735 research outputs found

    Symbolic Abstractions for Quantum Protocol Verification

    Get PDF
    Quantum protocols such as the BB84 Quantum Key Distribution protocol exchange qubits to achieve information-theoretic security guarantees. Many variants thereof were proposed, some of them being already deployed. Existing security proofs in that field are mostly tedious, error-prone pen-and-paper proofs of the core protocol only that rarely account for other crucial components such as authentication. This calls for formal and automated verification techniques that exhaustively explore all possible intruder behaviors and that scale well. The symbolic approach offers rigorous, mathematical frameworks and automated tools to analyze security protocols. Based on well-designed abstractions, it has allowed for large-scale formal analyses of real-life protocols such as TLS 1.3 and mobile telephony protocols. Hence a natural question is: Can we use this successful line of work to analyze quantum protocols? This paper proposes a first positive answer and motivates further research on this unexplored path

    Bluetooth Security Protocol Analysis and Improvements

    Get PDF
    Since its creation, Bluetooth has transformed itself from a cable replacement technology to a wireless technology that connects people and machines. Bluetooth has been widely adapted on mobile phones and PDAs. Many other vendors in other industries are integrating Bluetooth into their products. Although vendors are adapting to the technology, Bluetooth hasn’t been a big hit among users. Security remains a major concern. Poor implementation of the Bluetooth architecture on mobile devices leads to some high profiled Bluetooth hacks. Weak security protocol designs expose the Bluetooth system to some devastating protocol attacks. This paper first explores four Bluetooth protocol-level attacks in order to get deeper insights into the weakness of the Bluetooth security design. It then proposes enhancements to defense against those attacks. Performance comparison will be given based on the implementation of those enhancements on a software based Bluetooth simulator

    Home network security

    Get PDF

    Shake well before use: Authentication based on Accelerometer Data

    Get PDF
    Small, mobile devices without user interfaces, such as Bluetooth headsets, often need to communicate securely over wireless networks. Active attacks can only be prevented by authenticating wireless communication, which is problematic when devices do not have any a priori information about each other. We introduce a new method for device-to-device authentication by shaking devices together. This paper describes two protocols for combining cryptographic authentication techniques with known methods of accelerometer data analysis to the effect of generating authenticated, secret keys. The protocols differ in their design, one being more conservative from a security point of view, while the other allows more dynamic interactions. Three experiments are used to optimize and validate our proposed authentication method

    Security Analysis of the Consumer Remote SIM Provisioning Protocol

    Full text link
    Remote SIM provisioning (RSP) for consumer devices is the protocol specified by the GSM Association for downloading SIM profiles into a secure element in a mobile device. The process is commonly known as eSIM, and it is expected to replace removable SIM cards. The security of the protocol is critical because the profile includes the credentials with which the mobile device will authenticate to the mobile network. In this paper, we present a formal security analysis of the consumer RSP protocol. We model the multi-party protocol in applied pi calculus, define formal security goals, and verify them in ProVerif. The analysis shows that the consumer RSP protocol protects against a network adversary when all the intended participants are honest. However, we also model the protocol in realistic partial compromise scenarios where the adversary controls a legitimate participant or communication channel. The security failures in the partial compromise scenarios reveal weaknesses in the protocol design. The most important observation is that the security of RSP depends unnecessarily on it being encapsulated in a TLS tunnel. Also, the lack of pre-established identifiers means that a compromised download server anywhere in the world or a compromised secure element can be used for attacks against RSP between honest participants. Additionally, the lack of reliable methods for verifying user intent can lead to serious security failures. Based on the findings, we recommend practical improvements to RSP implementations, to future versions of the specification, and to mobile operator processes to increase the robustness of eSIM security.Comment: 33 pages, 8 figures, Associated ProVerif model files located at https://github.com/peltona/rsp_mode

    LMGROUP: A Lightweight Multicast Group Key Management for IoT Networks

    Get PDF
    Due to limitations of IoT networks including limited bandwidth, memory, battery, etc., secure multicast group communication has gained more attention, and to enable that a group key establishment scheme is required to share the secret key among the group members. The current group key establishment protocols were mostly designed for Wireless Sensor Network, and they require device interaction, high computation costs, or high storage on the device side. To address these drawbacks, in this paper we design LMGROUP, a lightweight and multicast group key establishment protocol for IoT networks, that is based on Elliptic Curve Integrated Encryption Scheme and HMAC verification and does not require device interaction. We also suggest an algorithm for unpredictable group member selection. Our experimental result of implementing LMGROUP indicates it has low storage, low computation, and low communication costs. Furthermore, the formal security verification indicates LMGROUP is secure and robust against different attacks
    • 

    corecore