88 research outputs found

    Test analysis & fault simulation of microfluidic systems

    Get PDF
    This work presents a design, simulation and test methodology for microfluidic systems, with particular focus on simulation for test. A Microfluidic Fault Simulator (MFS) has been created based around COMSOL which allows a fault-free system model to undergo fault injection and provide test measurements. A post MFS test analysis procedure is also described.A range of fault-free system simulations have been cross-validated to experimental work to gauge the accuracy of the fundamental simulation approach prior to further investigation and development of the simulation and test procedure.A generic mechanism, termed a fault block, has been developed to provide fault injection and a method of describing a low abstraction behavioural fault model within the system. This technique has allowed the creation of a fault library containing a range of different microfluidic fault conditions. Each of the fault models has been cross-validated to experimental conditions or published results to determine their accuracy.Two test methods, namely, impedance spectroscopy and Levich electro-chemical sensors have been investigated as general methods of microfluidic test, each of which has been shown to be sensitive to a multitude of fault. Each method has successfully been implemented within the simulation environment and each cross-validated by first-hand experimentation or published work.A test analysis procedure based around the Neyman-Pearson criterion has been developed to allow a probabilistic metric for each test applied for a given fault condition, providing a quantitive assessment of each test. These metrics are used to analyse the sensitivity of each test method, useful when determining which tests to employ in the final system. Furthermore, these probabilistic metrics may be combined to provide a fault coverage metric for the complete system.The complete MFS method has been applied to two system cases studies; a hydrodynamic “Y” channel and a flow cytometry system for prognosing head and neck cancer.Decision trees are trained based on the test measurement data and fault conditions as a means of classifying the systems fault condition state. The classification rules created by the decision trees may be displayed graphically or as a set of rules which can be loaded into test instrumentation. During the course of this research a high voltage power supply instrument has been developed to aid electro-osmotic experimentation and an impedance spectrometer to provide embedded test

    Detection of Pathogens in Water Using Micro and Nano-Technology

    Get PDF
    Detection of Pathogens in Water Using Micro and Nano-Technology aims to promote the uptake of innovative micro and nano-technological approaches towards the development of an integrated, cost-effective nano-biological sensor useful for security and environmental assays.  The book describes the concerted efforts of a large European research project and the achievements of additional leading research groups. The reported knowledge and expertise should support in the innovation and integration of often separated unitary processes. Sampling, cell lysis and DNA/RNA extraction, DNA hybridisation detection micro- and nanosensors, microfluidics, together also with computational modelling and risk assessment can be integrated in the framework of the current and evolving European regulations and needs. The development and uptake of molecular methods is revolutionizing the field of waterborne pathogens detection, commonly performed with time-consuming cultural methods. The molecular detection methods are enabling the development of integrated instruments based on biosensor that will ultimately automate the full pathway of the microbiological analysis of water

    Annual Report, 2017-2018

    Get PDF

    Detection of Pathogens in Water Using Micro and Nano-Technology

    Get PDF
    Detection of Pathogens in Water Using Micro and Nano-Technology aims to promote the uptake of innovative micro and nano-technological approaches towards the development of an integrated, cost-effective nano-biological sensor useful for security and environmental assays.  The book describes the concerted efforts of a large European research project and the achievements of additional leading research groups. The reported knowledge and expertise should support in the innovation and integration of often separated unitary processes. Sampling, cell lysis and DNA/RNA extraction, DNA hybridisation detection micro- and nanosensors, microfluidics, together also with computational modelling and risk assessment can be integrated in the framework of the current and evolving European regulations and needs. The development and uptake of molecular methods is revolutionizing the field of waterborne pathogens detection, commonly performed with time-consuming cultural methods. The molecular detection methods are enabling the development of integrated instruments based on biosensor that will ultimately automate the full pathway of the microbiological analysis of water

    Emerging (Bio)Sensing Technology for Assessing and Monitoring Freshwater Contamination - Methods and Applications

    Get PDF
    Ecological Water Quality - Water Treatment and ReuseWater is life and its preservation is not only a moral obligation but also a legal requirement. By 2030, global demands will exceed more than 40 % the existing resources and more than a third of the world's population will have to deal with water shortages (European Environmental Agency [EEA], 2010). Climate change effects on water resources will not help. Efforts are being made throughout Europe towards a reduced and efficient water use and prevention of any further deterioration of the quality of water (Eurostat, European Comission [EC], 2010). The Water Framework Directive (EC, 2000) lays down provisions for monitoring, assessing and classifying water quality. Supporting this, the Drinking Water sets standards for 48 microbiological and chemical parameters that must be monitored and tested regularly (EC, 1998). The Bathing Water Directive also sets concentration limits for microbiological pollutants in inland and coastal bathing waters (EC, 2006), addressing risks from algae and cyanobacteria contamination and faecal contamination, requiring immediate action, including the provision of information to the public, to prevent exposure. With these directives, among others, the European Union [EU] expects to offer its citizens, by 2015, fresh and coastal waters of good quality

    Ancient and historical systems

    Get PDF

    Nanobiosensors in diagnostics

    Get PDF
    Medical diagnosis has been greatly improved thanks to the development of new techniques capable of performing very sensitive detection and quantifying certain parameters. These parameters can be correlated with the presence of specific molecules and their quantity. Unfortunately, these techniques are demanding, expensive, and often complicated. On the other side, progress in other fields of science and technology has contributed to the rapid growth of nanotechnology. Although being an emerging discipline, nanotechnology has raised huge interest and expectations. Most of the enthusiasm comes from new possibilities and properties of nanomaterials. Biosensors (simple, robust, sensitive, cost-effective) combined with nanomaterials, also called nanobiosensors, are serving as bridge between advanced detection/diagnostics and daily/routine tests. Here we review some of the latest applications of nanobiosensors in diagnostics field

    Highly sensitive and multiplexed platforms for allergy diagnostics

    Full text link
    Thesis (Ph.D.)--Boston UniversityAllergy is a disorder of the immune system caused by an immune response to otherwise harmless environmental allergens. Currently 20% of the US population is allergic and 90% of pediatric patients and 60% of adult patients with asthma have allergies. These percentages have increased by 18.5% in the past decade, with predicted similar trends for the future. Here we design sensitive, multiplexed platforms to detect allergen-specific IgE using the Interferometric Reflectance Imaging Sensor (IRIS) for various clinical settings. A microarray platform for allergy diagnosis allows for testing of specific IgE sensitivity to a multitude of allergens, while requiring only small volumes of patient blood sample. However, conventional fluorescent microarray technology is limited by i) the variation of probe immobilization, which hinders the ability to make quantitative, assertive, and statistically relevant conclusions necessary in immunodiagnostics and ii) the use of fluorophore labels, which is not suitable for some clinical applications due to the tendency of fluorophores to stick to blood particulates and require daily calibration methods. This calibrated fluorescence enhancement (CaFE) method integrates the low magnification modality of IRIS with enhanced fluorescence sensing in order to directly correlate immobilized probe (major allergens) density to allergen-specific IgE in patient serum. However, this platform only operates in processed serum samples, which is not ideal for point of care testing. Thus, a high magnification modality of IRIS was adapted as an alternative allergy diagnostic platform to automatically discriminate and size single nanoparticles bound to specific IgE in unprocessed, characterized human blood and serum samples. These features make IRIS an ideal candidate for clinical and diagnostic applications, such a POC testing. The high magnification (nanoparticle counting) modality in conjunction with low magnification of IRIS in a combined instrument offers four significant advantages compared to existing sensing technologies: IRIS i) corrects for any variation in probe immobilization, ii) detects proteins from attomolar to nanomolar concentrations in unprocessed biological samples, iii) unambiguously discriminates nanoparticles tags on a robust and physically large sensor area, iv) detects protein targets with conjugated nanoparticle tags (~40nm diameter), which minimally affect assay kinetics compared to conventional microparticle tagging methods, and v) utilizes components that make the instrument inexpensive, robust, and portable. This platform was successfully validated on patient serum and whole blood samples with documented allergy profiles (ImmunoCAP®, ThermoFisher Scientific)

    Multiplexed profiling of extracellular vesicles for biomarker development

    Get PDF
    Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency
    corecore