32,619 research outputs found

    Finding Pairwise Intersections Inside a Query Range

    Get PDF
    We study the following problem: preprocess a set O of objects into a data structure that allows us to efficiently report all pairs of objects from O that intersect inside an axis-aligned query range Q. We present data structures of size O(n(polylogn))O(n({\rm polylog} n)) and with query time O((k+1)(polylogn))O((k+1)({\rm polylog} n)) time, where k is the number of reported pairs, for two classes of objects in the plane: axis-aligned rectangles and objects with small union complexity. For the 3-dimensional case where the objects and the query range are axis-aligned boxes in R^3, we present a data structures of size O(nn(polylogn))O(n\sqrt{n}({\rm polylog} n)) and query time O((n+k)(polylogn))O((\sqrt{n}+k)({\rm polylog} n)). When the objects and query are fat, we obtain O((k+1)(polylogn))O((k+1)({\rm polylog} n)) query time using O(n(polylogn))O(n({\rm polylog} n)) storage

    Find your Way by Observing the Sun and Other Semantic Cues

    Full text link
    In this paper we present a robust, efficient and affordable approach to self-localization which does not require neither GPS nor knowledge about the appearance of the world. Towards this goal, we utilize freely available cartographic maps and derive a probabilistic model that exploits semantic cues in the form of sun direction, presence of an intersection, road type, speed limit as well as the ego-car trajectory in order to produce very reliable localization results. Our experimental evaluation shows that our approach can localize much faster (in terms of driving time) with less computation and more robustly than competing approaches, which ignore semantic information

    Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks

    Get PDF
    Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed. We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios. The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed
    • 

    corecore