9,600 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Reconstruction of fingerprints from minutiae points

    Get PDF
    Most fingerprint authentication systems utilize minutiae information to compare fingerprint images. During enrollment, the minutiae template of a user\u27s fingerprint is extracted and stored in the database. In this work, we concern ourselves with the amount of fingerprint information that can be elicited from the minutiae template of a user\u27s fingerprint. We demonstrate that minutiae information can reveal substantial details such as the orientation field and class of the (unseen) parent fingerprint that can potentially be used to reconstruct the original fingerprint image.;Given a minutiae template, the proposed method first estimates the orientation map of the parent fingerprint by constructing minutiae triplets. The estimated orientation map is observed to be remarkably consistent with the underlying ridge flow of the unseen parent fingerprint. We also discuss a fingerprint classification technique that utilizes only the minutiae information to determine the class of the fingerprint (Arch, Left loop, Right loop and Whorl). The proposed classifier utilizes various properties of the minutiae distribution such as angular histograms, density, relationship between minutiae pairs, etc. A classification accuracy of 82% is obtained on a subset of the NIST-4 database. This indicates that the seemingly random minutiae distribution of a fingerprint can reveal important class information. (Abstract shortened by UMI.)

    Children, Humanoid Robots and Caregivers

    Get PDF
    This paper presents developmental learning on a humanoid robot from human-robot interactions. We consider in particular teaching humanoids as children during the child's Separation and Individuation developmental phase (Mahler, 1979). Cognitive development during this phase is characterized both by the child's dependence on her mother for learning while becoming awareness of her own individuality, and by self-exploration of her physical surroundings. We propose a learning framework for a humanoid robot inspired on such cognitive development

    Learning quadrangulated patches for 3D shape parameterization and completion

    Full text link
    We propose a novel 3D shape parameterization by surface patches, that are oriented by 3D mesh quadrangulation of the shape. By encoding 3D surface detail on local patches, we learn a patch dictionary that identifies principal surface features of the shape. Unlike previous methods, we are able to encode surface patches of variable size as determined by the user. We propose novel methods for dictionary learning and patch reconstruction based on the query of a noisy input patch with holes. We evaluate the patch dictionary towards various applications in 3D shape inpainting, denoising and compression. Our method is able to predict missing vertices and inpaint moderately sized holes. We demonstrate a complete pipeline for reconstructing the 3D mesh from the patch encoding. We validate our shape parameterization and reconstruction methods on both synthetic shapes and real world scans. We show that our patch dictionary performs successful shape completion of complicated surface textures.Comment: To be presented at International Conference on 3D Vision 2017, 201

    Security of Biometric Data Using Compressed Watermarking Technique

    Get PDF
    This paper has focus on biometric data security over open communication channel of biometric system. Here biometric data is encoded using cs theory and wavelet based embedding technique. The biometric data is convert into encoded sparse measurements which is generating using SVD, random seed and uniform quantization process. Then these encoded sparse measurements are embedding into the host color biometric data using wavelet based watermarking technique. This proposed technique has explored dimension reduction and computational security provided by compressive sensing. This proposed technique has also helps to compressed and to send secret data over noisy communication channel of biometric system against various attacks. The proposed technique provides more security compare to existed technique in literature due to CS theory. The novelty of proposed technique is that, watermark iris image information is compressed and encoded using CS theory and uniform quantization.DOI:http://dx.doi.org/10.11591/ijece.v4i5.664

    Effective high resolution 3D geometric reconstruction of heritage and archaeological sites from images

    Get PDF
    Motivated by the need for a fast, accurate, and high-resolution approach to documenting heritage and archaeological objects before they are removed or destroyed, the goal of this paper is to develop and demonstrate advanced image-based techniques to capture the fine 3D geometric details of such objects. The size of the object may be large and of any arbitrary shape which presents a challenge to all existing 3D techniques. Although range sensors can directly acquire high resolution 3D points, they can be costly and impractical to set up and move around archaeological sites. Alternatively, image-based techniques acquire data from inexpensive portable digital cameras. We present a sequential multi-stage procedure for 3D data capture from images designed to model fine geometric details. Test results demonstrate the utility and flexibility of the technique and prove that it creates highly detailed models in a reliable manner for many different types of surface detail
    • …
    corecore