680 research outputs found

    Fleksibilnost elektroenergetskih sustava

    Get PDF
    Modern power systems rely on power generation from renewable sources, predominantly from wind and solar. However, the intermittency and variability of these sources require additional power system flexibility. Due to retirement of conventional thermal generation, the need for flexibility is increased, while the flexible resources are reduced. Thus, new flexibility resources are sought. This paper examines real-world examples of the increased flexibility requirements, identifies the new sources of flexibility in the form of batteries and demand response, presents relevant mathematical models, and provides guidelines on future research needs in this area.Moderni elektroenergetski sustavi oslanjaju se na proizvodnju električne energije iz obnovljivih izvora energije, prvenstveno vjetra i Sunca. Međutim, nepravilnost i promjenjivost njihove proizvodnje električne energije uzrokuje povećane zahtjeve za fleksibilnošću sustava. Nadalje, uslijed prestanka rada konvencionalnih termalnih elektrana, koje su i same bile izvor fleksibilnosti, nedostatak iste sve je više izražen. Stoga su potrebni novi izvori fleksibilnosti. Članak izučava stvarne primjere povećanih zahtijeva za fleksibilnošću, identificira nove izvore fleksibilnosti (baterije i odaziv potrošnje), te predstavlja relevantne matematičke modele i daje preporuke za buduća istraživanja u ovom području

    A review on the virtual power plant: Components and operation systems

    Full text link
    © 2016 IEEE. Due to the high penetration of Distributed Generations (DGs) in the network and the presently involving competition in all electrical energy markets, Virtual Power Plant (VPP) as a new concept has come into view, with the intention of dealing with the increasing number of DGs in the system and handling effectively the competition in the electricity markets. This paper reviews the VPP in terms of components and operation systems. VPP fundamentally is composed of a number of DGs including conventional dispatchable power plants and intermittent generating units along with possible flexible loads and storage units. In this paper, these components are described in an all-inclusive manner, and some of the most important ones are pointed out. In addition, the most important anticipated outcomes of the two types of VPP, Commercial VPP (CVPP) and Technical VPP (TVPP), are presented in detail. Furthermore, the important literature associated with Combined Heat and Power (CHP) based VPP, VPP components and modeling, VPP with Demand Response (DR), VPP bidding strategy, and participation of VPP in electricity markets are briefly classified and discussed in this paper

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    A Consumer-Oriented Incentive Strategy for EV Charging in Multiareas under Stochastic Risk-Constrained Scheduling Framework

    Get PDF

    POTEnCIA model description - version 0.9

    Get PDF
    This report lays out the modelling approach that is implemented in the POTEnCIA modelling tool (Policy Oriented Tool for Energy and Climate Change Impact Assessment) and describes its analytical capabilities. POTEnCIA is a modelling tool for the EU energy system that follows a hybrid partial equilibrium approach. It combines behavioural decisions with detailed techno-economic data, therefore allowing for an analysis of both technology-oriented policies and of those addressing behavioural change. Special features and mechanisms are introduced in POTEnCIA in order to appropriately reflect the implications of an uptake of novel energy technologies and of changing market structures, allowing for the robust assessment of ambitious policy futures for the EU energy system. The model runs on an annual basis with a typical projection timeline to 2050.JRC.J.1-Economics of Climate Change, Energy and Transpor

    A review of co-optimization approaches for operational and planning problems in the energy sector

    Get PDF
    This paper contributes to a comprehensive perspective on the application of co-optimization in the energy sector – tracking the frontiers and trends in the field and identifying possible research gaps – based on a systematic literature review of 211 related studies. The use of co-optimization is addressed from a variety of perspectives by splitting the studies into ten key categories. Research has consistently shown that co-optimization approaches can be technically challenging and it is usually a data-intensive procedure. Overall, a set of techniques such as relaxation, decomposition and linear approaches have been proposed for reducing the inherent nonlinear model's complexities. The need to coordinate the necessary data from multiples actors might increase the complexity of the problem since security and confidentiality issues would also be put on the table. The evidence from our review seems to suggest a pertinent role for addressing real-case systems in future models instead of using theoretical test cases as considered by most studies. The identified challenges for future co-optimization models include (i) dealing with the treatment of uncertainties and (ii) take into account the trade-offs among modelling fidelity, spatial granularity and geographical coverage. Although there is also a growing body of literature that recognizes the importance of co-optimization focused on integrating supply and demand-side options, there has been little work in the development of co-optimization models for long-term decision-making, intending to recognize the impact of short-term variability of both demand and RES supply and well suited to systems with a high share of RES and under different demand flexibility conditions. The research results represent a further step towards the importance of developing more comprehensive approaches for integrating short-term constraints in future co-optimized planning models. The findings provide a solid evidence base for the multi-dimensionality of the co-optimization problems and contriThis work is supported by the National Council for Scientific and Technological Development (CNPq), Brazil. This work has been supported by FCT – Fundaça˜o para a Ciˆencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Cloud Computing Strategies for Enhancing Smart Grid Performance in Developing Countries

    Get PDF
    In developing countries, the awareness and development of Smart Grids are in the introductory stage and the full realisation needs more time and effort. Besides, the partially introduced Smart Grids are inefficient, unreliable, and environmentally unfriendly. As the global economy crucially depends on energy sustainability, there is a requirement to revamp the existing energy systems. Hence, this research work aims at cost-effective optimisation and communication strategies for enhancing Smart Grid performance on Cloud platforms
    corecore