelecido no sentido de excluir pequenas falhas no alin-
hamento do atlas, tendo em conta que com a metodologia apresentada não é possı́vel atingir uma exatidão
ao nı́vel do voxel. Foi verificado que a prevalência de lesões de HEA, HIP e edema é significativamente
maior na metade anterior do cérebro, enquanto as lesões de HIV são, por outro lado, mais prevalentes nos
ventrı́culos. As lesões de HEA também apresentam, como seria esperado, maior prevalência em regiões
contı́guas com a fronteira cerebral.

Dois mapas de erro foram posteriormente construı́dos para cada tipo de lesão, com os valores
médios das taxas de volumes de falsos negativos e falsos positivos, por região cerebral. Um limiar
de 0,1mL foi aplicado a estes mapas, à semelhança do que foi feito aos mapas de prevalência acima
mencionados. Assim, cada scan com um volume de referência - ou de forma equivalente, uma soma do
volume verdadeiro positivo e falso negativo - inferior a 0,1mL, foi excluı́do do cálculo da média. Foi
possı́vel verificar que a taxa de volume falso negativo é, em geral, inversamente proporcional ao volume
de lesão por região. Esta relação poderá dever-se quer a uma baixa performance do BLAST-CT, que se
sabe ser influenciada pelo volume de lesão, quer à falta de precisão da ferramenta de localização. Na
localização de lesões tão pequenas como 0,2mL numa região anatómica, um pequeno erro de registo
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pode levar a uma localização incorreta. Durante toda as análises realizadas anteriormente, considerou-se
que uma lesão estava presente numa determinada região quando ocupava um volume superior a 0,1mL.
No entanto, os altos valores da taxa de volume falso negativo (>0,75), obtidos em regiões onde o volume
mediano da lesão é baixo (<0,7mL), indicam que este limiar deverá ser aumentado.

Por fim, conduziu-se uma análise de correlação parcial entre a performance do BLAST-CT, medida
pelo dice score de cada tipo de lesão, e várias variáveis independentes (idade, Glasgow Coma Scale,
Extended Glasgow Outcome Scale e Injury Severity Score). O coeficiente de Pearson foi calculado para
os testes em que a variável independente é a idade, uma vez que tanto esta variável como os dice scores
são quantitativos e contı́nuos. Para todos os restantes testes, o coeficiente de correlação de Spearman
foi utilizado, pois as restantes variáveis independentes podem ser consideradas ordinais e quantitativas.
Em todos os testes estatı́sticos, entre cada par de variáveis, todas as restantes variáveis independentes
foram incluı́das como covariáveis, bem como o tempo desde a origem da lesão, o volume da lesão e o
sexo biológico do sujeito. Não foi identificado qualquer viés na performance do BLAST-CT, uma vez
que todos os coeficientes de correlação estatisticamente significativos, calculados entre os dice scores e
as variáveis clı́nicas, estavam abaixo de 0,2. Os resultados também sugerem que a variação do dice score
detetada entre pacientes do sexo masculino e feminino, dentro da mesma faixa etária, é causada não pela
diferença de sexo biológico, mas sim pela discrepância no volume de lesão apresentado pelos exames
incluı́dos em cada amostra.

Em suma, observou-se que a metodologia proposta é capaz de localizar lesões de TCE com sucesso,
em toda a área cerebral, embora a sua precisão não chegue ao nı́vel do voxel. O trabalho futuro poderá
incluir uma análise da evolução e consistência da localização entre exames múltiplos, i.e., do mesmo su-
jeito mas em momentos diferentes, de forma a investigar as diferenças e os padrões espaciais de mudança
para cada tipo de lesão.

Palavras-chave: lesão cerebral traumática, tomografia computorizada, localização de lesão, segmentação
de lesão
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Chapter 1

Objectives

Traumatic Brain Injury (TBI) remains a severe under-recognised public health challenge. Currently,
it is one of the leading causes of disability and death globally across all ages, with an estimated incidence
of around 69 million cases [1] and an economic burden of 400 billion US dollars per year [2]. Traffic
accidents and falls are the most significant contributors to TBI incidence in both high income and low to
middle-income countries, being therefore expected to increase with demographic ageing [2, 3].

TBI is defined as a form of acquired brain injury caused by an external force. Despite this simplistic
definition, it is a complex condition that can be branched into several sub-classes and results in various
cognitive, emotional, psycho-social and behavioural outcomes [4].

Computed Tomography (CT) remains the gold standard imaging modality not only for initial as-
sessment of TBI but also for treatment guidance due to its ease of access, short acquisition time and
sensitivity for the detection of acute haemorrhagic lesions, which may require immediate and targeted
intervention [5, 6]. The increased sensitivity of Magnetic Resonance Imaging (MRI) for the detection
of non-hemorrhagic contusions, diffuse axonal injury, cytotoxic oedema, and microhaemorrhages also
make it a promising modality for the identification of some TBI subtypes, which are often missed by CT.
However, limitations such as access, potential instability, long acquisition time and sensitivity to motion
limit its use in emergency settings [4], thus being usually reserved either for an evaluation of neurologic
findings not explained by the CT scan, or as a research tool [6, 7].

The quantitative assessment of CT scans for TBI management is a time consuming, expensive and
challenging task that requires specialised radiological expertise, which is often missing due to a lack
of efficient and accessible concussion training for physicians [8]. Nonetheless, it is crucial to provide
valuable information for patient management, prognosis, and pathology analysis/monitoring [9, 10].

Several retrospective studies have presented evidence of a significant rate (16.7% [8], 56.0% [11]
and as high as 76.9% [12]) of mild TBI (mTBI) misdiagnosis in emergency departments (EDs). The
inter-observer variability and absence of standardisation regarding both diagnosis and symptomatolog-
ical analysis criteria - which may reinforce the effect of physicians’ confirmation bias - are posed as
impactful factors for this lack of accuracy [12]. Additionally, the identification of TBI patients at high
risk for non-acute repercussions (e.g. higher healthcare usage, psychosocial consequences and neurode-
generation) versus TBI patients who are safe to discharge, also represents a challenge for clinicians.
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1. OBJECTIVES

The use of automatic methods for medical imaging analysis (lesion segmentation and localisation)
may increase consistency in diagnostic criteria by quantifying the extent of intracranial abnormalities,
improving routine clinical practices and prognosis models, and significantly decreasing the radiologists’
work time per exam. This is of particular need in low to middle-income countries, where the consider-
ably higher TBI incidence is accompanied by a low availability of experts [4, 7].

The main goal of this project is thus to extend an automatic lesion detection and segmentation tool
in order to report clinically-useful quantitative metrics about lesion load and location. An additional
analysis of lesion prevalence and of the algorithm error rate in each brain region was conducted, along
with a bias assessment of the original lesion segmentation tool.

This project was proposed by Dr Ben Glocker, from the Biomedical Image Analysis Group (BioMe-
dIA) at Imperial College London, UK. From the indicated external institution, it counts with the super-
vision of Dr Stefan Winzeck (Post-doctoral Researcher) and Miguel Monteiro (Research Assistant/PhD
Student). Lastly, Dr Raquel Conceição, from the Institute of Biophysics and Biomedical Engineering at
Faculdade de Ciências da Universidade de Lisboa, is responsible for the internal supervision.

This report is divided into three main chapters. In chapter 2, a literature and state-of-the-art review
is presented, with a section on TBI and its current classification practices. It also includes an overview
of recent computational methods developed for the assessment of brain lesions in CT scans, as well as of
image registration methods. The following chapter goes over the full lesion localisation pipeline, includ-
ing the construction of a CT template. In chapter 4, the analysis of the performance of the localisation
algorithm is presented, along with the bias assessment of the original lesion segmentation tool. Lastly,
chapter 5 includes the conclusions of the dissertation.
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Chapter 2

Literature review

2.1 Traumatic Brain Injury

The definition of TBI as a form of acquired brain injury caused by an external force leaves space for
a wide diversity of clinical manifestations regarding the nature, intensity, location, direction and duration
of the impact of the external force.

The first stage after trauma typically consists of a series of primary parenchymal damage followed
by various systemic and local effects (e.g. hypoxia, hypotension, hypercarbia, axonal injury, brain
swelling and compression due to increased intracranial pressure, and overall neurodegeneration), which
combined lead to secondary brain damage [5]. The mortality of severe TBI is estimated at 30-40% [2],
and the secondary effects can affect survivors several years after the trauma. Besides short term effects
- as post traumatic amnesia and loss of conscience - TBI has been shown to be epidemiologically as-
sociated with an increase in the long-term mortality rate and in the risk for cognitive impairment and
Alzheimer’s disease [13, 14, 15, 16, 17], stroke [18, 19], epilepsy [20] and Parkinsonism [21, 22, 23, 24,
25], although the latter in reduced magnitude [26].

2.2 TBI classification and acute assessment

TBI is a complex condition due to its high patient and injury heterogeneity. The current diagnosis
and lesion assessment practice presents several challenges related to the subtlety of neurological signs
and symptoms in mTBI and the difficulty in making prognosis decisions on moderate and severe TBI.
Robust evidence to support general guidelines and recommendations is lacking, leading to the need for
local protocols and health professionals’ expertise to fill these knowledge gaps, consequently decreasing
consistency across centres [2, 4].

In the last two decades, TBI management guidelines have evolved towards a generalising approach,
not considering the clinical variability between patients [4]. However, a significant part of current re-
search reflects the concept of precision medicine, which has been shown to be effective in several medical
fields, including neurocritical care [27]. Achieving a better and more personalised characterisation (e.g.
identification of subtype, volumetric quantification and spatial localisation) of this condition at an acute
state would theoretically enable a more accurate diagnosis and treatment management, improving clinical
outcome [4, 7].
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2. LITERATURE REVIEW

2.2.1 Current clinical practice

The clinical manifestations of TBI depend greatly on the origin of the external force. The first dis-
tinction to be commonly made is between closed and open head injuries, as the management principles
significantly differ between the two classes. Furthermore, the initial assessment of severity - classify-
ing TBI as mild, moderate or severe - is conventionally completed according to the individual’s level of
consciousness and/or duration of amnesia [28], resulting in the Glasgow Coma Scale (GCS) [29]. The
GCS presents a rapid severity evaluation of brain injuries and is assessed by measuring spontaneous and
stimulated verbal, motor and eye opening responses [30]. It may be employed at the scene of the in-
jury as a tool to guide the triage process or at the ED. This classification tool is often considered mildly
insufficient, as it does not take into account the mechanistic variability and different sub-types of TBI.
Besides, its application has been shown to be confounded by the use of pre-hospital sedation, tracheal
intubation and intoxication, and weakly correlated to the 12-month outcome [4, 31, 32].

Additionally, one of the most commonly used TBI-specific prognostic scores is the Glasgow Out-
come Scale–Extended (GOSE) [33]. It is a scale of functional outcome based on a structured ques-
tionnaire, which rates patients state into one of eight categories: Dead, Vegetative State, Lower Severe
disability, Upper Severe Disability, Lower Moderate Disability, Upper Moderate Disability, Lower Good
Recovery or Upper Good Recovery. Although it is currently the gold-standard measure of global out-
come after TBI, it presents several limitations: it includes only one scale item to assess mild/low-severity
TBI and lacks quantitative and more precise variables to assess the multi-dimensional nature of TBI
outcome [33].

2.2.1.1 Neuroimaging and classification tools

As mentioned above, neuroimaging methods such as CT and MRI are regularly used as tools to
anatomically examine primary and secondary injuries, often in conjunction with GCS scores and other
clinical information. In emergency settings, the goal of imaging is to identify, as soon as possible, lesions
that need immediate surgical intervention or may benefit from early medical therapy or close supervi-
sion. Additionally, it is also useful for prognosis determination, to tailor rehabilitative therapy or assist
the discharge planning [34, 35].

Despite its additional radiation exposure risk, for decades there has been a robust consensus that
non-contrast CT (NCCT) is the first imaging scan performed in emergency settings for acute mild to
severe TBI assessment [35, 36]. NCCT presents the main diagnostic advantage of being sensitive and
specific for the presence of intracranial haemorrhage (ICH) (Figure 2.1 a.). This detection is crucial in
early management as thrombolytic agents cannot be used on patients with ICH. NCCT is also sensitive
to other injuries relevant for TBI assessment, as extra-axial fluid collections, skull fractures (Figure 2.1
b.), radiopaque foreign bodies, cerebral oedema (Figure 2.1 c.), swelling and signs of herniation [34,
35]. However, it does present low soft tissue contrast and consequently limited sensitivity for cerebral
ischemia identification. In clinical practice, NCCT is widely used in EDs because of its low acquisition
time and widespread availability. Furthermore, the screening of patients for ferromagnetic substances is
not needed [35] and it is applicable to unconscious or intubated patients.
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2.2 TBI classification and acute assessment

Figure 2.1: Common TBI injuries on CT. Images from [37]

2.2.1.2 Scoring systems based on CT findings

Regarding classification, several methods allow the employment of early CT findings to determine
prognosis among patients with moderate to severe TBI. The most used method is the Marshall classifi-
cation scheme [38], an anatomically oriented tool that stratifies patients into six different groups solely
based on the type and severity of several CT scan abnormalities [39]. It focuses on the status of the basal
cisterns, degree of midline shift, presence of a mass lesion, and criteria for surgical intervention [40].
Despite being frequently used, research has shown mixed results regarding its predictive power [40, 41,
42]. Besides, it is susceptible to inter-observer variability and limited regarding patients with more than
one injury. The Rotterdam CT classification [39] consists of a refinement of this scheme, based on the
combination of NCCT findings, such as the presence of haemorrhages and degree of mid-line shift [35],
and has been shown to have significant prognostic value [43, 44]. Another alternative severity scoring
system is the Abbreviated Injury Scale (AIS), which categorises each injury by body region (intra or
extracranial) according to its relative severity on a 6 point scale (1: minor and 6: maximal) and results
on the Injury Severity Score (ISS) [45]. The latter is usually a retrospective score which has been shown
to be significantly but weakly correlated with functional outcome [32].

2.2.1.3 Sub-types of TBI

Besides being classified by severity, the assessment of CT scans can also result in a categorisation
of TBI according to the level and type of brain damage caused. The primary effects of TBI can be
focal or diffuse, according to its origin mechanism. Regarding focal injuries, there are several possible
occurrences:

• Skull fractures indicate a strong impact and can be classified as linear, depressed, or base of skull
fractures. Linear fractures often do not require treatment, contrary to depressed brain fractures,
which are usually interventioned to reconstitute the skull’s structure and avoid further brain dam-
age, depending on the location of the lesion. A skull fracture significantly increases the risk of
having a subarachnoid, subdural or epidural haemorrhage, and of yielding widespread infection
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2. LITERATURE REVIEW

if open. Its location should be reported per fracture as: Right, Left, Bilateral (i.e., single fracture
extending across midline), midline, frontal, parietal, temporal, occipital, skull base [28, 43].

• Epidural Haematoma is a collection of blood between the skull and dura. A skull fracture typi-
cally accompanies it. Although it appears hyperdense on CT, hypodense areas may appear, repre-
senting unclotted blood [43].

• Extra-axial Haematoma (subarachnoid, subdural or epidural) is a collection of blood between
the brain surface and the skull, which cannot be specifically classified or located.

• Subdural Haematoma is a collection of blood outside the brain, in the subdural space (between
the arachnoid and the dura layer), usually uniform and hyperdense on CT. Similarly to an extra-
axial haematoma, hypodense regions may appear if the lesion contains unclotted blood, CSF ad-
mixture or active extravasation, which usually happens over time. It can result in increased in-
tracranial pressure if untreated, leading to loss of consciousness [28, 43].

• Subarachnoid Haematoma is defined as an agglomeration of blood between the brain surface
and the arachnoid matter, which usually follows the contour of the sulci and cisterns. It is usually
hyperdense in CT but sometimes not visible [43].

• Midline Shift is the displacement of the septum pellucidum caused by a space-occupying lesion
or consequent brain swelling. It is usually measured at the foramen of Monro, or where it presents
the highest intensity value [43].

• A Cortical Contusion consists of a focal area of brain parenchymal disruption, typically affecting
brain regions of skull contact, where irregular bony protuberances are present. Unlike intracerebral
haematomas, contusions usually do not present clearly visible and uniform haemorrhages, showing
both haemorrhagic and non-haemorrhagic tissue [28, 43].

• Intracerebral/intraparenchymal haemorrhages (IPH) are space-occupying collections of blood
inside the brain’s parenchyma, resulting from vascular damage (caused by, for example, brain
laceration or diffuse axonal injury). IPH lesions are surrounded by hypodense tissue, which may
be oedema or a clot retraction. Haemorrhages can also be intraventricular if they are located within
the ventricles [28, 43].

Additionally, lesions can also be diffuse:

• Diffuse axonal injury consists of several widespread small lesions (hemorrhagic or non-hemorrhagic)
in white-matter (WM) tissue.

Finally, there are some relevant secondary effects of TBI worth mentioning:

• Oedema is considered a secondary effect of TBI. It is defined as a water accumulation in the intra-
cellular and/or extracellular spaces, and it is always hypodense in CT. It is one of the leading causes
of increased intracranial pressure and can be divided into four classes: cytotoxic, vasogenic, inter-
stitial and osmotic. Cytotoxic oedema is caused by a disruption in cellular metabolism, resulting
in an accumulation of sodium and consequently of water. In CT, the abnormality is usually located
within WM. Contrarily, in vasogenic oedema the blood-brain barrier is disrupted, and the excess
fluid is typically seen in WM. In interstitial oedema, fluid is present within the extracellular space
of periventricular WM. Finally, osmotic oedema is caused by a slightly higher plasma osmolality
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in relation to brain tissue. Independently of the type, oedema is usually found around the lesion
(perilesional oedema). [28, 43]

• Hypoxic-Ischemic Injury/Ischemia includes a variety of findings in tissue that maintains a deficit
between substrate demand and delivery, which may be caused by an infarction, arterial occlusion
or a global insult that leads to hypoxia or hypotension. The location of this effect may have an
important pathophysiological connotation, as it corresponds to a specific vascular area [28, 43].

In addition to the tools and qualitative classes mentioned in this section, a quantitative analysis
of pathology in head CT should add relevant insights to the functional outcome of patients. However,
this requires accurate manual lesion segmentation and determination of affected regions, which is, as
mentioned, a deeply tedious, time-consuming and operator-dependent task. Tools that provide qualitative
information, or at best approximate calculations of lesions volume and prevalence, are thus predominant
in current clinical practice. The development of automatic quantitative CT lesion assessment methods
has therefore become a major focus in TBI research over the last two decades [42].

2.3 Computational methods for lesion CT assessment and prognosis

2.3.1 State-of-the-art review

Recent research has carved the way towards an increasing acknowledgement that an accurate char-
acterisation of lesions and outcome prediction may only be possible through a multidimensional and
individualised approach, including multiple domains such as patient’s genetic, blood, cerebrospinal fluid
biomarkers along with clinical and various neuroimaging data [4, 7, 46]. Following this line of re-
search, several computational methods have been developed to automatically quantify and characterise
different lesion types, with the ultimate goal of developing a more consistent and reliable patient-centred
pipeline for the initial assessment of acute TBI CT scans and prognosis models [7, 42]. Within this
category, several tasks/goals can be discriminated: lesion segmentation, volumetric quantification, dif-
ferential qualitative classification of lesions and lesion location (i.e. identification of affected anatomical
regions).

Regarding intracranial lesions detection and segmentation on CT scans, early studies have explored
the fact that contusions and blood have intensity values in the same range of the Hounsfield scale by
applying intensity thresholding and clustering-based segmentation methods [47, 48, 49, 50, 51, 52, 53].
Yuh et al. [54, 55] developed an algorithm for the detection of five features: presence or absence of
i) subdural or epidural hematoma, ii) subarachnoid haemorrhage, iii) intraparenchymal hematoma, iv)
clinically significant midline shift (>5 mm), and v) normal, partly effaced or completely effaced basal
cisterns. The detection of these features was, once again, based on CT density thresholds, spatial filter-
ing, and cluster analysis. Overall, these methods may perform well on standard images but struggle with
situations such as the overlap of the haemorrhage region with other brain tissue, or poorly defined lesion
edges [56]. Contemporaneously, several studies relied on techniques as active contouring and level sets,
which frequently require manual input (initialised seed) [48, 57, 58, 59], introducing some degree of
inter-observer variability. Most of the referred studies either did not differentiate between different types
of haemorrhages or only addressed a specific class of lesions. Furthermore, most had considerably small
validation samples, which might raise concerns about the robustness of the algorithms and clinical appli-
cation feasibility. Additionally, the desired accurate volumetric analysis of lesions is only possible with
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voxel-wise (versus image or patch-level) approaches [7], which might be too computationally expensive
for such methods.

On a different perspective, Koikkalainen et al. [60] attempted to improve outcome prediction by
extracting quantitative features - as total blood volume, midline shift and ventricles asymmetry - from
CT scans. This type of analysis helps improve prognosis. However, it does not allow for a quantitative
characterisation of individual lesions, which is expected to lead to a better understanding of lesion pro-
gression and more clinically relevant prognostic schemes [7].

Over the last few years, advances in deep learning-based methods have demonstrated significant
potential to extract clinically relevant information from medical images [61, 62] in several medical fields
[63, 64, 65, 66, 67]. For segmentation tasks, deep convolutional neural networks (CNNs) present the
advantage of being able to learn highly discriminative features, such as complex non-linear mappings
between the input image and the segmentation map. Several recent studies employed deep learning
methods (i.e. different architectures of CNNs) for detection [68] or segmentation [69, 70, 71, 72] of un-
differentiated haemorrhagic lesions. Li et al. [71] proposed a 2D U-net-based deep learning framework
to automatically detect and segment undifferentiated haemorrhage strokes in CT scans. The authors also
assessed lesion location at an image level. However, the evaluation of this location was done by overlap-
ping the lesion map with the ground truth map and performing a binary analysis in which any overlap
value higher than zero led to the conclusion that the task had been successful, which might overestimate
its real performance. Nonetheless, satisfactory results were obtained regarding the segmentation of larger
lesions. Despite its limited value towards a precise quantification of lesions or for outcome prediction,
this type of binary analysis might be valuable for the selection of patients that need immediate interven-
tion [7].

Conversely, some studies have conducted a more specific analysis by developing algorithms for
detection [73] and segmentation [61, 74] of differentiated haemorrhage types at image level, all with
considerably satisfactory samples sizes. However, none of these studies used TBI data or presented
quantitative values for lesion volume or location. Remedios et al. [75] presented a framework through
which the same model - for segmentation and volume calculation of undifferentiated haematoma lesions
in TBI CT scans - could be trained on multiple sites without the data being transferred between them.
However, this study focused on comparing the results obtained with the training set from each site. Ad-
ditionally, Yao et al. [76] and Farzaneh et al. [77] developed algorithms for automatic segmentation
and volume quantification of undifferentiated haematomas and subdural haematomas, respectively. Both
studies focused specifically on TBI. Yao et al. [76] also applied the volume and shape characteristics
extracted to build a random forest model of 6-month-mortality. The predictive power of the extracted
features was analysed using 10-fold cross-validation on a clinical trial dataset of 828 patients.

Recently, Monteiro et al. [7] developed a CNN-based TBI specific tool for voxel-wise detection
and segmentation of four lesion types: intraparenchymal haemorrhage, extra-axial haemorrhage, intra-
ventricular haemorrhage, and perilesional oedema. This tool will be addressed in greater detail in the
next section. To the best of our knowledge, no other TBI focused articles have quantitatively analysed
oedema lesions.

Considerable research has been completed towards finding the significant relation between head
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lesion location and the functional outcome of patients [78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. Isokuortti
et al. [83] examined the distribution of subdural haematomas, subarachnoid haemorrhages and con-
tusions in a representative sample (n=3023) of TBI patients’ CT scans. However, this analysis was
non-automatic and only qualitative, classifying a lesion as frontal, parietal, temporal or occipital. To
the best of our knowledge, most of the studies addressing this topic performed qualitative assessments
similar to [78, 80], and most of them were focused on stroke [84, 85, 87]. Chastain et al. [82] and Ernst
et al. [85] conducted a more specific analysis by using atlas registration to calculate the overlap of the
lesion volume with each brain region. Nonetheless, in [82], the results had low precision, as each lesion
was simply assigned to the region containing the majority of its volume. Ideally, the output of a lesion
location analysis would be a quantitative value such as volume, specific for every anatomical region, i.e.
the volume of every region affected by the lesion.

2.3.2 Brain Lesion Analysis and Segmentation Tool (BLAST-CT)

The Brain Lesion Analysis and Segmentation Tool for Computed Tomography (BLAST-CT) con-
sists of an algorithm based on deep CNNs for multiclass, voxel-wise segmentation, volumetric quantifi-
cation and classification of TBI lesion types in CT scans [7]. Monteiro et al. [7] employed a previously
developed three-dimensional CNN with three parallel pathways (DeepMedic [9, 42]), which processes
the input at different resolutions. In order to validate an initial CNN, 98 CT scans from 27 patients were
used. This CNN was then employed to automatically segment a second dataset, of 839 scans from 38
different centres. The resulting segmentation maps were refined by clinicians. A subgroup of this second
dataset (184 scans) was subsequently used as a training set in the final CNN, and the remaining 655 scans
formed the testing set to evaluate the model performance. All the data mentioned above were from the
Collaborative European Neuro Trauma Effectiveness Research in TBI study (CENTER-TBI) [88]. Fi-
nally, an independent dataset (500 scans from the CQ500 dataset) was employed for external validation
of the CNN.

Unlike previous studies on the same topic, Monteiro et al. [7] were able to accurately segment and
determine the volume of four different classes of lesions observed in CT images: IPH, extra-axial haem-
orrhage (EAH), which includes subdural haematoma, extradural haematoma, and traumatic subarachnoid
haemorrhage, intraventricular haemorrhage (IVH), and perilesional oedema. The use of voxel-wise la-
bels also allows for the localisation of lesions, for which the authors proposed a pipeline. However,
questions remain regarding the optimisation and clinical assessment of the lesion location task. Hence,
our primary goal is to extend BLAST-CT in order to obtain a quantitative analysis of the affected anatom-
ical regions (i.e., how much volume of each lesion class is present in each of the regions defined by the
selected atlas). With this objective in mind, several image registration techniques will be used throughout
this project, as will be described in Chapter 3.

2.4 Image registration

Image registration is defined as the process of spatially aligning two or more images with the same
content taken at different times, from different viewpoints, or by different sensors, to the same coordi-
nate space [89]. Thus, the general goal is to find the optimal transformation that aligns the structures
of interest in the images to be registered [90]. Over the last 20 years, image registration has become
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a significantly important tool in several clinical areas, such as radiotherapy - for diagnosis and tumour
staging, for example - and neurosurgery - where multimodal registration is part of the pre-surgical patient
management to optimise surgical planning [91].

The registration process can be classified according to different criteria:

• Dimensionality (spatial or spatiotemporal 2D-to-2D, 2D-to-3D, 3D-to-3D) - Based on the spa-
tial dimension of the input data;

• Source of the used image features - Registration methods require anatomical information, such
as apparent prominent landmarks (surfaces, curves or edges), binary divided structures or voxel
image intensities. Depending on which type of features are used, methods can be referred to as
landmark-/geometrical-, segmentation- and voxel-/intensity-based methods, respectively [91, 92,
93]. The present introduction will be focused on intensity-based methods as those were the ones
used throughout the project.

• Nature of the transformation (e.g. rigid, affine, projective or deformable methods) - A rigid
transformation only allows the sensed image to be translated and rotated with respect to the ref-
erence image, being therefore limited to 6 degrees-of-freedom (DOF) for the registration of 3D
images. This transformation is commonly used as pre-registration, before a more complex trans-
formation is applied. Alternatively, affine transformations also allow for scaling and shearing of
the input images, being defined by 12 parameters ([W ]) (3 translation, 3 rotation, 3 scaling and 3
shearing parameters). The transformation T is given by T(X) = WX + S, where S is the translation
vector: 
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Finally, deformable transformations can be useful when the two images present considerable local
differences. In order to achieve an accurate result in such scenarios, it is necessary to establish a
dense voxel-wise non-linear spatial correspondence, allowing for a much higher number of DOF.
The goal is to maximise the similarity between the fixed and moved image - similarly to the
remaining transformations introduced - while maintaining a smooth displacement field, and it can
be defined as:

φ
∗ = argφ min fsim(F,M(φ))+ freg(φ) (2.2)

where F and M denote the fixed and moving images, respectively, φ ∗ designates the optimal dis-
placement field (φ ), fsim represents the dissimilarity function and freg the smoothness regularisa-
tion function [94]. There are several types of deformable registration methods frequently applied
to medical images, such as free-form deformations with b-splines [95], the optical flow-based
Demons algorithm [96] and diffeomorphic registration methods as the symmetric image normal-
isation method (SyN) [97]. The first two examples given parametrise the optimisation problem
with displacement fields, smoothed by an energy function or a Gaussian filter. However, the true
inverse transformation of a displacement field is not guaranteed to exist. It is therefore important
that the transformations are diffeomorphisms (i.e. invertible and differentiable map with a dif-
ferentiable inverse), to guarantee smooth and one-to-one mapping and consequently preserve the
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2.4 Image registration

Figure 2.2: Structural differences between brain edges in MRI and CT. While on CT the higher intensity external layer corre-
sponds to the skull, on MR it is comprised of mostly scalp tissue.

topology of the structures [94, 90]. The free-form and flow-based registration methodologies can
also be diffeomorphic if a penalty term is added to the similarity measure or adequate constraints
are applied in order to avoid undesirable deformations [90]. Klein et al. evaluated 14 different
nonlinear deformation algorithms using 8 different error measures [98]. In this study, SyN was
consistently shown to be one of the methods with higher accuracy across all subjects and label
sets.

• Degree of interaction (interactive, semi-automatic or automatic) - In an automatic method, the
user should only supply input data (e.g. image data or information about the image acquisition).
In semi-automatic methods, the user can either initialise or steer the algorithm by rejecting or
accepting the suggested registration hypothesis. Finally, in an interactive process, the user does
the registration himself, assisted by software. [99]

• Number of input images (pairwise, n=2 images, or groupwise, n>2 images) [91].

• Modalities involved (mono-modality, multi-modality, modality to model, patient to modal-
ity) [91]. Multi-modal registration presents significant challenges due to the disparity between
ventricles size and skull intensities on CT (bright) and MRI (dark) scans, as shown in Figure 2.2.

• Optimisation procedure (parameters computed or searched for) - The goal of image regis-
tration is finding a geometric transformation that brings one image into the best possible spatial
correspondence with another image or physical space by optimising a registration criterion. The
parameters that describe a geometric transformation can be computed directly or searched for. Di-
rect computation of transformation parameters is only possible when the correspondences between
the images’ features are known, as in extrinsic and landmark-based methods. In intrinsic registra-
tions, such point pairs are not available and must therefore be searched for. This search should be
done iteratively by minimising the distance between corresponding feature sets (i.e. maximising
similarity measures and minimising cost functions). [93]

• Input data characteristics (intra-subject, inter-subject or image-to-atlas) [91].

• Anatomical structure involved (e.g. brain, heart, breast) [91].
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2. LITERATURE REVIEW

There are several common identifiable elements on intensity-based registration methodologies: the
geometric transformation (described above), similarity metric (SM), optimiser, interpolator and, if possi-
ble, an initial/pre-registration transformation. Overall, the goal is to iteratively search for the parameters
of a geometric transformation that optimises the similarity between the moving and fixed images. The
way this search is conducted is defined by the optimiser. The role of the interpolator is, on the other
hand, to resample the voxel intensity into the reference coordinate space [90].

The most frequently employed SMs are based on intensity differences and information theory. The
Sum of Squared Differences (SSD) is computed assuming that the corresponding voxels/structures in
both images should have the same intensities. The goal is therefore for it to be minimised. Conversely,
Cross-Correlation (CC) is a metric based on the assumption that the corresponding intensities are linearly
correlated. CC is defined as the scalar product of the two images (A and B), each interpreted as a long
vector of intensities with N voxel locations x, and should be maximised:

CC =
1
N ∑

x
A(x)B(x) (2.3)

Both SMs mentioned are mostly appropriate for mono-modal registration, as they are highly dependent
on the intensity distributions of the images. Mutual information (MI) and its derived metrics (e.g. Mattes
MI), which are based on information theory, have become highly relevant over the last two decades
[100, 101, 102]. MI is a measure of statistical dependency, being particularly suited for multi-modal
registration methods:

MI = H(A)+H(B)−H(A,B) (2.4)

where H(Image) is the Shannon-Wiener entropy of the analysed image:

H(A) =−∑
c

pA(c)log(pA(c)) (2.5)

with pA(c) as the probability that a voxel in image A has intensity c. H(A,B) is the joint entropy, defined
as:

H(A,B) =−∑
c

∑
d

pA,B(c,d)log(pA,B(c,d)) (2.6)

where pA,B(c,d) is the probability that a voxel in the joint image (A,B) has intensity (c,d). MI should
be maximised (i.e. entropy of each image should be maximal, as an image with zero entropy would
have no value for registration, but the joint entropy should be minimal) [103]. It should be noted that
the described SMs only take into account the relation between voxels, not considering possible relevant
structural information.

As mentioned, the goal of the optimiser is to find the transformation parameters that result in the op-
timal SM value. There are several commonly used optimisation algorithms, such as the gradient descent
and its variations, the downhill simplex method or Powell’s method. The Powell’s direction set method
finds the minimum of an N-dimensional function by repeatedly minimising the function in one direction
along a set of N different directions until the function stops decreasing. Each direction is initialised with
its basis vector in parameter space, but after an iteration has been completed, that is, after the function
has been minimised in every direction once, the overall distance moved in parameter space is taken as
a new direction. Given that medical images usually do not have the same resolution in every direction,
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2.4 Image registration

the order in which each parameter is optimised affects optimisation performance and consequently, reg-
istration robustness. One disadvantage of this method is that if there is a high difference between the
function’s second derivative across directions, many iterations through all basis vectors will be needed
to arrive to the minimum [104, 105].

Alternatively, the downhill complex begins by constructing a non-degenerate simplex (i.e. a geo-
metrical figure with N+1 vertices encompassing a finite N-dimensional volume inside) from N+1 points.
The iterative deformation and contraction of this simplex (with volume conservation) leads to the trans-
lation of its vertices to the function’s minimum. The optimisation usually terminates when the magnitude
of the distance moved in one step or the corresponding decrease in function value is smaller than a pre-
viously set threshold. [104, 105].

Contrarily to the two previous algorithms, gradient descent (GD) requires derivative calculation.
This method moves in the direction of the negative gradient vector of the cost/SM function, with a
certain step size:

µk+1 = µk−ak ∗
∂C(µk)

∂ µk
(2.7)

where ∂C(µk)
∂ µk

represents the derivative of the cost function in the position µk, and ak is the learning rate
at position k. The latter can be defined in several ways. When defined by the user, ak can either be a
constant or a decaying function of k: ak =

a
(k+A)α , with all parameters set by the user under the following

constraints: a > 0, A ≥ 1 and 0 ≤ α ≤ 1. Alternatively, a line search can be used, which attempts, in
each iteration, to minimise the cost function along the gradient direction:

ak = argminaC
(

µk +a
∂C(µk)

∂ µk

)
(2.8)

This method requires a significant increase of cost function evaluations and consequently of computa-
tional expense. Thus, an inexact version is frequently employed, where the searched learning rate only
yields a sufficient reduction of C [104, 106, 95]. Adding the line search to this method has been shown to
improve the convergence rate, at the cost of an increase in computational time [106]. Another variation
of GD - with faster convergence - is the conjugate gradient method, which uses the previous direction to
define a new conjugate direction of search [104, 107].

A multi-resolution pyramidal strategy is often used to implement the iterative optimisation algo-
rithm. The parameters (i.e. number of pyramid levels, number of iterations in each level, smoothing
sigmas and shrink factors) should be defined based on the resolution of the input data and the structure
within the image relative to this resolution [108]. This strategy follows a coarse-to-fine approach, using
the resolution pyramid to down-sample the reference and moving images and subsequently registering
them from the lower (i.e. using only a fraction of the image voxels) to the higher resolution images. In
each level, the transformation calculated in the previous step is used as the new initial registration [90].
This approach presents the main advantage of being computationally efficient, since most iterations are
completed at the coarser resolution levels. It is also less likely to fall into a local extreme as the initial
search is done on a coarse grid [109].

When a point from the input image is mapped to the target space, it is generally assigned to a point
which is not a grid position. It is therefore necessary to interpolate that voxel intensity as a weighted
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sum of neighbouring voxel intensities. This interpolation might influence registration accuracy and ef-
ficiency, and there are several ways to conduct it, such as with a nearest neighbour (NN), linear or a
more complex windowed sinc scheme. NN interpolates the intensity at a non-integer voxel position by
assigning the closest grid position voxel a weight of 1, while all other voxels receive no weight. Alterna-
tively, a linear interpolator, as the name indicates, linearly interpolates the intensity of the non-grid voxel
position, which is sufficient in most practical cases. The windowed sinc scheme presents the advantage
of having minimum aliasing artefacts, despite being more computationally expensive. In this method,
the interpolation kernel along each spatial direction is defined as a sinc function

( sin(πt)
πt

)
multiplied by

a window function, such as the Hamming, Welch or Cosine windows [110, 111]. In order to increase
computational efficiency, a simple interpolator is usually used for the optimisation step (e.g. linear or
NN), followed by the employment of a more complex scheme such as the windowed sinc function to
resample the input image [90].

Choosing the right pre-registration transformation is crucial for the success of a registration frame-
work, as it decreases the probability of divergence or convergence to a local minimum [90]. The most
common and straightforward methods for registration initialisation are using the identity transform or
setting the centre of rotation and translation of the transform. The latter can be completed by setting the
geometrical centre of the moving image as the initial centre of rotation, and the vector between the cen-
tres of the two images as the initial translation. This approach is based on the assumption that the regions
of interest are centred on their respective images. Alternatively, the centre of mass (calculated using the
moments of grey level values) of the moving image can be set as the centre of rotation, with the vector
between the centres of mass of the two images being set as the initial translation [112]. This method
assumes that the moments of the two elements are similar, which is usually not valid for multi-modal
registration. Aligning the centres of the images is important due to the non-linear nature of rotation.
The greater the distance between the two anatomical objects, the more sensitive our computations are
to small rotation angles, which is disadvantageous for numerical stability. The ideal centre of rotation
should minimise the distance to the farthest point of our region of interest (ROI) [113].
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Chapter 3

CT template construction and integration

3.1 Concept

Lesions were located by projecting an MRI labelled atlas, generated in MNI space, to the prediction
map of BLAST-CT (in subject-specific space). Given the disparity of imaging spaces between the ele-
ments to be registered and the aforementioned challenges that multi-modal registration presents, there is
the need to use a CT template, which works as an intermediate step between native and MNI space. As
there was no appropriate pre-existent CT template available, this had to be constructed.

Figure 3.1 summarises the lesion localisation process: initially, a pre-localisation step has to be com-
pleted, where the parcellated atlas is registered (affine + deformable) to the CT template/study-specific
space (0). The following steps need to be completed with each scan to be localised. Native CT scans
are affinely registered to the CT template (1), and the inverse of this affine transformation is employed
to register the parcellated atlas (in study-specific space) to native space (2). This final registration al-
lows for the overlap of the atlas and each BLAST-CT prediction map, from which the volume of lesion
per atlas region, the full volume of each atlas region and whole brain are retrieved (3). Computing an
affine transformation - versus a deformable transformation - presents the relevant advantage of being
much more time efficient, taking only up to a minute. Despite the potential benefit in the accuracy of the
atlas alignment when applying a deformable transformation, this process is likely to take more than 10
minutes per image, depending on the parameters used, which would not be feasible in a research context
where it is necessary to process a large number of scans.

The full methodology and results of this pipeline will be described in detail in the present chapter
(Section 3.3.2 - Construction of the study-specific CT template; 3.3.3 - How the affine + deformable
transform of step 0 was constructed; 3.3.4 - How the rigid + affine transform of step 1 was constructed
and the volumes of step 3 extracted).

3.2 Methods

3.2.1 Setting and datasets

The data used for this project were collected as part of the Collaborative European Neuro Trauma
Effectiveness Research in TBI study (CENTER-TBI, NCT02210221). Patients were recruited at 60 dif-
ferent European centres between Dec 9, 2014, and Dec 17, 2017. Since imaging was conducted as part
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3. CT TEMPLATE CONSTRUCTION AND INTEGRATION

Figure 3.1: Flowchart of the full lesion localisation method. 0 - Parcellated atlas in MNI space is projected to the study-
specific/CT template space; 1- Every native CT scan is registered to the CT template; 2- The inverse of the transformation
calculated in step 1 is used to map the parcellated atlas in study-specific space to native space. 3- Relevant volumes are
withdrawn from the overlap between the parcellated atlas and each lesion map.

of standard clinical practice, acquisition parameters were not standardised across sites [7].

The data were divided into two datasets. Dataset 1 consists of 189 TBI patients without abnormal
findings and one scan per subject. Dataset 2 comprises 839 scans, acquired from 512 TBI patients
with abnormal findings. Every scan of Dataset 2 was automatically segmented using a model based on
manual segmentation by experts. These parcellations were further corrected by trained personnel, and
45 scans were double-checked in order to assess reproducibility and inter-rater variability [7]. Dataset 2
scans were also automatically segmented by BLAST-CT. These segmentations will be further referenced
as “reference segmentation” and “prediction map from BLAST-CT”, respectively. Four classes were
identified in each parcellation: intraparenchymal haemorrhages, which also includes small petechial
haemorrhages; extra-axial haemorrhages, which includes subdural haematomas, extradural haematomas,
and traumatic subarachnoid haemorrhages; perilesional oedemas; and intraventricular haemorrhages.

3.2.2 CT template construction

Monteiro et al. [7] created a CT template in the context of the development of BLAST-CT. However,
it included only 20 subjects from Dataset 1, with one subject selected as target and a four-step iterative
registration process: one rigid, one affine, one deformable iteration, and a final affine alignment with the
standard MNI MRI template. With the goal of improving its precision and anatomical accuracy, a new
template one was constructed using all the scans on Dataset 1 (n=189) and an unbiased iterative regis-
tration approach, implemented with the antsRegistration function [108]. Every native scan was initially
registered (affine) to the standard T1-weighted MNI template. The aligned scans were then averaged
to create an initial CT template. Subsequently, six more registration iterations were conducted, three
affine and three deformable. In each iteration, every native CT scan was registered to the preceding CT
template (e.g. on the 2nd iteration, the scans were registered (affine) to the 1st /initial CT template, and
on the 5th iteration, the native scans were registered (deformable) to the 4th template) and then averaged,
creating a new sharper CT template to which the native scans were aligned in the following iteration.

Table 3.1 presents the registration parameters used for both the affine and deformable registration
iterations. After each iteration, the MI SM was calculated between the registered scan and the template to
which the images were registered, in order to identify scans with particularly low values. Scans with an
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Table 3.1: Parameters employed when applying the antsRegistration function for the affine and non-linear registration of native
CT scans to every target used during the CT template construction. SyN: symmetric image normalisation method.

Parameters Affine registration Deformable registration (SyN)

Dimensionality 3 3

Similarity metric

Mutual information Cross correlation
Metric weight = 1 Metric weight = 1
Nº of bins = 32 Radius = 4
Sampling strategy: Regular Sampling strategy = Regular
Sampling percentage = 0.25 Sampling percentage = 0.25

Interpolation Welch windowed sinc Welch windowed sinc

Optimiser

Gradient descent Gradient descent
Gradient step = 0.2 Gradient step = 0.1

—- Update field variance in voxel space = 3
—- Total field variance in voxel space = 0

Histogram matching Yes Yes

Convergence
Iterations per level: 200 x 100 x 50 Iterations per level: 100 x 70 x 50 x 20
Threshold = 10−6 Threshold = 10−6

Window size = 10 Window size = 10
Smoothing 4 mm x 2 mm x 1 mm 4 mm x 2 mm x 1 mm x 0 mm
Shrink factors 4 x 2 x 1 8 x 4 x 2 x 1

SM lower than 0.6 1 were visually inspected, resulting in the exclusion of seven scans due to consistently
failed registrations, being cut-off or having motion artefacts.

3.2.3 CT template registration to MNI space

As shown in the schematic in Figure 3.1, the registration of the CT template to the MNI space is
necessary in order to map the parcellated atlas to the study-specific space and facilitate the registration,
and consequently the alignment, of native scans to the atlas.

The parcellated MNI atlas was previously constructed using 652 MR T1-weighted scans from the
Cam-CAN study [114], parcellated via MALP-EM [115]. Patient-specific age-unbiased segmentations
of cortical regions and ventricles were obtained through the projection of individual region atlases to the
standard MNI MRI template. Distance maps were then used in order to map each WM voxel to its clos-
est region, followed by the fusion of regions based on prior anatomical knowledge (e.g. medial frontal
cortex was assigned to the medial frontal lobe). This resulted in a coarser subdivision of the brain into
31 different regions (Figure 3.2). A list of all the parcellated regions is available in the left column of
Table B.1, shown in Appendix B.

The registration of the study-specific CT template to the standard MNI MRI template was com-
pleted with antsRegistration, whereby specific parameters (i.e. SM, sampling rate, number of iterations,
shrink factors and smoothing sigmas) were empirically set. During the first phase of iterative parameter

1Threshold empirically defined.
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3. CT TEMPLATE CONSTRUCTION AND INTEGRATION

Figure 3.2: Method for the construction of the parcellated MNI atlas. Segmentations of cortical regions and ventricles were
obtained through the projection of patient-specific region atlases to the standard MNI MRI template (b)). Distance maps (c))
were then used to map each WM voxel to its closest region (d)), followed by the fusion of regions based on prior anatomical
knowledge (e)).

search, three combinations of SMs were tested for the affine and deformable registration: MI or Mattes
MI (Mattes) as the SM from both the affine and deformable registration, and MI for affine and CC for
deformable registration. All remaining parameters were kept constant and are displayed in the Appendix
(Table A.1). After empirically choosing the most appropriate SM, all remaining parameters were itera-
tively optimised (Table A.2).

A final stage of parameter optimisation was then conducted with the goal of improving the skull
alignment, in which Simple ITK sitk.ImageRegistrationMethod was used to construct the affine transfor-
mation, and antsRegistration was kept as the preferred tool for the deformable registration. To initialise
the affine transformation, the CenteredTransformInitializer function was used to align the geometric
centres of the two images. Mattes MI was set as the SM and the sampling strategy as regular, with a per-
centage of 25%. A gradient based optimiser was selected (Gradient Descent Line Search) with a learning
rate of 1, 100 iterations, a convergence minimum value of 10−5 and window size of 5. Missing values
were interpolated linearly. A three level multi-resolution pyramid was applied, setting the corresponding
shrink factors and smoothing sigmas to [4, 2, 1] and [4, 2, 1] mm, respectively. By using this affine trans-
formation as initialisation, a SyN transform was constructed with a gradient descent optimiser (learning
rate= 0.1). The convolution kernel for both the update and total field variance are defined as 3 and 0
(specified in terms of the radius in voxel space), respectively. CC was set as the similarity metric with
a metric weight of 1 and a radius of 5. No sampling strategy was defined. A four level multi-resolution
registration approach was used, with 400, 200, 100 and 50 iterations for each level. The convergence
threshold was set as 10−6 and window size as 5. The shrink factors and sigmas of gaussian smoothing
for each level were defined as [6, 4, 2, 1] and [4, 2, 1, 0] mm, respectively.

Throughout the following sections, the result of this registration will be referenced as CT-MNI
template.

3.2.4 CT template integration

To overlap the parcellated atlas (MNI space) regions with the lesion segmentation maps (subject-
specific space), a transformation between the two imaging spaces had to be calculated. The previously
constructed CT-MNI template was used as target instead of the MRI parcellated atlas, so the full regis-
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tration pipeline could be mono-modal. Throughout the following methodology, the scans of Dataset 1
were used for initial testing due to the absence of lesions.

3.2.4.1 Registration of native CT scans to MNI space

As this transformation is meant to be applied to every image to be localised, it should be as com-
putationally efficient as possible. Thus, direct affine registration between each native CT scan of Dataset
1 and the CT-MNI template was initially attempted. However, as the results were unsatisfactory, it was
concluded that a two-step registration pipeline was necessary. The employed pipeline included rigid +
affine registration of native CT scans to the study-specific CT template (fully completed with SimpleITK
ImageRegistrationMethod) and the application of the previously calculated affine + deformable transfor-
mation between study-specific CT template and MNI space (Section 3.2.3).

The rigid Euler 3D transform was initialised by aligning the two images’ geometric centres using
the CenteredTransformInitializer function. Mattes MI was set as the SM and the sampling strategy as
regular, with a percentage of 20%. A gradient based optimiser was selected (Gradient Descent Line
Search) with a learning rate of 0.1, 200 iterations, a convergence minimum value of 10−6 and window
size of 5. Missing values were interpolated linearly. A three level multi-resolution/pyramidal registration
approach was used, setting the corresponding shrink factors and smoothing sigmas to [4, 2, 1] and [4, 2,
1] mm, respectively. The following affine registration was constructed using the same parameters, except
for the initialisation (i.e. SM, sampling, optimiser, interpolator and multi-resolution level parameters).
The previously found rigid transformation was set as the moving initial transform, while an empty affine
transformation (created using Simple ITK’s AffineTransform(dimension)) was set as the initial transform
to be modified during the optimisation process.

This registration pipeline was both applied to Dataset 1 and 2. As the registration may not be robust
for some cases with deep abnormalities, each native scan of Dataset 2 was registered four independent
times. Only the most successful result, identified by the highest SM value, was kept. The SM values
were used as a coarse guide for the analysis and visual inspection of the registration results, leading to
the establishment of an SM threshold, below which the result was considered to be sub-optimal. The
extraction of the volumes of lesion per atlas region was completed for all scans of Dataset 2, including
the ones identified as sub-optimal. However, the SM value of each scan was kept as a feature to be
considered for further quality control and statistical analysis. Additionally, the correlation between the
SM values and lesion volume was calculated using the Pearson correlation coefficient.

3.2.4.2 Lesion localisation

The presented method allows for lesion localisation to be completed in both native and MNI space.
In this study, the localisation and further analysis was fully done in native space. With computational
efficiency in mind, the MRI atlas and its corresponding mask were projected a priori to the study-specific
CT template using the transformation described in Section 3.2.3 (Step 0 of Figure 3.1). The rigid + affine
transformation (Section 3.2.4.1) was then the only one applied on the actual localisation code (Step 3 of
Figure 3.1), registering the atlas in study-specific space to native space. Once we have both the atlas and
prediction map from BLAST-CT in native space, a mask of each atlas region is created and individually
overlapped with the prediction map to extract the volume of lesion (differentiated by lesion class) present
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Figure 3.3: Schematic summary of the scans used in Dataset 2 throughout the several phases of the project.

in each region.

The output of this overlap was stored in a comma-separated values (CSV) file with the volume of
lesion in each atlas region, separated by lesion class. Additionally, the full volume of each atlas region,
as well as of the whole brain, were also calculated. All volumes were presented in millilitres. This lesion
localisation methodology was fully implemented using the Python programming language [116] and the
following packages: os (https://docs.python.org/3/library/os.html; last acessed: 1/08/2021), SimpleITK
(simpleitk.org; last accessed: 31/08/2021), numpy (numpy.org; last accessed: 31/08/2021), pandas (pan-
das.pydata.org; last accessed: 31/08/2021) and operator (https://docs.python.org/3/library/operator.html;
last acessed: 1/08/2021). When passing a CT scan through the localisation code, the user is able to
save several extra registration parameters (e.g. number of iterations of the optimiser and the final SM
values for both rigid and affine registration, the CT scan resampled to the CT template space and the
analogous transformation), as well as to set the number of runs of registration to be completed, and if the
localisation is done in native or atlas space.

3.3 Results

3.3.1 Experimental setup and datasets

Dataset 2 initially consisted of 839 scans, acquired from 512 patients in 38 different centres. How-
ever, only 832 of these were used in the development of the localisation algorithm. Furthermore, it was
only possible to match 709 scans (465 patients) to their corresponding clinical information (Figure 3.3),
which constituted the sample used for the bias assessment of the performance of BLAST-CT, presented
in the following Section 4.1.2. Table 3.2 shows the descriptive statistics for clinical and TBI outcome
variables of both datasets used, presented separately for women and men. The information displayed
refers to every scan in Dataset 1 and 709 of the total 839 scans in Dataset 2. Count and percentages
are presented for categorical variables while the median and corresponding range are used to describe
continuous variables.

3.3.2 CT template construction

Figure 3.4 shows the final study-specific CT template alongside the previously template used in the
context of the development of the initial version of BLAST-CT [7]. It is possible to observe that the new
CT template is significantly sharper, with more precise outlines and overall better aligned anatomical
regions. The ventricles, lateral sulci and interhemispheric fissure are more defined, as well as the cere-
bellum and brain stem, which are now well separated from the remaining cerebral tissue. We can also
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Table 3.2: Cohort demographic and clinical information for both datasets used. The information displayed regarding Dataset
2 was obtained from only 709 scans out of the initial 839 scans. Percentages regarding Injury Severity Score do not add up to
100 because of rounding.

Dataset 1 Dataset 2

Female Male Female Male

nsub jects/nscans 101/101 88/88 156/241 309/468

Age (years) 55 (14-95) 55 (6-89) 62 (10-89) 57 (6-89)

Glasgow Coma Scale —- —-

13-15 (Mild TBI)
9-12 (Moderate TBI)
9 (Severe TBI)
Missing values

105 (67%)
19 (12%)
26 (17%)
6 (4%)

185 (60%)
30 (10%)
81 (26%)
13 (4%)

Extended Glasgow Outcome Scale at 6 months —- —-

8 (Upper good recovery)
7 (Lower good recovery)
6 (Upper moderate disability)
5 (Lower moderate disability)
4 (Upper severe disability)
3 (Lower severe disability)
2 (Vegetative state)
1 (Death)
Missing values

34 (22%)
33 (21%)
19 (12%)
17 (11%)
8 (5%)
9 (6%)
0 (0%)

22 (14%)
14 (9%)

82 (27%)
41 (13%)
43 (14%)
35 (11%)
14 (5%)

41 (13%)
0 (0%)

34 (11%)
19 (6%)

Injury Severity Score —- —-

1-8 (Minor injury)
9-15 (Moderate injury)
16-24 (Serious injury)
25-49 (Severe injury)
50-74 (Critical injury)
75 (Maximum injury)
Missing values

35 (22%)
38 (24%)
28 (18%)
42 (27%)
9 (6%)
2 (1%)
2 (1%)

41 (13%)
58 (19%)
54 (17%)
118 (38%)

23 (7%)
5 (2%)
10 (3%)

Lesion volume (mL) —- —- 1.95 (0.00-235.64) 3.84 (0.00-208.00)

Time since injury (h) —- —- 5.03 (0.27-608.78) 5.21 (0.33-1600.91)
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Figure 3.4: Final study-specific CT template, resulting from the 7th registration iteration, and previously created CT template,
constructed in the context of the development of the initial version of BLAST-CT.

notice the absence of abnormal hyperintense structures in the frontal part of the brain and in the base of
the brain stem.

3.3.3 CT template registration to MNI space

Figure 3.5 presents the different results of the registration of the study-specific CT template to the
standard MNI MRI template, obtained with different SMs: a) MI or b) Mattes MI as the SM of both
the affine and deformable registration, or with c) MI for affine and CC for deformable registration. All
remaining parameters were kept constant and are presented in Table A.1 (Appendix A).

There seems to be a trade-off between achieving a satisfactory alignment of soft-tissue (particu-
larly, the ventricles) or of the skull. Although none of the results presented in Figure 3.5 were highly
acceptable, we can conclude that while using MI or Mattes may improve the skull alignment for both
the affine and deformable registrations, it is only possible to achieve slightly better soft tissue alignment
with CC. Given that the matching of the parcellated atlas to the lesion segmentation maps is based on
affine registration (Step 3 of Figure 3.1), it is nonetheless necessary to expand the regions of the atlas.
Thus, soft tissue alignment was prioritised and MI + CC were used as the SMs in further optimisation.

After an additional parameter search, the optimal set of parameters achieved combined a 5-levels
pyramidal scheme with an increased number of iterations for deformable registration and heavy initial
down-sampling. This approach allows, in theory, for better local alignment while avoiding excessive
deformation of the images. However, although an acceptable soft tissue alignment was achieved, it was
at the cost of a significant deformation of the top part of the skull, as can be observed in Figure 3.6. The
final parameters used in this optimisation phase are shown in Table A.2 (Appendix A).
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Figure 3.5: Qualitative results of the registration of the study-specific CT template to the standard MNI MRI template. All
registration parameters were kept constant except for the SM (Table A.1, in Appendix A). a) MI and CC used as SMs for the
affine and deformable registrations, respectively; b) Mattes MI used as the SM for both registration processes; c) MI used as
the SM for both registration processes.

Figure 3.6: Qualitative registration results. Registration of the study-specific CT template to the MRI MNI atlas, after the
second phase of iterative parameters optimisation. All registration parameters displayed in Table A.2 (Appendix A
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Figure 3.7: Final qualitative registration result, further referred as CT-MNI template. Registration of the study-specific CT
template to the MRI MNI atlas.

With the goal of further improving the skull alignment, a new registration pipeline was employed,
combining Simple ITK sitk.ImageRegistrationMethod for the initialisation and affine registration and
antsRegistration for the deformable registration. The final result, shown in Figure 3.7, shows a good
ventricle alignment without significant skull deformation. It is, however, still possible to notice some
diffuse hyper-intense areas adjacent to the inner border of the skull.

3.3.4 CT template integration

3.3.4.1 Registration of native CT scans to MNI space

Figure 3.8 shows three qualitative results from Dataset 1, obtained from the direct affine registration
of native CT scans to the CT-MNI template. The examples presented in Figure 3.8 are three of the best

Figure 3.8: Three qualitative registration results from Dataset 1. Direct affine registration of native CT scans to CT-MNI
template.
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results obtained, according to our visual inspection of images and the registration SM values. The first
result (Subj. 1) is moderately acceptable, however we can observe that a successful registration of soft
tissue cannot be achieved in scans with larger ventricles using this approach, as it is the case of subjects
2 and 3.

Given the unsatisfactory results of the direct affine registration, a two-step registration approach
had to be employed, initialised by a rigid+affine registration of native scans to the study-specific CT
template. Figure 3.9 displays the difference between the SM values obtained with a single run of this
rigid+affine registration and with the selection of the best value out of four runs, both on every scan of
Dataset 2. Repeated registration resulted in an equal or improved performance for all the scans with an
initial SM lower than 0.2. From the 839 scans available, 7 were corrupted, which led to the failure of

Figure 3.9: Comparison between the SM values obtained with a single run of the rigid+affine registration of native CT scans
to the study-specific CT template, and with the selection of the best value out of four runs. Each data point represents one scan,
which are identified by their index (x-axis).

their registration. By visually inspecting 160 scans, an SM threshold of 0.65 was empirically defined,
below which the result was considered to be sub-optimal. This led to the identification of 96 scans. The
correlation between SM values and lesion volume was almost null but significant at a 10% significance
level (Pearson ρ = 0.063, p=0.07). It was therefore decided not to apply lesion masking to improve
registration performance. The plot displayed in Figure 3.10 helps visualise the conclusions stated, i.e.,
the number of scans identified as sub-optimal and the lack of correlation between lesion volume and SM
values, through the distribution of the red data points, which identify the scans with a lesion volume
higher than 50mL.

Figure 3.11 presents qualitative results for three scans from Dataset 2, showing three different values
of SM, i.e., three different levels of registration success. As this mapping is based on affine registration, it
is not possible to achieve great soft-tissue alignment, particularly of the ventricles. Figure 3.12 shows the
qualitative registration results of the same three subjects presented in Figure 3.8, this time resulting from
the affine registration of native scans to the study-specific CT template. It is possible to observe that,
similarly to the results obtained with a direct affine registration of native scans to the CT-MNI template,
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3. CT TEMPLATE CONSTRUCTION AND INTEGRATION

Figure 3.10: Best SM values obtained during the registration of each native scan to the study-specific CT template. Each data
point represents one scan, which is identified by its index (x-axis). The result of every scan with an SM value lower than 0.65
(i.e., which point is under the threshold line) is considered to be sub-optimal.

we could only achieve good alignment of the skull border, with a poor soft-tissue alignment (particularly,
of the ventricles) on scans with larger ventricles. This was expected from the application of an affine
transform. We can nonetheless notice that, due to the initial discrepancy in ventricle size between the
study-specific CT template and the CT-MNI template, the registration result presented in Figure 3.12
for each subject is better than the corresponding result in Figure 3.8, which is further confirmed by the
increase of the SM value.

3.3.4.2 Lesion localisation

Figure 3.13 shows qualitative results of the atlas mapping for six patients from Dataset 2. Once the
back-projected atlas into subject-specific space is obtained, the volumes of lesion per region are calcu-
lated through the overlap between the atlas and the lesion segmentation, in this case, the prediction map
from BLAST-CT. It is possible to observe that this methodology does not achieve voxel-wise accuracy.
Nonetheless, the region atlas was accurately mapped to native space, even in cases where a part of a
particular region is heavily occupied by lesions (e.g. patient #2 in Figure 3.13) or collapsed ventricles
(e.g. patient #4 in Figure 3.13). Further analysis of both the localisation results and the performance of
BLAST-CT are presented in Chapter 4.

3.4 Discussion

3.4.1 CT template construction

The CT template was necessary in order to create an intermediate step between native scans and the
MNI parcellated atlas, helping overcome the challenges that multi-modal registration presents, particu-
larly when registering a lesioned subject-specific scan to a standardised image.

The methodology used by Monteiro et al. [7] was initialised by the selection of a random scan as
the target, to which all remaining scans were registered and averaged in order to create the first template.
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Figure 3.11: Three qualitative registration results from Dataset 2. Affine registration of native scans to the study-specific CT
template.

This introduces a bias to the characteristics of that scan, which is removed in our methodology through
the use of the standard MRI MNI template as the initial target. Conversely, the use of a higher number
of scans would be expected to lead to a blurrier template, due to the consequent increase in averaging.
However, the new template is significantly sharper, which further confirms the visual observation that
the new methodology employed is more robust and successful. The additional smoothing observed
in the previously created template is probably caused by a combination of an insufficient registration
performance and the low soft-tissue contrast characteristic of CT. This makes the black structures edges
become grey and consequently more diffuse over the registration iterations. An improved registration
therefore justifies the increase in the size of structures that can be particularly noticed in the ventricles
and cerebellum.

3.4.2 CT template registration to MNI space

Our results show that despite the original high discrepancy in structures sizes (e.g. ventricles), it is
possible to accurately register the CT template to the standard MNI MRI template, with good soft-tissue
alignment. One registration parameter that was found to have a significant impact on the balance between
ventricle and skull deformation was the CC radius used on the deformable registration, where a lower
value (4) led to a poor soft-tissue alignment, and a higher value (6) resulted in a good alignment of the
ventricles but with high deformation of the skull. 5 was the optimal value found. Despite being able
to achieve a good soft-tissue alignment (particularly, of the ventricles) without skull deformation, the
mismatch between skull intensities on CT (bright) and MRI (dark), mentioned in Section 2.4, remains.
One way to work around this might be to mask the cerebral tissue prior to the registration. This was not
however a priority in this dissertation given that, as the atlas mapping to native space is based on affine
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Figure 3.12: Three qualitative registration results from Dataset 1. Affine registration of native scans to the study-specific CT
template.

registration, the parcellated regions had to be dilated beyond the skull.

3.4.3 CT template integration

In order to map the parcellated atlas to each native scan, a registration framework between the two
spaces had to be defined, which is meant to be applied every time the user wants to get the localisation
of a lesion in a scan. Thus, with simplicity and efficiency in mind, we tried to implement an one-step
approach, which consisted of an affine registration between each native scan and the CT-MNI template.
As would be expected from the application of only an affine transformation, our results show that this
approach does not allow for satisfactory alignment of the ventricles of the two images, and therefore a
two-step framework is needed. This consisted of an initial rigid + affine registration of native scans to
the CT template and an affine + deformable registration of the CT template to MNI space. As shown in
Figure 3.12, it is still not possible to achieve great soft tissue alignment of the native scans with the study-
specific CT template, as would be expected from the application of an affine transformation. However,
the additional application of the deformable transformation yields good results regarding the atlas map-
ping to native space. Given that only the affine transformation between native space and study-specific
space is computed in the localisation algorithm, this approach allows for computational efficiency while
still encompassing the benefits of non-linear registration. This further corroborates the need for a study-
specific CT template.

Regarding the registration of each native scan and the study-specific CT template, the comparison
made between the SM values of one registration run and the best of four registration runs allows us
to verify the conjecture that the worst results obtained after one run (SM<0.2) were due to initialisa-
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3.4 Discussion

Figure 3.13: Qualitative atlas mapping results from Dataset 2. Images in neurological orientation. Reference segmentation and
BLAST-prediction colour legend: Red -IVH; Purple - Oedema; Green - IPH; Light blue - EAH.
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tion/sampling errors. Additionally, the lack of correlation between SM values and total lesion volume
was not expected, as an increased volume usually leads to a deeper anatomical deformation, which fre-
quently affects registration performance negatively.
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Chapter 4

Lesion localisation and BLAST-CT
performance analysis

The main lesion localisation output was the volume of each lesion class (IPH, EAH; oedema and
IVH) in every atlas region. Additionally, the volume of each atlas region and of the whole brain were also
extracted, both in native space. After acquiring these results, it was important to find ways to flag sub-
optimal cases, in order to facilitate any future visual inspection or statistical analysis process. An analysis
of the lesion class prevalence and of the localisation error per atlas region were also conducted. Finally,
the potential bias in the performance of BLAST-CT based on several clinical variables was investigated,
contributing to the assessment conducted by Monteiro et al. [7].

4.1 Methods

4.1.1 Lesion localisation error analysis

All analyses described in the present section were completed using the python programming lan-
guage [116] and the following packages: numpy (numpy.org; last accessed: 31/08/2021), pandas (pan-
das.pydata.org; last accessed: 31/08/2021), matplotlib (matplotlib.org; last accessed: 31/08/2021) and
SimpleITK (simpleitk.org; last accessed: 31/08/2021). FSLeyes (fsl.fmrib.ox.ac.uk; last accessed: 31/08/
2021) was used for the visual inspection of images.

4.1.1.1 Sub-optimal results identification

As mentioned in Section 3.3.4.1, after the registration of every native scan of Dataset 2 to the
study-specific CT template, an SM (Mattes MI) threshold of 0.65 was empirically defined, below which
the result of the registration was considered to be sub-optimal. Two additional flagging methods were
conducted after the outcome volumes were calculated:

• Using the volumes of each atlas region, calculated for every patient in native space, 31 box-plots
were constructed (one per region) in order to identify outliers. The scans that presented more than
five regions 1 with outlier volumes were visually inspected and only the ones showing poor atlas
alignment were flagged as sub-optimal.

1Threshold empirically defined.
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4. LESION LOCALISATION AND BLAST-CT PERFORMANCE ANALYSIS

• Any scan with a volume of IVH higher than 1mL localised outside the ventricles was flagged as
sub-optimal. This calculation of the excess volume was completed using both the prediction map
from BLAST-CT and the reference segmentation maps. The excess volumes found when using
the latter were considered to be the baseline errors, being likely due to registration errors and the
consequent atlas misalignment.

4.1.1.2 Prevalence brain maps per lesion class

With the goal of understanding which brain regions are more affected by each lesion type, preva-
lence maps were constructed using the localisation volumes from Dataset 2, excluding the scans previ-
ously identified as outliers (Section 4.1.1.1) (n = nlocalised−noutliers = 832−109 = 723). These maps are
also meant to support the localisation error analysis (Section 4.1.1.3), given that the severity of a specific
error rate varies depending on the lesion prevalence in that particular region. Thus, to maximise their
accuracy, all prevalence maps were constructed using the volumes per region obtained with the reference
segmentation maps.

To create each prevalence map (one per lesion class), a counter is initialised for every atlas region.
Going through all the subjects, the counter is incremented by one if the subject has a volume of that lesion
class on that region higher than a defined threshold. Two thresholds were applied: 0.1mL and 1mL. The
former threshold is set in order to exclude minor misalignments, as the proposed lesion localisation
methodology does not allow for voxel-wise accuracy. To facilitate the visualisation of the prevalence
values calculated (i.e., the final counter values), these were attributed to each atlas region and visualised
as prevalence atlases.

4.1.1.3 False negative and false positive rates maps per lesion class

Two error maps were constructed for each lesion class, with the average values of false negative rate
(FNR) and false positive rate (FPR) per atlas region. For each scan, the segmentation map from BLAST-
CT was subtracted from the reference segmentation map. The resulting volume corresponds to the false
negative map. The inverse operation was then completed to obtain the false positive map. Each true pos-
itive volume was in turn computed by subtracting the false positive map to the reference segmentation.
Finally, the sum of BLAST-CT segmentation and the false negative map was subtracted from a reference
mask in order to obtain the true negative map. In order to normalise this calculation, this reference mask
included the full field of view of the parcellated atlas, back-projected into each subject’s specific space.
All these maps were then overlapped with the parcellated atlas in order to calculate the volume of each
variable within each anatomical region and subsequently compute the FNR and FPR values.

These maps were, similarly to the prevalence maps mentioned above, thresholded at 0.1mL, i.e.,
every scan with a reference volume - or equivalently, a sum of true positive and false negative volumes -
lower than 0.1mL was excluded from the average calculation.

Finally, a visual inspection of the scans with the highest total error volume (false negative volume
+ false positive volume) across all regions was conducted.
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4.1.2 Analysis of the BLAST-CT performance bias

All analyses described in this section were completed using the Python programming language
[116], with the following packages: pingouin (pingouin-stats.org, last acessed: 15/10/2021), pandas
(pandas.pydata.org; last accessed: 31/08/2021) and seaborn (seaborn.pydata.org; last acessed: 15/10/2021).

Performance bias assessment and mitigation in fully automatic DL-based segmentation models are
essential steps to ensure an optimal and trustworthy deployment into clinical practice. With the goal of
evaluating the effect of several clinical variables in the performance of BLAST-CT, a partial correlation
analysis was conducted. The Dice similarity coefficients (DSC) for each lesion class (DSCEAH , DSCIPH ,
DSCOedema, DSCIV H), which quantify the agreement between the lesion segmentation by BLAST-CT and
the reference, are set as the dependent variables. The clinical variables age, GCS, GOSE, and ISS are
set as the independent variables (IVs). The Pearson coefficient was calculated for the tests in which the
IV is age, as both this variable and the DSCs are quantitative and continuous. Conversely, for all the
remaining tests, the Spearman’s correlation coefficient was calculated as GCS, GOSE and ISS can be
considered quantitative ordinal variables. For each pairwise coefficient calculation, all the remaining IVs
were included as covariates, as well as the time since injury, lesion volume, and the subject’s biological
sex. Due to the high number of hypothesis tests completed, an adjusted significance level was calculated
using the Bonferroni correction.

In order to further investigate the possible sex and age bias effects on the performance of the algo-
rithm, boxplots of the DSC for each lesion class, divided by biological sex and age range, were created.
The limits of the three age ranges were defined by the average 33th and 66th percentile between the four
lesion classes. Additionally, non-parametric Mann-Whitney U tests were completed to compare the DSC
medians between male and female subjects’ scans within the same age range, for each lesion class.

4.2 Results

4.2.1 Lesion localisation error analysis

The following sections present the results obtained in the identification of sub-optimal results and
in the construction of a prevalence, FNR and FPR map for each lesion class.

4.2.1.1 Sub-optimal results identification

The first method used (i.e. establishing an SM threshold) led to the identification of 96 scans (11.5%
of the complete sample) as sub-optimal (Figure 3.10), as the SM resulting from their registration to the
study-specific CT template was below the defined threshold (0.65).

Figure 4.1 shows 31 box-plots, each one showcasing the distribution of one atlas region volume. 17
scans had at least 5 regions with outlier volumes, however only 12 scans (1.4% of the complete sample)
were identified as outliers after visual inspection. Figure 4.2 shows three of the initially detected outliers.
Patients #1 and #3 are two examples that have several regions with volumes over their corresponding box-
plots upper fences (upper outlier). Patient #1 shows both a poor mask and atlas alignment, particularly
on the frontal and parietal lobes, and it is also an example of a scan excluded by the first criterion, given
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Figure 4.1: Box-plot analysis of the volume of every brain region. The central line of each box-plot represents the median and
the box the IQR. The whiskers show the distance of the lowest and highest observed points within the distance of 1.5 times the
IQR.

that its registration SM is below 0.65. Conversely, Patient #3 presents an over-segmentation of the brain
mask in the occipital lobe and in the cerebellum and brain stem area, and a corresponding poor alignment
of the atlas on the same areas, while maintaining a satisfactory alignment of the ventricles and frontal
regions. Contrarily, Patient #2 had several regions with volumes under its corresponding box-plot inner
fence (inner outlier). Its mask alignment is overall acceptable, with a slight posterior over-segmentation,
as well as an under-segmentation of the lower portion of the cerebellum and brainstem. However, the
atlas alignment is sufficiently accurate, even in a scan where the ventricles are almost completely sup-
pressed. This was the case for almost every inner outlier, which were not flagged after visual inspection.

Ten scans (1.2% of the complete sample) were flagged with the last method, i.e., had more than
1mL of IVH localised outside of the ventricles, when using the prediction map from BLAST-CT. This
inaccurate localisation was consistently caused by a poor alignment of the ventricles in the atlas. After
visual inspection of all the identified scans, 3 scans flagged when using the reference segmentation map
were observed, which had not been identified when using the prediction map from BLAST-CT, due to
under-segmentation of IVH by the algorithm. The Venn diagram in Figure 4.3 shows the overlap between
the scans flagged using the three presented approaches.

4.2.1.2 Prevalence brain maps per lesion class

Figures 4.4 and 4.5 show the prevalence maps created with thresholds of 0.1mL and 1mL, respec-
tively. The corresponding tables with the prevalence values per brain region, for each lesion class, are
included in Appendix B (Table B.1).

The prevalence of EAH, IPH and oedema lesions is significantly higher in the anterior half of the
brain, while IVH lesions are most prevalent in the ventricles. EAH also presents, as expected, higher
prevalence in regions contiguous with the cerebral border. We can further notice that only 3 subjects had
a volume of IVH higher than 1mL localised in regions outside the ventricles. This indicates that although
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Figure 4.2: Three qualitative examples of scans identified as outliers through the box-plot analysis of brain regions’ volumes.
Patient #1 shows an overall poor mask and atlas alignment while Patient #3 solely presents mask over-segmentation in the
occipital lobe and in the cerebellum and brain stem area. Patient #2 is one of the few examples with several regions with
volumes under its corresponding box-plot inner fence (inner outlier). Images in neurological orientation.

Figure 4.3: Venn diagram of the overlap between the scans that yielded sub-optimal results, identified by three different
methods. “SM < 0.65”: scans with an SM (Mattes MI) value, resulting from their registration to the study-specific CT template,
lower than 0.65; “IVH outside ventricles > 1mL”: scans with more than 1mL of IVH localised outside of the ventricles; “Reg.
vol. outlier”: scans identified as outliers on a box-plot analysis of the volume of every atlas region.

68 patients have a significant volume (>0.1mL) of IVH in the surrounding regions of the ventricles, for
65 patients the incorrectly localised lesion volume ranges between 0.1mL and 1mL.

4.2.1.3 False negative and false positive rates maps per lesion class

Figures 4.6 to 4.9 show the FNR and FPR maps for EAH, IPH, oedema and IVH. Prevalence maps
with a threshold of 0.1mL are also included for convenience. The corresponding tables with the FNR and
FPR values per brain region, for each lesion class, are included in the Appendix C (Tables C.1, C.2, C.3
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Figure 4.4: Per-class prevalence maps. All maps are displayed in neurological orientation. *Threshold = 0.1 mL.

Figure 4.5: Per-class prevalence maps. All maps are displayed in neurological orientation. *Threshold = 1 mL.

and C.4). It is possible to notice that the FPR values are consistently lower than the FNR values. This
difference is directly correlated with the discrepancy between true lesion volume (“positive” volume,
sum of true positive and false negative volume) and true “negative” volume (sum of true negative and
false positive volume), denominators of the FNR and FPR formulas, respectively. Therefore, to facilitate
the comparison between two rates for the same brain region, the medians of “positive” and “negative”
volumes were added to the appended table of each lesion class (Appendix C). Given that the performance
of BLAST-CT is positively correlated with lesion volume, the atlas regions were sorted by lesion volume
(“positive” volume) in descending order.
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Figure 4.6: False negative rate, false positive rate and prevalence maps for EAH lesions. *Threshold=0.1mL. nTotal = 723

There is a tendency for higher error rates in regions with lower prevalence and which contain small
lesion volumes. The left and right basal ganglia present a FNR higher than 90% for EAH lesions.
However, only 6 and 7 scans have an EAH larger than 0.1mL in these regions, respectively, and the
average volume within those cases is lower than 0.25mL. Regarding IPH, the left portion of the cerebel-
lum presents the highest FNR, of 76.5%, with a prevalence of 11 scans and a median lesion volume of
0.28mL. Conversely, the highest FPR is in the left basal ganglia, which presents the lowest “negative”
volume, of 0.996mL. Among all subjects included in this analysis, no oedema lesion in the cerebellum
was correctly segmented and localised, with a FNR of 1. However, only 3 scans have an oedema lesion
in this region, with a median volume of 0.22mL. The error analysis of IVH localisation shows a similar
situation, with 4 scans presenting a lesion incorrectly localised in the brain stem, with a median volume
of 0.24mL, resulting in an average FNR of 97%.

Figure 4.10 shows four qualitative examples of lesion segmentation and atlas mapping, selected
based on their high total error volumes from the segmentation of IPH, oedema and EAH lesions. Patient
#1 has a total error volume of 33.27mL on the lateral portion of the right frontal lobe, 24.15mL on the
right parietal lobe and 19.24mL on the right temporal lobe. In these regions, the FNR/FPR values are
0.69/9.5E-4, 0.97/2.46E-5 and 0.65/1.63E-3, respectively. Regarding Patient #2, the regions with high-
est total error volume concerning oedema segmentation are the medial portion of the frontal lobe, with
8.70mL and a FNR/FPR pair of 0.67/5.88E-3, and the left temporal lobe, with 10.23mL and a FNR/FPR
pair of 0.67/3.57E-4. In regard to IPH lesions, the right caudate presents a total error volume of 5.99mL,
with FNR/FPR of 0.54/8.84E-3. The noticeable under-segmentation of oedema in the right temporal
lobe in Patient #3 is reflected in a total error volume with 9.17 mL and a corresponding FNR/FPR of
0.96/1.40E-4 in this region. Patient 2, 3 and 4 of Figure 4.10 show a pattern of under-segmented oedema
noticed on most of the visually inspected scans.

Additionally, Figure 4.11 shows three qualitative examples with high total error volumes from the
segmentation of mainly IVH and IPH lesions. Patient #1 presents an IVH lesion that fully occupies
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Figure 4.7: False negative rate, false positive rate and prevalence maps for IPH lesions. *Threshold=0.1mL. nTotal = 723

Figure 4.8: False negative rate, false positive rate and prevalence maps for oedema lesions. *Threshold=0.1mL. nTotal = 723
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Figure 4.9: False negative rate, false positive rate and prevalence maps for IVH lesions. *Threshold=0.1mL. nTotal = 723

both ventricles, which was well segmented by BLAST-CT. In this case, the FNR and FPR do not reflect
the full extent of the localisation error, as this is solely due to a poor alignment of the ventricles. A
considerable under-segmentation of Patient #2’s IPH lesion is observable in the posterior portion of the
brain, more specifically in the right and central cerebellum and in the right occipital lobe, with a total error
volume of 12.65mL, 5.35mL and 4.43mL and a FNR/FPR of 0.55/3.19E-5, 0.95/0.0 and 0.52/2.92E-4,
respectively. Regarding their IVH lesion, the highest error volumes are present in the ventricles (3.65mL)
and cerebellum (2.73mL). In the latter region, the full predicted lesion is wrongly classified, resulting in
a FNR of NaN (no false negative nor true positive volume), and in a high FPR of 0.14. In the former
region, the FNR/FPR pair is 0.42/2.31E-2. Finally, Patient #3 presents several extensive IPH and oedema
lesions, which severely compromised the structure of the ventricles. Although these lesions seem to be
overall well-segmented, the lateral portion of the right frontal lobe presents a slight over-segmentation
of oedema, with 9.27mL of total error volume and a FNR/FPR of 0.06/0.012. The IVH lesion within
the ventricles was partially classified as IPH, leading to a total error volume of 1.96mL in the ventricles
and of 2.56mL in the right parietal lobe, due to a slight misalignment of the atlas. The FNR/FPR pair
of these regions is 0.95/4.75E-5 and 0.79/3.39E-5, respectively. Figure 5.1 of the Appendix shows four
additional qualitative examples of lesion segmentation and atlas mapping.

4.2.2 Analysis of the BLAST-CT performance bias

Table 4.1 shows the partial correlation coefficients between the segmentation DSCs of each le-
sion class and several IVs (Age, GCS, GOSE and ISS). Given the initially defined significance level
of 0.05 and the total number of statistical tests completed, the Bonferroni adjusted significance level is
αnew = αinitial/ntests = 0.050/16 = 3.13e−3. Thus, only the correlation between age and the DSC for
EAH lesions (ρ = 0.193, p-value < 0.0001) remains statistically significant.

The boxplots in Figure 4.12 show the distribution of the DSC for each lesion class, divided by bi-
ological sex and age range. For EAH lesions, the median DSC when including only patients in the age
range [6-54] is much lower for female patients (0.13 (Interquartile range (IQR) 0.0-0.45)) than among
male patients (0.33 (IQR 0.0-0.58)). Within the age range of [55-69], the median DSC is 0.59 (IQR 0.30-
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Figure 4.10: Four qualitative segmentation and atlas mapping results. Patient #1: under-segmentation of oedema in left parietal
and occipital lobe. Poor mapping of ventricles due to complete collapse of the left ventricle; Patient #2: under-segmentation
of oedema, IPH and EAH in the frontal lobe; Patient #3: oedema under-segmentation in the parietal and frontal lobes; Patient
#4: under-segmentation of oedema and partial mis-classification of EAH as IPH in the frontal lobe. Reference segmentation
and BLAST-prediction colour legend: Red - IVH; Purple - Oedema; Green - IPH; Light blue - EAH. Images in neurological
orientation.
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Figure 4.11: Four qualitative segmentation and atlas mapping results. Patient #1: under-segmentation of oedema and IVH
localised outside ventricles due to poor mapping of this structure; Patient #2: under-segmentation of IPH (misclassified as
IVH), oedema and EAH in the occipital lobe and cerebellum; Patient #3: slight over-segmentation of oedema in the frontal
lobe and partial misclassification of an IVH lesion as IPH. Reference segmentation and BLAST-prediction colour legend: Red
-IVH; Purple - Oedema; Green - IPH; Light blue - EAH. Images in neurological orientation.
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Figure 4.12: Boxplots of DSC per lesion class, biological sex and age, including every scan with either a reference volume
higher than 0mL or with a predicted volume higher than 0.1mL. M: Male; F: Female. nTotal = 709

0.78) and 0.39 (IQR 0.07-0.66) for female and male patients, respectively. The median of male patients
increases to 0.51 (IQR 0.30-0.67) within the age range of [70-89]. For female patients of the same age,
the median DSC is 0.55 (IQR 0.40-0.69). Regarding IPH lesions, the median DSC for male patients does
not present high variance, being 0.62 (IQR 0.19-0.73), 0.50 (IQR 0.10-0.78) and 0.59 (IQR 0.09-0.77)
for the age range of [6-54], [55-69] and [70-89], respectively. For female patients, the median DSC
of patients within the age ranges of [6-54] (0.63 (IQR 0.27-0.78)) and [70-89] (0.58 (IQR 0.09-0.83))
are similar, decreasing to 0.37 (0.0-0.68) for the age range of [55-69]. Similarly to the previous lesion
class, the median DSC for oedema lesions does not vary significantly between age ranges among male
patients ([6-54]: 0.31 (IQR 0.01-0.57); [55-69]: 0.34 (IQR 0.02-0.63); [70-89]: 0.35 (IQR 0.03-0.60)).
Conversely, for female patients, the low DSC median of 0.11 (IQR 0.005-0.42) for the age range of [55-
69] increases to 0.29 (IQR 0.09-0.70) and to 0.42 (IQR 0.20-0.66) for patients within the age ranges of
[6-54] and [70-89], respectively. The samples size concerning IVH lesions is considerably lower than in
the remaining lesion classes. Within female patients, a steep decrease of the median DSC is observed
with increasing age: 0.53 (IQR 0.35-0.58) for [6-54], 0.41 (IQR 0.13-0.69) for [55-69] and 0.16 (IQR
0.0-0.57) for [70-89]. For male patients, patients within the age range of [55-69] present the highest
median DSC (0.45 (IQR 0.0-0.69)), followed by the youngest subgroup (0.32 (IQR 0.0-0.49)) and then
by the oldest subgroup (0.26 (IQR 0.0-0.50)).

The results of the Mann-Whitney U tests between the DSC of male and female subjects’ scans
within the same age range, for each lesion class, are presented in Table 4.2. Within the age range of 6
to 54 years old, the difference between the DSC of male and female patients was found to be significant
for EAH and IVH lesions, at a significance level of 0.1. For patients in the age range of 55 to 69 years
old, the differences between the DSC of male and female patients were found significant for EAH and
oedema lesions.
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Table 4.1: Partial correlation analysis between segmentation Dice Similarity Coefficient (DSC) (rs) of each lesion class and
several independent variables (IV) (Age, GCS, GOSE and ISS). For each coefficient calculation, all the remaining IV were
included as covariates, as well as the time since injury, lesion volume and biological sex. Bold indicates that the correlation is
significant at the alpha level corrected by the Bonferroni correction. rs: Spearman’s rank coefficient; ρ: Pearson correlation
coefficient. nTotal = 709. *p < 0.05

EAH IPH Oedema IVH

n 467 327 330 127

Age

ρ

(CI=0.95)
0.193

[0.10, 0.28]
-0.0839

[-0.19, 0.03]
0.00509

[-0.10, 0.11]
0.0358

[-0.15, 0.22]

p-value <0.0001 0.1335 0.9275 0.7000

GCS

rs

(CI=0.95)
0.119*

[0.03, 0.21]
0.0455

[-0.06, 0.15]
-0.0569

[-0.17, 0.05]
-0.0752

[-0.25, 0.11]

p-value 0.0107 0.4168 0.3094 0.419

GOSE

rs

(CI=0.95)
0.0717

[-0.02, 0.16]
0.0902

[-0.02, 0.20]
0.128*

[0.02, 0.23]
0.0668

[-0.12, 0.24]

p-value 0.1244 0.1069 0.0215 0.4722

ISS

rs

(CI=0.95)
-0.00721

[-0.10, 0.08]
0.00263

[-0.11, 0.11]
0.00775

[-0.1, 0.12]
-0.0899

[-0.27, 0.09]

p-value 0.8772 0.9625 0.8899 0.3327

Table 4.2: Mann-Whitney U tests between the median DSC male and female subjects’ scans within the same age range, for
each lesion class. *p < 0.1

EAH IPH Oedema IVH

[6-54] 0.0783* 0.622 0.872 0.0607*
[55-69] 0.0115* 0.146 0.0984* 0.820
[70-89] 0.109 0.831 0.223 0.831
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4.3 Discussion

4.3.1 Lesion localisation error analysis

4.3.1.1 Sub-optimal results identification

The definition of an SM threshold for the registration of native scans to the study-specific CT tem-
plate was found to be the most strict method for identification of sub-optimal results. The low precision
of this metric and its lack of physical significance can lead to an erroneous identification of successful
results. However, given the high dependence of the mapping results on registration quality, it is nonethe-
less an efficient way to coarsely flag sub-optimal results for subsequent visual inspection or exclusion
prior to statistical analysis.

The visual inspection of every scan with more than five regions with outlier volumes led to the con-
clusion that these were mainly caused by either a poor atlas alignment, or an over-segmentation of the
brain mask (Patients #1 and #3 of Figure 4.2), which leads to an increase in the atlas regions’ volumes
due to the use of an expanded atlas. Both cases are caused by sub-optimal registration. It is therefore
expected that most of the identified scans with this method also present a registration SM lower than
0.65, which was observed (Figure 4.3) and suggests that this approach might be redundant.

Future work might include the definition and implementation of empirical rules regarding the re-
maining lesion classes. These could encompass the identification of scans with significant volume of
EAH not contiguous with the inside limit of the cranial cavity, and within cerebral tissue. However, as
the presented localisation method cannot achieve voxel-wise accuracy, considering a discontinuation of
one voxel as “not contiguous” might lead to a faulty identification of sub-optimal results. Additionally,
given that this class of lesions includes subdural haematomas, extradural haematomas, and traumatic
subarachnoid haemorrhages, it is not possible to simply identify scans with a significant volume of EAH
outside of a brain mask. IPH lesions would, ideally, also have to be in contact with the skull surface, but
in practice this rule is not applicable as patients frequently present IPH lesions with overlying subdural
haematomas. A simpler alternative might be to flag the cases with a significant volume of IPH outside
the cerebral tissue, i.e., outside a brain mask, or within the ventricles. The same rule can be applied to
oedema. One advantage of this approach is the easy availability of the brain mask, which can already be
saved to the disk in the localisation code.

4.3.1.2 Prevalence brain maps per lesion class

The prevalence values for each anatomical region and lesion class were computed based on the ref-
erence segmentation maps. Thus, all localisation errors causing IVH lesions to be mapped outside of the
ventricles were due to misregistration of the atlas. These errors are more prevalent on the posterior part
of the brain, namely in the parietal and occipital lobe and in regions contiguous to the ventricles, such as
the caudate and thalamus.

As mentioned, the previous empirical definition of a similarity metric threshold required the visual
inspection of a considerable amount of scans. This analysis led to the conclusion that ventricles are often
over-segmented. Additionally, in some cases, the ventricles are significantly compromised by a lesion,
leading to a poor alignment as this displacement cannot be achieved with affine registration, as can be
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Figure 4.13: Qualitative example of ventricle misregistration. SM = 0.81. IPH: Green; Oedema: Purple; EAH: Blue.

observed in the example displayed in Figure 4.13. These factors present a possible justification for the
considerably high number of patients with IPH and oedema lesions localised inside the ventricles.

4.3.1.3 False negative and false positive rates maps per lesion class

The average FNR and FPR was calculated for each anatomical region and lesion class. This analysis
presents the limitation of including a high number of variables, given that for each scan that undergoes
the lesion localisation process, we extract 124 variables (31 regions * 4 lesion classes). It is therefore
challenging to draw any general or summarised conclusions about the error rates. Nonetheless, the pre-
sented values are likely to be more valuable when analysed by physicians with deep TBI knowledge,
who are able to identify the error in specific regions relevant for the assessment of each lesion class.

As mentioned in Section 3.3.4.1, the quality of the registration between each native scan and the
CT template, measured by its SM and on which the atlas mapping accuracy is highly dependent, is not
correlated with lesion volume. However, our results indicate that the final localisation error is affected
by this variable, as higher FNRs are observed on the regions with lower lesion volumes. This can be
due to either a poor segmentation by BLAST-CT, which is known to be influenced by lesion volume,
or to the lack of voxel-wise accuracy. With lesions as small as 0.2mL in one anatomical region, a
minor registration error may lead to a completely faulty localisation. The high FNR values obtained in
regions where the median lesion volume is low (<0.5mL) might indicate that the threshold after which
we acknowledge a lesion to be present in a certain region, currently 0.1mL, should be increased.

4.3.2 Analysis of the BLAST-CT performance bias

A partial correlation analysis was conducted between the DSC for each lesion class and several
independent variables (age, GCS, GOSE and ISS), also considering the time since injury, lesion volume
and biological sex as covariates. Age and biological sex - non-TBI related variables - were included
in this assessment as they have been shown to be correlated with TBI outcome, with women generally
reporting worse 6-month outcomes, although these differences are dependent on TBI severity and age
[117, 118, 119]. Additionally, E Puyol-Antón et al. [120] recently validated the hypothesis that there
was a racial bias in DL-based cardiac MR segmentation models as a result of an unbalanced training set.
As shown in Table 3.2, the ratio between male and female patients in Dataset 2 - the dataset used to train
the CNN of BLAST-CT - is 1.98, which corroborates the need to assess the possible biological sex bias
of this algorithm.
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The Bonferroni correction was applied to control for the increase in family-wise error rate across
the reported statistical analyses. After this adjustment, only the DSC of EAH lesions and age remain sig-
nificantly - although weakly - correlated. It is also important to note that the correlation between the DSC
of EAH lesions and the GCS, and between the DSC of oedema lesions and the GOSE have been found
significant at a 5% significance level. However, given that all the correlation coefficients mentioned are
below 0.2, we can conclude that the correlation between each pair of variables, and consequently the
performance bias of BLAST-CT, is considerably low.

A higher significance level, of 0.1, was set for the assessment of the differences between the median
DSC of male and female subjects within the same age range, as the goal was to further inspect the
reason behind the discrepancy in DSC values. Therefore, having a higher probability of committing
a type I error is not as concerning. The statistically significant differences in DSC median between
the male and female patients within the same age group are likely to be driven by the discrepancies in
lesion volume for each one of these sub-groups. Regarding EAH lesions, within the youngest age range
([6-54]), the median lesion volume is 0.89mL (0-27.46)mL among female patients, while it increases
to 1.35mL (0-140.2)mL for male patients. For the same lesion class, within the [55-69] age range,
the median lesion volume is 4.32mL (0-201.49)mL and 2.28mL (0-179.95)mL for female and male
patients, respectively. Additionally, concerning oedema lesions and within the age range of [55-69], male
patients present a higher median lesion volume (5.65mL (0-71.54)mL) than female patients (2.96mL (0-
75.36)mL). Finally, for IVH lesions of patients within the youngest age range ([6-54]), the median lesion
volume is 0.44mL (0-2.79)mL for female patients and 0.175mL (0-12.45)mL for male patients. For every
pair-wise comparison mentioned above, an increase in the median lesion volume was accompanied by
an increase in the median DSC, which was expected given that the performance of BLAST-CT has been
shown to be positively correlated with lesion volumes [7].
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Chapter 5

Conclusion and future work

In this dissertation project, a successful registration-based localisation tool for four TBI lesion
classes was constructed and tested on a multicentre dataset. A subsequent analysis of lesion preva-
lence and localisation error rate in each brain region was conducted, along with a bias assessment of the
BLAST-CT tool.

The proposed pipeline directly registers a native CT scan to the atlas space, allowing for the back-
projection of the parcellated atlas to the subject’s specific space. The atlas and each subject’s lesion map
can then be overlapped and the quantitative volume of lesion within each atlas region calculated. It was
shown that, although this pipeline does not allow for voxel-wise precision, it is able to localise lesions
accurately even in considerably deformed scans. This tool is currently being deployed 1 and used to pro-
cess 14,753 scans from the CENTER-TBI study [88]. The output of this process will be fed into relevant
clinical research, with the goal of analysing the benefits of lesion localisation quantitative features in
combination with full lesion volumes for outcome prediction.

The presented results showed that the localisation error rates calculated for each brain region are
overall inversely correlated with lesion volume and prevalence within the dataset. Across all lesion
classes, every region with a FNR above 0.75 also presented an average lesion volume below 0.7mL.
Furthermore, no considerable bias was found in the performance of BLAST-CT, as all statistically sig-
nificant correlation coefficients found between DSCs of BLAST-CT and clinical variables (i.e. age, GCS,
GOSE and ISS) were below 0.2. The results also suggest that the variation in DSC between male and
female patients within a specific age range is not caused by differences in biological sex, but rather by
the discrepancy in lesion volume presented by the scans included in each subgroup.

The per-scan output of the localisation tool consists of a large amount of quantitative variables:
the total volume of each lesion class (4 variables), the volume of lesion per anatomical region, for each
lesion class (31*4=124 variables), and the volume of each anatomical region in native space, as well as
of the whole brain (31+1=32 variables). Thus, one important future step to improve the interpretability
of these results is to create a patient-specific report that translates the outcomes of our algorithm in a
clinically meaningful way. This report should include a quality control section, where the segmentation
DSC could be translated into a qualitative metric. To qualitatively evaluate the localisation performance,
two metrics could be used: the SM from the registration of the native scan to the study-specific CT tem-

1The localisation code will be available as part of BLAST-CT, which can be found in https://github.com/biomedia-
mira/blast-ct.
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plate, which reflects how successful the registration was, and the volume of IVH outside the ventricles,
since the full volume of intraventricular haemorrhages is expected to be localised inside the ventricles.
A combination of these two metrics, possibly translated into a qualitative criterion, could be applied to
provide an accessible evaluation of localisation quality. A visual component should also be added, in-
cluding a colour-coded representation of the lesion map, and of the parcellated atlas alignment in native
space. Regarding quantitative information, it would be important to include the total lesion volume per
lesion class, the whole brain volume and the volume of each lesion class within the most affected re-
gions, alongside the volume of the region, for reference. Additionally, an “observations” section could
be useful to include relevant remarks, such as the volume of IVH outside the ventricles, or if there is an
anatomical region that was completely suppressed after the atlas back-projection into native space.

Given the large amount of output features, and the size of the dataset this tool is currently pro-
cessing, one important part of this project was the identification of scans whose results might have been
sub-optimal, as it considerably facilitates the visual inspection process. Three empirical rules were set
with this goal in mind: one rule based on the SM from the registration of the native scan to the study-
specific CT template, a second rule based on the identification of outliers from box-plots of the volume
of each brain region, and a third rule that identified any scans with a significant volume of IVH outside
the ventricles. Additional rules should be created concerning EAH, IPH and oedema lesions. A possibly
efficient approach could be to identify scans with a considerable volume of IPH and oedema outside a
brain mask, or within the ventricles. Conversely, setting a rule for EAH lesions presents several chal-
lenges, as this class includes subdural haematomas, extradural haematomas, and traumatic subarachnoid
haemorrhages. Thus, it is not possible to simply identify any lesion volume inside the cerebral tissue as
incorrect, or scans with lesions not contiguous with the inside limit of the cranial cavity, due to the poor
voxel-wise accuracy of the algorithm.

Future work could focus on assessing the segmentation and localisation consistency across serial
scans, in order to search and understand any spatial patterns of lesion change. This could be done by
selecting a cohort of subjects who have two or more scans, acquired at different time points. Every
scan should then be processed by BLAST-CT. Once the volume of lesion per region is calculated, the
difference between time points can be assessed.
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A. CT TEMPLATE REGISTRATION TO MNI SPACE

Table A.1: Fixed parameters of the antsRegistration function employed on the non-linear registration of the study-specific CT
template to the MRI MNI atlas, during the first phase of iterative parameter search. Three combinations of SMs were tested for
the affine and deformable registration: MI or Mattes MI (Mattes) as the SM from both the affine and deformable registration,
and MI for affine and Cross Correlation (CC) for deformable registration. SyN: symmetric image normalisation method.

Parameters Affine registration Deformable registration (SyN)

Dimensionality 3 3

Interpolation Welch windowed sinc Welch windowed sinc

Optimiser

Gradient descent Gradient descent
Gradient step = 0.2 Gradient step = 0.1

—- Update field variance in voxel space = 3
—- Total field variance in voxel space = 0

Histogram matching No No

Convergence
Iterations per level: 300 x 200 x 100 Iterations per level: 400 x 200 x 100 x 50
Threshold = 10−6 Threshold = 10−6

Window size = 10 Window size = 5
Smoothing 4 mm x 2 mm x 1 mm 4 mm x 2 mm x 1 mm x 0 mm
Shrink factors 4 x 2 x 1 6 x 4 x 2 x 1

Table A.2: Parameters of the antsRegistration function employed on the non-linear registration of the study-specific CT tem-
plate to the MRI MNI atlas, after the second phase of iterative parameters optimisation. SyN: symmetric image normalisation
method. The definition of a 5-levels pyramidal scheme with an increased number of iterations and heavy initial down-sampling,
for deformable registration, should allow for better local alignment while avoiding excessive deformation of the images.

Parameters Affine registration Deformable registration (SyN)

Dimensionality 3 3

Similarity metric

Mutual information Cross correlation
Metric weight = 1 Metric weight = 1
Nº of bins = 32 Radius = 4
Sampling strategy: Regular Sampling strategy = Regular
Sampling percentage = 0.25 Sampling percentage = 0.25

Interpolation Welch windowed sinc Welch windowed sinc

Optimiser

Gradient descent Gradient descent
Gradient step = 0.2 Gradient step = 0.1

—- Update field variance in voxel space = 3
—- Total field variance in voxel space = 0

Histogram matching No

Convergence
Iterations per level: 300 x 200 x 100 Iterations per level: 800 x 400 x 200 x 100 x 50
Threshold = 10−6 Threshold = 10−6

Window size = 10 Window size = 5
Smoothing 4 mm x 2 mm x 1 mm 6 mm x 4 mm x 2 mm x 1 mm x 0 mm
Shrink factors 4 x 2 x 1 8 x 6 x 4 x 2 x 1
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B. PREVALENCE BRAIN MAPS

Table B.1: Per-region prevalence values for each lesion type. Prevalence values are obtained by initialising a counter for every
atlas region. Going through all the subjects, the counter is increased by 1 if the subject has a volume of that lesion class on that
region higher than the defined threshold.

Prevalence
(Threshold = 0.1mL)

Prevalence
(Threshold = 1mL)

Brain regions EAH IPH Oedema IVH EAH IPH Oedema IVH

Brain stem 47 20 53 4 4 2 9 0
Cerebellum 36 0 3 0 3 0 0 0
Left basal forebrain 7 6 17 0 0 0 0 0
Left basal ganglia 0 10 29 0 0 0 0 0
Left basal ganglia - lentiform-nucleus 13 36 81 0 1 13 32 0
Left caudate 6 44 93 1 0 25 40 0
Left cerebellum 62 11 19 0 15 3 2 0
Left frontal lobe - inferior-orbital 124 123 167 0 38 48 73 0
Left frontal lobe - lateral 213 86 121 0 119 38 58 0
Left frontal lobe - medial 196 100 151 1 92 44 83 0
Left hippocampus 9 30 74 1 2 11 31 0
Left insula 39 47 99 0 7 18 32 0
Left occipital lobe 128 14 38 18 45 6 12 1
Left parietal lobe 199 32 62 11 96 7 14 1
Left temporal lobe 201 104 159 0 110 51 84 0
Left thalamus proper 5 24 27 6 0 6 11 0
Right basal forebrain 6 4 20 0 0 0 0 0
Right basal ganglia 0 7 25 0 0 0 0 0
Right basal ganglia - lentiform-nucleus 11 31 80 0 1 10 36 0
Right caudate 3 36 79 1 1 12 33 0
Right cerebellum 52 6 18 0 12 2 5 0
Right frontal lobe - inferior-orbital 122 109 149 0 40 41 79 0
Right frontal lobe - lateral 225 70 106 0 123 28 51 0
Right frontal lobe - medial 179 94 133 0 67 29 62 0
Right hippocampus 10 29 80 2 0 12 42 0
Right insula 40 40 88 0 4 7 37 0
Right occipital lobe 168 28 44 11 81 7 17 0
Right parietal lobe 209 30 51 6 112 6 21 1
Right temporal lobe 204 108 165 0 119 50 89 0
Right thalamus proper 3 13 26 6 0 2 8 0
Ventricles 2 63 113 70 0 20 32 14
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C. FALSE NEGATIVE AND FALSE POSITIVE RATES MAPS PER LESION CLASS

Table C.1: FNR and FPR values per brain region, for EAH lesions. “Positive volume” corresponds to the denominator of
the FPR formula, i.e. the sum of the true positive and false negative volumes. “Negative volume” is the denominator of the
FNR formula, i.e. sum of the true negative and false positives volumes. Prevalence values (threshold = 0.1mL) included for
reference. Rows sorted by “Positive volume”, in descending order. An indicative colour scale is used to improve the perception
of the lowest and highest FNR and FPR values. Warmer colours are associated with higher FPR and FNR values. Median
values are presented for the positive and negative volumes. Average values presented for the FNR and FPR values.

Brain regions Prevalence Positive
volume (mL)

Negative
volume (mL) FNR FPR

Left frontal lobe - lateral 213 1.53 611.61 0.52 0.0010
Right temporal lobe 204 1.37 342.77 0.59 0.0015
Right frontal lobe - lateral 225 1.34 591.37 0.53 0.0010
Right parietal lobe 209 1.28 471.51 0.55 0.00095
Left temporal lobe 201 1.22 362.77 0.58 0.0012
Right occipital lobe 168 0.97 327.54 0.61 0.00099
Left parietal lobe 199 0.91 497.96 0.56 0.00086
Left frontal lobe - medial 196 0.89 128.41 0.58 0.0028
Right frontal lobe - medial 179 0.72 127.37 0.56 0.0019
Right caudate 3 0.63 33.04 0.68 0.00035
Left frontal lobe - inferior-orbital 124 0.55 187.32 0.56 0.00090
Left basal ganglia - lentiform-nucleus 13 0.50 16.76 0.63 0.0038
Left occipital lobe 128 0.48 305.24 0.64 0.0011
Right frontal lobe - inferior-orbital 122 0.47 186.46 0.57 0.00088
Left cerebellum 62 0.47 235.62 0.71 0.00074
Ventricles 2 0.38 46.55 0.25 0.00056
Left hippocampus 9 0.37 14.12 0.51 0.0033
Left insula 39 0.33 10.99 0.66 0.0068
Right insula 40 0.32 10.59 0.75 0.0043
Right basal ganglia - lentiform-nucleus 11 0.30 17.87 0.82 0.0012
Right cerebellum 52 0.29 230.87 0.69 0.00089
Brain stem 47 0.26 64.13 0.83 0.00056
Left basal forebrain 7 0.25 1.68 0.90 0.0034
Right hippocampus 10 0.23 15.16 0.36 0.0054
Right thalamus proper 3 0.22 19.58 0.44 0.0017
Left thalamus proper 5 0.21 19.30 0.56 0.0012
Cerebellum 36 0.20 15.54 0.59 0.0053
Right basal forebrain 6 0.15 1.66 0.93 0.00029
Left caudate 6 0.13 30.67 0.77 0.00019
Left basal ganglia 0 0.000 0.99 nan nan
Right basal ganglia 0 0.000 1.05 nan nan
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Table C.2: FNR and FPR values per brain region, for IPH lesions. “Positive volume” corresponds to the denominator of the
FPR formula, i.e. the sum of the true positive and false negative volumes. “Negative volume” is the denominator of the FNR
formula, i.e. sum of the true negative and false positives volumes. Prevalence values (threshold = 0.1mL) included for reference.
Rows sorted by “Positive volume”, in descending order. An indicative colour scale is used to improve the perception of the
lowest and highest FNR and FPR values. Warmer colours are associated with higher FPR and FNR values. Median values are
presented for the positive and negative volumes. Average values presented for the FNR and FPR values.

Brain regions Prevalence Positive
volume (mL)

Negative
volume (mL) FNR FPR

Left caudate 44 1.70 30.49 0.25 0.0046
Left occipital lobe 14 0.92 305.38 0.41 0.00020
Right temporal lobe 108 0.91 343.49 0.49 0.00073
Left temporal lobe 104 0.90 364.15 0.54 0.00091
Left frontal lobe - lateral 86 0.83 613.30 0.50 0.00035
Left hippocampus 30 0.74 14.07 0.24 0.0082
Right frontal lobe - inferior-orbital 109 0.71 186.38 0.49 0.00093
Left frontal lobe - medial 100 0.71 128.58 0.45 0.0012
Left frontal lobe - inferior-orbital 123 0.70 187.17 0.49 0.00093
Right frontal lobe - lateral 70 0.69 591.96 0.53 0.00026
Left basal ganglia - lentiform-nucleus 36 0.65 16.71 0.31 0.0083
Right frontal lobe - medial 94 0.64 127.25 0.42 0.00098
Left insula 47 0.60 10.99 0.38 0.0099
Right basal ganglia - lentiform-nucleus 31 0.56 17.85 0.30 0.0050
Right cerebellum 6 0.54 230.92 0.63 0.00070
Right basal forebrain 4 0.52 1.66 0.25 0.0050
Right caudate 36 0.50 32.99 0.33 0.0035
Left basal ganglia 10 0.50 0.99 0.23 0.021
Right thalamus proper 13 0.48 19.57 0.040 0.0026
Right hippocampus 29 0.46 15.09 0.28 0.0055
Ventricles 63 0.45 46.50 0.35 0.0017
Left thalamus proper 24 0.41 19.28 0.50 0.0014
Right parietal lobe 30 0.41 472.60 0.57 0.00039
Left parietal lobe 32 0.39 498.30 0.57 0.00016
Right occipital lobe 28 0.37 327.80 0.45 0.00057
Right basal ganglia 7 0.37 1.04 0.14 0.014
Right insula 40 0.35 10.58 0.33 0.0069
Brain stem 20 0.34 64.16 0.44 0.00041
Left cerebellum 11 0.28 235.85 0.76 0.00023
Left basal forebrain 6 0.21 1.68 0.65 0.0025
Cerebellum 0 0.000 15.58 nan nan
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C. FALSE NEGATIVE AND FALSE POSITIVE RATES MAPS PER LESION CLASS

Table C.3: FNR and FPR values per brain region, for oedema lesions. “Positive volume” corresponds to the denominator of
the FPR formula, i.e. the sum of the true positive and false negative volumes. “Negative volume” is the denominator of the
FNR formula, i.e. sum of the true negative and false positives volumes. Prevalence values (threshold = 0.1mL) included for
reference. Rows sorted by “Positive volume”, in descending order. An indicative colour scale is used to improve the perception
of the lowest and highest FNR and FPR values. Warmer colours are associated with higher FPR and FNR values. Median
values are presented for the positive and negative volumes. Average values presented for the FNR and FPR values.

Brain regions Prevalence Positive
volume (mL)

Negative
volume (mL) FNR FPR

Right temporal lobe 165 1.52 342.77 0.69 0.0016
Left frontal lobe - medial 151 1.19 128.41 0.67 0.0017
Right hippocampus 80 1.16 15.04 0.58 0.014
Left temporal lobe 159 1.12 363.36 0.70 0.0017
Right frontal lobe - inferior-orbital 149 1.08 186.03 0.59 0.0016
Left frontal lobe - lateral 121 0.97 613.12 0.67 0.00029
Right frontal lobe - lateral 106 0.95 591.94 0.59 0.00045
Right frontal lobe - medial 133 0.92 127.06 0.64 0.0020
Left frontal lobe - inferior-orbital 167 0.81 186.95 0.60 0.0012
Left caudate 93 0.78 30.47 0.67 0.0045
Right basal ganglia-lentiform-nucleus 80 0.76 17.75 0.56 0.0099
Right caudate 79 0.76 32.85 0.61 0.0053
Right parietal lobe 51 0.70 472.60 0.81 0.00052
Right occipital lobe 44 0.70 327.80 0.69 0.00054
Right thalamus proper 26 0.70 19.50 0.62 0.0068
Right insula 88 0.68 10.50 0.50 0.017
Left hippocampus 74 0.66 14.01 0.66 0.014
Left basal ganglia - lentiform-nucleus 81 0.64 16.66 0.60 0.0096
Left thalamus proper 27 0.63 19.27 0.69 0.0050
Left insula 99 0.62 10.92 0.56 0.010
Right cerebellum 18 0.56 230.92 0.83 0.00074
Ventricles 113 0.47 46.42 0.54 0.0017
Left occipital lobe 38 0.42 305.38 0.75 0.00030
Brain stem 53 0.38 64.13 0.55 0.0021
Left parietal lobe 62 0.33 498.29 0.92 0.00023
Left cerebellum 19 0.32 235.92 0.78 0.00092
Left basal ganglia 29 0.24 0.99 0.42 0.031
Right basal forebrain 20 0.22 1.65 0.43 0.032
Cerebellum 3 0.22 15.58 1.00 0.00000
Right basal ganglia 25 0.19 1.04 0.43 0.039
Left basal forebrain 17 0.17 1.68 0.67 0.016
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Table C.4: FNR and FPR values per brain region, for IVH lesions. “Positive volume” corresponds to the denominator of
the FPR formula, i.e. the sum of the true positive and false negative volumes. “Negative volume” is the denominator of the
FNR formula, i.e. sum of the true negative and false positives volumes. Prevalence values (threshold = 0.1mL) included for
reference. Rows sorted by “Positive volume”, in descending order. An indicative colour scale is used to improve the perception
of the lowest and highest FNR and FPR values. Warmer colours are associated with higher FPR and FNR values. Median
values are presented for the positive and negative volumes. Average values presented for the FNR and FPR values.

Brain regions Prevalence Positive
volume (mL)

Negative
volume (mL) FNR FPR

LeftHippocampus 1 0.56 14.14 0.32 0.00036
Ventricles 70 0.40 46.49 0.56 0.0030
RightCaudate 1 0.37 33.04 0.28 0.0023
LeftThalamusProper 6 0.34 19.30 0.47 0.0027
LeftCaudate 1 0.34 30.67 0.28 0.0016
LeftOccipitalLobe 18 0.28 305.38 0.56 8.50E-05
BrainStem 4 0.24 64.20 0.97 9.15E-05
LeftParietalLobe 11 0.22 498.30 0.55 5.25E-05
RightOccipitalLobe 11 0.21 327.84 0.64 2.27E-05
RightThalamusProper 6 0.16 19.58 0.72 0.0010
RightParietalLobe 6 0.14 472.87 0.75 4.48E-05
RightHippocampus 2 0.12 15.20 0.43 0.00099
LeftFrontalLobe-medial 1 0.12 128.68 0.64 4.34E-05
Cerebellum 0 0.00 15.58 nan nan
LeftBasalForebrain 0 0.00 1.68 nan nan
LeftBasalGanglia 0 0.00 1.00 nan nan
LeftBasalganglia-lentiform-nucleus 0 0.00 16.79 nan nan
LeftCerebellum 0 0.00 235.94 nan nan
LeftFrontalLobe-inferior-orbital 0 0.00 187.50 nan nan
LeftFrontalLobe-lateral 0 0.00 613.43 nan nan
LeftInsula 0 0.00 11.04 nan nan
LeftTemporalLobe 0 0.00 365.43 nan nan
RightBasalForebrain 0 0.00 1.66 nan nan
RightBasalGanglia 0 0.00 1.05 nan nan
RightBasalGanglia-lentiform-nucleus 0 0.00 17.89 nan nan
RightCerebellum 0 0.00 230.92 nan nan
RightFrontalLobe-inferior-orbital 0 0.00 186.55 nan nan
RightFrontalLobe-lateral 0 0.00 592.15 nan nan
RightFrontalLobe-medial 0 0.00 127.40 nan nan
RightInsula 0 0.00 10.62 nan nan
RightTemporalLobe 0 0.00 343.60 nan nan
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C. FALSE NEGATIVE AND FALSE POSITIVE RATES MAPS PER LESION CLASS

Figure 5.1: Four qualitative examples of lesion segmentation and atlas mapping, selected based on their high total segmentation
error volumes. Reference segmentation and BLAST-prediction colour legend: Red -IVH; Purple - Oedema; Green - IPH; Light
blue - EAH.
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