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1. Introduction 

The restructured electric power industry has brought new challenges and concerns for 
the secured operation of stressed power systems. As renewable energy resources, 
distributed generation, and demand response become significant portions of overall 
generation resource mix, smarter or more intelligent system dispatch technology is 
needed to cope with new categories of uncertainty associated with those new energy 
resources. The need for a new dispatch system to better handle the uncertainty 
introduced by the increasing number of new energy resources becomes more and more 
inevitable.  
In North America, almost all Regional Transmission Organizations (RTO) such as PJM, 
Midwest ISO, ISO New England, California ISO or ERCOT, are fundamentally reliant on 
wholesale market mechanism to optimally dispatch energy and ancillary services of 
generation resources to reliably serve the load in large geographical regions. Traditionally, 
the real-time dispatch problem is solved as a linear programming or a mixed integer 
programming problem assuming absolute certainty of system input parameters and there is 
very little account of system robustness other than classical system reserve modeling. The 
next generation of dispatch system is being designed to provide dispatchers with the 
capability to manage uncertainty of power systems more explicitly.  
The uncertainty of generation requirements for maintaining system balancing has been 

growing significantly due to the penetration of renewable energy resources such as wind 

power. To deal with such uncertainty, RTO’s require not only more accurate demand 

forecasting for longer-term prediction beyond real-time, but also demand forecasting with 

confidence intervals.  

This chapter addresses the challenges of smart grid from a generation dispatch 

perspective. Various aspects of integration of renewable resources to power grids will be 

discussed. The framework of Smart Dispatch will be proposed. This chapter highlights 

some advanced demand forecasting techniques such as wavelet transform and composite 

forecasting for more accurate demand forecasting that takes renewable forecasting into 

consideration. A new dispatch system to provide system operators with look-ahead 

capability and robust dispatch solution to cope with uncertain intermittent resources is 

presented.  
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2. Challenges of smart grid 

In recent years, energy systems whether in developed or emerging economies are 
undergoing changes due to the emphasis of renewable resources. This is leading to a 
profound transition from the current centralized infrastructure towards the massive 
introduction of distributed generation, responsive/controllable demand and active network 
management throughout the smart grid ecosystem as shown in Figure 1. Unlike 
conventional generation resources, outputs of many of renewable resources do not follow 
traditional generation/load correlation but have strong dependencies on weather 
conditions, which from a system prospective are posing new challenges associated with the 
monitoring and controllability of the demand-supply balance. As distributed generations, 
demand response and renewable energy resources become significant portions of overall 
system installed capacity, a smarter dispatch system for generation resources is required to 
cope with the new uncertainties being introduced by the new resources.  
One method to cope with uncertainties is to create a better predictive model (Cheung et al., 
2010, 2009). This includes better modeling of transmission constraints, better modeling of 
resource characteristics including capacity limits and ramp rates, more accurate demand 
forecasting and external transaction schedule forecasting that ultimately result in a more 
accurate prediction of generation pattern and system conditions. Another method to cope 
with uncertainties is to address the robustness of dispatch solutions (Rios-Zalapa et al., 
2010). Optimality or even feasibility of dispatch solutions could be very sensitive to system 
uncertainties. Reserve requirements and “n-1” contingency analysis are traditional ways to 
ensure certain robustness of a given system. Scenario-based (Monte-Carlo) simulation is 
another common technique for assessing economic or reliability impact with respect to 
uncertainties such as renewable energy forecast. These methods and techniques are 
necessary as the industry integrates renewable energy resources into the power grid. 

2.1 Renewable energy grid integration 
Like any other form of generation, renewable resources such as wind or solar power will 

have an impact on power system reserves and will also contribute to a reduction in fuel 

usage and emissions. In particular, the impact of wind power not only depends on the wind 

power penetration level, but also on the power system size, geographical area, generation 

capacity mix, the degree of interconnection to neighboring systems and load variations.  

Some of the major challenges of renewable energy integration need to be addressed in the 

following main areas: 

 Design and operation of the power system 

 Grid infrastructure 

 Connection requirements for renewable power plants 

 System adequacy and the security of supply 

 Electricity market design 
With increasing penetration and reliance on renewable resources have come heightened 
operational concerns over maintaining system balance. Ancillary services, such as operating 
reserves, imbalance energy, and frequency regulation, are necessary to support renewable 
energy integration, particularly the integration of intermittent resources (Chuang & 
Schwaegerl, 2009). Without supporting ancillary services, increased risk to system imbalance is 
introduced by the uncertainty of renewable generation availability, especially in systems with 
significant penetration of resources powered by intermittent supply, such as wind and solar. 
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For the purposes of balancing, the qualities of wind energy must be analyzed in a directly 
comparable way to that adopted for conventional plants. Balancing solutions involve mostly 
existing conventional generation units (thermal and hydro). In future developments of 
power systems, increased flexibility should be encouraged as a major design principle 
(flexible generation, demand side management, interconnections, storage etc.), in order to 
manage the increased variability induced by renewable resources. Market design issues 
such as gate-closure times should be reduced for variable output technologies. The real-time 
or balance market rules must be adjusted to improve accuracy of forecasts and enable 
temporal and spatial aggregation of wind power output forecasts. Curtailment of wind 
power production should be managed according to least-cost principles from an overall 
system point of view. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 1. Smart Grid Ecosystem 
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3. Smart dispatch of generation resources 

Smart dispatch (SD) represents a new era of economic dispatch. In general, economic 
dispatch is about the operation of generation facilities to produce energy at the lowest cost 
to reliably serve consumers, recognizing any operational limits of generation and 
transmission facilities. The problem of economic dispatch and its solutions have evolved 
over the years.  

3.1 Evolution of economic dispatch 
The evolution timeline of economic dispatch could be divided into the following three major 
periods: 
1. Classical dispatch [1970’s – 1990’s] (Wood & Wollenberg, 1996) 
2. Market-based dispatch [1990’s – 2010’s] (Schweppe et al., 1998; Ma et al., 1999; Chow et 

al., 2005) 
3. Smart dispatch [2010’s – ] (Cheung et al., 2009) 

3.1.1 Classical dispatch 
Since the birth of control center’s energy management system, classical dispatch monitors 

load, generation and interchange (imports/exports) to ensure balance of supply and 

demand. It also maintains system frequency during dispatch according to some regulatory 

standards, using Automatic Generation Control (AGC) to change generation dispatch as 

needed. It monitors hourly dispatch schedules to ensure that dispatch for the next hour will 

be in balance. Classical dispatch also monitors flows on transmission system. It keeps 

transmission flows within reliability limits, keeps voltage levels within reliability ranges and 

takes corrective action, when needed, by limiting new power flow schedules, curtailing 

existing power flow schedules, changing the dispatch or shedding load. The latter set of 

monitoring and control functions is typically performed by the transmission operator. 

Traditionally, generation scheduling/dispatch and grid security are separate independent 

tasks within control centers. Other than some ad hoc analysis, classical dispatch typical only 

addresses the real-time condition without much consideration of scenarios in the past or the 

future.  

3.1.2 Market-based dispatch  
Ensuring reliability of the physical power system is no longer the only responsibility for the 

RTO/ISOs. A lot of the RTOs/ISOs are also responsible for operating wholesale electricity 

markets. An electricity market in which the ISO or RTO functions both as the “system 

operator” for reliability coordination and the “market operator” for establishing market 

prices allows commercial freedom and centralized economic and reliability coordination to 

co-exist harmoniously (Figure 2). To facilitate market transparency and to ensure reliability 

of the physical power system, an optimization-based framework is used to provide an 

Taking advantage of the mathematical rigor contained in formal optimization methodology, 

the rules are likely to be more consistent, and thus more defensible against challenges that 

effective context for defining comprehensive rules for scheduling, pricing, and dispatching. 

invariably arise in any market.  

Congestion management via the mechanism of locational marginal pricing (LMP) becomes 
an integral part of design of many wholesale electricity markets throughout the world and 
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security-constrained economic dispatch (SCED) becomes a critical application to ensure the 
transmission constraints are respected while generation resources are being dispatched 
economically. The other important aspect of market-based dispatch is the size of the 
dispatch system. A typical system like PJM or Midwest ISO is usually more than 100GW of 
installed capacity. Advances in mathematical algorithms and computer technology really 
make the near real-time dispatch and commitment decisions a reality.  
 

 

Fig. 2. Dual functions of RTO/ISO and dual solutions of SCED 

3.1.3 Smart dispatch 
Smart dispatch (SD) is envisioned to be the next generation of resource dispatch solution 
particularly designed for operating in the smart grid environment (Cheung et al., 2009). The 
“smartness” of this new era of dispatch is to be able to manage highly distributed and active 
generation/demand resources in a direct or indirect manner. With the introduction of 
distributed energy resources such as renewable generations, PHEVs (Plug-in Hybrid Electric 
Vehicles) and demand response, the power grid will need to face the extra challenges in the 
following areas: 

 Energy balancing  

 Reliability assessment 

 Renewable generation forecasting  

 Demand forecasting 

 Ancillary services procurement  

 Distributed energy resource modeling 
A lot of the new challenges are due to the uncertainties associated with the new 
resources/devices that will ultimately impact both system reliability and power economics. 
When compared to the classical dispatch which only deals with a particular scenario for a 
single time point, smart dispatch addresses a spectrum of scenarios for a specified time 
period (Figure 3). Thus the expansion in time and scenarios for SD makes the problem of SD 
itself pretty challenging from both a computational perspective and a user interface 
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perspective. For example, effective presentation of multi-dimensional data to help system 
operators better visualize the system is very important. Beside a forward-looking view for 
system operators, SD should also allow after-the-fact analysis. System analysts should be 
able to analyze historical data systematically and efficiently, establish dispatch performance 
measures, perform root-cause analysis and evaluate corrective actions, if necessary. SD will 
become an evolving platform to allow RTOs/ISOs to make sound dispatch decisions.  
 

 

Fig. 3. Time and Scenario Dimensions in Smart Dispatch 

3.2 Framework of smart dispatch 
The objective of this section is to reveal the proposed framework of Smart Dispatch. The 
framework outlines the basic core SD functions for RTOs/ISOs operating in the smart grid 
environment. Some of the functional highlights and differentiations from classical dispatch 
are: 

 Extension for price-based, distributed, less predictable resources 

 Active, dynamic demand 

 Modeling parameter adaptation 

 Congestion management with security constrained optimization 

 Continuum from forward scheduling to real-time dispatch 

 Extension for dynamic, multi-island operation in emergency & restoration 

 After-the-fact analysis for root-cause impacts and process re-engineering 
One major core functions of Smart Dispatch is called Generation Control Application (GCA) 
which aims at enhancing operators’ decision making process under changing system 
conditions (load, generation, interchanges, transmission constraints, etc.) in near real-time. 
GCA is composed of several distinct elements (Figure 4): 

 Multi-stage Resource Scheduling Process (SKED 1,2&3)  

 Comprehensive Operating Plan (COP) 

 Adaptive Model Management 
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The multi-stage resource scheduling (SKED) process is security constrained unit 
commitment and economic dispatch sequences with different look-ahead periods (e.g. 6 
hours, 2 hours and 20 minutes) updating resource schedules at different cycle frequencies 
(e.g. 5min, 15min or hourly). The results of each stage form progressively refined regions 
that guide the dispatching decision space of the subsequent stages. Various SKED cycles are 
coordinated through the so-called Comprehensive Operating Plan (COP). 
 

 

Fig. 4. Smart Dispatch Framework 

COP is a central repository of various kinds of scheduling data to and from a certain class of 
power system applications. COP presents a comprehensive, synchronized and more 
harmonized view of scheduling data to various applications related to power system 
operations. The class of scheduling data of interest includes the followings: 

 Resource (renewable/non-renewable) MW schedule 

 Demand forecast 

 Outage schedule 

 Transaction and interchange schedule 

 Transmission constraint limit schedule 

 Reserve and regulation requirement schedule 

 Resource characteristics schedule 
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COP also contains comprehensive summary information. Summary information could be 
rollups from a raw data at a lower level (e.g. resource level) according to some pre-defined 
system structures. 
Adaptive Model Management as shown in Figure 4 consists of two parts: Advanced 
Constraint Modeling (ACM) and Adaptive Generator Modeling (AGM). ACM will use 
intelligent methods to preprocess transmission constraints based on historical and current 
network conditions, load forecasts, and other key parameters. It should also have ability to 
achieve smoother transmission constraint binding in time. AGM will provide other GCA 
components with information related to specific generator operational characteristics and 
performances. The resource “profiles” may contain parameters such as ramp rate, operating 
bands, predicted response per MW of requested change, high and low operating limits, etc. 
Another major core functions of Smart Dispatch is After-the Fact Analysis (AFA). AFA aims 
at providing a framework to conduct forensic analysis. AFA is a decision-support tool to: 
a. Identify root cause impacts and process re-engineering. 
b. Systematically analyze dispatch results based on comparison of actual dispatches with 

idealized scenarios. 
c. Provide quantitative and qualitative measures for financial, physical or security impacts 

on system dispatch due to system events and/or conditions. 
One special use case of AFA is the so-called “Perfect Dispatch” (PD). The idea of PD was 
originated by PJM (Gisin et al., 2010). PD calculates the hypothetical least bid production 
cost commitment and dispatch, achievable only if all system conditions were known and 
controllable. PD could then be used to establish an objective measure of RTO/TSO’s 
performance (mean of % savings, variance of % savings) in dispatching the system in the 
most efficient manner possible by evaluating the potential production cost saving derived 
from the PD solutions. 
Demand forecast is a very crucial input to GCA. The accuracy of it very much impacts 
market efficiency and system reliability. The following is devoted to discuss some recent 
advances in techniques of demand forecasting. 

4. Demand forecast  

Demand or load forecasting is very essential for reliable power system operations and 
market system operations. It determines the amount of system load against which real-time 
dispatch and day-ahead scheduling functions need to balance in different time horizon. 
Demand forecasting typically provides forecasts for three different time frames: 
1. Short-Term (STLF): Next 60-120 minutes by 5-minute increments. 
2. Mid-Term (MTLF): Next n days (n can be any value from 3-31), in intervals of one hour 

or less (e.g., 60, 30, 20, 15 minute intervals). 
3. Long-Term (LTLF): Next n years (n can be any value from 2-10), broken into one month 

increments. The LTLF forecast is provided for three scenarios (pessimistic growth, 
expected growth, and optimistic growth). 

Demand forecasting play an increasingly important role in the restructured electricity market 
and smart grid environment due to its impacts on market prices and market participants’ 
bidding behavior. In general, demand forecasting is a challenging subject in view of 
complicated features of load and effective data gathering. With Demand Response being one 
of the few near-term options for large-scale reduction of greenhouse gases, and fits 
strategically with the drive toward clean energy technology such as wind and solar, advanced 
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demand forecasting should effectively take the demand response features/characteristics and 
the uncertainty of interimttent renewable generation into account. 
Many load forecasting techniques including extrapolations, autoregressive model, similar 

day methods, fuzzy logic, Kalman filters and artificial neural networks. The rest of section 
will focus on the discussion of STLF which is a key input to near real-time generation 

dispatch in market and system operations. 

4.1 The uncertainty of demand forecast 
The uncertainty for demand forecast is one of the most critical factors influencing the 

uncertainty of generation requirements for system balancing (DOE, 2010). It is important to 
note that wind generation has fairly strong positive correlation with electrical load in many 

ways more than traditional dispatchable generation. As a result, it is viable to treat wind 
generation as a negative load and incorporate its uncertainty analysis as part of the 

uncertainty of demand forecast assuming transmission congestion is not an issue. Hence, 
the concept of net demand has been employed in wind integration studies to assess the 

impact of load and wind generation variability on the power system operations. Typically, 
the net demand has been defined as the following: 

Net demand = Total electrical load – Renewable generation + Net interchange 

 One practical approach can be used for the uncertainty modeling of demand forecast is 
distribution fitting. Basically probability distributions are based on assumptions about a 

specific standard form of random variables. Based on the standard distributions (e.g. 
normal) and selected set of its parameters (e.g. mean ߤ, standard	deviation	ߪ), they assign 

probability to the event that the random variable x takes on a specific, discrete value, or falls 
within a specified range of continuous values. An example of the probability density 

function PDF(x) (Meyer, 1970) of demand forecast is presented in Figure 5a. The cumulative 
distribution function CDF(x) can then be defined as: 

ሻݔሺ	ܨܦܥ  = 	 ׬ ௫ିஶݏሻ݀ݏሺ	ܨܦܲ   (1) 

A confidence interval (CI) is a particular kind of interval estimate of a population parameter 

such that the random parameter is expected to lie within a specific level of confidence. A 

confidence interval in general is used to indicate the reliability of an estimate and how likely 

the interval to contain the parameter is determined by the confidence level (CL). The CL of 

confidence interval [݈ܦ,  :ℎ] for demand forecast can be defined asܦ

݈ܦሺܮܥ  ≤ ݔ ≤ ℎሻܦ = ሼܨܦܥሺܦℎሻ − ሻሽ݈ܦሺܨܦܥ × ͳͲͲ%	 (2) 

Increasing the desired confidence level will widen the confidence interval being controlled 

by parameters k1 and k2 as shown in Figure 5. It is obvious that the size of uncertainty 

ranges depends on the look-ahead time. In general for longer look-ahead periods, the 

uncertainty range becomes larger. Figure 6 illustrates the time-dependent nature of 

confidence intervals – cone of uncertainty for demand forecast.  

4.2 Artificial neural network with wavelet transform 
In the era of smart grid, the generation and load patterns, and more importantly, the way 
people use electricity, will be fundamentally changed. With intermittent renewable 
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generation, advanced metering infrastructure, dynamic pricing, intelligent appliances and 
HVAC equipment, micro grids, and hybrid plug-in vehicles, etc., load forecasting with 
uncertain factors in the future will be quite different from today. Therefore, effective STLF 
are highly needed to consider the effects of smart grid. 
 

 

Fig. 5. Probabilistic Uncertainty Model and Desired Confidence Interval for Demand 
Forecast 

 

 

Fig. 6. Confidence Intervals for Demand Forecast 

Based on frequency domain analysis, the 5-minute load data have multiple frequency 

components. They can be illustrated via power spectrum magnitude. Figure 7 shows a 

typical power spectrum of actual load of a regional transmission organization. Note that the 

power density spectrum can be divided into multiple frequency ranges.  
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Fig. 7. A power spectrum density for 5-minute actual load 

Neural networks have been widely used for load forecasting. They have been used for load 
forecasting in era of smart grid (Amjady et al., 2010; Zhang et al., 2010). In particular, Chen 
et al. have presented the method of similar day-based wavelet neural network approach 
(Chen, et al., 2010). The key idea there was to select “similar day load” as the input load, use 
wavelet decomposition to decompose the load into multiple components at different 
frequencies, apply separate neural networks to capture the features of the forecast load at 
individual frequencies, and then combine the results of the multiple neural networks to 
form the final forecast (see Figure 9). In general, these methods used general neural 
networks which adopted multilayer perception with the back-propagation training. There 
are many wavelet decomposition techniques. Some recent techniques applying to load 
forecasting are: 

 Daubechies 4 wavlet (Chen et al., 2010) 

 Multiple-level wavelet (Guan et al., 2010) 

 Dual-tree M-band wavelet (Guan et al., 2011) 
The Daubechies 4 (D4) wavelet is part of the family of orthogonal wavelets defining a 
discrete wavelet transform that decomposes a series into a high frequency series and a low 
frequency series. Multiple-level wavelet basically repeatedly applies D4 wavelet 
decomposition to the low frequency component of its previous decomposition as shown in 
Figure 8. Unlike D4 wavelet, Dual-tree M-band wavelet can selectively decompose a series 
into specified frequency ranges which could be key design parameters for more effective 
decomposition. 
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Fig. 8. Multiple-level Wavelet Neural Network 

In general, each (Neural Network) NN as shown in Figure 8 could be implemented as a 
feed-forward neural network being described by the following equation: 

 1 1( , , , , )t l t t t n tL f t L L L         , (3) 

where t is time of day, l is the time lead of the forecast, tL is the load component or relative 

increment of the load component at time t and 1t  represents a random load component. 

The nonlinear function f is used to represent the nonlinear characteristics of a given neural 

network. 

4.3 Neural networks trained by hybrid kalman filters 
Since back-propagation algorithm is a first-order gradient-based learning algorithm, neural 
networks trained by such algorithm cannot produce the covariance matrix to construct 
dynamic confidence interval for the load forecasting. Replacing back-propagation learning, 
wavelet neural networks trained by hybrid Kalman filters are developed to forecast the load 
of next hour in five-minute steps with small estimated confidence intervals.  
If the NN input-output function was nearly linear, through linearization, NNs can be 
trained with the extended Kalman filter (EKFNN) by treating weight as state (Singhal & Wu, 
1989). To speed up the computation, EKF was extended to the decoupled EKF by ignoring 
the interdependence of mutually exclusive groups of weights (Puskorius &Feldkamp, 1991). 
The numerical stability and accuracy of decoupled EKF was further improved by U-D 
factorization (Zhang & Luh, 2005). If the NN input-output function was highly nonlinear, 
EKFNN may not be good since mean and covariance were propagated via linearization of 
the underlying non-linear model. Unscented Kalman filter (Julier et al, 1995) was a potential 
method, and NNs trained by unscented Kalman filter (UKFNN) showed a superior 
performance. EKFNN was used to capture the feature of low frequency, and UKFNNs for 
those of higher frequency. Results are combined to form the final forecast.  
To capture the near linear relation between the input and output of the NN for the low 
component, a neural network trained by EKF is developed through treating the NN weight 
as the state and desired output as the observation. The input-output observations for the 
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model can be represented by the set {u(t), z(t+1)}, where u(t) = {u1, …, unu}T is a nu×1 input 
vector, and z(t+1) = z(t+1|t) = {z1, …,znz}T is nz×1 a output vector. Correspondingly, 

 ˆ ˆ( 1) ( 1 )z t z t t    represents the estimation for measurement z(t+1). The formulation of 

training NN through EKF (Zhang and Luh, 2005; Guan et al., 2010) can be described by state 
and measurement functions: 

  ( 1)= ( )+ tw t w t  , (4a) 

    ( 1)= ( ), ( 1) + t+1z t h u t w t v  , (4b) 

where h(�) is the input-output function of the network, ε(t) and ν(t) are the process and 
measurement noises. The former is assumed to be white Gaussian noised with a zero mean 
and a covariance matrix Q(t), whereas the latter is assumed to have a student t-distribution 
with covariance matrix R(t). The weight vector w(t) has a dimension nw×1 and nw is 
determined by numbers of inputs, hidden neurons and outputs:  

    x h= n 1 n n 1w h zn n     . (5) 

Using the input vector u(t), weight vector w(t) and output vector ˆ( 1)z t  , EKFNN are 

derived. Key steps of derivation for EKF (Bar-Shalom et al. 2001) are summarized: 

 ˆ ( 1| ) ( | )w t t w t t  , (6) 

 ( 1| ) ( | ) ( )P t t P t t Q t   , (7) 

  ˆ ˆ( 1| ) ( ), ( 1| )z t t h u t w t t   , (8) 

 ( 1) ( 1) ( 1| ) ( 1) ( 1)TS t H t P t t H t R t         , (9) 

   ( )
ˆ ( 1| )

where ( 1) ( , ) u u t
w w t t

H t h u w w 
 

    , (10) 

 
1( 1) ( 1| ) ( 1) ( 1)TK t P t t H t S t        ,  (11) 

   ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1) ( 1| )w t t w t t K t z t z t t          , (12) 

 ( 1| 1) ( 1| ) ( 1) ( 1) ( 1| )P t t P t t K t H t P t t          . (13) 

where H(t+1) is the partial derivative of h(�) with respect to w(t) with dimension nz×nw, 
K(t+1) is the Kalman gain, P(t+1|t) is the prior weight covariance matrix and is updated to 
posterior weight covariance matrix P(t+1|t+1) based on the Bayesian formula, and S(t+1) is 
the measurement covariance matrix.  

Let us denote    ˆ ˆ1| 1|Lz t t z t t    and  2ˆ ( 1) ( 1) 1 1
T

L nyt S t I       , where nyI  is the 

unit matrix,  1 1
T is a vector with length of ny, 2ˆ ( 1)L t  is the variance vector consists of 
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the diagonal elements of S(t+1).  ˆ 1|Lz t t  and 2ˆ ( 1)L t  representing the low frequency 

component of prediction and variance, respectively, will be used for the final load 

prediction and confidence interval estimation. Corresponding medium frequency 

components of  ˆ 1|Mz t t  and 2ˆ ( 1)M t  and high frequency components of  ˆ 1|Hz t t  

and 2ˆ ( 1)H t   can be obtained via some UKFNN (Guan and et al., 2010). 

4.4 Overall load forecasting and confidence interval estimation 
To quantify forecasting accuracy, the confidence interval was obtained by using the neural 
networks trained by hybrid Kalman filters. Within the wavelet neural network framework, 
the covariance matrices of Kalman filters for individual frequency components contained 
forecasting quality information of individual load components. When load components 
were combined to form the overall forecast, the corresponding covariance matrices would 
also be appropriately combined to provide accurate confidence intervals for the overall 
prediction (Guan et al., 2010).  

The overall load prediction is the sum of low component prediction ˆ
Lz , medium component 

prediction ˆ
Mz  and high component prediction ˆ

Hz because these components are orthogonal 

based on wavelet decomposition property: 

 ˆ ˆ ˆ ˆ( 1| ) ( 1| ) ( 1| ) ( 1| )L M Hz t t z t t z t t z t t       ,  (14) 

By the same token, the overall standard deviation ˆ( 1| )t t   for STLF is the sum of standard 

deviations for low and high components: 

 ˆ ˆ ˆ ˆ( 1| ) ( 1| ) ( 1| ) ( 1| )L M Ht t t t t t t t          , (15) 

Hence, the one sigma confidence interval for STLF can be constructed by: 

  ˆ ˆˆ ˆ( 1| ) ( 1| ), ( 1| ) ( 1| )z t t t t z t t t t       . (16) 

The overall scheme of training, forecasting and confidence interval estimation is depicted 
and summarized in Figure 9. 
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Fig. 9. Structure of a general wavelet neural networks trained by hybrid Kalman filters 
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4.5 Composite demand forecasting 
To generate better forecasting results, a composite forecast is developed to mix multiple 
methods for STLF with CI estimation. The concept is based on the statistical model of 
ensemble forecasting to produce an optimal forecast by compositing forecasts from a 
number of different techniques. The method is depicted schematically in Figure 3. 
 

 

Fig. 10. Ensemble forecasting 

As illustrated in Figure 11, the method runs three sample models (Forecast 1, Forecast 2 and 
Forecast 3) in parallel. The weights of the combination are theoretically derived based on the 
“interactive multiple model” approach (Bar-Shalom et al, 2001). For methods which are 
based on Kalman filters and have dynamic covariance matrices on the forecast load, these 
dynamic covariance matrices are used for the combination. Otherwise, static covariance 
matrices derived from historic forecasting accuracy are used instead. 
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CLFCC: Composite load forecasting and covariance combination 

MPC: Mixing probability calculation 
 

Fig. 11. Structure of composite forecasting with confidence interval estimation  
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The relative increment (RI) in load is used to help capture the load features in the method 
since it removes a first-order trend and anchor the prediction by the latest load 
(Shamsollahi et al., 2001). After normalization, the RI in load of last time period z(t) is 
denoted as the input to the NN, where time t is the time index. The mixing weight µ(t) can 

be calculated through the likelihood functions j(t), with superscript j=1, 2, 3 representing 
Forecasts 1, 2 &3 respectively: 

   ( ) ( ); | 1 , ( )]jj jt N z t z t t S t   , (17) 

3

1

( ) ( ) ( )j jj j j
j

t t c t c


 
     
 
 


, 

 
3

1

( 1) 1,2,3j ij i
i

where c p t j


    , (18) 

where p is the transition probability to be configured manually. S1, S2 and S3 are sample 
covariance matrices from Forecasts 1, 2 &3 derived from historic forecasting accuracy. 
Without loss of generality, we assume that dynamic covariance matrices S2D for Forecast 2 
and S3D for Forecast 3 are available. To make a stable combination, the dynamic 
innovation matrices S2D from Forecast 2 and S3D from Forecast 3 are not used to calculate 

likelihood functions 2 and 3 since S2D and S3D may largely affects the mixing weight. 
Then predictions from individual models can be combined to form the forecast:  

  
3

1

( 1| ) ( 1| )
jj

j

z t t t z t t


     . (19) 

The output z(t+1|t) from NNs has to be transformed back due to the RI transformation on 
the load input. Similar to the prediction combination, the static covariance matrix S1 
derived from historic forecasting accuracy and dynamic covariance matrices S2D and S3D 
will also be combined. Here, S1 S2D and S3D are the covariance matrices for NN outputs 
(estimated RI in load). Since RI is a nonlinear transformation, the covariance matrix has to 
be transformed. If S1 S2D and S3D can be obtained directly from individual models, they 
can be combined first:  

      1 1 2 2 3 3( 1) ( 1) ( 1) ( 1)D DS t t S t t S t t S t             (20) 

Then, S(t+1) will be used to further derive CIs with respect to RI transformation (Guan et al., 
2010).  
Demand forecast and its corresponding confidence intervals are crucial inputs to the 
Generation Control Application which robustly dispatch the power system using a series of 
coordinated scheduling functions. 

5. Generation control application  

Generation Control Application (GCA) is an application designed to provide dispatchers in 
large power grid control centers with the capability to manage changes in load, generation, 
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interchange and transmission security constraints simultaneously on a intra-day and near 
real-time operational basis. GCA uses least-cost security-constrained economic scheduling 
and dispatch algorithms with resource commitment capability to perform analysis of the 
desired generation dispatch. With the latest State Estimator (SE) solution as the starting 
point and transmission constraint data from the Energy Management System (EMS), GCA 
Optimization Engines (aka Scheduler or SKED) will look ahead at different time frames to 
forecast system conditions and alter generation patterns within those timeframes.  
This rest of this section will focus on the functionality of SKED engines and its coordination 

with COP. 

5.1 SKED optimization engine 
SKED is a Mixed Integer Programming (MIP) / Linear Programming (LP) based optimization 

application which includes both unit commitment and unit dispatch functions. SKED can be 

easily configured to perform scheduling processes with different heart beats and different 

look-ahead time. A typical configuration for GCA includes three SKED sequences: 

 SKED1 provides the system operator with intra-day incremental resource (including 

generators and demand side responses) commitment/de-commitment schedules based 

on Day-ahead unit commitment decision to manage forecasted upcoming peak and 

valley demands and interchange schedules while satisfying transmission security 

constraints and reserve capacity requirements. SKED1 is a MIP based application. It is 

typically configured to execute for a look-ahead window of 6-8 hours with viable 

interval durations, e.g., 15-minute intervals for the 1st hour and hourly intervals for the 

rest of study period. 

 SKED2 will look 1-2 hour ahead with 15-minute intervals. SKED2 will fine-tune the 

commitment status of qualified fast start resources and produce dispatch contours. 

SKED2 also provides resource ramping envelopes for SKED3 to follow (Figure 12). 

 SKED3 is a dispatch tool which calculates the financially binding base points of the next 

five-minute dispatch interval and advisory base-points of the next several intervals for 

each resource (5 min, 10 min, 15 min, etc). SKED3 can also calculate ex-ante real-time 

LMPs for the financial binding interval and advisory price signals for the rest of study 

intervals. SKED3 is a multi-interval co-optimization LP problem. Therefore, it could 

pre-ramp a resource for the need of load following and real-time transmission 

congestion management. 

Traditionally, due to the uncertainty in the demand and the lack of compliance from 

generators to follow instructions, RTOs have to evaluate several dispatch solutions for 

different demand scenarios (low (L), medium (M) and high (H)). Figure 4 depicts such practice 

for real-time dispatch. Except for the initial conditions (e.g. MW from State Estimator (SE)), the 

solutions are independent. The operators have to choose to approve one of the three load 

scenarios based on their human judgments on which scenario is more likely to occur. 

The conventional way of dealing with the demand uncertainty is stochastic optimization 

(Wu et al., 2007; Verbic and Cañizares, 2006; Ruiz et al., 2009). The data requirements of 

stochastic optimization, makes it more appropriate to solve longer term problems, e.g. 

expansion and operational planning, including day-ahead security constrained unit 

commitment process. However, the simplicity and flexibility of the solution proposed in this 

chapter makes it more practical for real-time dispatch. 
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Fig. 12. SKED 2 and SKED 3 Coordination 

A. Single interval dispatch model 

The traditional single interval dispatch model is formulated as a Linear Programming (LP) 
problem: 

 *i i
i

Minimize

c Pg  

 min max

,

max max
,

( ) * ( ) *

*

i
i

i i i

SE i i iSE SE i t

k Fk i i k
i

subject to

Pg Dm

Pg Pg Pg

time time RRDn Pg Pg time time RRUp

F Dfax Pg F



 
     

  





 (21) 

where 

ic  Offer price for resource i 

iPg  Dispatch level for resource i 

Dm  Demand forecast for target time 
min max,i iPg Pg  Min and max dispatch level for resource i 

max
kF  Line/flowgate k transmission limit 

,Fk iDfax  Sensitivity of line/flowgate k to injection i (demand distributed slack) 

time  Target time 

SEtime  State Estimator time stamp 

iRRDn  Maximum ramp rate down for resource i 

iRRUp  Maximum ram rate up for resource i 
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Fig. 13. Three independent dispatch solutions 

B. Dynamic dispatch model 

Adding the time dimension into the single interval dispatch problem above described, the basic 

multi-interval dispatch (dynamic dispatch) model is formulated as an extended LP problem 

(sub-index t is added to describe interval t related parameters and variables, as appropriate): 

 , , 1* * ( ) /60i t i t t t
t i

Minimize

c Pg Time Time 
   
  

 
 

 

,

min max
, , ,

1 , , , 1 1 ,

max max
, , , ,

( ) * ( ) *

*

i t t
i

i t i t i t

t t i t i t i t t t i t

k t Fk i i t k t
i

subject to

Pg Dm

Pg Pg Pg

time time RRDn Pg Pg time time RRUp

F Dfax Pg F

  



 

     

  





 (22) 

{ 1,... }for t t tn 
 

Figure 13. illustrates the dynamic dispatch model with multiple scenario runs. 

C. Robust dispatch model 

A more robust solution that co-ordinates the three demand scenarios, guaranteeing the 

"reach-ability" of confidence interval of demand forecast from the medium demand dispatch 

is proposed.  
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The solution would provide a single robust dispatch, guaranteeing that the dispatch levels 
for the low and high demand scenarios can be reached from the dispatch corresponding to 
the medium (expected) demand scenario within consecutive intervals in the study horizon, 
e.g. avoiding extreme measures like demand curtailment if the high demand scenario 
materializes and it is too late to catch up. The robust solution proposed is depicted in Figure 
14. The cost of Robust Dispatch will be higher than ordinary dispatch using medium load 
level. It can be justified as a type of ancillary services for load following. 
A further refinement to the proposed solution is to limit the cost of the “robustness” and 
specify a merit order of the intervals in which robustness is more valuable. 
 

 

Fig. 14. Robust dispatch solution 

The following LP problem co-ordinates the three demand scenarios into one “robust” 
solution. The objective function and constraints corresponding to the medium demand 
scenario are the same as those of an independent dynamic dispatch (M only); for the high 
and low demand scenarios, however, while the objective function terms are the same as 
those of independent dynamic dispatches (H only and L only), the maximum ramp rate 
constraints for each resource do not link dispatch levels of consecutive intervals for the same 
scenario (H→H, L→L); instead, for a given interval t such constraints link the H and L 
dispatch levels with the dispatch level corresponding to the M scenario in the preceding 
interval t-1 (M→H and M→L); guaranteeing the "reach-ability" of the low and high demand 
scenarios dispatches from the medium demand dispatch level in successive intervals (upper 
and lower case h, m and l are used as extensions to describe high, medium and low demand 
scenarios parameters and variables). 
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{ 1,... }for t t tn   

It is important to note that there is certainly a tradeoff between cost and robustness for any 
given robust dispatch solution using the methodology proposed above. Figure 15 illustrates 
the conceptual idea of relationship between cost and flexibility which is proportional to 
robustness. The value of the “∆cost acceptable” will be very much dependent on the amount 
of risk one is willing to take for reliability purposes when dispatching the system. 

5.2 SKED and COP coordination 
GCA is built upon a modular and flexible system architecture. Although different SKED 
processes are correlated, they do not replay on each other. The orchestration between SKEDi 
is managed by COP. This design enables low-risk, cost-effective business process evolution. 
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It also ensures high availability for the mission critical real-time GCA SKED functions. 
Failure of any one or more SKED components will cause smooth degradation of, instead of 
abrupt service interruptions to, real-time dispatch instructions.  
 

 

Fig. 15. Robustness vs. Cost 

COP is the repository of all operating plans in a multi-stage decision process. Each SKEDi in 
the decision process generates a set of schedules that are reflected in its corresponding COP 
(COPi). The aggregated results from the multi-stage decision process are captured in the 
total COP (COPt), which is the consolidated outcome of the individual COPi’s. SKED and 
COP coordination is illustrated in Figure 16. 
Initialization of the COP for each operating day begins with the day-ahead schedule, which 
is based on the DAM financial schedules and then updated with Reliability Commitment 
results. Before any SKEDi is run in the current day of operation, the overall COPt is 
initialized with the day-ahead schedules. When COPt is suitably initialized, it will be used 
to generate input data for SKED1, SKED2 and SKED3. Results of SKEDi’s are then used to 
update their respective subordinate COPi, which will cause COPt to be updated, and thus 
the overall iterative process continues. 
 

 

Fig. 16. SKED and COP Coordination 
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GCA aims at enhancing operators’ forward-looking view under changing system conditions 
(generation capacity, ramp capability, transmission constraints, etc.) and providing 
operators with a “radar-type” of recommendation of actions such as startup or shutdown of 
fast-start resources in near real-time. As shown in Figure 17 – COP review display, various 
startup and shutdown recommendations are approaching the “now” timeline like an 1-
dimensional radar sorted by likelihood ranking from top to bottom. The COP review 
display also shows actual system total generation and comparing against demand forecast 
and system ramp constrained capacity. This provides situation awareness of any potential 
abrupt ramping events or potential system imbalance and alerts operators in advance if any 
actions need to be taken. 
 

 

Fig. 17. Forward-looking view presented by COP Overview 

6. Conclusion  

Significant capacity of renewable generation resources operating online at any given 
time is of great concern to grid security due to the intermittent nature of many of the 
resources. On one hand, the potential volatility of the intermittent generation output 
could cause great stress on the system’s generation planning and ramp management. On 
the other hand, these intermittent resources could be operating at locations that 
contribute to transmission line congestion and become very challenging problems for a 
lot of the RTOs.  
This chapter addresses the challenges of renewable integration from a generation 
dispatch perspective. The framework of Smart Dispatch is proposed in which the 
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applications of demand forecasting and robust dispatch are discussed in detail. A new 
dispatch system called Generation Control Application (GCA) is described to address the 
challenges posed by renewable energy integration. GCA aims at enhancing operators’ 
forward-looking view under changing system conditions such as wind speed or other 
weather conditions. GCA provides operators with situation awareness of any potential 
abrupt ramping events or potential system imbalance and alerts operators in advance if 
any actions need to be taken. With dynamic and robust dispatch algorithm and flexible 
system configuration, the system provides adequate system ramping capability to cope 
with uncertain intermittent resources while maintaining system reliability in large grid 
operations.  
Smart Dispatch is deemed critical for the success of efficient power system operations in the 
near future. 
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