6,813 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Scene Detection Classification and Tracking for Self-Driven Vehicle

    Get PDF
    A number of traffic-related issues, including crashes, jams, and pollution, could be resolved by self-driving vehicles (SDVs). Several challenges still need to be overcome, particularly in the areas of precise environmental perception, observed detection, and its classification, to allow the safe navigation of autonomous vehicles (AVs) in crowded urban situations. This article offers a comprehensive examination of the application of deep learning techniques in self-driving cars for scene perception and observed detection. The theoretical foundations of self-driving cars are examined in depth in this research using a deep learning methodology. It explores the current applications of deep learning in this area and provides critical evaluations of their efficacy. This essay begins with an introduction to the ideas of computer vision, deep learning, and self-driving automobiles. It also gives a brief review of artificial general intelligence, highlighting its applicability to the subject at hand. The paper then concentrates on categorising current, robust deep learning libraries and considers their critical contribution to the development of deep learning techniques. The dataset used as label for scene detection for self-driven vehicle. The discussion of several strategies that explicitly handle picture perception issues faced in real-time driving scenarios takes up a sizeable amount of the work. These methods include methods for item detection, recognition, and scene comprehension. In this study, self-driving automobile implementations and tests are critically assessed

    Comparative Analysis of Fruit Disease Identification Methods: A Comprehensive Study

    Get PDF
    The need for accurate and efficient technologies for recognising and controlling fruit diseases has increased due to the rising global demand for high-quality agricultural products. This study focuses on the advantages, disadvantages, and potential practical applications of a range of methods for identifying fecundities. Thanks to developments like improved imaging, machine learning, and data analysis tools, old methods of disease diagnosis have altered as technology has developed. The study compares older methods like visual observation, manual symptom correlation, spectroscopy, and chemical procedures with more contemporary methods like computer vision, autonomous learning algorithms, and sensor-based technologies. Precision, efficiency, cost, scalability, and ease of use are used to describe each method's effectiveness. The article reviews the research examples and practical applications of fruit endocrine disease detection in different cultivars and areas to provide a thorough comparison. This comparison focuses on the variations in disease prevalence and the ways that alternative treatments can be customised to certain situations.It is for this reason that this study offers useful information on how the methods for detecting fruit rot have evolved through time. It emphasises the significance of utilising technological advances to enhance the accuracy, effectiveness, and long-term sustainability of the management of agricultural diseases. Based on the unique requirements of their various agricultural systems, this analysis can assist researchers, practitioners, and policymakers in selecting the most effective methods for identifying fruit diseases

    A review of the use of artificial intelligence methods in infrastructure systems

    Get PDF
    The artificial intelligence (AI) revolution offers significant opportunities to capitalise on the growth of digitalisation and has the potential to enable the ‘system of systems’ approach required in increasingly complex infrastructure systems. This paper reviews the extent to which research in economic infrastructure sectors has engaged with fields of AI, to investigate the specific AI methods chosen and the purposes to which they have been applied both within and across sectors. Machine learning is found to dominate the research in this field, with methods such as artificial neural networks, support vector machines, and random forests among the most popular. The automated reasoning technique of fuzzy logic has also seen widespread use, due to its ability to incorporate uncertainties in input variables. Across the infrastructure sectors of energy, water and wastewater, transport, and telecommunications, the main purposes to which AI has been applied are network provision, forecasting, routing, maintenance and security, and network quality management. The data-driven nature of AI offers significant flexibility, and work has been conducted across a range of network sizes and at different temporal and geographic scales. However, there remains a lack of integration of planning and policy concerns, such as stakeholder engagement and quantitative feasibility assessment, and the majority of research focuses on a specific type of infrastructure, with an absence of work beyond individual economic sectors. To enable solutions to be implemented into real-world infrastructure systems, research will need to move away from a siloed perspective and adopt a more interdisciplinary perspective that considers the increasing interconnectedness of these systems

    A Thermal Image based Fault Detection in Electric Vehicle Battery Cells Utilizing CNN U-Net Model

    Get PDF
    It entails the formation of thermal images from battery cells under different conditions, capturing crucial thermal patterns such as hotspots, insulation degradation, and overheating. For robust model training, data preprocessing and augmentation techniques are applied. The U-Net model, known for its expertise in semantic segmentation tasks, is applied to evaluate thermal images and to detect fault-related features. The results demonstrate the U-Net's unique precision, sensitivity, and specificity in detecting thermal anomalies. This research adds to the improvement of the safety and dependability of EV battery systems, with applications in the electric mobility and automotive industries

    Emerging Technologies

    Get PDF
    This monograph investigates a multitude of emerging technologies including 3D printing, 5G, blockchain, and many more to assess their potential for use to further humanity’s shared goal of sustainable development. Through case studies detailing how these technologies are already being used at companies worldwide, author Sinan Küfeoğlu explores how emerging technologies can be used to enhance progress toward each of the seventeen United Nations Sustainable Development Goals and to guarantee economic growth even in the face of challenges such as climate change. To assemble this book, the author explored the business models of 650 companies in order to demonstrate how innovations can be converted into value to support sustainable development. To ensure practical application, only technologies currently on the market and in use actual companies were investigated. This volume will be of great use to academics, policymakers, innovators at the forefront of green business, and anyone else who is interested in novel and innovative business models and how they could help to achieve the Sustainable Development Goals. This is an open access book

    The Proceedings of 14th Australian Information Security Management Conference, 5-6 December 2016, Edith Cowan University, Perth, Australia

    Get PDF
    The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fourteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Fifteen papers were submitted from Australia and overseas, of which ten were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conferences. To our sponsors also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    A Method for Securing Symmetric Keys for Internet of Things Enabled Distributed Data Systems

    Get PDF
    This study introduces an innovative method for securing symmetric keys in Internet of Things (IoT)-enabled distributed data systems, focusing on enhancing data security while optimizing encryption and decryption times. Through a comprehensive analysis of various encryption algorithms—TEA, XTEA, BLOCK TEA (XXTEA), and the proposed NTSA algorithm—across different key sizes and file sizes, we aim to demonstrate the significant improvements our method offers over existing techniques. Our research meticulously evaluated the performance of these algorithms, employing random variations to encryption and decryption times to simulate real-world variability and assess the algorithms' efficiency and security robustness. The findings reveal that the NTSA algorithm, in particular, showcases superior performance, offering an approximate improvement of 10% to 15% in encryption and decryption times over traditional methods such as TEA and XTEA, and an even more considerable enhancement compared to BLOCK TEA (XXTEA). The key contribution of this study lies in its provision of a secure, efficient framework for symmetric key encryption in IoT-enabled distributed environments. By optimizing key size and algorithm selection, our method not only secures data against potential cyber threats but also ensures high-speed data processing—a critical requirement in the IoT domain where the volume of data transactions and the need for real-time processing are ever-increasing. The proposed method significantly advances the field of data security in distributed systems, especially within the context of the burgeoning IoT landscape. It underscores the importance of algorithmic efficiency and strategic key management in bolstering the security and performance of modern digital ecosystems
    • …
    corecore