9,563 research outputs found

    Pipeline for Tracking Neural Progenitor Cells

    Get PDF
    Automated methods for neural stem cell lineage construction become increasingly important due to the large amount of data produced from time lapse imagery of in vitro cell growth experiments. Segmentation algorithms with the ability to adapt to the problem at hand and robust tracking methods play a key role in constructing these lineages. We present here a tracking pipeline based on learning a dictionary of discriminative image patches for segmentation and a graph formulation of the cell matching problem incorporating topology changes and acknowledging the fact that segmentation errors do occur. A matched filter for detection of mitotic candidates is constructed to ensure that cell division is only allowed in the model when relevant. Potentially the combination of these robust methods can simplify the initiation of cell lineage construction and extraction of statistics

    Visualization and Correction of Automated Segmentation, Tracking and Lineaging from 5-D Stem Cell Image Sequences

    Get PDF
    Results: We present an application that enables the quantitative analysis of multichannel 5-D (x, y, z, t, channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. There is a pressing need for visualization and analysis tools for 5-D live cell image data. We combine accurate unsupervised processes with an intuitive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.Comment: BioVis 2014 conferenc

    Cell Segmentation and Tracking using CNN-Based Distance Predictions and a Graph-Based Matching Strategy

    Get PDF
    The accurate segmentation and tracking of cells in microscopy image sequences is an important task in biomedical research, e.g., for studying the development of tissues, organs or entire organisms. However, the segmentation of touching cells in images with a low signal-to-noise-ratio is still a challenging problem. In this paper, we present a method for the segmentation of touching cells in microscopy images. By using a novel representation of cell borders, inspired by distance maps, our method is capable to utilize not only touching cells but also close cells in the training process. Furthermore, this representation is notably robust to annotation errors and shows promising results for the segmentation of microscopy images containing in the training data underrepresented or not included cell types. For the prediction of the proposed neighbor distances, an adapted U-Net convolutional neural network (CNN) with two decoder paths is used. In addition, we adapt a graph-based cell tracking algorithm to evaluate our proposed method on the task of cell tracking. The adapted tracking algorithm includes a movement estimation in the cost function to re-link tracks with missing segmentation masks over a short sequence of frames. Our combined tracking by detection method has proven its potential in the IEEE ISBI 2020 Cell Tracking Challenge (http://celltrackingchallenge.net/) where we achieved as team KIT-Sch-GE multiple top three rankings including two top performances using a single segmentation model for the diverse data sets.Comment: 25 pages, 14 figures, methods of the team KIT-Sch-GE for the IEEE ISBI 2020 Cell Tracking Challeng

    Evaluation of Dynamic Cell Processes and Behavior Using Video Bioinformatics Tools

    Get PDF
    Just as body language can reveal a person’s state of well-being, dynamic changes in cell behavior and morphology can be used to monitor processes in cultured cells. This chapter discusses how CL-Quant software, a commercially available video bioinformatics tool, can be used to extract quantitative data on: (1) growth/proliferation, (2) cell and colony migration, (3) reactive oxygen species (ROS) production, and (4) neural differentiation. Protocols created using CL-Quant were used to analyze both single cells and colonies. Time-lapse experiments in which different cell types were subjected to various chemical exposures were done using Nikon BioStations. Proliferation rate was measured in human embryonic stem cell colonies by quantifying colony area (pixels) and in single cells by measuring confluency (pixels). Colony and single cell migration were studied by measuring total displacement (distance between the starting and ending points) and total distance traveled by the colonies/cells. To quantify ROS production, cells were pre-loaded with MitoSOX Red™, a mitochondrial ROS (superoxide) indicator, treated with various chemicals, then total intensity of the red fluorescence was measured in each frame. Lastly, neural stem cells were incubated in differentiation medium for 12 days, and time lapse images were collected daily. Differentiation of neural stem cells was quantified using a protocol that detects young neurons. CLQuant software can be used to evaluate biological processes in living cells, and the protocols developed in this project can be applied to basic research and toxicological studies, or to monitor quality control in culture facilities

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies
    • …
    corecore