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ABSTRACT 
 
 Since its creation, Bluetooth has transformed itself from a cable replacement 

technology to a wireless technology that connects people and machines.  Bluetooth 

has been widely adapted on mobile phones and PDAs.  Many other vendors in other 

industries are integrating Bluetooth into their products.  Although vendors are 

adapting to the technology, Bluetooth hasn’t been a big hit among users.  Security 

remains a major concern.  Poor implementation of the Bluetooth architecture on 

mobile devices leads to some high profiled Bluetooth hacks.  Weak security protocol 

designs expose the Bluetooth system to some devastating protocol attacks. 

 This paper first explores four Bluetooth protocol-level attacks in order to get 

deeper insights into the weakness of the Bluetooth security design.  It then proposes 

enhancements to defense against those attacks.  Performance comparison will be 

given based on the implementation of those enhancements on a software based 

Bluetooth simulator. 
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1. INTRODUCTION 

Bluetooth, a short ranged wireless technology, was invented back in 1996.  It 

was originally designed to replace clumsy cables that connect computers.  However, 

the energy efficient nature of Bluetooth’s design makes Bluetooth a practical 

technology to be applied on small portable mobile devices.  The fact that Bluetooth 

design requires no state of the art components makes it a low cost wireless solution 

that can be widely afforded by the public [2, 11, 19].  Couple years ago, it was being 

seen as one of the technologies that will revolutionize how mobile devices connects to 

each other.  Also, the fact that lots of big telecommunication moguls and software 

giants have made huge investments into Bluetooth projects makes Bluetooth a 

promising technology.   

Bluetooth has been adapted by many different industries.  Nowadays, lots of  

mobile phones on the market are equipped with Bluetooth which allows them to 

synchronize their data, such as phone books, wirelessly over a short range with other 

mobile phones, computers, and handheld devices.  According to IDC research, about 

13 percent of mobile phones shipped in the United States have Bluetooth.  The 

number will grow to about 53 percent globally and 65 percent in United States by 

2008 [21].  Some of the high-ended car models even have keyless entry and ignition 

that utilize Bluetooth.  Some models of BMW have built-in Bluetooth hands-free 

system [14].  Microsoft has also started to have Bluetooth support after its XP SP1 

release.   

Although the Bluetooth technology can now be seen everywhere in our daily 

lives, it has not gain any significant popularity from its users over the past few years.  

Lots of people don’t even know what Bluetooth is.  Vendors also haven’t aggressively 

push Bluetooth out to the market.  Most mobile phones have their Bluetooth features 
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turned off by default so that only knowledge users will turn them on.  Mobile phone 

vendors recommend users to turn off the Bluetooth features on their mobiles when 

they are not in use in order to minimize the risk of being attack by hackers. Bluetooth 

designers also recommend people not to pair Bluetooth devices in public places.  If 

Bluetooth is such a great technology, why do vendors turn Bluetooth features off on 

their mobile phones by default?  Why can’t mobile users leave their Bluetooth 

connections on 24 hours a day?  The answer lies in the fact that the Bluetooth security 

design is still insufficient for many applications.   

 Over the past few years, many security issues on Bluetooth have surfaced.  

During 2004, the famous Cabir worms that target mobile phones spread themselves 

through Bluetooth connections.  British government required members of Parliament 

to disable the Bluetooth functions on their mobile phones [43].  Typing the words 

“bluetooth hack” on Google results in numerous links about all kinds of Bluetooth 

attacks.  The two famous Bluetooth attacks are Bluejack and Bluesnarf.  Bluejack is 

not exactly a hack. It does no real damage to its victims.  A bluejacker merely abuses 

the “Name” field, which is long enough to embed a message, on a Bluetooth 

handshake packet to send anonymous messages to victims’ devices.  Bluejackers 

cannot steal information from their victims.  Nor does the Bluejack attack allow 

attackers to take control of victims’ devices [12, 13, 15].  The Bluesnarf attack, on the 

other hand, allow attackers to steal confidential data, such as phone books, calendars, 

images, pins, etc., from victims’ phones [13].  Bluetooth profiling allows attackers to 

keep track of victims’ locations because each Bluetooth device is a transceiver with a 

unique MAC address.  Carrying a Bluetooth enabled mobile phone becomes tagging 

oneself with a RFID tag.  All these issues are painting a rather negative picture for 

Bluetooth. 
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2. HISTORY 

Bluetooth was named after the 10th century Danish King Harald Bluetooth.  It 

was originally developed by Erission Mobile Communication.  On 1998, a join 

initiative from couple big telecommunication giants gave birth to the Bluetooth 

Special Interest Group (Bluetooth SIG).  The main goal of the Bluetooth SIG is to 

standardize and regulates the Bluetooth technology.  The number of members of the 

Bluetooth SIG grew from a handful of companies, such as Ericsson, Nokia, Intel, 

IBM, in 1998 to more than 3000 today [40].   

 

3. TECHNOLOGY OVERVIEW 

Bluetooth data transmit on the unlicensed 2.4GHz ISM band.  Bluetooth uses a 

frequency-hopping scheme in order to minimize the interferences with other 

technologies and applications such as 802.11, microwave ovens, cordless phones, etc.  

The connection range of off-the-shelf Bluetooth devices vary from 10 meters to 100 

meters.  Their data rate varies from 1Mbps to 2Mbps.  Each Bluetooth device has a 

globally unique 48bit MAC address.  The first 24 bits of the Bluetooth address is 

vendor specific.  Figure 3.1 shows a typical Bluetooth address. 

Bluetooth is an ad hoc networking technology in which no fix infrastructure 

(e.g. LAN) exists.  Connections between Bluetooth devices are created “on the fly”.   

There is a master and a slave in each Bluetooth connection.  A Bluetooth master can 

have up to 7 active slaves and unlimited passive (parked) slaves.  Active slaves are 

devices that are in sync with the master and are ready to communicate.  A master and 

its associated slaves form a piconet.  A scatternet is formed by two or more piconets 
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that share common Bluetooth nodes.  Figure 3.2 shows the different types of 

Bluetooth topology.  

 Bluetooth defines two procedures for establishing a connection between two 

Bluetooth devices.  A Bluetooth device first uses the inquiry procedure to discover 

other close-by devices.  It then uses the paging procedure to establish a connection 

with a target device.  Two Bluetooth nodes are considered to be in sync when they 

share the same clock value and frequency-hopping pattern. 

 
 
 

Figure 3.1.  A Bluetooth MAC address 
 

 
Figure 3.2.  A scatternet consisting of two piconets 

 
4. BLUETOOTH SECURITY ARCHITECTURE   

4.1 DEVICE MODES 

Bluetooth specification defines two device modes to control the visibility and 

availability of Bluetooth devices.  A device is in discoverable mode if it responses to 

inquiries from other devices.  Otherwise, it is in a non-discoverable mode.  A device 

is in a connectable mode if it responses to paging requests from other devices.  

00:14:9A:C9:20:10 
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Otherwise, it is in non-connectable mode.  Paging will be explained further in the later 

sections. 

 

4.2 SECURITY MODES 

 Bluetooth specification defines three security modes to control when and 

where authentication and encryption occur.  In security mode 1, no authentication and 

encryption will be initialized on any connections.  This mode is being provided 

mostly for Bluetooth devices where security is not necessary and is thus considered to 

be an overhead.  Bluetooth wireless mouse is one of those applications.  Mode 2 is a 

policy-based service level security mode.  Security procedures are initialized only 

after the connection establishment on the L2CAP level.  By assigning different 

security policies and trust levels to each connection, a Security manager control 

access to a device and the services that the device offers.  In essence, this security 

mode provides authentication, confidentially, and authorization.  Security mode 3 

provides link level security.  It is a build-in security mechanism that is transparent to 

the upper application layers [41].    

 

4.3 KEY MANAGEMENT   

Bluetooth security architecture is based on the symmetric key cryptography 

where two Bluetooth devices share a common link key for authentication and 

encryption.  Figure 4.3.1 shows the Bluetooth key structure.   

 

4.3.1 Initialization Key 

 Bluetooth specification defines a pairing process for two Bluetooth devices 

that have never establish any connection before to derive a common key for 
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authentication and encryption.  The initialization key (Kinit) is the first key being 

generated in the pairing process.  It is being used to derive combination / unit keys 

later on in the pairing process.  Once a combination / unit key is derived, the 

initialization key will be discarded.  Note that the strength of this key solely relies on 

a 4 to 16 bytes PIN. 

 

4.3.2 Combination / unit key 

 Combination keys (Kab) and unit keys (Ka) are semi-permanent in a sense that 

devices store them permanently unless the they are being updated through the link key 

update procedures or the broadcast encryption scheme.  These keys can be reused in 

multiple sessions by the devices that share them.  The main difference between unit 

keys and combination keys is that two different random numbers, one from the master 

and the other from the slave, are used to derive combination keys.  In other words, 

combination keys are unique for each connection.  On the other hand, unit keys are 

generated by a single device and can be shared by different Bluetooth connections.  

Due to the inherited insecure nature of unit keys, the usage of unit keys is being 

depreciated. 

 

4.3.3 Master key 

 Sometimes it is desirable for a master of a piconet to encrypt broadcast traffic.  

But using combination keys to encrypt broadcast traffic involves the overhead of 

encrypting the same packet using different combination keys associated with different 

slaves.  Bluetooth specification defines shared master keys to allow piconet masters to 

encrypt broadcast traffic.  Copies of a single master key are distributed to all the 

slaves within a piconet.  The master then uses the master key to encrypt payloads and 
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broadcast them to all the slaves.  As a result, the master has avoided the overhead of 

using combination keys to encrypt broadcast traffic. 

 

4.3.4 Encryption Key 

 Encryption keys (Kc) are derived from the current link keys and are 

automatically updated each time the devices enter the encryption mode.  KC is used to 

generate cipher stream KCipher that in turn will be XORed with payloads. 

 

 
Figure 4.3.1.  Bluetooth key structure 

 
4.4 SAFER+ 

SAFER+, invented by Cylink Corporation, is a modified version of SAFER block 

cipher.  It was one of the 15 submissions of AES [10].  Bluetooth security architecture 

uses SAFER+ in all key generating hash functions.  SAFER+ has three main parts: 

1. A Key Scheduling Algorithm (KSA) which takes a 128 bit key and generates 

17 different sub-keys (K1 to K17 in Figure 4.4.1) 

2. Eight identical rounds.  Each round takes two keys from KSA and a 128 bit 

input value to generate a 128-bit output.  The inner design of each SAFER+ 

round is showed in Figure 4.4.2. 

3. The 128-bit output from the last round is XORed with K17 to produce the final 

128 bit output 
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Note that the Bluetooth design uses two slightly different versions of SAFER+ 

(Ar and Ar’).  Ar represents the original design of SAFER+, which is being shown in 

Figure 4.4.2.  Ar’ differs with Ar only in the design of Round 3.  In Ar’, the 128-bit 

input value of round 3 is XORed with the input value of round 1 such that Ar’ 

becomes non-invertible [2].  Figure 4.4.3 shows the inner design of Ar’. 

 
 

Figure 4.4.1 The inner design of SAFER+ block cipher (Ar) [1] 
 

 
 

Figure 4.4.2 The inner design of a SAFER+ round [1] 
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Figure 4.4.3 The inner designed of the slightly modified SAFER+ (Ar’) [1] 
 
 

4.5 HASH FUNCTIONS 

 Four hash functions are used in pairing, authentication, and encryption.  The 

heart of all four functions is a SAFER+ block cipher. 

 

4.5.1 E22 

Bluetooth design uses E22 to generate initialization keys (Kinit).  The equation 

that depicts the design of E22 is shown in Figure 4.5.1.  E22 takes a 48-bit Bluetooth 

address (BD_ADDR), a PIN, and a 128 bit random number (RAND) to generate a 

128-bit Kinit.  The maximum size of PIN is 16 bytes.  If PIN’s size (L) is less than 16 

bytes, it will first combined with BD_ADDR to form PIN’.  If PIN’ is still less than 

16 bytes, it will then be expanded cyclically to become a 16 byte PIN’’  (or “X” in 

Figure 4.5.1).  The 15th byte of RAND is XORed with the L’, which is the lesser 

number between 16 (the maximum size of a PIN) and L + 6 (6 is the size BD_ADDR), 

to form Y.  X and Y will then be feed into Ar’ to create a 128-bit Kinit [1,2]. 

 

 



 15

 

 
Figure 4.5.1 Equations of E22 [2] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5.2 A graphical representation of E22 
 

4.5.2 E21 

Bluetooth design uses E21 to generate unit keys (LK_KA/LK_KB).  The 

equation that depicts the design of E21 is shown in Figure 4.5.3.  E21 takes a 128-bit 

(PIN, L) (BD ADDR, 6) (IN RAND, 16) 

Combine PIN & BD_ADDR 
 
memcpy(pin’, pin, L); 
usedAddrSize = MIN(6, 16 – L); 
memcpy(pin’ + L, BD_ADDR, usedAddrSize); 
L’ = L + usedAddrSize; 

XOR IN_RAND’s most 
significant bytes with the size of 

PIN 
 

IN RAND[15] ^= L

 
 

Ar’ 
Expand PIN’ to 16 bytes (if necessary)

 
if ( L’ < 16 ) 
{ 
     for (int i = 0; i < 16; i ++) 
          PIN’’[i] = PIN’[ i  mod L’]; 
} 

(PIN’, L’) 

(PIN’’, 16)

(IN_RAND’, 16) 

(Kinit, 16) 
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random number (RAND) and a 48-bit Bluetooth address (address) as its input.  The 

15th byte of RAND is XORed with a constant number 6 (the size of a Bluetooth 

address in byte) to form X.  “address” is being cyclically expanded from 6 bytes to 16 

bytes to form Y.  X and Y are then being feed to Ar’ to create a unit key.  Two unit 

keys (LK_KA and LK_KB) will then be combined to form a combination key Kab [1, 

2]. 

 
 

 

 
 

Figure 4.5.3 Equation of E21 [2] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.5.4 A graphical representation of E21 

 

Expand BD_ADDR to 16 bytes  
 
     for (int i = 0; i < 16; i ++) 
          BD_ADDR’[i] = PIN’[ i  mod 6]; 
 

(BD_ADDR, 6) (LK RAND, 16) 

XOR LK_RAND’s most 
significant bytes with the size 

of BD_ADDR 
 

LK_RAND[15] ^= 6 

 
Ar’ 

(BD ADDR, 16) 

(LK RAND’, 16)

(LK K, 16) 
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4.5.3 E1  

Bluetooth design uses E1 to generate authentication responses (SRES).  The 

equation that depicts the design of E1 is shown in Figure 4.5.5.  E1 takes a 128-bit 

combination key (K), a 128-bit random number (RAND), and a Bluetooth address 

(address) as its inputs.  RAND and K from Figure 4.5.6 are being feed to Ar.  The 

128-bit output is XORed with RAND and then added with a cyclically expanded 

address (Ar_out).  Transforming K with an offset table will form K’.  The complete 

offset table can be found in the Bluetooth specification.  Ar_out and K’ are being feed 

to Ar’ to generate a 128 bit value.  The first 32 bit of that value will become SRES.  

The rest of the 128-bit output value will become ACO [1, 2]. 

 

 
 

 
 

 
 

Figure 4.5.5 Equations of E1 [2] 
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Figure 4.5.6 A graphical representation of E1 
 
4.5.4 E3 

 Bluetooth design uses a hash function E3 to generate ciphering key Kc , which 

will then be used by system E0 to generate cipher streams for encrypting message 

payloads in encryption.  The equations that depict the design of E1 are shown in 

Figure 4.5.7.  K is the current link key.  RAND is a 128bit random number that is 

generated by the master.  Depends on the type of encryption (i.e. point to point or 

point to multi-points), COF is either the union of the master’s address or the ACO 

generated by the previous authentication. 

 

(K, 16) (BD ADDR, 6)(AU RAND, 16)

 
Ar 

 
Ar’ 

Offset 
Refer to Bluetooth

specification 

(K’, 16) 

16 XOR

16 additions modulo 256

Expand BD_ADDR to 16 bytes  
 
for (int i = 0; i < 16; i ++) 
    BD_ADDR’[i] = PIN’[ i  mod 6];

(BD ADDR’, 16) 

32 bits 96 bits

(SRES, 4) (ACO, 12)
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Figure 4.5.7 Equations of E3 [2] 
 

4.6 PAIRING  

Before two Bluetooth devices can establish a connection and send data to each 

other, they have to go through a pairing procedure, which is essentially a process for 

creating a common key for authentication and encryption between two Bluetooth 

devices.  The device that initializes the pairing is, by definition, the master of the 

whole process.  The other device is considered to be the slave [1, 2].  Two Keys, Kinit 

and Kab, are being generated from the process.  Figure 4.6.1 and 4.6.2 show a 

simplified and a detailed pairing respectively. 

An overview of the pairing process is described as follows: 

 

Index: 

Bluetooth Address – A 48 bit mac address that uniquely identify each 

individual Bluetooth device 

BD_ADDRA – The Bluetooth address of the master 

BD_ADDRB – The Bluetooth address of the slave 

 

1. User A enters a PIN to the master (Device A) Bluetooth device 

2. The master generates a 128 bit random number (IN_RAND)  

3. The master uses IN_RAND along with the PIN and BD_ADDRB to generate 

an initialization key (Kinit) 
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4. The master sends IN_RAND to the slave 

5. User B enters the same PIN as User A did to the slave device 

6. The slave uses the PIN, IN_RAND, and it’s own address BD_ADDRB to 

generate the same Kinit.  At this point, both the master and the slave share the 

same initialization key. 

7. The master generates a new 128 bit random number (LK_RANDA) 

8. The master uses LK_RANDA along with BD_ADDRA to generate a unit link 

key (Ka) 

9. The master encrypts LK_RANDA by using Kinit  

10. The master sends the encrypted LK_RANDA to the slave 

11. The slave decrypts the encrypted random number by using its own Kinit  

12. The slave generates Ka by using LK_RANDA and BD_ADDRA 

13. The slave generates a new 128 bit random number LK_RANDB  

14. The slave uses LK_RANDB along with BD_ADDRB to generate Kb 

15. At this point, the slave has both Ka and Kb.  It XOR two unit link keys to form 

a new 128 bit combination key Kab 

16. The slave encrypts LK_RANDB by using Kinit 

17. The slave sends the encrypted LK_RANDB to the master 

18. The master decrypts the encrypted LK_RANDB by using its own Kinit 

19. The master generates Kb by using LK_RANDB and BD_ADDRB.   

20. At this point, the master has both Ka and Kb.  It XOR two unit link keys to 

form the same combination key Kab 
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Figure 4.6.1 A simplified Bluetooth pairing protocol 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LK_RANDB

LK_RANDA

Enter PINEnter PIN 

IN_RAND

Kinit 

SM 

Kinit

Pairing completed 

KAB KAB
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Figure 4.6.2 A detailed Bluetooth pairing protocol 

User A enters PIN 

Master A  (BD ADDRA ) Slave B  (BD ADDRB ) 

Generate a 128-bit random number (IN_RAND)

E22( BD_ADDRB + PIN + IN_RAND ) Kinit

Send IN_RAND in plaintext 

User B enters PIN 

Generate a 128 bit random number (LK_RANDA)

Send LK_RANDA’ 

Generate a 128 bit random number (LK RANDB)

Send LK_RANDB’ 

Kb  XOR  Kb Kab 

E22( BD_ADDRB + PIN + IN_RAND )  Kinit 

E21 ( BD_ADDRA + LK_RANDA ) Ka

E21 (BD_ADDRA + LK_RANDA )  Ka 

E21( BD_ADDRB + LK_RANDB )  KB 

E21( BD_ADDRB + LK_RANDB ) Kb

Ka XOR Kb  Kab 

LK_RANDA  XOR  Kinit  LK_RANDA’

LK_RANDA’  XOR  Kinit LK_RANDA 

LK_RANDB  XOR  Kinit LK_RANDB’ 

LK_RANDB’  XOR  Kinit  LK_RANDB

Pairing completed 
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4.7 AUTHENTICATION 

Bluetooth security architecture uses a challenge-response authentication 

scheme.  Figure 4.7.1 and 4.7.2 show a simplified and a detailed authentication 

respectively. 

An overview of the authentication process is described as follows: 

1. The master is the verifier.  The slave is the claimant.   

2. The master generates a 128 bit random number AU_RANDA 

3. The master uses AU_RANDA along with Kab and BD_ADDRB to compute a 

32 bit values SRESA  

4. The master sends AU_RANDA to the slave as plaintext 

5. The slave computes a 32 bit response SRESA’ using AU_RANDA, Kab, and 

BD_ADDRB. 

6. The slave sends the SRESA’ back to the master 

7. The master compares the SRESA’ it received from the slave against SRESA to 

verify the validity of the slave’s Kab 

8. Upon the success in verifying the validity of slave’s KAB, a new round of 

authentication begins.  This time, the slave becomes the verifier.  The master 

becomes the claimant 

9. The slave generates a 128 bit random number AU_RANDB 

10. The slave uses AU_RANDB along with Kab and BD_ADDRA to compute a 32 

bit values SRESB 

11. The slave sends AU_RANDB to the master 

12. The master computes SRESB’ using AU_RANDB, Kab, and it’s own address 

BD_ADDRA. 

13. The master sends SRESB’ back to the slave 
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14. The slave compares SRESB’ against SRESB to verify the validity of the 

master’s Kab 

15. Upon the success in verifying the validity of master’s KAB, a mutual 

authentication is completed 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.7.1 A simplified Bluetooth authentication protocol 

 
 
 
 
 

AU_RANDB

SRESA’

SRESB’

AU_RANDA

SM 

Authentication Complete
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Figure 4.7.2 A detailed Bluetooth authentication protocol 
 
4.8 ENCRYPTION 

 After at least one authentication has been performed, encryption can be used 

to protect message payloads.  The master first negotiates the encryption key size with 

the slave.  The master and the slave then derive the same ciphering key Kc.  Kc will be 

used by the E0 system to generate cipher streams (Kcipher) for encrypting packet 

payloads.  Figure 4.8.1 shows the encryption procedure. 

 

Master A   (BD ADDRA ) Slave B  (BD ADDRB ) 

Generate a 128 bit random number (AU_RANDA)

E1( BD_ADDRB + AU_RANDA + Kab )  SRESA

Send AU_RANDA in plaintext 

E1( BD_ADDRB + AU_RANDA + Kab )  SRES? 

Send SRES? in plaintext 

YES 

NO. 
Stop pairing SRESA == SRES?

Send AU_RANDB in plaintext 

Generate a 128 bit random number (AU_RANDB)

E1( BD_ADDRA + AU_RANDB+ Kab )  SRESB

E1( BD_ADDRA + AU_RANDB + Kab ) SRES?

Send SRES? in plaintext 

YES

NO. 
Stop pairing 

Mutual Authentication Completed 

SRESB == SRES?
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Figure 4.8.1 An overview of Bluetooth encryption protocol [1] 
 
5 RESEARCH 

This research first explores four Bluetooth security issues through the analysis 

and implementation of four attacks.  The first attack is a passive PIN cracking attack.  

The attack attempts to use an offline brute-force approach to recover the secret PIN 

that is shared by two Bluetooth devices during their paring process.  The second 

attack is an active version of the first attack.  Instead of taking the PIN calculation 

offline, an attacker attempts to pair with a victim device repeatedly in a short period 

of time using different PINs until he recovered the secret PIN.  Since those 

consecutive pairings happens in real time, speed will become a crucial factor in this 

attack.  Thus, a PIN dictionary will be used along with this attack to enhance the PIN 

recovery speed.  The third attack is a denial-of-service attack.  The attack attempts to 

prevent legitimate users from connecting to a master Bluetooth device (e.g. a 

Bluetooth access point).  The fourth attack is an encrypted message replay attack.  

The main goal of this attack is to make a victim do the same thing twice using some 
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previously captured messages.  All these messages are encrypted.  The attack does not 

need to know the current link key in order to carry out this attack. 

After the analysis and implementations of those attacks, this research then 

suggests some security improvements to defense against those four attacks.   

 

5.1 ENVIRONMENT 

 The research is based upon an open-sourced Bluetooth network simulator 

named UCBT, which stands for University of Cincinnati – Bluetooth [3].  There are 

two other open-sourced Bluetooth simulators available for download on the Internet.  

Bluehoc, which was developed by IBM in 1996, is the first generation of Bluetooth 

simulator [4].  A newer simulator is named Blueware, which is a project from couple 

MIT students [5]. Both Blueware and UCBT are built on top of Bluehoc.  All three 

simulators incorporate the framework provided by NS-2, a well-known network 

simulator [7].  UCBT is chosen for this research because it is the most updated 

Bluetooth simulator that is designed based on the more widely adapted Bluetooth 1.1 

and 1.2 specifications. 

UCBT is designed for the Linux platform.  It is written in C++.  In this 

research, Linux Mandrake 10.0 [8] is being selected to host UCBT because it is 

notorious for the ease of its installation and configuration.  Mandrake is installed as a 

virtual host operating system on VMWare [9] so that the research can be conducted in 

Windows’ environment.  The Bluetooth design incorporates SAFER+ as the core 

block cipher for couple encryption and key generation functions such as E22, E21, E1, 

etc.  More detailed information regarding those functions is discussed in the previous 

sections.  The codes for SAFER+ in UCBT are being extracted from a cryptographic 
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library named “LibTomCrypt” [8].  Table 5.1.1 provides a summary of the research 

environment. 

 UCBT is specifically designed to simulate the Baseband Bluetooth stack layer.  

The Bluetooth architecture divides into three distinct layers.  A L2CAP layer, which 

stands for Logical Link Control and Adaptation Protocol, sits on the top of the stack.  

The main function of the L2CAP layer is to create and manage channels for the 

application layer, which is not considered to be a part of the Bluetooth architecture.  A 

radio layer lies on the bottom of the stack.  It contains a radio transceiver that 

transmits and receives Bluetooth packets.  A baseband layer lies in between the 

L2CAP layer and the radio layer.  It contains a scheduler that grants time slots for the 

L2CAP channels to send packets through the radio layer.  It negotiates quality of 

services between Bluetooth entities.  It is also responsible for encoding and decoding 

Bluetooth packets [2].  UCBT relies on NS-2 to provide the L2CAP layer that it needs.  

The radio layer and the physical wireless medium that allows Bluetooth devices to 

connect to each other are not being simulated [3]. 

 One of the major challenges for using UCBT in this research is the fact that 

UCBT’s designers intentionally bypassed all the security aspects of the Bluetooth 

specification.  In other words, the original UCBT package does not contain any 

modules for pairing, authentication, and encryption.  As part of this research, pairing, 

authentication, and encryption (based on the Bluetooth 1.2 specification) have been 

added to the simulator.   

 In order to verify that all security modules have been implemented correctly, 

couple test samples from the Bluetooth 1.2 specification have been used.  Figure 5.1.1 

shows a sample input and its associated output for the E22 function.  The inputs of 

E22 from the sample test data are a 128 bit random number (rand), a 16-byte pin 
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(PIN), and a 48-bit Bluetooth address (address).  In the figure, “round 1” represents 

the input value for the first round in Ar’.  Each SAFER+ round requires two keys.  

“Key [1]” and “Key [2]” represent the two input keys for the first round.  The 

expected final key is represented by “Ka”.  The rest of the test sets can be found in 

Part G, Vol 2 of the Bluetooth 1.2 specification [2].  

 

 
● 

● 

● 

 
Figure 5.1.1 A sample test data for E22 [2] 

 
 
Virtual Machine Software VMWare Workstation 5.0.0 build 13124 
Host Operating System Mandrake 10.0 
Network Simulator NS-2 version 2.27 
Bluetooth Simulator UCBT 0.9.8.2 
SAFER+ LibTomCrypt 1.06 
Compliers gcc & g++ 

 
Table 5.1.1 Summary of all software used in the research 

 
5.2 ATTACKS 

5.2.1 Passive PIN cracking 

This passive pin-cracking analysis was first being disclosed to the public by O. 

Whitehose at the CanSecWest ’04 conference.  At that time, only the attack 

framework and its performance analysis were discussed [20].  Two researchers, Yaniv 

Shaked and Avishai Wool, followed the lead and made a more detailed analysis of the 
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Bluetooth pin attack.  They implemented a pin-cracking program along with couple 

speed improvements on their algorithm.  They tested and evaluated their program 

against pins that are 4 to 7 digits long [1].  Since they did not release the source codes 

of their cracking program to the public, an independent implementation of the 

cracking program is included in this research.  All Bluetooth pairing messages that are 

needed by the pin-cracking algorithm are summarized in Table 5.2.1. 

The pin-cracking algorithm is a brute-force algorithm.  It repeatedly generates 

different hypothetical PIN’ and goes through a series of pairing and authentication 

steps to generate hypothetical SRES’.  It then compares the hypothetical SRES’ with 

SRESA and SRESB in order to recover the correct PIN [1].  Notice that the algorithm 

assumes that the attacker has successfully eavesdropped the entire pairing process and 

has retrieved all the necessary messages that are listed in Table 5.2.1.  Figure 5.2.1 

describes the complete pin-cracking process.  Since the Bluetooth specification 

requires the length of the pins to be at least 4 digits, the crack program starts to 

enumerate all possible pin combinations from the pin “0000”.  Some performance 

improvement codes have been added to the SAFER+ that is being used by the crack 

program.   Figure 5.2.2 shows the pseudo codes for the crack program.  The following 

assumption has been made for the attack: 

 

1. The attacker has eavesdropped the entire pairing process between the targets. 

2. The following data are known prior to the pin cracking starts 

• The Bluetooth address of both master and slave (BD_ADDRA and 

BD_ADDRB) 

• All messages listed in Table 1 

• The internal designs of E22, E21, and E1 
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# Src Dst Data Length (bit) Notes 
1 Master Slave IN_RAND 128 Plaintext 
2 Master Slave LK_RANDA 128 XORed with Kinit 
3 Slave Master LK_RANDB 128 XORed with Kinit 
4 Master Slave AU_RANDA 128 Plaintext 
5 Slave Master SRESA 32 Plaintext 
6 Slave Master AU_RANDB 128 Plaintext 
7 Master Slave SRESB 32 Plaintext 

 
Table 5.2.1 Messages used by the pairing process [1] 

 
// Load all sniffed messages 
in_rand   = getMsg(IN_RAND); // in_rand for Kinit 
encrypted_lk_rand_a  = getMsg(E_LK_RAND_A); // encrypted LK_RAND_A 
encrypted_lk_rand_b  = getMsg(E_LK_RAND_B); // encrypted LK_RAND_B 
au_rand_a   = getMsg(AU_RAND_A); // authentication AU_RAND_A 
au_rand_b  = getMsg(AU_RNAD_B); // authentication AU_RAND_B 
sres_expected_a = getMsg(SRES_A);  // response SRES_A 
sres_expected_b = getMsg(SRES_B);  // response SRES_B 
pin_found = false; 
 
while(!pin_found) 
{ 
 // Guess a new pin 
 guess_pin = GetNewPin(); 
     
 // Initialisation key (Kinit) 
 key_init = E22(guess_pin, slave_addr, in_rand); 
 
 // Decrypt random numbers using Kinit 
 lk_rand_a = XOR(encrypted_lk_rand_a, key_init); 
 lk_rand_b = XOR(encrypted_lk_rand_b, key_init); 
 
 // Generate unit keys Ka and Kb 
 key_a = E21(master_addr, lk_rand_a); 
 key_b = E21(slave_addr, lk_rand_b); 
 
 // Generate combination key Kab 
 key_ab = XOR(key_a, key_b); 
     
 // Generate authentication response using 
 // master-generated random number 
 sres_a = E1(au_rand_a, slave_addr, key_ab); 
 
 // Compare guessed authentication response with 
 // the expected one 
 if( sameResponse(sres_a, sres_expected_a)) 
 { 
  // Generate authentication response using 
  // slave-generated random number 
  sres_b = E1(au_rand_b, master_addr, key_ab);   
 

// Compare guessed authentication response with 
  // the expected one 
  if( sameResponse(sres_b, sres_expected_b)) 
   pin_found = true; 
 } 
} 
 
Figure 5.2.2 Pseudo codes for the passive pin-cracking program 
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Figure 5.2.1 The passive PIN-cracking algorithm  
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BD_ADDRA + LK_RANDA’  E21  Ka ’ 
&& 
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Ka ’  XOR  Kb’    Kab’ 

Generate a hypothetical authentication response SRESA’ 
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 The following are the results of running the pin-cracking program against 

messages that were encrypted with different pin sizes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2.2 Active PIN cracking 

 Some Bluetooth devices, such as hands-free headphones, do not have a user 

interface.  Thus, manufactures have to embed fixed PINs into those devices.  The 

Bluetooth specification specifies that two devices cannot be paired if both of them 

have fixed PINs.  In other words, for a pairing to occur, at least one device has to have 

a variable PIN.  This active PIN attack is specifically targeting the fix-pined Bluetooth 

devices.  

As the name implies, the attack involves communicating actively with the 

victim.  The nature of this attack is very similar with the passive PIN attack.  For the 

passive attack, the calculation is being taken offline.  For this active attack, an 

attacker will initialize a pairing and an authentication with a victim device using a 

random PIN.  Notice that the attacker is always the master.  It means that the attacker 

should always be the first one who send out the challenge and receive the response in 

an mutual authentication.  Once the attacker completed one pairing and collected a 

4 5 6 7

10

100

1000

Seconds

Digit-pin sizes 

Figure 5.2.3 Performance measurement of the crack program 
against different sized pins 
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pair of challenge and response for authentication, he will have enough information to 

launch a brute-force attack.  If the attacker can retrieve the PIN before the challenge 

from the victim expires, she can generate a correct response to complete the 

authentication.  If not, the attacker will have to initialize another round of pairing and 

authentication.  In order to prevent intruders from trying a large number of different 

pins in a short period of time, the Bluetooth design specifies that a wait interval 

should be passed before a device response to an authentication attempts coming from 

the same claimant who has failed the authentication.  The wait interval should also be 

exponentially increased  [2].  Therefore, the attacker’s MAC address will be stored in 

the victims’ “Black List” in the subsequence rounds of failed pairing and 

authentication.  But the only information that the victim can use to uniquely identify 

each failed attempt is the MAC address.  An attacker can bypass the wait interval as 

long as he uses a different Mac address for each authentication attempt.  To minimize 

the number of rounds, the attack can utilize a numeric pin dictionary and generates 

more common PIN candidates such as “1111”, “1234”, etc.  Figure 5.2.4 shows the 

active PIN- cracking algorithm. 

Since this active attack is very similar to the offline version of the PIN 

cracking and the offline version is much more efficient than the online one, one might 

wonder why the attacker would use this active attack at all.  The reason is that 

sometimes it may not be easy, if not impossible, for the attacker to eavesdrop the 

complete pairing process between two target devices.   
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Figure 5.2.4 The active PIN-attack algorithm 
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5.2.3 Denial-of-Service Attack 

 The main goal for this attack is to flood a master Bluetooth device, such as an 

access point, with false authentications in attempt to prevent legitimate users from 

successfully pairing and authenticating with that master device.  An attacker can 

accomplish this attack by taking advantages of the security measurement that is 

designed to prevent repeated authentication attempts with different PINs in a 

relatively short period of time.   

To prevent repeated authentication, a device is recommended to store the 

MAC address that is associated with each failed authentication attempt. A wait time 

should pass before the device accepts new authentication requests from any of those 

MAC addresses.  If the attacker uses the MAC address of a legitimate user and a fake 

PIN to authenticate with the master access point, the authentication will most likely 

fail.  The access point will then “memorize” the MAC address of the legitimate user.  

In consequence, the access point will reject any further pairing and authentication 

requests coming from the legitimate user until the wait time has passed.   

Bluetooth MAC addresses are 48 bits long. There are roughly 248 unique MAC 

addresses.  It would be impractical for the attacker to flood the access point using all 

possible addresses.  But let say that the access point belongs to a mid-size company.  

The company will mostly provide its employees with Bluetooth devices manufactured 

by couple specific companies.  Since the first three bytes of a Bluetooth MAC address 

are vendor specific, the attacker will only have to loop through all possible addresses 

(around 16 million addresses) from those brands.  Furthermore, some companies 

assign fixed 7th hex digit to the address of their products.  For example, Sony Ericsson 

uses 00:0A:D9:E as the first 7 hex digits of the MAC address of their P900 mobile 

phones [42].  To speed up the denial-of-service attack further, a couple of probing 
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Bluetooth devices, each one target a different address range, can be used.  Figure 

5.2.5 describes a normal scenario of a legitimate device connects to an access point.  

Figure 5.2.6 shows the denial-of-service attack. 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2.5 A legitimate device connects to an access point 
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Figure 5.2.6 The Denial-of-Service Attack  

 
5.2.4 Message Replay Attack 

 In this attack, an attacker replays previously captured messages to a victim 

without actually decrypting those messages.  The attacker does not need to know the 

encryption key to conduct this attack [27].  This attack divides into two phases as 

follows: 

Phase I: 

 Two victims (Alice & Bob) are attempting to set up a secure connection.  We 

assume that they have previously paired and they share a secret link key (K).  We 

further assume that Alice is the master of the piconet.  Figure 5.2.7 depicts the 

interactions between Alice and Bob in Phase I.  Alice and Bob first mutually 

authenticate each other using the secret key.  Alice then initializes the encryption 

sequence by sending Bob a random number EN_RAND.  They calculate Kc and 

KCipher using E3 and E0 respectively.  They then encrypt the rest of the messages by 

XORing the payloads with the cipher streams.  The attacker, Trendy, passively listens 

to the whole conversation between Alice and Bob.  The messages and random 

numbers that Trendy needs (all red messages in Figure 5.2.7) to launch the Phase II 

attack are AU_RANDA, EN_RAND, and the rest of the encrypted messages.  

Phase II: 

Access Point Attacker 

Paging

Role Switch

Detach: AUTH_FAILED

Select a new mac 
address 

Pairing & Authentication

Store MAC address  



 39

 In this phase, Trendy initializes a mutual authentication with Bob.  Trendy 

send AU_RANDA, which he captured during Phase I, to Bob as the challenge such 

that Bob generates the same ACOA and SRESA as in Phase I.  Trendy then ignores the 

response SRESA coming from Bob.  Since Trendy doesn’t know K, he has no way to 

generate a correct response to Bob.  But Trendy can relay the challenge to Alice 

posing as Bob and forwards the response from Alice to Bob.  After the mutual 

authentication between Trendy and Bob has completed, Trendy sends the same 

encryption random number EN_RAND that he captured in Phase I to Bob.  A key 

observation here is that since ACOA and EN_RAND in Phase II are the same as those 

in Phase I, the KC and KCipher that Bob generates in Phase II will also be the same as 

those in Phase I.  Trendy can then replay the rest of the messages that he captured in 

Phase I to Bob.  Figure 5.2.8 depicts the entire Phase II attack. 

 This attack poses some serious threats despite the fact that Trendy cannot 

decrypt those encrypted messages.  For example, Trendy can force Bob to send data 

in plaintext by sending him an old encrypted STOP_ENCRYPTION command. 
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Figure 5.2.7 Phase I of the message Replay Attack 
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Figure 5.2.8 Phase II of the message Replay Attack 
 
 
6 ENHANCEMENTS 

 In this section, several enhancements to the Bluetooth security protocol will be 

proposed in attempt to defense against the attacks described in the previous section. 

All proposed enhancements are on the protocol level.  In other words, all lower-

leveled cryptographic features and functions, such as the SAFER+ block cipher and 
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enhancement is based on the Encrypted Key Exchange (EKE) protocol suggested by 

Steven Bellovin and Michael Merritt [28, 29, 30]. The second enhancement is based 

on MANA III (MANual Authentication III), a multi-channel authentication protocol 

[23, 24, 25, 26].  The Diffie-Hellman key exchange protocol is the foundation of both 

enhancements. 

 

6.1.1 Password-based Encrypted Key Exchange (PW-EKE) 

A. Overview 

 The goal of the password-based EKE protocol is to exchange a common key 

between two parties over an insecure channel, such as a wireless interface, using a 

shared weak PIN number, such as a 4 digit PIN.  That is exactly what the pairing 

process in the Bluetooth design trying to accomplish.  The design of PW-EKE 

incorporates the usage of both symmetric and asymmetric systems.  Figure 6.1.1 

shows the modified pairing and authentication using password-based EKE.   

PW-EKE is based on the Diffie-Hellman key exchange protocol.  A master (M) 

and a slave (S) try to derive gAB mod p as their common session key by exchanging gA 

mod p and gB mod p in plaintext.  Doing so will not weaken the protocol because (gA 

mod p) (gB mod p) does not equal (gAB mod p).  To recover the key using those two 

random numbers, the attack will have to solve the discrete log problem.  But the 

Diffie-Hellman key exchange does not provide authentication.  Thus, it is prone to the 

Man-In-The-Middle (MiM) attack.  PW-EKE solves this problem by hashing the two 

random numbers with a common PIN.  A simple XOR operation will suffice because 

the randomness of the two random numbers will provide enough security to protect 

the weak PIN number.  Furthermore, by hashing PIN numbers to the two random 



 43

numbers, the strength of those PINs has been “amplified”.  An important property of 

this protocol is that weak PINs (such as a 4 digit PIN) will not weaken the protocol. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1.1 PW-EKE Based Pairing and Authentication Protocol 
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Figure 6.1.2 A MiM attack under the original DH protocol 
 
ii) Brute-Force PIN attack 

 The feasibility of a brute-force PIN attack depends on how quickly an attacker 

can verify the correctness of a candidate PIN.  Assuming the wireless interface is 

completely insecure, an attacker will be able to capture every message.  Figure 6.1.3 

shows how an attacker attempts to launch a brute-force search on the PIN number.  

Notice that step 3 is not feasible.  The attacker has no way to verify the correctness of 

a candidate PIN.  Thus, a brute-force PIN attack cannot be applied on PW-EKE. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1.3 An attempted brute-force PIN search under PW-EKE 

Alice Trendy Bob

gA mod p gX mod p 

gY mod p gB mod p 

K = g(Y)A mod p 

K = g(X)B mod p K2 = g(B)X mod p

K1 = g(A)Y mod p

1. Generate a candidate PIN (pin’)

2. Calculate two candidate random numbers
 

pin'-1 (pin (gA) )  gA’ 
pin'-1 (pin (gB) )  gB’ 

3. Calculate a candidate gAB’  ** Infeasible **

4. Calculate a candidate authentication response 
 

E1 (BD_ADDR, gAB’, AU_RANDA)  SRES’ 

5. SRES’ == SREAA

6. PIN found

YES 

NO



 45

iii) Brute-force attack against A & B 

 An attacker can potentially retrieve the link key gAB by generating candidate A 

and B and verify them against the challenge and response pair.  But since A and B are 

long nonces (128 bits), this attack is not feasible.  

 

C. Pros and Cons 

 A major benefit of PW-EKE is that weak PINs will not weaken the whole 

protocol.  From the brute-force PIN attack in the previous section, we concluded that 

short PINs make the original Bluetooth security weak.  In PW-EKE, the main purpose 

for the PINs is to provide authentication.  The strength of the session keys does not 

depend on the length of the PINs.  Given how often users pick short PINs, this benefit 

gives PW-EKE an edge over other protocols. 

 In terms of modification, PW-EKE does not require any changes to the 

original device interface requirement. The new protocol also needs users to enter PINs 

to both the master and the slave during a pairing process.  For devices that have no 

keypads, such as headsets, the fixed-pin scheme from the original Bluetooth 

specification can be applied.  In addition, the original challenge-response 

authentication procedures can also be reused. 

 

6.1.2 MANA III variant (MANual Authentication III) 

A. Overview 

 The original Bluetooth pairing and authentication protocol can be seen as 

having two communication channels.  The first one is an insecure wireless channel 

that has unlimited bandwidth because there is theoretically no limit on how much data 

can be exchanged through this channel.  The other channel is a physical channel 
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where PINs are being entered.  This channel has a very limited bandwidth because 

people hate to remember long numbers and they hate to enter long numbers using tiny 

keypads.  The MANA III protocol also has the same channels.  But instead of asking 

users to enter PINs into both devices, it requires users to read a short number from 

one device and enter it into the other device.  Since the short number is randomly 

generated by one device, it is no longer a personal identification number.  In other 

words, users do not have to remember any PIN under the MANA III protocol.  Figure 

6.1.4 shows the MANA III protocol.   

MANA III is also based on the Diffie-Hellman key exchange protocol.  It uses 

gAB mod p as the session key.  Two devices first exchange two exponential random 

numbers and derive gAB mod p as their intermediate keys.  One device then generates 

a short random number (SR) and displays it on its screen.  A user then enters the same 

number into the other device.  The number is XORed with the intermediate key to 

form a session key.  For authentication, instead of using a challenge-response scheme, 

MANA III uses a hash commitment scheme.  Each device generates a 128 bits 

random number (R) and calculates a long hashed commitment (H) based on R, the 

session key, and a device ID.  They first exchange their commitment to each other.  

They then release R to each other in order to verify the correctness of the 

commitments that they have received.  The sequence of exchanging commitments and 

releasing random numbers is important.  One device must not release its R unless it 

has received a commitment from the other device.  At the end of the protocol, the 

authentication results have to be communicated back to the users through the physical 

channel again. This last step is essential because without it Trendy can use Bob’s 

commitment to brute-force search for the SR.  Because SR is a short digit number, 

recovering SR by brute-force searching on the commitment and response pair will be 
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easy.  Once Trendy recovered the SR, he can complete the mutual authentication with 

Alice by generating a valid commitment.  Figure 6.1.5 describes this attack. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1.4 MANA III 
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Figure 6.1.5 A MiM attack on MANA III (without displaying authentication 
results) 

 
The fact that user interactions are needed twice (exchanging SR and 

displaying Auth Results) is a very undesirable property of the protocol.  Thus, a 

MANA III variant is proposed in this paper.  Figure 6.1.6 shows the MANA III 

variant protocol.  Couple modifications are made in the original MANA III in order to 

eliminate the need to communicate authentication results back to the users.  

1. SR will be displayed only after the master has sent its commitment.  

The protocol pauses until the user entered SR into the slave device. 

2. The slave will only disclose its RB if and only if HA is valid. 
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Figure 6.1.6 MANA III Variant 

 
 

Notice that the challenge-response scheme used by the original Bluetooth 

design cannot be used in this protocol.  Otherwise, a MiM attack will be feasible.  

Figure 6.1.7 demonstrates this attack.  By using a challenge-response pair from Bob, 

Trendy can launch a brute-force search for SR.  Once Trendy recovered SR, he will 

be able to complete the mutual authentication with Alice by calculating a correct 

SRES. 
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Figure 6.1.7 A MiM attack on MANA III (with challenge-response scheme) 
 

B. MANA III variant against different attack scenarios 

 This subsection demonstrates how the new protocol defense against different 

attacks  

i) A MiM attack on the MANA III that doesn’t displaying authentication results 

 How does the MANA III variant eliminate the last step from the original 

MANA III protocol and, at the same time, protect itself from the MiM attack that we 

have described earlier?  Lets take a look at couple different situations where Trendy 

targets a different victim. 

a) Bob as the victim 

 In this case, Trendy is trying to pair with Bob.  Figure 6.1.8 

shows the attack.  An important observation is that if Trendy doesn’t 

commit HC to Bob, Bob will never show the prompt for entering SR.  

Assume that Trendy has recovered SR, he still cannot find a valid RC 

for generating HC because he has already made a commitment to Bob.  

Since RC is a long nonce and E1 is a one-way hash function, it’s not 
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feasible for Trendy to brute-force search for a valid RC that is 

associated with his commitment to Bob. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1.8 MiM attack on MANA III variant (I) 
 

b) Alice as the victim  

In this scenario, Trendy is trying to pair with Alice.  Figure 

6.1.9 shows the attack.  Since Trendy doesn’t know SR at the 

beginning of the attack, HC will not be a valid commitment.  Bob will 

end the transaction because of the invalid HC.  In other words, he will 

never send out RB that he used to calculate HB.  Trendy will have 

nothing to validate the correctness of a candidate SR. 
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Figure 6.1.9 MiM attack on MANA III variant (II) 
 
 
 
ii) Diffie-Hellman MiM attack 

 The short random number provides authentication to the protocol.   Although 

Trendy can still substitutes his own gX and gY as in Figure 6.1.2, he will not be able to 

get the session key because he doesn’t know SR. 

  

iii) Passive Brute-Force attack on SR 

 In this attack, Trendy attempted to launch an offline brute-force attack on SR 

by using all the messages that he has captured during a pairing and authentication 

session between Alice and Bob.  Figure 6.1.10 shows this attempted attack.  The 

attack essentially fails on step five.  If the candidate hash H does not equal to HA, 

Trendy cannot conclude that the candidate SR is wrong because he doesn’t know gAB 

mod p’. He could have guessed the correct SR and H’ would still not equal to HA due 

to an incorrect candidate gAB mod p’. 
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Figure 6.1.10 An attempted brute-force SR search under MANA III Variant 

 

C. Pros and Cons 

 In this protocol, an SR is no longer a personal identification number because it 

is being generated randomly every time.  This also means that users will no longer be 

required to memorize their PINs.  Furthermore, only one manual entry of numbers is 

required for each round of pairing and authentication. 

 A drawback regarding MANA III variant is that it has a different interface 

requirement comparing to the original Bluetooth design.  MANA III variant requires 

masters to have output interfaces to display short numbers. 

  

6.2 Denial-Of-Service Attack  
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 The main reason why the DOS attack will work is because of the 

exponentially increased authentication wait time mechanism recommended by the 

Bluetooth specification.  Without this feature, the DOS attack will not work.  Thus, by 

using protocols with manual channels, such as the one in the MANA III variant 

suggested in the previous section, the exponential wait time mechanism is no longer 

required.  The DOS attack is no longer feasible. 

 Here is why a manual channel can prevent Trendy from trying different PINs 

in a short period of time.  If an extra step of copying and entering a short number is 

introduced in the original Bluetooth authentication protocol (assuming that the short 

number is used to generate an authentication response), Trendy can on longer write a 

script to automate the authentication process.  He has to physically read a short 

number from the master device and enter the number to his probing slave for each 

PIN that he tries.  Since each trial takes more time to finish, recovering PINs using 

this technique is not feasible.  The exponentially increased authentication wait time 

mechanism is no longer necessary.  The DOS attack will then be prevented. 

 

6.3 Encryption Replay Attack 

 An important observation regarding this replay attack is that only random 

numbers from the master are used to generate the 96 bits ACO and KC for encryption.  

This attack can be prevented as long as both sides contribute to the creation of the 

encryption keys and cipher streams. 

 One straightforward solution is to use the ACOs from both sides to generate 

KC.  But since mutual authentication is optional, there may be chances where only 

one side has an ACO.  In order to guarantee that cipher streams depend on both 
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masters and slaves, an extra EN_RAND can be exchanged.  Figure 6.3.1 shows the 

protocol. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3.1 Encryption protocol with two encryption random numbers 
 

7 Conclusion 

 This paper has studied four attacks, an online PIN attack, an offline PIN attack, 

a denial-of-service attack, and an encrypted message replay attack, on the Bluetooth 

protocol.  They revealed the weaknesses on the pairing, challenge-response 

authentication, and encryption protocols.  The paper proposed PW-EKE and MANA 

III variant as alternatives for the original pairing and authentication protocol.  By 

adding an extra manual channel to the authentication protocol, repeated PIN trying on 

fix-pined Bluetooth devices is not feasible.  The DOS attack can then be prevented 

because the exponential wait time mechanism is no longer required.  The reason why 

the Bluetooth system is vulnerable to the encrypted message replay attack is because 

only random numbers from the master are used to derive cipher streams.  Adding an 

extra step to exchange an encryption random number generated by the slave will 

protect the encryption protocol from generating the same cipher keys and streams. 
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