139,530 research outputs found

    Key Management Scheme for Smart Grid

    Get PDF
    A Smart Grid (SG) is a modern electricity supply system. It uses information and communication technology (ICT) to run, monitor and control data between the generation source and the end user. It comprises a set of technologies that uses sensing, embedded processing and digital communications to intelligently control and monitor an electricity grid with improved reliability, security, and efficiency. SGs are classified as Critical Infrastructures. In the recent past, there have been cyber-attacks on SGs causing substantial damage and loss of services. A recent cyber-attack on Ukraine's SG caused over 2.3 million homes to be without power for around six hours. Apart from the loss of services, some portions of the SG are yet to be operational, due to the damage caused. SGs also face security challenges such as confidentiality, availability, fault tolerance, privacy, and other security issues. Communication and networking technologies integrated into the SG require new and existing security vulnerabilities to be thoroughly investigated. Key management is one of the most important security requirements to achieve data confidentiality and integrity in a SG system. It is not practical to design a single key management scheme/framework for all systems, actors and segments in the smart grid, since the security requirements of various sub-systems in the SG vary. We address two specific sub-systems categorised by the network connectivity layer – the Home Area Network (HAN) and the Neighbourhood Area Network (NAN). Currently, several security schemes and key management solutions for SGs have been proposed. However, these solutions lack better security for preventing common cyber-attacks such as node capture attack, replay attack and Sybil attack. We propose a cryptographic key management scheme that takes into account the differences in the HAN and NAN segments of the SG with respect to topology, authentication and forwarding of data. The scheme complies with the overall performance requirements of the smart grid. The proposed scheme uses group key management and group authentication in order to address end-to-end security for the HAN and NAN scenarios in a smart grid, which fulfils data confidentiality, integrity and scalability requirements. The security scheme is implemented in a multi-hop sensor network using TelosB motes and ZigBee OPNET simulation model. In addition, replay attack, Sybil attack and node capture attack scenarios have been implemented and evaluated in a NAN scenario. Evaluation results show that the scheme is resilient against node capture attacks and replay attacks. Smart Meters in a NAN are able to authenticate themselves in a group rather than authenticating one at a time. This significant improvement over existing schemes is discussed with comparisons with other security schemes

    Storage Management and Access in WLHC computing Grid

    Get PDF
    One of the big challenges in Grid computing is storage management and access. Several solutions exist to store data in a persistent way. In this work we describe our contribution within the Worldwide LHC Computing Grid project. Substantial samples of data produced by the High Energy Physics detectors at CERN are shipped for initial processing to specific large computing centers worldwide. Such centers are normally able to provide persistent storage for tens of Petabytes of data mostly on tapes. Special physics applications are used to refine and filter the data after spooling the required files from tape to disk. At smaller geographically dispersed centers, physicists perform the analysis of such data stored on disk-only caches. In this thesis we analyze the application requirements such as uniform storage management, quality of storage, POSIX-like file access, performance, etc. Furthermore, security, policy enforcement, monitoring, and accounting need to be addressed carefully in a Grid environment. We then make a survey of the multitude of storage products deployed in the WLCG infrastructure, both hardware and software. We outline the specific features, functionalities and diverse interfaces offered to users. We focus in particular on StoRM, a storage resource manager that we have designed and developed to provide an answer to specific user request for a fast and efficient Grid interface to available parallel file systems. We propose a model for the Storage Resource Management protocol for uniform storage management and access in the Grid. The black box testing methodology has been applied in order to verify the completeness of the specifications and validate the existent implementations. an extension for storage on the Grid. We finally describe and report on the results obtained

    Service-Oriented Ad Hoc Grid Computing

    Get PDF
    Subject of this thesis are the design and implementation of an ad hoc Grid infrastructure. The vision of an ad hoc Grid further evolves conventional service-oriented Grid systems into a more robust, more flexible and more usable environment that is still standards compliant and interoperable with other Grid systems. A lot of work in current Grid middleware systems is focused on providing transparent access to high performance computing (HPC) resources (e.g. clusters) in virtual organizations spanning multiple institutions. The ad hoc Grid vision presented in this thesis exceeds this view in combining classical Grid components with more flexible components and usage models, allowing to form an environment combining dedicated HPC-resources with a large number of personal computers forming a "Desktop Grid". Three examples from medical research, media research and mechanical engineering are presented as application scenarios for a service-oriented ad hoc Grid infrastructure. These sample applications are also used to derive requirements for the runtime environment as well as development tools for such an ad hoc Grid environment. These requirements form the basis for the design and implementation of the Marburg ad hoc Grid Environment (MAGE) and the Grid Development Tools for Eclipse (GDT). MAGE is an implementation of a WSRF-compliant Grid middleware, that satisfies the criteria for an ad hoc Grid middleware presented in the introduction to this thesis. GDT extends the popular Eclipse integrated development environment by components that support application development both for traditional service-oriented Grid middleware systems as well as ad hoc Grid infrastructures such as MAGE. These development tools represent the first fully model driven approach to Grid service development integrated with infrastructure management components in service-oriented Grid computing. This thesis is concluded by a quantitative discussion of the performance overhead imposed by the presented extensions to a service-oriented Grid middleware as well as a discussion of the qualitative improvements gained by the overall solution. The conclusion of this thesis also gives an outlook on future developments and areas for further research. One of these qualitative improvements is "hot deployment" the ability to install and remove Grid services in a running node without interrupt to other active services on the same node. Hot deployment has been introduced as a novelty in service-oriented Grid systems as a result of the research conducted for this thesis. It extends service-oriented Grid computing with a new paradigm, making installation of individual application components a functional aspect of the application. This thesis further explores the idea of using peer-to-peer (P2P networking for Grid computing by combining a general purpose P2P framework with a standard compliant Grid middleware. In previous work the application of P2P systems has been limited to replica location and use of P2P index structures for discovery purposes. The work presented in this thesis also uses P2P networking to realize seamless communication accross network barriers. Even though the web service standards have been designed for the internet, the two-way communication requirement introduced by the WSRF-standards and particularly the notification pattern is not well supported by the web service standards. This defficiency can be answered by mechanisms that are part of such general purpose P2P communication frameworks. Existing security infrastructures for Grid systems focus on protection of data during transmission and access control to individual resources or the overall Grid environment. This thesis focuses on security issues within a single node of a dynamically changing service-oriented Grid environment. To counter the security threads arising from the new capabilities of an ad hoc Grid, a number of novel isolation solutions are presented. These solutions address security issues and isolation on a fine-grained level providing a range of applicable basic mechanisms for isolation, ranging from lightweight system call interposition to complete para-virtualization of the operating systems

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Towards a Secure Smart Grid Storage Communications Gateway

    Full text link
    This research in progress paper describes the role of cyber security measures undertaken in an ICT system for integrating electric storage technologies into the grid. To do so, it defines security requirements for a communications gateway and gives detailed information and hands-on configuration advice on node and communication line security, data storage, coping with backend M2M communications protocols and examines privacy issues. The presented research paves the road for developing secure smart energy communications devices that allow enhancing energy efficiency. The described measures are implemented in an actual gateway device within the HORIZON 2020 project STORY, which aims at developing new ways to use storage and demonstrating these on six different demonstration sites.Comment: 6 pages, 2 figure

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Grid infrastructures for the electronics domain: requirements and early prototypes from an EPSRC pilot project

    Get PDF
    The fundamental challenges facing future electronics design is to address the decreasing – atomistic - scale of transistor devices and to understand and predict the impact and statistical variability these have on design of circuits and systems. The EPSRC pilot project “Meeting the Design Challenges of nanoCMOS Electronics” (nanoCMOS) which began in October 2006 has been funded to explore this space. This paper outlines the key requirements that need to be addressed for Grid technology to support the various research strands in this domain, and shows early prototypes demonstrating how these requirements are being addressed

    Modelling security properties in a grid-based operating system with anti-goals

    Get PDF
    • 

    corecore