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A Learning-based Automatic Segmentation and Quantification Method on 

Left Ventricle in Gated Myocardial Perfusion SPECT Imaging: A Feasibility 

Study

Abstract

Background: The performance of left ventricular (LV) functional assessment using gated myocardial perfusion 

SPECT (MPS) relies on the accuracy of segmentation. Current methods require manual adjustments that are 

tedious and subjective. We propose a novel machine-learning-based method to automatically segment LV 

myocardium and measure its volume in gated MPS imaging without human intervention. Methods: We used an 

end-to-end fully convolutional neural network to segment LV myocardium by delineating its endocardial and  

epicardial surface. A novel compound loss function, which encourages similarity and penalizes discrepancy 

between prediction and training dataset, is utilized in training stage to achieve excellent performance. We 

retrospectively investigated 32 normal patients and 24 abnormal patients, whose LV myocardial contours 

automatically segmented by our method were compared with those delineated by physicians as the ground truth. 

Results: The results of our method demonstrated very good agreement with the ground truth. The average DSC 

metrics and Hausdorff distance of the contours delineated by our method are larger than 0.900 and less than 1cm, 

respectively, among all 32+24 patients of all phases. The correlation coefficient of the LV myocardium volume 

between ground truth and our results is 0.910±0.061 (P<0.001), and the mean relative error of LV myocardium 

volume is -1.09±3.66%. Conclusion: These results strongly indicate the feasibility of our method in accurately 

quantifing LV myocardium volume change over the cardiac cycle. The learning-based segmentation method in 

gated MPS imaging has great promise for clinical use.

Keywords: myocardial perfusion, SPECT, segmentation, machine learning
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Abbreviations: SPECT: single-photon emission computed tomography; MPS: myocardial perfusion SPECT; LV: 

left ventricular; CT: computed tomography; MRI: magnetic resonance imaging; BCE:  binary cross entropy; DSC: 

Dice similarity coefficient; EF: ejection fraction; EDV: end-diastolic volume; ESV: end-systolic volume.
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INTRODUCTION

Myocardial perfusion SPECT (MPS) has been one of the most important imaging modalities for the 

assessment of left ventricular (LV) function (1-4). Photons emitted by an injected radioactive perfusion tracer 

taken up by the LV myocardium are detected to reconstruct perfusion images. With electrocardiographic gating, 

MPS provides 8 or 16 volumetric perfusion image sets corresponding to different phases of the cardiac cycle (5). 

Evaluations are performed based on these images by visual and quantitative estimation of the variation of LV 

during the cardiac cycle (6). LV contractile functional indices can then be derived from MPS images for the 

diagnosis/prognosis of coronary artery disease and patient risk assessment (7-12). 

The fidelity of LV function assessment by MPS directly relates to the quantification accuracy of the LV 

myocardium volume (13, 14). The measurement of LV myocardium volume starts with delineation of epicardial 

and endocardial boundaries on the perfusion images, and is calculated as the volume bounded by the epicardial 

and endocardial surface. Manual segmentation is tedious when it involves studies on multiple volumetric phase 

images of the cardiac cycle, and is dependent on observers’ experience. It is desirable to develop an observer-

independent segmentation method to improve efficiency and reproducibility with comparable accuracy. 

Current automated methods extract the epicardial and endocardial boundaries based on general 

assumptions and rules with empirical parameters. For example, commercially available methods estimate the 

profiles of the myocardium by identifying the maximal myocardial count, then applying Gaussian fitting with 

empirical standard deviation or threshold to extract endocardial and epicardial boundaries (15, 16). This method is 

easy and fast to implement, though it neglects the anatomical variations and pathology abnormalities among 

different patients. Studies have shown that LV myocardium volume would be over- or underestimated by this 

method (17, 18), and manual adjustments are usually required (14).

In recent years, machine learning methods are being integrated into segmentation studies. They have been 

shown to feature better results while requiring less time than traditional methods for CT and MR images (19-21) 

due to its data-driven approaches toward automatically learning image features and model parameters. Compared 
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with these common imaging modalities, MPS images have advantages for machine learning methods in that 

image size is greatly reduced and with higher image contrast, which leads to more efficient extraction of global 

features from the whole image set during the training stage. Thus, the machine learning method is promising in 

automatic MPS image segmentation.

In this paper, we propose a novel machine-learning based method to automatically segment LV 

myocardium by delineating its endocardial and epicardial surface, and measure its volume in gated MPS imaging. 

Our method uses a multi-class 3D V-Net, which is an end-to-end fully convolutional neural network. A 

compound loss function, which simultaneously encourages similarity and penalizes discrepancy between 

prediction and training datasets, was utilized in training stage to achieve excellent performance. To evaluate our 

proposed method, we retrospectively investigated 32 normal patients and 24 abnormal patients with clinically-

acquired MPS. The LV myocardium was segmented by our proposed method and compared with ground truth 

approved by physicians for evaluation on a total of 32 + 24 patients.

METHODS AND MATERIALS

The proposed SPECT LV myocardium segmentation method consists of a training stage and a 

segmentation stage. For a given SPECT image dataset, the clinically-implemented physician-drawn contours of 

the endocardial and epicardial surface of myocardium are available. These clinical contours were used as the 

learning-based target of the SPECT image. The region within endocardial surfaces, region within epicardial 

surfaces, and background region are regarded as training and segmenting classes in our method. The original 

SPECT images were first automatically cropped into 32x32x16 voxels to reduce background region: a threshold 

was used to get rid of background and the centroid of the active heart region was then calculated, based on which 

a 32x32x16 voxel region was cropped to cover the active heart region. A volume-based deep learning network 

was trained based on such extracted SPECT image volume. The 3D multi-class V-Net architecture was used to 

enable voxel-wise error back-propagation during the training stage, and directly outputting an equal-sized 

prediction patch with the input patch during the testing procedure (22). By up-scaling low [4x4x2], modest 

[8x8x4], and high-level [16x16x8] feature volumes at each forwarding path from left to right portions of the 
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hidden network using additional deconvolutional layers, and incorporating last output feature volume, the softmax 

function was employed on these equal-sized feature volumes to obtain final contour prediction. The Adam 

gradient decent optimizer was employed to train the V-Net. We used the whole volume as a patch and the batch 

size (number of patches) is 20. The number of epochs is 180.  Compound loss supervision was then integrated 

into this prediction by considering both binary cross entropy and Dice loss to supervise the back-propagation of 

gradients for parameter updating in each training epoch. During the segmentation stage, the new arrival 3D patient 

SPECT was automatically cropped to reduce the background region ([32x32x16] in this study), and then input to 

the trained networks. The output volume was a multi-class contour probability maps. Finally, the segmentation 

was generated by thresholding the probability maps larger than 0.5. Fig.1 outlines the workflow schematic of our 

segmentation method.
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Fig. 1 Schematic flow chart of the proposed algorithm for LV segmentation. The upper part of this figure shows the training 
stage of our proposed method. The upper part also shows the V-Net architecture which has single channel volume input and 3 
channels (background, region within endocardium, and region within epicardium) volume output. The lower part (brown) 
shows the segmentation stage. In segmentation stage, a new SPECT heart image is fed into the well-trained model to get the 
segmentation.

In this study, we propose a compound loss function incorporating both the effectiveness of logistic loss 

and Dice loss functions to supervise our network. Since the optimization of the prediction task is a binary 

regression, we first used the voxel-wise binary cross entropy (BCE) loss as the logistic loss function. The BCE 

loss is defined as follows:

, (1)𝐿𝐵𝐶𝐸(𝐶,𝐶) = ― ∑
𝑗𝐶𝑗log 𝐶𝑗 + (1 ― 𝐶𝑗)log (1 ― 𝐶𝑗)

where  and  denote the th voxel in clinical contour  and prediction , respectively.𝐶𝑗 𝐶𝑗 𝑗 𝐶 𝐶

The endocardial surface contour often occupies a small region of the MPS images as compared with 

epicardial surface contour. This may cause the network to ignore segmented regions and bias network output 

towards the background. The learning process can be trapped in local minima and unable to obtain accurate 

results. To address this issue, we additionally incorporated the logistic loss with Dice loss in the final stage as the 

final objective function. The Dice loss for segmentation was originally proposed in a 3D model defined as:

, (2)𝐿𝐷𝑖𝑐𝑒(𝐶,𝐶) = 1 ―
2 × 𝑉(𝐶 ∩ 𝐶)
𝑉(𝐶) + 𝑉(𝐶)

where  indicates the volume of the region enclosed in the contours.𝑉

The compound loss function is a combination of the above BCE and Dice loss functions, which are 

related to the dissimilarity and similarity between prediction and training dataset, respectively. It is defined as 

follows:

, (3)𝐿𝑓𝑖𝑛𝑎𝑙(𝐶,𝐶) = 𝐿𝐵𝐶𝐸(𝐶,𝐶) +𝜇𝐿𝐷𝑖𝑐𝑒(𝐶,𝐶)

where  is an empirical parameter, which balances the loss from binary cross entropy and Dice coefficient. In 

order to fairly compare the performance of the method on different patients, our hyper parameters of the network 

were fixed before we conducted the leave-one-out experiments. The batch size was set to 20. The number of 

epochs was set to 180. For the parameter μ, we employed 4-fold cross validation to evaluate its setting. It was 

shown that the performance is not sensitive when μ is between [0.7, 1.3], thus we set μ=1.
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To evaluate the performance of the proposed method for LV myocardium segmentation, we compared the 

difference of contours generated by our method with clinical contours. In this retrospective study, we studied the 

dataset of 32 patients without hypertension, diabetes, heart dysfunction, family history of heart diseases 

(mean±STD age: 63±10, 23 males, 9 females). The cohort of 32 patients were used to evaluate our method using 

the leave-one-out cross-validation. For one test patient, the model is trained by the rest 31 patients. The model is 

initialized and re-trained for next test patient by another group of 31 patients. The training dataset and testing 

dataset are separated and independent during each study. In addition, 24 patients (mean±STD age: 57±10, 17 

males, 7 females) diagnosed with myocardial ischemia ranging from mild, moderate to severe extents were also 

included to further test the proposed segmentation method with a leave-one-out validation strategy. Institutional 

review board approval was obtained with no informed consent required for this HIPAA-compliant retrospective 

analysis.  Each patient underwent 8-frame ECG-gated resting SPECT performed 30 minutes after injection of 20-

30 mCi Tc-99m sestamibi. The SPECT images were acquired by a dual-headed camera (CardioMD, Philips 

Medical Systems) using a standard resting protocol. The acquisition parameters were 20% energy window around 

140 keV, 180º orbit, 32 steps with 25 seconds per step, 8-bin gating and 64 projections per gate. Images were 

reconstructed into transaxial slices by ordered subsets expectation maximization with 3 iterations and 10 subsets, 

with Butterworth filter of power 10 and cutoff frequency of 0.3 cycles/cm. The reconstructed voxel dimensions of 

each SPECT image volume was 6.4×6.4×6.4 mm3.

Each patient had contours of myocardium with endocardial and epicardial surface delineated and 

approved by physicians, which were treated as the ground truth. Corresponding contours were also generated by 

our proposed method. The volume between endocardial and epicardial surface was considered as myocardium 

where the LV myocardium volume is calculated. We first visually checked the similarity of the contours between 

ground truth and the results of the proposed method. Quantitatively, we characterized the accuracy of the 

proposed method by calculating two widely-used metrics: Dice similarity coefficient (DSC) and Hausdorff 

distance. The DSC describes the overlapping of the segmented volumes between ground truth and proposed 

method, which can be calculated by 1-Eq. (2), with  and  are the contours of ground truth and proposed method 𝐶 𝐶
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results, respectively. A magnitude of DSC closer to 1 indicates higher overlapping with ground truth, thus high 

accuracy of the proposed method. The DSC metrics were calculated on the contours of endocardial surface and 

epicardial surface individually, as well as the combined myocardium contour. Hausdorff distance measures the 

difference of two contours in distance. It is defined as the maximum of the closest distances from each point on 

one contour to all points on the other contour, (23) i.e.,

, (4)𝐻(𝐶,𝐶) = max {𝑚𝑎𝑥 
𝑎 ∈ 𝐶

𝑚𝑖𝑛
𝑏 ∈ 𝐶

‖𝑎 ― 𝑏‖,𝑚𝑎𝑥
𝑏 ∈ 𝐶

𝑚𝑖𝑛
𝑎 ∈ 𝐶

‖𝑎 ― 𝑏‖}

where  and  are points on contours of ground truth  and proposed method results , respectively.  𝑎 𝑏 𝐶 𝐶 ‖𝑎 ― 𝑏‖

represents the Euclidean distance between point  and . A smaller Hausdorff distance means higher similarity 𝑎 𝑏

between the two contours. Hausdorff distance metrics were calculated on the contours of endocardial surface and 

epicardial surface individually. To determine interobserver variability, the DSC and Hausdorff distance metrics 

were also calculated on the contours delineated by a second observer for three randomly selected patients with all 

phases from the total dataset.

The accuracy of the LV myocardium volume was evaluated by Pearson Correlation analysis between 

ground truth and the results of proposed method among all patients for each gating phase (0,1/8,… 7/8), and its 

correlation coefficient ( ) and P value were calculated. A correlation coefficient closer to 1 indicates higher 𝑟

accuracy of proposed method, and a P value of less than 0.05 was considered to be statistically significant. The 

relative error of measured LV myocardium volume was calculated as the difference between ground truth and the 

results of proposed method relative to ground truth. A Bland-Altman figure was then plotted to show the absolute 

systematic bias in error and dependence of error on volume size.

Moreover, we calculated LV ejection fraction (EF) to further evaluate our method. We considered the 

region within endocardial surface of myocardium as the LV cavity. The maximum and minimum volumes within 

endocardial surface among all phases were then used as end-diastolic volume (EDV) and end-systolic volume 

(ESV) respectively to calculate EF = (EDV-ESV)/EDV. The EF calculation based on the segmentations of our 
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proposed method was compared with that based on the ground truth, as well as compared with results from a 

commercial software package (Emory Cardiac Toolbox 4.0,Atlanta, USA). 

RESULTS

Normal  group

In Fig. 2, the segmentations by the proposed method are compared side-by-side with the clinical ground 

truth at different slices of gating phase 0 from patient #1 (normal) as an example. In this case, the LV 

myocardium volume measured by the proposed method was 191.5 cc, underestimated 1.74% from ground truth 

194.9 cc. 

Fig. 3 shows a side-by-side comparison between the segmentations by the proposed method and ground 

truth from the same patient as Fig. 2, but across different gating phases of the same slice. The mean and standard 

deviation (STD) of DSC of endocardial and epicardial surface, and myocardium, and Hausdorff distance of 

endocardial and epicardial surface among all 32 normal patients are plotted in Fig. 4 for each phase and 

summarized in Table 1. The average DSC metrics and Hausdorff distance are all larger than 0.900 and less than 

1cm, respectively. The minimum DSC on myocardium is 0.783 which is the only case with DCS less than 0.800. 

These results quantitatively demonstrate high accuracy of contours delineated by the proposed method. No case 

shows unreasonable result among the 32 patients and 8 phases using our method. 

The LV myocardium volumes changing with phases are demonstrated in Fig. 5 for patients 01 to 04. Our 

method accurately quantified the variation of LV myocardium volume during the cardiac cycle. Note that we 

present the results of four patients in figures as examples, but similar results can be seen on the other patients. 
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Fig. 2 The axial views of patient #1 (normal) at different slices of gating phase 0 with segmentations of ground truth and 

proposed method. The black lines indicate the contours of endocardial and epicardial surface.

Fig. 3 The axial views of patient #1 (normal)  from phase 0 to 7/8 at same slice with segmentations of ground truth and 

proposed method. The black lines indicate the contours of endocardial and epicardial surface.
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Fig. 4 Mean and STD of DSC and Hausdorff distance of contours between ground truth and proposed method among all 32 

normal patients for each phase.

Table 1. Mean ± STD of DSC and Hausdorff distance among all 32 normal patients.

Metrics Endocardium Myocardium Epicardium
DSC 0.907±0.039 0.926±0.021 0.965±0.011

Hausdorff Distance (mm) 8.402±3.317 N/A 8.631±4.057

Fig. 5 LV myocardium volumes of ground truth and measured by ground truth at different phases of patient 01 to 04 (normal 

patients). 
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The correlation analysis of LV myocardium volume between ground truth and the proposed method is 

shown in Fig. 6. Mean (and STD) of  among all phases is 0.910±0.061, and all P values are less than 0.001, r

which indicates statistically significant linear correlation between LV myocardium volumes measured by 

proposed method and ground truth. The relative error in LV myocardium volume measurement for each phase is 

presented in Fig. 7 as a Bland-Altman plot. The mean (and STD) relative error among all patients and all phases is 

-1.09±3.66 %. The average linear correlation coefficient between volume error and volume size for all phases is -

0.222 (P = 0.238).

Fig. 6 Correlation analysis of LV myocardium volume between ground truth and proposed method at each gating phase 

among all 32 normal patients. Blue circle indicates measurement of each patient at that phase, and dashed red line is line of 

identity.
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Fig. 7 Relative error of LV myocardium volume measured by the proposed method of each normal patient at each phase.

The EF results on normal patients are calculated based on our results and ground truth, and obtained from 

commercial software are shown in Fig. 8 as Bland-Altman plots. Good correlation on EF is shown between our 

results and ground truth ( =0.893, P<0.001). Correlation between our results and commercial software is fair (r r

=0.644, P<0.001). Similar studies on ESV and EDV are shown in Fig. 9. Excellent correlations are found between 

our method and ground truth for both ESV and EDV, and between our method and commercial software for EDV. 

The correlation of ESV between our method and commercial software is fair.
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Fig. 8  Left: Correlation analysis of EF between ground truth and proposed method (upper) and between commercial 
software and proposed method (bottom). Right: Difference of EF between ground truth and proposed method (upper) and 
between commercial software and proposed method (bottom).
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Fig. 9  Correlation analysis of ESV (left) and EDV (right) between ground truth and proposed method (upper) and between 
commercial software and proposed method (bottom).

Abnormal group

Fig. 10 demonstrates a side-by-side comparison between our results and the clinical ground truth at 

different slices of gating phase 0 from patient #25 (diagnosed with moderate ischemia) as an example. In this case, 

the LV myocardium volume measured by the proposed method was 212.0 cc, overestimated 1.49% from ground 

truth 208.9 cc. The mean and standard deviation (STD) of DSC of endocardial and epicardial surface, and 

myocardium, and Hausdorff distance of endocardial and epicardial surface among all 24 abnormal patients are 

plotted in Fig. 11 for each phase and summarized in Table 2. Overall, the results on abnormal patients are very 

similar with those of normal patients, with mean DSC larger than 0.9 and Hausdorff distance less than 1cm. The 

correlation coefficient of the LV myocardium volume between ground truth and our results is 0.939±0.103 

(P<0.001), and the mean relative error of LV myocardium volume is -0.567±3.47%.
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Fig. 10 The axial views of patient #25 (abnormal) at different slices of gating phase 0 with segmentations of ground truth and 
proposed method. The black lines indicate the contours of endocardial and epicardial surface.

Fig. 11 Mean and STD of DSC and Hausdorff distance of contours between ground truth and proposed method among all 24 

abnormal patients for each phase.

Table 2. Mean ± STD of DSC and Hausdorff distance among all 24 abnormal patients.

Metrics Endocardium Myocardium Epicardium
DSC 0.910±0.037 0.927±0.018 0.965±0.011

Hausdorff Distance (mm) 8.384±3.240 N/A 9.310±5.034
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Interobserver study

The interobserver study results on normal patients are shown in Fig. 12. The average DSC and Hausdorff 

distance between contours from two observers are 0.890 and 10.99 mm, respectively, which is higher but still 

comparable to the discrepancy of our method.

Fig. 12 DSC and Hausdorff distance of contours between two observers among 3 patients for each phase.

DISCUSSION

In this study, we proposed a novel machine-learning based method to segment LV and measure LV 

myocardium volume in gated MPS imaging. The average DSC metrics and Hausdorff distance of the contours 

delineated by our method are larger than 0.9 and less than 1cm, respectively. The results on abnormal patients are 

very similar with those on normal patients using our proposed method. The correlation coefficient of the LV 

myocardium volume between ground truth and results by the proposed method is 0.910±0.061 with statistical 

significance, and the mean relative error of LV myocardium volume is -1.09±3.66 %. These results strongly 

indicate the feasibility of the proposed method in accurately quantifing the changing LV myocardium volume 
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during the cardiac cycle. It also demonstrates the great potential of learning-based segmentation method in gated 

MPS imaging for clinical use.

Segmentation of LV in MPS imaging studied in this paper is a critical step in clinical evaluations for 

quantifying multiple LV contractile functional indices. In this study, we validated the accuracy of LV 

myocardium volume measured by the proposed method with ground truth. An accurate LV myocardium volume 

measurement can predict adverse cardiovascular events and premature death based on a well-established model 

(24), and provides prognostic information beyond traditional cardiovascular disease risk factors (25). The 

endocardium contours segmented for all gating phases would also be tracked to calculate regional endocardial 

wall motion by computing the distance of the endocardial surface between end-diastole and end-systole. Thus, a 

segmentation method with high performance is essential to avoid introducing error from the beginning of MPS 

imaging practice.

Manual contours rely on observer’s experience, and are reported to have substantial intraobserver and 

interobserver variability and less reproducibility (26).  The manual contour from different observers may have 

systematic errors and random errors. Our learning-based method can mitigate random errors, but cannot correct 

systematic errors induced by the observers. In this study, we find that current contours for clinical use are 

represented as unsmooth curvature (see Fig. 2 and 3). The contours segmented by our method have better 

refinement, which is more physically plausible when considering real anatomical structures. Secondly, our 

method provides comparable results but spends significantly shorter time. With a trained model, it takes around 

10 seconds to accurately delineate contours and measure volumes for all phases of MPS imaging on a NVIDIA 

TITAN XP GPU. Moreover, our method requires no manual input parameters, correction or intervention. Its 

speed and reproducibility allow it to be promising for clinical use.

Overestimation of LV myocardium volume for small heart and underestimation for large heart is 

commonly seen in current existing methods (17, 18), which may lead to systematic errors on patient groups with 

small or large hearts. In our result, such correlation between volume measurement error and volume size is not 

observed from Fig. 6. The linear correlation coefficient between volume error and volume size for all phases is -
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0.222 (P = 0.238) on average, which indicates very low correlation without statistical significance. Thus, our 

method is able to work equally well regardless of the size of LV myocardium volume. 

We compared the EF calculated based on our segmentation results with that obtained from a commercial 

software package, and found a fair correlation. Compared with correlation on EDV which is good (r=0.914), ESV 

has larger discrepancy from commercial software (r=0.818). Thus the differnce in the EF is mainly contributed 

from the difference in ESV. It may be explained by the different methodology used to determine ESV in the 

commercial software with various post-processing steps, which leads to larger discrpency in results from our 

method. Studies showed that the correlation of EFs between two commercial softwares using different methods 

could be around 0.800 (27). Thus, the commercial software results should be considered as a benchmark instead 

of a gold standard in this study.

Note that this study does not aim to demonstrate the absolute accuracy of the output contours of the 

proposed method by comparing with patients’ true myocardial contours which are always unavailable. Instead, we 

showed the high correlation of the output contours with its training dataset, which is manual contour from one 

observer in this study. Such high correlation would still exist if the training contours are from another experienced 

observer since the method is not designed for a specific observer. Thus, if the training dataset is closer to the true 

patient contour (e.g. consensus contours by multiple observers), the result of our method would also be closer to 

the true contour. In other words, our method generates contours with similar quality as training contours, and the 

quality of training dataset directly determines the quality of the output results.

In this study, we proposed a novel method for MPS automatic segmentation, and demonstrated its 

feasibility with 32 normal patients and 24 abnormal patients. This training/testing dataset has intermediate number 

of patients with anatomical variations and pathology abnormalities. Future study would involve a comprehensive 

evaluation with a larger population of patients with diverse demographics and pathological abnormalities. 

Different testing and training datasets (including normal and abnormal cases) from different observers and 

institutes would be valuable to further evaluate the clinical utility of our method. Moreover, this study validated 

the proposed method by quantifying the shape similarity of contours. Small differences from ground truth are 
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observed, and its potential clinical impact (e.g. on functional indices) needs to be understood. Thus, a further 

investigation in diagnostic accuracy of the proposed method in detection and localization of coronary artery 

disease would be of great interest for clinical use.

CONCLUSION

We proposed a learning-based method to automatically segment LV and measure LV myocardium 

volume in gated MPS imaging. This method would benefit the gated MPS imaging in providing high quality 

automatic quantification on multiple LV contractile functional indices without manual intervention. The proposed 

method was evaluated among 32 normal patients and 24 abnormal patients. The results demonstrate the feasibility 

of the proposed method in contouring with comparable accuracy as that based on physician experience.

NEW KNOWLEDGE GAINED

A learning-based method has been proposed to automatically segment LV and measure myocardium 

volume in gated MPS imaging. Results show that the proposed method has the feasibility in contouring with 

comparable accuracy as that based on physician experience.
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Fig. 1 Schematic flow chart of the proposed algorithm for LV segmentation. The upper part of this figure 
shows the training stage of our proposed method. The upper part also shows the V-Net architecture which 

has single channel volume input and 3 channels (background, region within endocardium, and region within 
epicardium) volume output. The lower part (brown) shows the segmentation stage. In segmentation stage, 

a new SPECT heart image is fed into the well-trained model to get the segmentation. 
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Fig. 2 The axial views of patient #1 (normal) at different slices of gating phase 0 with segmentations of 
ground truth and proposed method. The black lines indicate the contours of endocardial and epicardial 

surface. 
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Fig. 3 The axial views of patient #1 (normal)  from phase 0 to 7/8 at same slice with segmentations of 
ground truth and proposed method. The black lines indicate the contours of endocardial and epicardial 

surface. 
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Fig. 4 Mean and STD of DSC and Hausdorff distance of contours between ground truth and proposed method 
among all 32 normal patients for each phase. 
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Fig. 5 LV myocardium volumes of ground truth and measured by ground truth at different phases of patient 
01 to 04 (normal patients). 

69x38mm (300 x 300 DPI) 

Page 28 of 43

Footer Text

Journal of Nuclear Cardiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Fig. 6 Correlation analysis of LV myocardium volume between ground truth and proposed method at each 
gating phase among all 32 normal patients. Blue circle indicates measurement of each patient at that phase, 

and dashed red line is line of identity. 
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Fig. 7 Relative error of LV myocardium volume measured by the proposed method of each normal patient at 
each phase. 
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Left: Correlation analysis of EF between ground truth and proposed method (upper) and between 
commercial software and proposed method (bottom). Right: Difference of EF between ground truth and 

proposed method (upper) and between commercial software and proposed method (bottom). 
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Correlation analysis of ESV (left) and EDV (right) between ground truth and proposed method (upper) and 
between commercial software and proposed method (bottom). 
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Fig. 10 The axial views of patient #25 (abnormal) at different slices of gating phase 0 with segmentations of 
ground truth and proposed method. The black lines indicate the contours of endocardial and epicardial 

surface. 

86x80mm (300 x 300 DPI) 

Page 33 of 43

Footer Text

Journal of Nuclear Cardiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Fig. 11 Mean and STD of DSC and Hausdorff distance of contours between ground truth and proposed 
method among all 24 abnormal patients for each phase 
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Fig. 12 DSC and Hausdorff distance of contours between two observers among 3 patients for each phase 
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[General Response]: The authors wish to thank the reviewers and editor for the thorough review and 
constructive comments. Here we provide a point-by-point response to the reviewers’ comments. In the 
revised manuscript, all the modifications that are based on reviewer comments are underlined. 

Referee #1's Comments:

Comments to the Author

The revised manuscript has clarified some of the issues raised during the previous round of review. 
However, some major concerns still remain.

1.    It is stated that a leave-one-out procedure was used for training/testing the network, in which one 
patient was used for testing at each time while the rest 31 patients were used for training. During this 
process, were the hyper parameters of the network also varied for each test patient? For example, how 
was \mu determined? 

[Response]: In order to fairly compare the performance of method on different patients, our hyper 
parameters of the network were fixed before we conducted the leave-one-out experiments. The batch 
size was set by 20. The number of epochs was set to 180. For the parameter , we employed 4-fold cross 𝜇
validation to evaluate the setting. It was shown that the performance is not sensitive when  is between 𝜇
[0.7, 1.3], thus we set .𝜇 = 1

2.    For the method to be useful, abnormal studies need to be included in the evaluation. 

[Response]: We agree with the reviewer. In the revised paper, we included 24 abnormal patients to test 
the proposed segmentation method. The 24 abnormal patients were diagnosed by SPECT MPI studies to 
have mild to severe myocardial ischemia (mild: 11; moderate: 11; severe: 2). These 24 abnormal 
patients were combined with 32 normal patients to train the deep-learning model and were evaluated 
with a leave-one-out validation strategy. Their results were reported by similar evaluation methods as 
we did for normal patients. The DSC of results on abnormal patients is 0.910±0.037, 0.927±0.018 and 
0.965±0.011 on endocardium surface, myocardium and epicardium surface, respectively. The Hausdorff 
Distance is 8.384±3.240 mm and 9.310±5.034 mm on endocardium surface and epicardium surface, 
respectively. Overall, these results on abnormal patients are very similar with those of normal patients, 
with mean DSC larger than 0.9 and Hausdorff distance less than 1cm. We included these results in our 
revised paper.

“In addition, 24 patients (mean±STD age: 57±10, 17 males, 7 females) diagnosed with myocardial 
ischemia ranging from mild, moderate to severe extents were also included to further test the proposed 
segmentation method with leave-one-out strategy.”

“Fig. 10 demonstrates a side-by-side comparison between our results and the clinical ground truth at 
different slices of gating phase 0 from patient #25 (diagnosed with moderate ischemia) as an example. 
In this case, the LV myocardium volume measured by the proposed method was 212.0 cc, overestimated 
1.49% from ground truth 208.9 cc. The mean and standard deviation (STD) of DSC of endocardial and 
epicardial surface, and myocardium, and Hausdorff distance of endocardial and epicardial surface 
among all 24 abnormal patients are plotted in Fig. 11 for each phase and summarized in Table 2. Overall, 
the results on abnormal patients are very similar with those of normal patients, with mean DSC larger 
than 0.9 and Hausdorff distance less than 1cm. The correlation coefficient of the LV myocardium volume 
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between ground truth and our results is 0.939±0.103 (P<0.001), and the mean relative error of LV 
myocardium volume is -0.567±3.47%.

Fig. 10 The axial views of patient #25 (abnormal) at different slices of gating phase 0 with segmentations 
of ground truth and proposed method. The black lines indicate the contours of endocardial and 
epicardial surface.

Fig. 11 Mean and STD of DSC and Hausdorff distance of contours between ground truth and the 
proposed method among all 24 abnormal patients for each phase.

Table 2. Mean ± STD of DSC and Hausdorff distance among all 24 abnormal patients.

Metrics Endocardium Myocardium Epicardium

DSC 0.910±0.037 0.927±0.018 0.965±0.011

Hausdorff Distance (mm) 8.384±3.240 N/A 9.310±5.034

3.    P.5, line 12, how was the 3D region (32x32x16) “automatically” cropped?
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[Response]: Each original SPECT heart image includes a large area of background as shown in the 
following figure. The intensity in active area is around 200, which is higher than the background region 
(30-40). Thus, we used a threshold (100) to first get rid of background and calculated the centroid of the 
active heart region, then we centrally crop the image to a region of 32x32x16 voxels, which is big 
enough to cover the active heart region.

Slice #1 Slice #3 Slice #6 Slice #9 Slice #12 Slice #15

0

100

200

0

100

200

Fig. R1. Example of SPECT heart images. From left to right it shows different slices of SPECT heart image. 
The display window is [0, 200].

We added this comment in our revised paper:

“The original SPECT images were first automatically cropped into 32x32x16 voxels to reduce background 
region: a threshold was used to get rid of background and the centroid of the active heart region was 
then calculated, based on which a 32x32x16 voxel region was cropped to cover the active heart region.”

4.    P.6, line 16, “To address this issue, we additionally incorporated the logistic loss with Dice loss in the 
final stages as the final objective function.” Is there any theoretical justification that your approach can 
address the local minima issue?

[Response]: In segmentation task, the local minima issue often exists when the target region is much 
smaller than the region outside the target region. In SPECT heart segmentation, the region within 
endocardium is much smaller than the region outside the endocardium. If we use equal loss weighting 
strategy in gradient descent optimization, e.g., the same loss weight for the segmenting region within 
endocardium and segmenting region outside the endocardium, this strategy would cause the learning 
process to get trapped in local minima of the loss function whose predictions are strongly biased 
towards the larger one (the region outside the endocardium). In order to solve this potential, we aim to 
use a more suitable weighting strategy. In fact, in our Adam gradient descent optimization when training 
the network, the weight of loss is obtained by the gradient of our loss function. Milletari et al. 
demonstrated the gradient of Dice loss can assign a balance weight for different regions in volume 
based segmentation1. We used the same weighting strategy as recommended in Milletari’s study. For 
the details, please see the Section 3 of this paper for more details1.

5.    It is stated that the coefficient \mu was empirically determined to achieve the best performance. 
Was this best performance determined from test cases? If so, wouldn’t this lead to a favorable bias?

[Response]: Thanks for the comment. The parameter  was not determined from test cases. It was fixed 𝜇
before our leave-one-out experiments. Thus, it would not lead to a favorable bias. We modified the 
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parameter  setting in our revised manuscript as follows “We employed 4-fold cross validation to 𝜇
evaluate its setting. It is shown that the performance is not sensitive when  is between [0.7, 1.3], thus 𝜇
we set .”𝜇 = 1

6.    The comparison results show only a fair correlation (r=0.644) in EF between the proposal approach 
and the commercial tool. This raises a question about whether the proposed approach is more accurate 
than the commercial tool. 

[Response]: On our segmentation results, we chose the maximum and minimum volumes within 
endocardial surface among all phases as EDV and ESV. However, commercial software determines EDV 
and ESV with sophisticated post-processing steps in modeling the whole systolic and diastolic period. 
Such difference in determining EDV and ESV leads to the discrepancy of EF between our results and 
commercial software. Implementing a similar post-processing for EDV and ESV determination modeling 
as commercial software is out of the scope of this study. We also discussed this in our discussion section.

7.    The results in Fig. 5 show notable variability between the two observers on three cases. How will this 
affect the reliability of the evaluation results? 

[Response]: This study does not aim to demonstrate the absolute accuracy of the output contours of the 
proposed method by comparing with patients’ true myocardial contours which are always unavailable. 
Instead, we trained our model based on one observer’s contour, and evaluated our results using the 
contour from the same observer, and we showed the high correlation of the output contours with its 
training dataset. Such high correlation would still exist if the training contours are from another 
experienced observer since the method is not designed for a specific observer. Interobserver variability 
is not involved into the evaluation process, since it is fair only when the contours from the same 
observer or same group of observers are to be used for both training and evaluation. The manual 
contour from different observers may have systematic errors and random errors. Our learning-based 
method can mitigate random errors, but cannot correct systematic errors induced by the observers. We 
also discussed this in our discussion section. 

Referee #2's Comments:

Comments to the Author

The authors have made many changes to their manuscript that certainly clarify a number of things. 
However, I do have some questions remaining, in particular regarding the description of the method. 

One major limitation of this work is that only healthy patients are included, and the data set is quite 
small (only 32 patients). That the myocardium can be efficiently segmented in these high-contrast, small 
images of a reasonably standardized group is not very surprising. It would be much more interesting to 
find out how well this works in patients with pathology. 

[Response]: We agree with the reviewer. As we respond to the first reviewer, in the revised paper, we 
included 24 abnormal patients to test the proposed method with a leave-one-out validation strategy. 
Their results were reported by similar evaluation method as we did for normal patients. The DSC of 
results on abnormal patients are 0.910±0.037, 0.927±0.018 and 0.965±0.011 on endocardium surface, 
myocardium and epicardium surface, respectively. The Hausdorff Distance is 8.384±3.240 mm and 
9.310±5.034 mm on endocardium surface and epicardium surface, respectively. Overall, these results on 
abnormal patients are very similar with those of normal patients, with mean DSC larger than 0.9 and 
Hausdorff distance less than 1cm. We included these results in our revised paper.
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Major comments

Although it is now much clearer that you are trying to segment the myocardium, it is still unclear what 
the segmentation target of the V-Net is. Is this a binary mask where voxels between the endocardial and 
epicardial contour have been set to 1? Or do you have multiple masks? I see in Fig. 1 that there are 4 
output channels, but I don’t understand from the text where these 4 channels/classes are coming from. 
Are you segmenting the areas within the endocardial and epicardial contours separately, is that it? 
Shouldn’t this then lead to 3 output channels?

On a related note, the neural network performs ‘multi-label’ segmentation according to the authors. As 
far as I know, this means that multiple labels can be predicted per voxel. Yet a softmax layer is applied to 
the four probability channels, which suggests that you’re actually performing multi-class instead of 
multi-label classification. Please see an explanation of this distinction at e.g. https://scikit-
learn.org/stable/modules/multiclass.html 

 [Response]: We agree with the reviewer. As the reviewer commented, we have 3 output channels. We 
corrected the related text and figure in our revised manuscript. The segmentation targets of the V-Net 
are the region within endocardium surface, the region within epicardium surface, and the region outside 
epicardium surface (background). The myocardium region is obtained by the subtraction of the region 
within endocardium surface from the region within epicardium. We have three masks, and set these 
masks as multi-channel outputs for supervision, e.g., we set mask as 1 for the region within 
endocardium, and 0 for other regions.
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Fig. 1 Schematic flow chart of the proposed algorithm for LV segmentation. The upper part of this figure 
shows the training stage of our proposed method. The upper part also show the V-Net architecture 
which has single channel volume input and 3 channels (background, region within endocardium, and 
region within epicardium) volume output. The lower part (yellow) shows the segmentation stage. In 
segmentation stage, a new SPECT heart image is fed into the well-trained model to get the 
segmentation.

We appreciate reviewer’s suggestion. According to the explanation of “multi-label” and “multi-class” 
classification at https://scikit-learn.org/stable/modules/multiclass.html, we agree with reviewer’s 
comment and we changed “multi-label” into “multi-class” in our revised manuscript.

I don’t think the Dice score in Eq. (2) is differentiable. Is this really what you use as a loss function?

[Response]: Dice loss has been used for many segmentation methods. Milletari et al. used Dice loss in 
their V-Net-based segmentation method.1 In their study, they reported that Dice loss can be 
differentiated yielding the gradient computed with respect to each voxel of the prediction. We agree 
with reviewer that a Dice score as a number is not differentiable. However, the Dice loss is not a score in 
our task. Our model is iteratively trained by Adam gradient descent optimizer. For each iteration, the 
training samples were fed into the model to generate the multi-channel output mask. The Dice loss is 
used to evaluate the similarity or overlap between generated mask with ground truth mask (the region 
within manual contour). Thus, Dice is a monotonically increasing function of overlap between generated 
mask and manual mask, and it can be used for iteratively gradient descent method.
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There is some mention of ‘automatic cropping’ of the volumes to reduce the size to 32x32x16 voxels, yet 
this step remains unclear. What is the voxel size after this cropping?

[Response]: Each original SPECT heart image includes a large area of background as shown the following 
figure. The intensity in active area is around 200, which is higher than the background region (30-40). 
Thus, we used a threshold (100) to first get rid of background and calculated the centroid of the active 
heart region, then we centrally crop the image to a region with 32x32x16 voxels, which is big enough to 
cover the active heart region. The voxel size (resolution) is not changed from original size after 
automatic cropping.

Slice #1 Slice #3 Slice #6 Slice #9 Slice #12 Slice #15

0

100

200

0

100

200

Fig. R1. Example of SPECT heart images. From left to right it shows different slices of SPECT heart image. 
The display window is [0, 200].

We modified this in our revised manuscript as “The original SPECT images were first automatically 
cropped into 32x32x16 voxels to reduce background region.” 

Captions should really be more descriptive. Fig. 1 is a highly complicated figure, with one short line 
caption. 

[Response]: We modified the caption of Fig.1 as follows “Schematic flow chart of the proposed 
algorithm for LV segmentation. The upper part of this figure shows the training stage of our proposed 
method. The upper part also show the V-Net architecture which has single channel volume input and 3 
channels (background, region within endocardium, and region within epicardium) volume output. The 
lower part (yellow) shows the segmentation stage. In segmentation stage, a new SPECT heart image is 
fed into the well-trained model to get the segmentation.”

Minor comments

The sentence ‘The 3D multi-label V-Net architecture was introduced to enable ..’ is not correct, the 
authors don’t introduce V-Net, Milletari et al. (22) did.

[Response]: We corrected this statement.

I don’t think you use the word ‘modest’ correctly. Maybe you mean ‘intermediate’.

[Response]: We corrected this word.

Black is probably not the best color to show segmentations in Fig. 2/3.
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[Response]: We think black is the most practical color for Fig. 2/3 since they are in a color map where 
every color has chance to show except black. Contour of any other color may be indistinguishable with 
pixels of same color in active region.

Typos, grammar, etc.

“A less Hausdorff distance” → “A smaller Hausdorff distance”

“To determin” → “To determine”

“disrance” → “distance”

“commericial” → “commercial”

“comapred” → “compared”

[Response]: We appreciate reviewer’s suggestions in improving this manuscript. We corrected the 
above words.

Associate Editor

Comments to the Author:

Major issues still remain and must be definitively resolved in the revision.

As reviewers mention 32 patients is a very small set. Further, authors  must add some abnormal cases for 
this work to have some meaningful clinical validation.   

[Response]: As we respond to the reviewers, in the revised paper, we included 24 abnormal patients to 
further test the proposed method with leave-one-out strategy. Their results were reported by similar 
evaluation method as we did for normal patients. Overall, these results on abnormal patients are very 
similar with those of normal patients, with mean DSC larger than 0.9 and Hausdorff distance less than 
1cm. We included these results in our revised paper.

The title, the abstract, and text should prominently mention that this is a feasibility study only.  The 
accuracy cannot be meaningfully evaluated in such small dataset. The manuscript needs to be 
thoroughly revised to reflect this.

[Response]: We revised the title as “A Learning-based Automatic Segmentation and Quantification 
Method on Left Ventricle in Gated Myocardial Perfusion SPECT Imaging: A Feasibility Study”, and also 
revised the abstract and text to reflect this point.
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