623 research outputs found

    A Learning-Based Automatic Segmentation and Quantification Method on Left Ventricle in Gated Myocardial Perfusion SPECT Imaging: A Feasibility Study

    Get PDF
    Background: The performance of left ventricular (LV) functional assessment using gated myocardial perfusion SPECT (MPS) relies on the accuracy of segmentation. Current methods require manual adjustments that are tedious and subjective. We propose a novel machine-learning-based method to automatically segment LV myocardium and measure its volume in gated MPS imaging without human intervention. Methods: We used an end-to-end fully convolutional neural network to segment LV myocardium by delineating its endocardial and epicardial surface. A novel compound loss function, which encourages similarity and penalizes discrepancy between prediction and training dataset, is utilized in training stage to achieve excellent performance. We retrospectively investigated 32 normal patients and 24 abnormal patients, whose LV myocardial contours automatically segmented by our method were compared with those delineated by physicians as the ground truth. Results: The results of our method demonstrated very good agreement with the ground truth. The average DSC metrics and Hausdorff distance of the contours delineated by our method are larger than 0.900 and less than 1 cm, respectively, among all 32 + 24 patients of all phases. The correlation coefficient of the LV myocardium volume between ground truth and our results is 0.910 ± 0.061 (P \u3c 0.001), and the mean relative error of LV myocardium volume is − 1.09 ± 3.66%. Conclusion: These results strongly indicate the feasibility of our method in accurately quantifying LV myocardium volume change over the cardiac cycle. The learning-based segmentation method in gated MPS imaging has great promise for clinical use

    Shape and appearance priors for level set-based left ventricle segmentation

    Get PDF

    Automatic segmentation in CMR - Development and validation of algorithms for left ventricular function, myocardium at risk and myocardial infarction

    Get PDF
    In this thesis four new algorithms are presented for automatic segmentation in cardiovascular magnetic resonance (CMR); automatic segmentation of the left ventricle, myocardial infarction, and myocardium at risk in two different image types. All four algorithms were implemented in freely available software for image analysis and were validated against reference delineations with a low bias and high regional agreement. CMR is the most accurate and reproducible method for assessment of left ventricular mass and volumes and reference standard for assessment of myocardial infarction. CMR is also validated against single photon emission computed tomography (SPECT) for assessment of myocardium at risk up to one week after acute myocardial infarction. However, the clinical standard for quantification of left ventricular mass and volumes is manual delineation which has been shown to have a large bias between observers from different sites and for myocardium at risk and myocardial infarction there is no clinical standard due to varying results shown for the previously suggested threshold methods. The new automatic algorithms were all based on intensity classification by Expectation Maximization (EM) and incorporation of a priori information specific for each application. Validation was performed in large cohorts of patients with regards to bias in clinical parameters and regional agreement as Dice Similarity Coefficient (DSC). Further, images with reference delineation of the left ventricle were made available for future benchmarking of left ventricular segmentation, and the new automatic algorithms for segmentation of myocardium at risk and myocardial infarction were directly compared to the previously suggested intensity threshold methods. Combining intensity classification by EM with a priori information as in the new automatic algorithms was shown superior to previous methods and specifically to the previously suggested threshold methods for myocardium at risk and myocardial infarction. Added value of using a priori information and intensity correction was shown significant measured by DSC even though not significant for bias. For the previously suggested methods of infarct quantification a poorer result was found in the new multi-center, multi-vendor patient data than in the original validation in animal studies or single center patient studies. Thus, the results in this thesis also show the importance ofusing both bias and DSC for validation and performing validation in images of representative quality as in multi-center, multi-vendor patient studies

    Imagej's contribution to left ventricular segmentation in myocardial perfusion imaging

    Get PDF
    Introduction: The Myocardial Perfusion Imaging (MPI) is a non-invasive image test that allows the assessment of perfusion, function, and viability of the Left Ventricle (LV). The quantitative parameters obtained post-reconstruction requires an accurate segmentation of the LV. ImageJ is an open-source software that provides segmentation techniques that may contribute to the segmentation of the LV in the MPI. The purpose of this study was to study the influence of the different segmentation methods provided by ImageJ, in MPI, depending on the administered activity. Material and methods: We carried out an experimental research with 4 MPI studies simulated with 275, 385, 500 and 750 Bq/voxel in the myocardium, whose short-axis (SA) slices were segmented with ImageJ by the threshold default, OTSU, and k-means Plugin Toolkit methods (k=2, k=3). To analyze the most appropriate segmentation method, the signal-to-noise ratio (SNR) for each short-axis (SA) slice was calculated, in accordance with the slices obtained from the software Quantitative Perfusion Single Photon Emission Computed Tomography® (QPS®) and by manual segmentation using ImageJ. To analyze the SNR with ImageJ and QPS® segmentation methods in the same simulated study, and to compare with the same segmentation method in different simulated studies, the Friedman and Kruskal-Wallis tests were applied. Results and discussion: The method k-means with k=3 is the most suitable method for the segmentation of the LV, regardless of the administered activity. Conclusion: This study may contribute to the clinical implementation of open-source based segmentation methods of the LV in MPI, according to the activity in the myocardium.info:eu-repo/semantics/publishedVersio

    A hybrid active contour segmentation method for myocardial D-SPECT images

    Get PDF
    Ischaemic heart disease has become one of the leading causes of mortality worldwide. Dynamic single-photon emission computed tomography (D-SPECT) is an advanced routine diagnostic tool commonly used to validate myocardial function in patients suffering from various heart diseases. Accurate automatic localization and segmentation of myocardial regions is helpful in creating a three-dimensional myocardial model and assisting clinicians to perform assessments of myocardial function. Thus, image segmentation is a key technology in preclinical cardiac studies. Intensity inhomogeneity is one of the common challenges in image segmentation and is caused by image artefacts and instrument inaccuracy. In this paper, a novel region-based active contour model that can segment the myocardial D-SPECT image accurately is presented. First, a local region-based fitting image is defined based on information related to the intensity. Second, a likelihood fitting image energy function is built in a local region around each point in a given vector-valued image. Next, the level set method is used to present a global energy function with respect to the neighbourhood centre. The proposed approach guarantees precision and computational efficiency by combining the region-scalable fitting energy (RSF) model and local image fitting energy (LIF) model, and it can solve the issue of high sensitivity to initialization for myocardial D-SPECT segmentation

    Analysis of cardiac magnetic resonance images : towards quantification in clinical practice

    Get PDF

    Characterisation and correction of respiratory-motion artefacts in cardiac PET-CT

    Get PDF
    Respiratory motion during cardiac Positron Emission Tomography (PET) Computed Tomography (CT) imaging results in blurring of the PET data and can induce mismatches between the PET and CT datasets, leading to attenuation-correction artefacts. The aim of this project was to develop a method of motion-correction to overcome both of these problems. The approach implemented was to transform a single CT to match the frames of a gated PET study, to facilitate respiratory-matched attenuation-correction, without the need for a gated CT. This is benecial for lowering the radiation dose to the patient and in reducing PETCT mismatches, which can arise even in gated studies. The heart and diaphragm were identied through phantom studies as the structures responsible for generating attenuation-correction artefacts in the heart and their motions therefore needed to be considered in transforming the CT. Estimating heart motion was straight-forward, due to its high contrast in PET, however the poor diaphragm contrast meant that additional information was required to track its position. Therefore a diaphragm shape model was constructed using segmented diaphragm surfaces, enabling complete diaphragm surfaces to be produced from incomplete and noisy initial estimates. These complete surfaces, in combination with the estimated heart motions were used to transform the CT. The PET frames were then attenuation-corrected with the transformed CT, reconstructed, aligned and summed, to produce motion-free images. It was found that motion-blurring was reduced through alignment, although benets were marginal in the presence of small respiratory motions. Quantitative accuracy was improved from use of the transformed CT for attenuation-correction (compared with no CT transformation), which was attributed to both the heart and the diaphragm transformations. In comparison to a gated CT, a substantial dose saving and a reduced dependence on gating techniques were achieved, indicating the potential value of the technique in routine clinical procedures

    Artificial Intelligence Will Transform Cardiac Imaging-Opportunities and Challenges

    Get PDF
    National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Center at BartsSmartHeart EPSRC programme grant (www.nihr.ac.uk; EP/P001009/1)London Medical Imaging and AI Center for Value-Based HealthcareCAP-AI programmeEuropean Union's Horizon 2020 research and innovation programme under grant agreement No 825903
    • …
    corecore