3,440 research outputs found

    Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue

    Full text link
    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Further, it addresses a fundamental question in context of a large number problems- how much quantumness is (how many quantum parties are) required to perform a specific secure communication task? Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate-coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.Comment: 19 pages 1 figur

    Attacks against a Simplified Experimentally Feasible Semiquantum Key Distribution Protocol

    Full text link
    A semiquantum key distribution (SQKD) protocol makes it possible for a quantum party and a classical party to generate a secret shared key. However, many existing SQKD protocols are not experimentally feasible in a secure way using current technology. An experimentally feasible SQKD protocol, "classical Alice with a controllable mirror" (the "Mirror protocol"), has recently been presented and proved completely robust, but it is more complicated than other SQKD protocols. Here we prove a simpler variant of the Mirror protocol (the "simplified Mirror protocol") to be completely non-robust by presenting two possible attacks against it. Our results show that the complexity of the Mirror protocol is at least partly necessary for achieving robustness.Comment: 9 page

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    A novel hybrid protocol for semiquantum key distribution and semiquantum secret sharing

    Full text link
    In this paper, a novel hybrid protocol for semiquantum key distribution (SQKD) and semiquantum secret sharing (SQSS) was constructed by using GHZ-like states. This protocol is capable of establishing two different private keys between one quantum party and two semiquantum parties respectively, and making two semiquantum parties share another private key of the quantum party in the meanwhile. The usages of delay lines, Pauli operations, Hadamard gates and quantum entanglement swapping are not required. Moreover, the semiquantum parties are not necessary to be equipped with any quantum memory. We validate in detail that this protocol resists various attacks from Eve, including the Trojan horse attacks, the entangle-measure attack, the double controlled-not (CNOT) attacks, the measure-resend attack and the intercept-resend attack. To our best knowledge, this protocol is the only protocol which possesses the functions of both SQKD and SQSS simultaneously until now.Comment: 16 pages,1 figure, 3 table

    Security Proof Against Collective Attacks for an Experimentally Feasible Semi-Quantum Key Distribution Protocol

    Full text link
    Semiquantum key distribution (SQKD) allows two parties (Alice and Bob) to create a shared secret key, even if one of these parties (say, Alice) is classical. However, most SQKD protocols suffer from severe practical security problems when implemented using photons. The recently developed "Mirror protocol" [Boyer, Katz, Liss, and Mor, Phys. Rev. A 96, 062335 (2017)] is an experimentally feasible SQKD protocol overcoming those drawbacks. The Mirror protocol was proven robust (namely, it was proven secure against a limited class of attacks including all noiseless attacks), but its security in case some noise is allowed (natural or due to eavesdropping) has not been proved yet. Here we prove security of the Mirror protocol against a wide class of quantum attacks (the "collective attacks"), and we evaluate the allowed noise threshold and the resulting key rate.Comment: 17 pages; 3 figure

    Quantum Cryptography: Key Distribution and Beyond

    Get PDF
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Quanta 2017; 6: 1–47

    Wireless Quantum Key Distribution in Indoor Environments

    Get PDF
    We propose and study the feasibility of wireless quantum key distribution (QKD) in indoor environments. Such systems are essential in providing wireless access to the developing quantum communications networks. We find a practical regime of operation, where, in the presence of external light sources and loss, secret keys can be exchanged. Our findings identify the trade-off between the acceptable amount of background light and the receiver field of view, where the latter specifies the type of equipment needed for the end user and its range of movements. In particular, we show that, using a proper setting, we can provide mobility for the QKD users without imposing stringent conditions on beam steering
    • …
    corecore