
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2006

Bluetooth Security Protocol Analysis and
Improvements
Chi Shing Lee
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Lee, Chi Shing, "Bluetooth Security Protocol Analysis and Improvements" (2006). Master's Projects. 122.
DOI: https://doi.org/10.31979/etd.sc5w-6wj8
https://scholarworks.sjsu.edu/etd_projects/122

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/122?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Bluetooth Security Protocol Analysis and Improvements

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

By

Chi Shing Lee

May 2006

 2

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp

Dr. Melody Moh

Dr. David Blockus

APPROVED FOR THE UNIVERSITY

 3

ABSTRACT

 Since its creation, Bluetooth has transformed itself from a cable replacement

technology to a wireless technology that connects people and machines. Bluetooth

has been widely adapted on mobile phones and PDAs. Many other vendors in other

industries are integrating Bluetooth into their products. Although vendors are

adapting to the technology, Bluetooth hasn’t been a big hit among users. Security

remains a major concern. Poor implementation of the Bluetooth architecture on

mobile devices leads to some high profiled Bluetooth hacks. Weak security protocol

designs expose the Bluetooth system to some devastating protocol attacks.

 This paper first explores four Bluetooth protocol-level attacks in order to get

deeper insights into the weakness of the Bluetooth security design. It then proposes

enhancements to defense against those attacks. Performance comparison will be

given based on the implementation of those enhancements on a software based

Bluetooth simulator.

 4

TABLE OF CONTENT

1 Introduction………………………………………………………………………. 6

2 History …………………………………………………………………………… 8

3 Technology ………………………………………………………………………. 8

4 Bluetooth Security Architecture …………………………………………………. 9

 4.1 Device Modes ……………………………………………………………….. 9

 4.2 Security Modes ……………………………………………………………… 9

 4.3 Key Managements …………………………………………………………… 10

 4.3.1 Initialisation Keys ……………………………………………………….. 10

 4.3.2 Combination / Unit Keys ………………………………………………… 11

 4.3.3 Master Key ………………………………………………………………. 11

 4.3.4 Encryption Key ………………………………………………………….. 12

 4.4 SAFER+ ……………………………………………………………………… 12

 4.5 Hash Functions ……………………………………………………………….. 14

 4.5.1 E22 ……………………………………………………………………….. 14

 4.5.2 E21 ……………………………………………………………………….. 15

 4.5.3 E1 ………………………………………………………………………… 17

 4.5.4 E3 ………………………………………………………………………… 18

 4.6 Pairing ……………………………………………………………………….. 19

 4.7 Authentication …………………………………………………………………23

 4.8 Encryption ……………………………………………………………………. 25

5 Research ………………………………………………………………………….. 26

 5.1 Environment ………………………………………………………………….. 27

 5.2 Attacks ……………………………………………………………………….. 29

 5.2.1 Passive PIN cracking …………………………………………………….. 29

 5

 5.2.2 Active PIN cracking…………………………………………………… 33

 5.2.3 Denial-of-Service Attack ……………………………………………… 36

 5.2.4 Message Replay Attack ………………………………………………. 38

6 Enhancements ………………………………………………………………… 41

 6.1 Online/offline PIN attacks ………………………………………………... 41

 6.1.1 Password-based Encrypted Key Exchange (PW-EKE) ………………. 42

 A. Overview ………………………………………………………………. 42

 B. PW-EKE against different attack scenarios…………………………….. 43

 i) Man-In-the-Middle attack……………………………………………... 43

 ii) Brute-Force PIN attack……………………………………………….. 44

 iii) Brute-force attack against A & B …………………………………… 45

 C. Pros and Cons ………………………………………………………….. 45

 6.1.2 MANA III variant (MANual Authentication III) ……………………… 45

 A. Overview ……………………………………………………………….. 45

 B. MANA III variant against different attack scenarios ………………….. 50

 i) MiM attack on the MANA III ………………………………………… 50

ii) Diffie-Hellman MiM attack ………………………………………….. 52

 iii) Passive Brute-Force attack on SR …………………………………… 52

 C. Pros and Cons ………………………………………………………….. 53

 6.2 Denial-Of-Service Attack …………………………………………………. 53

 6.3 Encryption Replay Attack ………………………………………………… 54

7 Conclusion …………………………………………………………………….. 55

8 References …………………………………………………………………….. 56

 6

1. INTRODUCTION

Bluetooth, a short ranged wireless technology, was invented back in 1996. It

was originally designed to replace clumsy cables that connect computers. However,

the energy efficient nature of Bluetooth’s design makes Bluetooth a practical

technology to be applied on small portable mobile devices. The fact that Bluetooth

design requires no state of the art components makes it a low cost wireless solution

that can be widely afforded by the public [2, 11, 19]. Couple years ago, it was being

seen as one of the technologies that will revolutionize how mobile devices connects to

each other. Also, the fact that lots of big telecommunication moguls and software

giants have made huge investments into Bluetooth projects makes Bluetooth a

promising technology.

Bluetooth has been adapted by many different industries. Nowadays, lots of

mobile phones on the market are equipped with Bluetooth which allows them to

synchronize their data, such as phone books, wirelessly over a short range with other

mobile phones, computers, and handheld devices. According to IDC research, about

13 percent of mobile phones shipped in the United States have Bluetooth. The

number will grow to about 53 percent globally and 65 percent in United States by

2008 [21]. Some of the high-ended car models even have keyless entry and ignition

that utilize Bluetooth. Some models of BMW have built-in Bluetooth hands-free

system [14]. Microsoft has also started to have Bluetooth support after its XP SP1

release.

Although the Bluetooth technology can now be seen everywhere in our daily

lives, it has not gain any significant popularity from its users over the past few years.

Lots of people don’t even know what Bluetooth is. Vendors also haven’t aggressively

push Bluetooth out to the market. Most mobile phones have their Bluetooth features

 7

turned off by default so that only knowledge users will turn them on. Mobile phone

vendors recommend users to turn off the Bluetooth features on their mobiles when

they are not in use in order to minimize the risk of being attack by hackers. Bluetooth

designers also recommend people not to pair Bluetooth devices in public places. If

Bluetooth is such a great technology, why do vendors turn Bluetooth features off on

their mobile phones by default? Why can’t mobile users leave their Bluetooth

connections on 24 hours a day? The answer lies in the fact that the Bluetooth security

design is still insufficient for many applications.

 Over the past few years, many security issues on Bluetooth have surfaced.

During 2004, the famous Cabir worms that target mobile phones spread themselves

through Bluetooth connections. British government required members of Parliament

to disable the Bluetooth functions on their mobile phones [43]. Typing the words

“bluetooth hack” on Google results in numerous links about all kinds of Bluetooth

attacks. The two famous Bluetooth attacks are Bluejack and Bluesnarf. Bluejack is

not exactly a hack. It does no real damage to its victims. A bluejacker merely abuses

the “Name” field, which is long enough to embed a message, on a Bluetooth

handshake packet to send anonymous messages to victims’ devices. Bluejackers

cannot steal information from their victims. Nor does the Bluejack attack allow

attackers to take control of victims’ devices [12, 13, 15]. The Bluesnarf attack, on the

other hand, allow attackers to steal confidential data, such as phone books, calendars,

images, pins, etc., from victims’ phones [13]. Bluetooth profiling allows attackers to

keep track of victims’ locations because each Bluetooth device is a transceiver with a

unique MAC address. Carrying a Bluetooth enabled mobile phone becomes tagging

oneself with a RFID tag. All these issues are painting a rather negative picture for

Bluetooth.

 8

2. HISTORY

Bluetooth was named after the 10th century Danish King Harald Bluetooth. It

was originally developed by Erission Mobile Communication. On 1998, a join

initiative from couple big telecommunication giants gave birth to the Bluetooth

Special Interest Group (Bluetooth SIG). The main goal of the Bluetooth SIG is to

standardize and regulates the Bluetooth technology. The number of members of the

Bluetooth SIG grew from a handful of companies, such as Ericsson, Nokia, Intel,

IBM, in 1998 to more than 3000 today [40].

3. TECHNOLOGY OVERVIEW

Bluetooth data transmit on the unlicensed 2.4GHz ISM band. Bluetooth uses a

frequency-hopping scheme in order to minimize the interferences with other

technologies and applications such as 802.11, microwave ovens, cordless phones, etc.

The connection range of off-the-shelf Bluetooth devices vary from 10 meters to 100

meters. Their data rate varies from 1Mbps to 2Mbps. Each Bluetooth device has a

globally unique 48bit MAC address. The first 24 bits of the Bluetooth address is

vendor specific. Figure 3.1 shows a typical Bluetooth address.

Bluetooth is an ad hoc networking technology in which no fix infrastructure

(e.g. LAN) exists. Connections between Bluetooth devices are created “on the fly”.

There is a master and a slave in each Bluetooth connection. A Bluetooth master can

have up to 7 active slaves and unlimited passive (parked) slaves. Active slaves are

devices that are in sync with the master and are ready to communicate. A master and

its associated slaves form a piconet. A scatternet is formed by two or more piconets

 9

that share common Bluetooth nodes. Figure 3.2 shows the different types of

Bluetooth topology.

 Bluetooth defines two procedures for establishing a connection between two

Bluetooth devices. A Bluetooth device first uses the inquiry procedure to discover

other close-by devices. It then uses the paging procedure to establish a connection

with a target device. Two Bluetooth nodes are considered to be in sync when they

share the same clock value and frequency-hopping pattern.

Figure 3.1. A Bluetooth MAC address

Figure 3.2. A scatternet consisting of two piconets

4. BLUETOOTH SECURITY ARCHITECTURE

4.1 DEVICE MODES

Bluetooth specification defines two device modes to control the visibility and

availability of Bluetooth devices. A device is in discoverable mode if it responses to

inquiries from other devices. Otherwise, it is in a non-discoverable mode. A device

is in a connectable mode if it responses to paging requests from other devices.

00:14:9A:C9:20:10

 10

Otherwise, it is in non-connectable mode. Paging will be explained further in the later

sections.

4.2 SECURITY MODES

 Bluetooth specification defines three security modes to control when and

where authentication and encryption occur. In security mode 1, no authentication and

encryption will be initialized on any connections. This mode is being provided

mostly for Bluetooth devices where security is not necessary and is thus considered to

be an overhead. Bluetooth wireless mouse is one of those applications. Mode 2 is a

policy-based service level security mode. Security procedures are initialized only

after the connection establishment on the L2CAP level. By assigning different

security policies and trust levels to each connection, a Security manager control

access to a device and the services that the device offers. In essence, this security

mode provides authentication, confidentially, and authorization. Security mode 3

provides link level security. It is a build-in security mechanism that is transparent to

the upper application layers [41].

4.3 KEY MANAGEMENT

Bluetooth security architecture is based on the symmetric key cryptography

where two Bluetooth devices share a common link key for authentication and

encryption. Figure 4.3.1 shows the Bluetooth key structure.

4.3.1 Initialization Key

 Bluetooth specification defines a pairing process for two Bluetooth devices

that have never establish any connection before to derive a common key for

 11

authentication and encryption. The initialization key (Kinit) is the first key being

generated in the pairing process. It is being used to derive combination / unit keys

later on in the pairing process. Once a combination / unit key is derived, the

initialization key will be discarded. Note that the strength of this key solely relies on

a 4 to 16 bytes PIN.

4.3.2 Combination / unit key

 Combination keys (Kab) and unit keys (Ka) are semi-permanent in a sense that

devices store them permanently unless the they are being updated through the link key

update procedures or the broadcast encryption scheme. These keys can be reused in

multiple sessions by the devices that share them. The main difference between unit

keys and combination keys is that two different random numbers, one from the master

and the other from the slave, are used to derive combination keys. In other words,

combination keys are unique for each connection. On the other hand, unit keys are

generated by a single device and can be shared by different Bluetooth connections.

Due to the inherited insecure nature of unit keys, the usage of unit keys is being

depreciated.

4.3.3 Master key

 Sometimes it is desirable for a master of a piconet to encrypt broadcast traffic.

But using combination keys to encrypt broadcast traffic involves the overhead of

encrypting the same packet using different combination keys associated with different

slaves. Bluetooth specification defines shared master keys to allow piconet masters to

encrypt broadcast traffic. Copies of a single master key are distributed to all the

slaves within a piconet. The master then uses the master key to encrypt payloads and

 12

broadcast them to all the slaves. As a result, the master has avoided the overhead of

using combination keys to encrypt broadcast traffic.

4.3.4 Encryption Key

 Encryption keys (Kc) are derived from the current link keys and are

automatically updated each time the devices enter the encryption mode. KC is used to

generate cipher stream KCipher that in turn will be XORed with payloads.

Figure 4.3.1. Bluetooth key structure

4.4 SAFER+

SAFER+, invented by Cylink Corporation, is a modified version of SAFER block

cipher. It was one of the 15 submissions of AES [10]. Bluetooth security architecture

uses SAFER+ in all key generating hash functions. SAFER+ has three main parts:

1. A Key Scheduling Algorithm (KSA) which takes a 128 bit key and generates

17 different sub-keys (K1 to K17 in Figure 4.4.1)

2. Eight identical rounds. Each round takes two keys from KSA and a 128 bit

input value to generate a 128-bit output. The inner design of each SAFER+

round is showed in Figure 4.4.2.

3. The 128-bit output from the last round is XORed with K17 to produce the final

128 bit output

 13

Note that the Bluetooth design uses two slightly different versions of SAFER+

(Ar and Ar’). Ar represents the original design of SAFER+, which is being shown in

Figure 4.4.2. Ar’ differs with Ar only in the design of Round 3. In Ar’, the 128-bit

input value of round 3 is XORed with the input value of round 1 such that Ar’

becomes non-invertible [2]. Figure 4.4.3 shows the inner design of Ar’.

Figure 4.4.1 The inner design of SAFER+ block cipher (Ar) [1]

Figure 4.4.2 The inner design of a SAFER+ round [1]

 14

Figure 4.4.3 The inner designed of the slightly modified SAFER+ (Ar’) [1]

4.5 HASH FUNCTIONS

 Four hash functions are used in pairing, authentication, and encryption. The

heart of all four functions is a SAFER+ block cipher.

4.5.1 E22

Bluetooth design uses E22 to generate initialization keys (Kinit). The equation

that depicts the design of E22 is shown in Figure 4.5.1. E22 takes a 48-bit Bluetooth

address (BD_ADDR), a PIN, and a 128 bit random number (RAND) to generate a

128-bit Kinit. The maximum size of PIN is 16 bytes. If PIN’s size (L) is less than 16

bytes, it will first combined with BD_ADDR to form PIN’. If PIN’ is still less than

16 bytes, it will then be expanded cyclically to become a 16 byte PIN’’ (or “X” in

Figure 4.5.1). The 15th byte of RAND is XORed with the L’, which is the lesser

number between 16 (the maximum size of a PIN) and L + 6 (6 is the size BD_ADDR),

to form Y. X and Y will then be feed into Ar’ to create a 128-bit Kinit [1,2].

 15

Figure 4.5.1 Equations of E22 [2]

Figure 4.5.2 A graphical representation of E22

4.5.2 E21

Bluetooth design uses E21 to generate unit keys (LK_KA/LK_KB). The

equation that depicts the design of E21 is shown in Figure 4.5.3. E21 takes a 128-bit

(PIN, L) (BD ADDR, 6) (IN RAND, 16)

Combine PIN & BD_ADDR

memcpy(pin’, pin, L);
usedAddrSize = MIN(6, 16 – L);
memcpy(pin’ + L, BD_ADDR, usedAddrSize);
L’ = L + usedAddrSize;

XOR IN_RAND’s most
significant bytes with the size of

PIN

IN RAND[15] ^= L

Ar’
Expand PIN’ to 16 bytes (if necessary)

if (L’ < 16)
{
 for (int i = 0; i < 16; i ++)
 PIN’’[i] = PIN’[i mod L’];
}

(PIN’, L’)

(PIN’’, 16)

(IN_RAND’, 16)

(Kinit, 16)

 16

random number (RAND) and a 48-bit Bluetooth address (address) as its input. The

15th byte of RAND is XORed with a constant number 6 (the size of a Bluetooth

address in byte) to form X. “address” is being cyclically expanded from 6 bytes to 16

bytes to form Y. X and Y are then being feed to Ar’ to create a unit key. Two unit

keys (LK_KA and LK_KB) will then be combined to form a combination key Kab [1,

2].

Figure 4.5.3 Equation of E21 [2]

Figure 4.5.4 A graphical representation of E21

Expand BD_ADDR to 16 bytes

 for (int i = 0; i < 16; i ++)
 BD_ADDR’[i] = PIN’[i mod 6];

(BD_ADDR, 6) (LK RAND, 16)

XOR LK_RAND’s most
significant bytes with the size

of BD_ADDR

LK_RAND[15] ^= 6

Ar’

(BD ADDR, 16)

(LK RAND’, 16)

(LK K, 16)

 17

4.5.3 E1

Bluetooth design uses E1 to generate authentication responses (SRES). The

equation that depicts the design of E1 is shown in Figure 4.5.5. E1 takes a 128-bit

combination key (K), a 128-bit random number (RAND), and a Bluetooth address

(address) as its inputs. RAND and K from Figure 4.5.6 are being feed to Ar. The

128-bit output is XORed with RAND and then added with a cyclically expanded

address (Ar_out). Transforming K with an offset table will form K’. The complete

offset table can be found in the Bluetooth specification. Ar_out and K’ are being feed

to Ar’ to generate a 128 bit value. The first 32 bit of that value will become SRES.

The rest of the 128-bit output value will become ACO [1, 2].

Figure 4.5.5 Equations of E1 [2]

 18

Figure 4.5.6 A graphical representation of E1

4.5.4 E3

 Bluetooth design uses a hash function E3 to generate ciphering key Kc , which

will then be used by system E0 to generate cipher streams for encrypting message

payloads in encryption. The equations that depict the design of E1 are shown in

Figure 4.5.7. K is the current link key. RAND is a 128bit random number that is

generated by the master. Depends on the type of encryption (i.e. point to point or

point to multi-points), COF is either the union of the master’s address or the ACO

generated by the previous authentication.

(K, 16) (BD ADDR, 6)(AU RAND, 16)

Ar

Ar’

Offset
Refer to Bluetooth

specification

(K’, 16)

16 XOR

16 additions modulo 256

Expand BD_ADDR to 16 bytes

for (int i = 0; i < 16; i ++)
 BD_ADDR’[i] = PIN’[i mod 6];

(BD ADDR’, 16)

32 bits 96 bits

(SRES, 4) (ACO, 12)

 19

Figure 4.5.7 Equations of E3 [2]

4.6 PAIRING

Before two Bluetooth devices can establish a connection and send data to each

other, they have to go through a pairing procedure, which is essentially a process for

creating a common key for authentication and encryption between two Bluetooth

devices. The device that initializes the pairing is, by definition, the master of the

whole process. The other device is considered to be the slave [1, 2]. Two Keys, Kinit

and Kab, are being generated from the process. Figure 4.6.1 and 4.6.2 show a

simplified and a detailed pairing respectively.

An overview of the pairing process is described as follows:

Index:

Bluetooth Address – A 48 bit mac address that uniquely identify each

individual Bluetooth device

BD_ADDRA – The Bluetooth address of the master

BD_ADDRB – The Bluetooth address of the slave

1. User A enters a PIN to the master (Device A) Bluetooth device

2. The master generates a 128 bit random number (IN_RAND)

3. The master uses IN_RAND along with the PIN and BD_ADDRB to generate

an initialization key (Kinit)

 20

4. The master sends IN_RAND to the slave

5. User B enters the same PIN as User A did to the slave device

6. The slave uses the PIN, IN_RAND, and it’s own address BD_ADDRB to

generate the same Kinit. At this point, both the master and the slave share the

same initialization key.

7. The master generates a new 128 bit random number (LK_RANDA)

8. The master uses LK_RANDA along with BD_ADDRA to generate a unit link

key (Ka)

9. The master encrypts LK_RANDA by using Kinit

10. The master sends the encrypted LK_RANDA to the slave

11. The slave decrypts the encrypted random number by using its own Kinit

12. The slave generates Ka by using LK_RANDA and BD_ADDRA

13. The slave generates a new 128 bit random number LK_RANDB

14. The slave uses LK_RANDB along with BD_ADDRB to generate Kb

15. At this point, the slave has both Ka and Kb. It XOR two unit link keys to form

a new 128 bit combination key Kab

16. The slave encrypts LK_RANDB by using Kinit

17. The slave sends the encrypted LK_RANDB to the master

18. The master decrypts the encrypted LK_RANDB by using its own Kinit

19. The master generates Kb by using LK_RANDB and BD_ADDRB.

20. At this point, the master has both Ka and Kb. It XOR two unit link keys to

form the same combination key Kab

 21

Figure 4.6.1 A simplified Bluetooth pairing protocol

LK_RANDB

LK_RANDA

Enter PINEnter PIN

IN_RAND

Kinit

SM

Kinit

Pairing completed

KAB KAB

 22

Figure 4.6.2 A detailed Bluetooth pairing protocol

User A enters PIN

Master A (BD ADDRA) Slave B (BD ADDRB)

Generate a 128-bit random number (IN_RAND)

E22(BD_ADDRB + PIN + IN_RAND) Kinit

Send IN_RAND in plaintext

User B enters PIN

Generate a 128 bit random number (LK_RANDA)

Send LK_RANDA’

Generate a 128 bit random number (LK RANDB)

Send LK_RANDB’

Kb XOR Kb Kab

E22(BD_ADDRB + PIN + IN_RAND) Kinit

E21 (BD_ADDRA + LK_RANDA) Ka

E21 (BD_ADDRA + LK_RANDA) Ka

E21(BD_ADDRB + LK_RANDB) KB

E21(BD_ADDRB + LK_RANDB) Kb

Ka XOR Kb Kab

LK_RANDA XOR Kinit LK_RANDA’

LK_RANDA’ XOR Kinit LK_RANDA

LK_RANDB XOR Kinit LK_RANDB’

LK_RANDB’ XOR Kinit LK_RANDB

Pairing completed

 23

4.7 AUTHENTICATION

Bluetooth security architecture uses a challenge-response authentication

scheme. Figure 4.7.1 and 4.7.2 show a simplified and a detailed authentication

respectively.

An overview of the authentication process is described as follows:

1. The master is the verifier. The slave is the claimant.

2. The master generates a 128 bit random number AU_RANDA

3. The master uses AU_RANDA along with Kab and BD_ADDRB to compute a

32 bit values SRESA

4. The master sends AU_RANDA to the slave as plaintext

5. The slave computes a 32 bit response SRESA’ using AU_RANDA, Kab, and

BD_ADDRB.

6. The slave sends the SRESA’ back to the master

7. The master compares the SRESA’ it received from the slave against SRESA to

verify the validity of the slave’s Kab

8. Upon the success in verifying the validity of slave’s KAB, a new round of

authentication begins. This time, the slave becomes the verifier. The master

becomes the claimant

9. The slave generates a 128 bit random number AU_RANDB

10. The slave uses AU_RANDB along with Kab and BD_ADDRA to compute a 32

bit values SRESB

11. The slave sends AU_RANDB to the master

12. The master computes SRESB’ using AU_RANDB, Kab, and it’s own address

BD_ADDRA.

13. The master sends SRESB’ back to the slave

 24

14. The slave compares SRESB’ against SRESB to verify the validity of the

master’s Kab

15. Upon the success in verifying the validity of master’s KAB, a mutual

authentication is completed

Figure 4.7.1 A simplified Bluetooth authentication protocol

AU_RANDB

SRESA’

SRESB’

AU_RANDA

SM

Authentication Complete

 25

Figure 4.7.2 A detailed Bluetooth authentication protocol

4.8 ENCRYPTION

 After at least one authentication has been performed, encryption can be used

to protect message payloads. The master first negotiates the encryption key size with

the slave. The master and the slave then derive the same ciphering key Kc. Kc will be

used by the E0 system to generate cipher streams (Kcipher) for encrypting packet

payloads. Figure 4.8.1 shows the encryption procedure.

Master A (BD ADDRA) Slave B (BD ADDRB)

Generate a 128 bit random number (AU_RANDA)

E1(BD_ADDRB + AU_RANDA + Kab) SRESA

Send AU_RANDA in plaintext

E1(BD_ADDRB + AU_RANDA + Kab) SRES?

Send SRES? in plaintext

YES

NO.
Stop pairing SRESA == SRES?

Send AU_RANDB in plaintext

Generate a 128 bit random number (AU_RANDB)

E1(BD_ADDRA + AU_RANDB+ Kab) SRESB

E1(BD_ADDRA + AU_RANDB + Kab) SRES?

Send SRES? in plaintext

YES

NO.
Stop pairing

Mutual Authentication Completed

SRESB == SRES?

 26

Figure 4.8.1 An overview of Bluetooth encryption protocol [1]

5 RESEARCH

This research first explores four Bluetooth security issues through the analysis

and implementation of four attacks. The first attack is a passive PIN cracking attack.

The attack attempts to use an offline brute-force approach to recover the secret PIN

that is shared by two Bluetooth devices during their paring process. The second

attack is an active version of the first attack. Instead of taking the PIN calculation

offline, an attacker attempts to pair with a victim device repeatedly in a short period

of time using different PINs until he recovered the secret PIN. Since those

consecutive pairings happens in real time, speed will become a crucial factor in this

attack. Thus, a PIN dictionary will be used along with this attack to enhance the PIN

recovery speed. The third attack is a denial-of-service attack. The attack attempts to

prevent legitimate users from connecting to a master Bluetooth device (e.g. a

Bluetooth access point). The fourth attack is an encrypted message replay attack.

The main goal of this attack is to make a victim do the same thing twice using some

 27

previously captured messages. All these messages are encrypted. The attack does not

need to know the current link key in order to carry out this attack.

After the analysis and implementations of those attacks, this research then

suggests some security improvements to defense against those four attacks.

5.1 ENVIRONMENT

 The research is based upon an open-sourced Bluetooth network simulator

named UCBT, which stands for University of Cincinnati – Bluetooth [3]. There are

two other open-sourced Bluetooth simulators available for download on the Internet.

Bluehoc, which was developed by IBM in 1996, is the first generation of Bluetooth

simulator [4]. A newer simulator is named Blueware, which is a project from couple

MIT students [5]. Both Blueware and UCBT are built on top of Bluehoc. All three

simulators incorporate the framework provided by NS-2, a well-known network

simulator [7]. UCBT is chosen for this research because it is the most updated

Bluetooth simulator that is designed based on the more widely adapted Bluetooth 1.1

and 1.2 specifications.

UCBT is designed for the Linux platform. It is written in C++. In this

research, Linux Mandrake 10.0 [8] is being selected to host UCBT because it is

notorious for the ease of its installation and configuration. Mandrake is installed as a

virtual host operating system on VMWare [9] so that the research can be conducted in

Windows’ environment. The Bluetooth design incorporates SAFER+ as the core

block cipher for couple encryption and key generation functions such as E22, E21, E1,

etc. More detailed information regarding those functions is discussed in the previous

sections. The codes for SAFER+ in UCBT are being extracted from a cryptographic

 28

library named “LibTomCrypt” [8]. Table 5.1.1 provides a summary of the research

environment.

 UCBT is specifically designed to simulate the Baseband Bluetooth stack layer.

The Bluetooth architecture divides into three distinct layers. A L2CAP layer, which

stands for Logical Link Control and Adaptation Protocol, sits on the top of the stack.

The main function of the L2CAP layer is to create and manage channels for the

application layer, which is not considered to be a part of the Bluetooth architecture. A

radio layer lies on the bottom of the stack. It contains a radio transceiver that

transmits and receives Bluetooth packets. A baseband layer lies in between the

L2CAP layer and the radio layer. It contains a scheduler that grants time slots for the

L2CAP channels to send packets through the radio layer. It negotiates quality of

services between Bluetooth entities. It is also responsible for encoding and decoding

Bluetooth packets [2]. UCBT relies on NS-2 to provide the L2CAP layer that it needs.

The radio layer and the physical wireless medium that allows Bluetooth devices to

connect to each other are not being simulated [3].

 One of the major challenges for using UCBT in this research is the fact that

UCBT’s designers intentionally bypassed all the security aspects of the Bluetooth

specification. In other words, the original UCBT package does not contain any

modules for pairing, authentication, and encryption. As part of this research, pairing,

authentication, and encryption (based on the Bluetooth 1.2 specification) have been

added to the simulator.

 In order to verify that all security modules have been implemented correctly,

couple test samples from the Bluetooth 1.2 specification have been used. Figure 5.1.1

shows a sample input and its associated output for the E22 function. The inputs of

E22 from the sample test data are a 128 bit random number (rand), a 16-byte pin

 29

(PIN), and a 48-bit Bluetooth address (address). In the figure, “round 1” represents

the input value for the first round in Ar’. Each SAFER+ round requires two keys.

“Key [1]” and “Key [2]” represent the two input keys for the first round. The

expected final key is represented by “Ka”. The rest of the test sets can be found in

Part G, Vol 2 of the Bluetooth 1.2 specification [2].

●

●

●

Figure 5.1.1 A sample test data for E22 [2]

Virtual Machine Software VMWare Workstation 5.0.0 build 13124
Host Operating System Mandrake 10.0
Network Simulator NS-2 version 2.27
Bluetooth Simulator UCBT 0.9.8.2
SAFER+ LibTomCrypt 1.06
Compliers gcc & g++

Table 5.1.1 Summary of all software used in the research

5.2 ATTACKS

5.2.1 Passive PIN cracking

This passive pin-cracking analysis was first being disclosed to the public by O.

Whitehose at the CanSecWest ’04 conference. At that time, only the attack

framework and its performance analysis were discussed [20]. Two researchers, Yaniv

Shaked and Avishai Wool, followed the lead and made a more detailed analysis of the

 30

Bluetooth pin attack. They implemented a pin-cracking program along with couple

speed improvements on their algorithm. They tested and evaluated their program

against pins that are 4 to 7 digits long [1]. Since they did not release the source codes

of their cracking program to the public, an independent implementation of the

cracking program is included in this research. All Bluetooth pairing messages that are

needed by the pin-cracking algorithm are summarized in Table 5.2.1.

The pin-cracking algorithm is a brute-force algorithm. It repeatedly generates

different hypothetical PIN’ and goes through a series of pairing and authentication

steps to generate hypothetical SRES’. It then compares the hypothetical SRES’ with

SRESA and SRESB in order to recover the correct PIN [1]. Notice that the algorithm

assumes that the attacker has successfully eavesdropped the entire pairing process and

has retrieved all the necessary messages that are listed in Table 5.2.1. Figure 5.2.1

describes the complete pin-cracking process. Since the Bluetooth specification

requires the length of the pins to be at least 4 digits, the crack program starts to

enumerate all possible pin combinations from the pin “0000”. Some performance

improvement codes have been added to the SAFER+ that is being used by the crack

program. Figure 5.2.2 shows the pseudo codes for the crack program. The following

assumption has been made for the attack:

1. The attacker has eavesdropped the entire pairing process between the targets.

2. The following data are known prior to the pin cracking starts

• The Bluetooth address of both master and slave (BD_ADDRA and

BD_ADDRB)

• All messages listed in Table 1

• The internal designs of E22, E21, and E1

 31

Src Dst Data Length (bit) Notes
1 Master Slave IN_RAND 128 Plaintext
2 Master Slave LK_RANDA 128 XORed with Kinit
3 Slave Master LK_RANDB 128 XORed with Kinit
4 Master Slave AU_RANDA 128 Plaintext
5 Slave Master SRESA 32 Plaintext
6 Slave Master AU_RANDB 128 Plaintext
7 Master Slave SRESB 32 Plaintext

Table 5.2.1 Messages used by the pairing process [1]

// Load all sniffed messages
in_rand = getMsg(IN_RAND); // in_rand for Kinit
encrypted_lk_rand_a = getMsg(E_LK_RAND_A); // encrypted LK_RAND_A
encrypted_lk_rand_b = getMsg(E_LK_RAND_B); // encrypted LK_RAND_B
au_rand_a = getMsg(AU_RAND_A); // authentication AU_RAND_A
au_rand_b = getMsg(AU_RNAD_B); // authentication AU_RAND_B
sres_expected_a = getMsg(SRES_A); // response SRES_A
sres_expected_b = getMsg(SRES_B); // response SRES_B
pin_found = false;

while(!pin_found)
{
 // Guess a new pin
 guess_pin = GetNewPin();

 // Initialisation key (Kinit)
 key_init = E22(guess_pin, slave_addr, in_rand);

 // Decrypt random numbers using Kinit
 lk_rand_a = XOR(encrypted_lk_rand_a, key_init);
 lk_rand_b = XOR(encrypted_lk_rand_b, key_init);

 // Generate unit keys Ka and Kb
 key_a = E21(master_addr, lk_rand_a);
 key_b = E21(slave_addr, lk_rand_b);

 // Generate combination key Kab
 key_ab = XOR(key_a, key_b);

 // Generate authentication response using
 // master-generated random number
 sres_a = E1(au_rand_a, slave_addr, key_ab);

 // Compare guessed authentication response with
 // the expected one
 if(sameResponse(sres_a, sres_expected_a))
 {
 // Generate authentication response using
 // slave-generated random number
 sres_b = E1(au_rand_b, master_addr, key_ab);

// Compare guessed authentication response with
 // the expected one
 if(sameResponse(sres_b, sres_expected_b))
 pin_found = true;
 }
}

Figure 5.2.2 Pseudo codes for the passive pin-cracking program

 32

Figure 5.2.1 The passive PIN-cracking algorithm

Generate a hypothetical PIN (PIN’)

Generate a hypothetical Kinit’

E22(BD_ADDRB + PIN’ + IN_RAND) Hypothetical Kinit’

Decrypted the two random numbers

Kinit’ XOR encrypted-LK_RANDA LK_RANDA’
&&

Kinit’ XOR encrypted-LK_RANDB LK_RANDB’

Generate two hypothetical unit link keys

BD_ADDRA + LK_RANDA’ E21 Ka ’
&&

BD_ADDRB + LK_RANDB’ E21 Kb’

Create a hypothetical combination key Kab’

Ka ’ XOR Kb’ Kab’

Generate a hypothetical authentication response SRESA’

BD_ADDRB + AU_RANDA + Kab’ E1 SRESA’

Generate a hypothetical authentication response SRESA’

BD_ADDRA + AU_RANDB + Kab’ E1 SRESB’

NO

Yes

Yes

NO

Found PIN

SRESA == SRESA’

SRESB == SRESB’

 33

 The following are the results of running the pin-cracking program against

messages that were encrypted with different pin sizes.

5.2.2 Active PIN cracking

 Some Bluetooth devices, such as hands-free headphones, do not have a user

interface. Thus, manufactures have to embed fixed PINs into those devices. The

Bluetooth specification specifies that two devices cannot be paired if both of them

have fixed PINs. In other words, for a pairing to occur, at least one device has to have

a variable PIN. This active PIN attack is specifically targeting the fix-pined Bluetooth

devices.

As the name implies, the attack involves communicating actively with the

victim. The nature of this attack is very similar with the passive PIN attack. For the

passive attack, the calculation is being taken offline. For this active attack, an

attacker will initialize a pairing and an authentication with a victim device using a

random PIN. Notice that the attacker is always the master. It means that the attacker

should always be the first one who send out the challenge and receive the response in

an mutual authentication. Once the attacker completed one pairing and collected a

4 5 6 7

10

100

1000

Seconds

Digit-pin sizes

Figure 5.2.3 Performance measurement of the crack program
against different sized pins

 34

pair of challenge and response for authentication, he will have enough information to

launch a brute-force attack. If the attacker can retrieve the PIN before the challenge

from the victim expires, she can generate a correct response to complete the

authentication. If not, the attacker will have to initialize another round of pairing and

authentication. In order to prevent intruders from trying a large number of different

pins in a short period of time, the Bluetooth design specifies that a wait interval

should be passed before a device response to an authentication attempts coming from

the same claimant who has failed the authentication. The wait interval should also be

exponentially increased [2]. Therefore, the attacker’s MAC address will be stored in

the victims’ “Black List” in the subsequence rounds of failed pairing and

authentication. But the only information that the victim can use to uniquely identify

each failed attempt is the MAC address. An attacker can bypass the wait interval as

long as he uses a different Mac address for each authentication attempt. To minimize

the number of rounds, the attack can utilize a numeric pin dictionary and generates

more common PIN candidates such as “1111”, “1234”, etc. Figure 5.2.4 shows the

active PIN- cracking algorithm.

Since this active attack is very similar to the offline version of the PIN

cracking and the offline version is much more efficient than the online one, one might

wonder why the attacker would use this active attack at all. The reason is that

sometimes it may not be easy, if not impossible, for the attacker to eavesdrop the

complete pairing process between two target devices.

 35

Figure 5.2.4 The active PIN-attack algorithm

Attacker Victim

Generate any pin (PIN’)

Pairing

Start Mutual Authentication

Generate an AU_RAND

Send AU_RAND

Generate a SRESA’

Send SRESA’

Generate an AU_RANDB and
calculate SRESB using PIN

Send AU RANDB

Generate a SRESB’ based on PIN,
otherwise, use any random pin.

Send SRESB’

Setup Complete

Detach link
Reason = AUTH FAILED

NO SRESB == SRESB’

Stop Stop

Uses a fix pin (PIN)

Launch brute-force attack to
retrieve PIN

YES

 36

5.2.3 Denial-of-Service Attack

 The main goal for this attack is to flood a master Bluetooth device, such as an

access point, with false authentications in attempt to prevent legitimate users from

successfully pairing and authenticating with that master device. An attacker can

accomplish this attack by taking advantages of the security measurement that is

designed to prevent repeated authentication attempts with different PINs in a

relatively short period of time.

To prevent repeated authentication, a device is recommended to store the

MAC address that is associated with each failed authentication attempt. A wait time

should pass before the device accepts new authentication requests from any of those

MAC addresses. If the attacker uses the MAC address of a legitimate user and a fake

PIN to authenticate with the master access point, the authentication will most likely

fail. The access point will then “memorize” the MAC address of the legitimate user.

In consequence, the access point will reject any further pairing and authentication

requests coming from the legitimate user until the wait time has passed.

Bluetooth MAC addresses are 48 bits long. There are roughly 248 unique MAC

addresses. It would be impractical for the attacker to flood the access point using all

possible addresses. But let say that the access point belongs to a mid-size company.

The company will mostly provide its employees with Bluetooth devices manufactured

by couple specific companies. Since the first three bytes of a Bluetooth MAC address

are vendor specific, the attacker will only have to loop through all possible addresses

(around 16 million addresses) from those brands. Furthermore, some companies

assign fixed 7th hex digit to the address of their products. For example, Sony Ericsson

uses 00:0A:D9:E as the first 7 hex digits of the MAC address of their P900 mobile

phones [42]. To speed up the denial-of-service attack further, a couple of probing

 37

Bluetooth devices, each one target a different address range, can be used. Figure

5.2.5 describes a normal scenario of a legitimate device connects to an access point.

Figure 5.2.6 shows the denial-of-service attack.

Figure 5.2.5 A legitimate device connects to an access point

Legitimate User Access Point

Inquiry

Paging

Connection request

Role: SlaveRole: Master

Role Preferred: Master

Accept role switch

Role Switch

Role: Slave Role: Master

Pairing

Accept connection request

Role Preferred?

Master

Slave / No
Preference

Slave / No Preference

Master Role Preferred?

Authentication

Connection Setup Completed

Detach

 38

Figure 5.2.6 The Denial-of-Service Attack

5.2.4 Message Replay Attack

 In this attack, an attacker replays previously captured messages to a victim

without actually decrypting those messages. The attacker does not need to know the

encryption key to conduct this attack [27]. This attack divides into two phases as

follows:

Phase I:

 Two victims (Alice & Bob) are attempting to set up a secure connection. We

assume that they have previously paired and they share a secret link key (K). We

further assume that Alice is the master of the piconet. Figure 5.2.7 depicts the

interactions between Alice and Bob in Phase I. Alice and Bob first mutually

authenticate each other using the secret key. Alice then initializes the encryption

sequence by sending Bob a random number EN_RAND. They calculate Kc and

KCipher using E3 and E0 respectively. They then encrypt the rest of the messages by

XORing the payloads with the cipher streams. The attacker, Trendy, passively listens

to the whole conversation between Alice and Bob. The messages and random

numbers that Trendy needs (all red messages in Figure 5.2.7) to launch the Phase II

attack are AU_RANDA, EN_RAND, and the rest of the encrypted messages.

Phase II:

Access Point Attacker

Paging

Role Switch

Detach: AUTH_FAILED

Select a new mac
address

Pairing & Authentication

Store MAC address

 39

 In this phase, Trendy initializes a mutual authentication with Bob. Trendy

send AU_RANDA, which he captured during Phase I, to Bob as the challenge such

that Bob generates the same ACOA and SRESA as in Phase I. Trendy then ignores the

response SRESA coming from Bob. Since Trendy doesn’t know K, he has no way to

generate a correct response to Bob. But Trendy can relay the challenge to Alice

posing as Bob and forwards the response from Alice to Bob. After the mutual

authentication between Trendy and Bob has completed, Trendy sends the same

encryption random number EN_RAND that he captured in Phase I to Bob. A key

observation here is that since ACOA and EN_RAND in Phase II are the same as those

in Phase I, the KC and KCipher that Bob generates in Phase II will also be the same as

those in Phase I. Trendy can then replay the rest of the messages that he captured in

Phase I to Bob. Figure 5.2.8 depicts the entire Phase II attack.

 This attack poses some serious threats despite the fact that Trendy cannot

decrypt those encrypted messages. For example, Trendy can force Bob to send data

in plaintext by sending him an old encrypted STOP_ENCRYPTION command.

 40

Figure 5.2.7 Phase I of the message Replay Attack

Bob Alice Trendy

AU_RANDA

E1(….,AU_RANDA) (SRESA , ACOA)
SRESA

…
AU_RANDB

E1(….,AU_RANDB) (SRESB , ACOB)

SRESB

…

Msg1 XOR KCipher

E3(K, ACOA, EN_RAND) KC

E0(BD_ADDRA, CLKA, KC) KCipher

MsgN XOR KCipher

E3(K, ACOA, EN_RAND) KC

E0(BD_ADDRA, CLKA, KC) KCipher

EN_RAND

 41

Figure 5.2.8 Phase II of the message Replay Attack

6 ENHANCEMENTS

 In this section, several enhancements to the Bluetooth security protocol will be

proposed in attempt to defense against the attacks described in the previous section.

All proposed enhancements are on the protocol level. In other words, all lower-

leveled cryptographic features and functions, such as the SAFER+ block cipher and

various hash functions, will not be discussed.

6.1 Online/offline PIN attacks

 Two different enhancements to the Bluetooth pairing and authentication

protocols are proposed to address both online and offline PIN attacks. The first

SRESA

Bob Alice Trendy

AU_RANDA

E1(….,AU_RANDA) (SRESA , ACOA)

AU_RANDC

SRESC

…

Msg1 XOR KCipher

E3(K, ACOA, EN_RAND) KC

E0(BD_ADDRA, CLKA, KC) KCipher

EN_RAND

AU_RANDC

SRESC

MsgN XOR KCipher

 42

enhancement is based on the Encrypted Key Exchange (EKE) protocol suggested by

Steven Bellovin and Michael Merritt [28, 29, 30]. The second enhancement is based

on MANA III (MANual Authentication III), a multi-channel authentication protocol

[23, 24, 25, 26]. The Diffie-Hellman key exchange protocol is the foundation of both

enhancements.

6.1.1 Password-based Encrypted Key Exchange (PW-EKE)

A. Overview

 The goal of the password-based EKE protocol is to exchange a common key

between two parties over an insecure channel, such as a wireless interface, using a

shared weak PIN number, such as a 4 digit PIN. That is exactly what the pairing

process in the Bluetooth design trying to accomplish. The design of PW-EKE

incorporates the usage of both symmetric and asymmetric systems. Figure 6.1.1

shows the modified pairing and authentication using password-based EKE.

PW-EKE is based on the Diffie-Hellman key exchange protocol. A master (M)

and a slave (S) try to derive gAB mod p as their common session key by exchanging gA

mod p and gB mod p in plaintext. Doing so will not weaken the protocol because (gA

mod p) (gB mod p) does not equal (gAB mod p). To recover the key using those two

random numbers, the attack will have to solve the discrete log problem. But the

Diffie-Hellman key exchange does not provide authentication. Thus, it is prone to the

Man-In-The-Middle (MiM) attack. PW-EKE solves this problem by hashing the two

random numbers with a common PIN. A simple XOR operation will suffice because

the randomness of the two random numbers will provide enough security to protect

the weak PIN number. Furthermore, by hashing PIN numbers to the two random

 43

numbers, the strength of those PINs has been “amplified”. An important property of

this protocol is that weak PINs (such as a 4 digit PIN) will not weaken the protocol.

Figure 6.1.1 PW-EKE Based Pairing and Authentication Protocol

B. PW-EKE against different attack scenarios

 This subsection demonstrates how the new protocol defense against different

attacks.

i) Man-In-the-Middle attack

 The Diffie-Hellman key exchange protocol is known to be vulnerable to the

MiM attack because it does not provide authentication. Thus, we first have to make

sure that the new protocol is well protected against the MiM attack. Figure 6.1.2

shows how MiM works under the original DH protocol. In the new protocol, a PIN is

used to provide authentication between the master and the slave. The long random

numbers, in return, protect the PIN. Since Trendy doesn’t know the PIN, he can’t

extract the two random numbers from the hashes.

M S

Generate a 128 bit random number B Generate a 128 bit random number A

XOR (gA mod p , PIN)

XOR (gB mod p , PIN)

Extract gA mod pExtract gB mod p

K = g(A)B mod pK = g(B)A mod p

AU_RANDA

SRESA

AU_RANDA

SRESB

 44

Figure 6.1.2 A MiM attack under the original DH protocol

ii) Brute-Force PIN attack

 The feasibility of a brute-force PIN attack depends on how quickly an attacker

can verify the correctness of a candidate PIN. Assuming the wireless interface is

completely insecure, an attacker will be able to capture every message. Figure 6.1.3

shows how an attacker attempts to launch a brute-force search on the PIN number.

Notice that step 3 is not feasible. The attacker has no way to verify the correctness of

a candidate PIN. Thus, a brute-force PIN attack cannot be applied on PW-EKE.

Figure 6.1.3 An attempted brute-force PIN search under PW-EKE

Alice Trendy Bob

gA mod p gX mod p

gY mod p gB mod p

K = g(Y)A mod p

K = g(X)B mod p K2 = g(B)X mod p

K1 = g(A)Y mod p

1. Generate a candidate PIN (pin’)

2. Calculate two candidate random numbers

pin'-1 (pin (gA)) gA’
pin'-1 (pin (gB)) gB’

3. Calculate a candidate gAB’ ** Infeasible **

4. Calculate a candidate authentication response

E1 (BD_ADDR, gAB’, AU_RANDA) SRES’

5. SRES’ == SREAA

6. PIN found

YES

NO

 45

iii) Brute-force attack against A & B

 An attacker can potentially retrieve the link key gAB by generating candidate A

and B and verify them against the challenge and response pair. But since A and B are

long nonces (128 bits), this attack is not feasible.

C. Pros and Cons

 A major benefit of PW-EKE is that weak PINs will not weaken the whole

protocol. From the brute-force PIN attack in the previous section, we concluded that

short PINs make the original Bluetooth security weak. In PW-EKE, the main purpose

for the PINs is to provide authentication. The strength of the session keys does not

depend on the length of the PINs. Given how often users pick short PINs, this benefit

gives PW-EKE an edge over other protocols.

 In terms of modification, PW-EKE does not require any changes to the

original device interface requirement. The new protocol also needs users to enter PINs

to both the master and the slave during a pairing process. For devices that have no

keypads, such as headsets, the fixed-pin scheme from the original Bluetooth

specification can be applied. In addition, the original challenge-response

authentication procedures can also be reused.

6.1.2 MANA III variant (MANual Authentication III)

A. Overview

 The original Bluetooth pairing and authentication protocol can be seen as

having two communication channels. The first one is an insecure wireless channel

that has unlimited bandwidth because there is theoretically no limit on how much data

can be exchanged through this channel. The other channel is a physical channel

 46

where PINs are being entered. This channel has a very limited bandwidth because

people hate to remember long numbers and they hate to enter long numbers using tiny

keypads. The MANA III protocol also has the same channels. But instead of asking

users to enter PINs into both devices, it requires users to read a short number from

one device and enter it into the other device. Since the short number is randomly

generated by one device, it is no longer a personal identification number. In other

words, users do not have to remember any PIN under the MANA III protocol. Figure

6.1.4 shows the MANA III protocol.

MANA III is also based on the Diffie-Hellman key exchange protocol. It uses

gAB mod p as the session key. Two devices first exchange two exponential random

numbers and derive gAB mod p as their intermediate keys. One device then generates

a short random number (SR) and displays it on its screen. A user then enters the same

number into the other device. The number is XORed with the intermediate key to

form a session key. For authentication, instead of using a challenge-response scheme,

MANA III uses a hash commitment scheme. Each device generates a 128 bits

random number (R) and calculates a long hashed commitment (H) based on R, the

session key, and a device ID. They first exchange their commitment to each other.

They then release R to each other in order to verify the correctness of the

commitments that they have received. The sequence of exchanging commitments and

releasing random numbers is important. One device must not release its R unless it

has received a commitment from the other device. At the end of the protocol, the

authentication results have to be communicated back to the users through the physical

channel again. This last step is essential because without it Trendy can use Bob’s

commitment to brute-force search for the SR. Because SR is a short digit number,

recovering SR by brute-force searching on the commitment and response pair will be

 47

easy. Once Trendy recovered the SR, he can complete the mutual authentication with

Alice by generating a valid commitment. Figure 6.1.5 describes this attack.

Figure 6.1.4 MANA III

M S

gA mod p

gB mod p

Enter SRDisplay SR

HB

RB

HA

RA

H (IDA, K, RA) HA H (IDB, K, RB) HB

Generate RA Generate RB

Shows auth results Shows auth results

Generate random BGenerate random A

 48

Figure 6.1.5 A MiM attack on MANA III (without displaying authentication
results)

The fact that user interactions are needed twice (exchanging SR and

displaying Auth Results) is a very undesirable property of the protocol. Thus, a

MANA III variant is proposed in this paper. Figure 6.1.6 shows the MANA III

variant protocol. Couple modifications are made in the original MANA III in order to

eliminate the need to communicate authentication results back to the users.

1. SR will be displayed only after the master has sent its commitment.

The protocol pauses until the user entered SR into the slave device.

2. The slave will only disclose its RB if and only if HA is valid.

RC

RA

RB

Any number

Alice Trendy Bob

HA Any number

HC

HB

Calculate valid
HC and RC based

on SR

Brute-Force search for
SR using HB and RB

Authentication Complete

 49

Figure 6.1.6 MANA III Variant

Notice that the challenge-response scheme used by the original Bluetooth

design cannot be used in this protocol. Otherwise, a MiM attack will be feasible.

Figure 6.1.7 demonstrates this attack. By using a challenge-response pair from Bob,

Trendy can launch a brute-force search for SR. Once Trendy recovered SR, he will

be able to complete the mutual authentication with Alice by calculating a correct

SRES.

NO STOP

M S

Generate random BGenerate random A

gA mod p

gB mod p

Enter SRDisplay SR

HB

RB

HA

RA

E1(BD_ADDRA, K, RA) HA

E1(BD_ADDRB, K, RB) HB

Generate SR & RA

Generate RB

K = g(B)A mod p XOR SR

K = g(A)B mod p XOR SR

Valid HA ?

YES

 50

Figure 6.1.7 A MiM attack on MANA III (with challenge-response scheme)

B. MANA III variant against different attack scenarios

 This subsection demonstrates how the new protocol defense against different

attacks

i) A MiM attack on the MANA III that doesn’t displaying authentication results

 How does the MANA III variant eliminate the last step from the original

MANA III protocol and, at the same time, protect itself from the MiM attack that we

have described earlier? Lets take a look at couple different situations where Trendy

targets a different victim.

a) Bob as the victim

 In this case, Trendy is trying to pair with Bob. Figure 6.1.8

shows the attack. An important observation is that if Trendy doesn’t

commit HC to Bob, Bob will never show the prompt for entering SR.

Assume that Trendy has recovered SR, he still cannot find a valid RC

for generating HC because he has already made a commitment to Bob.

Since RC is a long nonce and E1 is a one-way hash function, it’s not

Alice Trendy Bob

AU_RANDA AU_RANDC

SRESA

SRESC

Calculate the
Correct SRESA

Brute-Force search for
SR using AU_RANDC

and SRESC

Authentication Complete

 51

feasible for Trendy to brute-force search for a valid RC that is

associated with his commitment to Bob.

Figure 6.1.8 MiM attack on MANA III variant (I)

b) Alice as the victim

In this scenario, Trendy is trying to pair with Alice. Figure

6.1.9 shows the attack. Since Trendy doesn’t know SR at the

beginning of the attack, HC will not be a valid commitment. Bob will

end the transaction because of the invalid HC. In other words, he will

never send out RB that he used to calculate HB. Trendy will have

nothing to validate the correctness of a candidate SR.

RB

RC **Infeasible**

RA

Any number

Alice (M) Trendy Bob (S)

HA HC

HB

** Infeasible **
Find RC s.t.

E1(BD_ADDRB, K, RC) HC

Brute-Force search for
SR using HA and RA and

calculate K

Enter SRDisplay SR

 52

Figure 6.1.9 MiM attack on MANA III variant (II)

ii) Diffie-Hellman MiM attack

 The short random number provides authentication to the protocol. Although

Trendy can still substitutes his own gX and gY as in Figure 6.1.2, he will not be able to

get the session key because he doesn’t know SR.

iii) Passive Brute-Force attack on SR

 In this attack, Trendy attempted to launch an offline brute-force attack on SR

by using all the messages that he has captured during a pairing and authentication

session between Alice and Bob. Figure 6.1.10 shows this attempted attack. The

attack essentially fails on step five. If the candidate hash H does not equal to HA,

Trendy cannot conclude that the candidate SR is wrong because he doesn’t know gAB

mod p’. He could have guessed the correct SR and H’ would still not equal to HA due

to an incorrect candidate gAB mod p’.

RC

Alice (M) Trendy Bob (S)

HA HC

HB

Enter SRDisplay SR

NO STOP Valid HC ?

 53

Figure 6.1.10 An attempted brute-force SR search under MANA III Variant

C. Pros and Cons

 In this protocol, an SR is no longer a personal identification number because it

is being generated randomly every time. This also means that users will no longer be

required to memorize their PINs. Furthermore, only one manual entry of numbers is

required for each round of pairing and authentication.

 A drawback regarding MANA III variant is that it has a different interface

requirement comparing to the original Bluetooth design. MANA III variant requires

masters to have output interfaces to display short numbers.

6.2 Denial-Of-Service Attack

1. Generate a candidate gAB mod p’

3. Calculate a candidate K’

K’ = gAB mod p’ XOR SR’

4. Calculate a candidate hash H’

H’ = E1(BD_ADDRA, K’, RA)

5. H’ == HA

6. SR found

YES

NO

Msgs captured:

gA mod p, gB mod p, HA, HB, RA, RB

2. Generate a candidate SR’

 54

 The main reason why the DOS attack will work is because of the

exponentially increased authentication wait time mechanism recommended by the

Bluetooth specification. Without this feature, the DOS attack will not work. Thus, by

using protocols with manual channels, such as the one in the MANA III variant

suggested in the previous section, the exponential wait time mechanism is no longer

required. The DOS attack is no longer feasible.

 Here is why a manual channel can prevent Trendy from trying different PINs

in a short period of time. If an extra step of copying and entering a short number is

introduced in the original Bluetooth authentication protocol (assuming that the short

number is used to generate an authentication response), Trendy can on longer write a

script to automate the authentication process. He has to physically read a short

number from the master device and enter the number to his probing slave for each

PIN that he tries. Since each trial takes more time to finish, recovering PINs using

this technique is not feasible. The exponentially increased authentication wait time

mechanism is no longer necessary. The DOS attack will then be prevented.

6.3 Encryption Replay Attack

 An important observation regarding this replay attack is that only random

numbers from the master are used to generate the 96 bits ACO and KC for encryption.

This attack can be prevented as long as both sides contribute to the creation of the

encryption keys and cipher streams.

 One straightforward solution is to use the ACOs from both sides to generate

KC. But since mutual authentication is optional, there may be chances where only

one side has an ACO. In order to guarantee that cipher streams depend on both

 55

masters and slaves, an extra EN_RAND can be exchanged. Figure 6.3.1 shows the

protocol.

Figure 6.3.1 Encryption protocol with two encryption random numbers

7 Conclusion

 This paper has studied four attacks, an online PIN attack, an offline PIN attack,

a denial-of-service attack, and an encrypted message replay attack, on the Bluetooth

protocol. They revealed the weaknesses on the pairing, challenge-response

authentication, and encryption protocols. The paper proposed PW-EKE and MANA

III variant as alternatives for the original pairing and authentication protocol. By

adding an extra manual channel to the authentication protocol, repeated PIN trying on

fix-pined Bluetooth devices is not feasible. The DOS attack can then be prevented

because the exponential wait time mechanism is no longer required. The reason why

the Bluetooth system is vulnerable to the encrypted message replay attack is because

only random numbers from the master are used to derive cipher streams. Adding an

extra step to exchange an encryption random number generated by the slave will

protect the encryption protocol from generating the same cipher keys and streams.

EN_RANDB

Alice Bob

EN_RANDA

Calculate KC and
KCipher using

EN_RANDA and
EN_RANDB

Authentication

Calculate KC and
KCipher using

EN_RANDA and
EN_RANDB

 56

8 References

[1] Yaniv Shaked and Avishai Wool, Cracking the Bluetooth PIN, at

http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/

[2] Bluetooth Specification v1.2, at https://www.bluetooth.org/spec/

[3] Qihe Wang, UCBT Bluetooth simulator, at http://www.ececs.uc.edu/~cdmc/ucbt/

[4] IBM, Bluehoc Bluetooth simulator, at http://sourceforge.net/projects/bluehoc/

[5] Godfrey Tan, Blueware Bluetooth simulator for ns, at

http://nms.lcs.mit.edu/projects/blueware/software/

[6] LibTomCrypt cryptographic library, at http://libtomcrypt.org/

[7] NS-2 network simulator, at http://www.ececs.uc.edu/~cdmc/ucbt/

[8] Distribution for Mandrake 10.0, at http://www.linuxiso.org/distro.php?distro=29

[9] VMWare, at http://www.vmware.com

[10] Cylink Corporation, AES SAFER, at http://

csrc.nist.gov/CryptoToolkit/aes/round1/conf1/saferpls-slides.pdf

http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/
https://www.bluetooth.org/spec/
http://www.ececs.uc.edu/~cdmc/ucbt/
http://sourceforge.net/projects/bluehoc/
http://nms.lcs.mit.edu/projects/blueware/software/
http://libtomcrypt.org/
http://www.ececs.uc.edu/~cdmc/ucbt/
http://www.linuxiso.org/distro.php?distro=29
http://www.vmware.com/
http:// csrc.nist.gov/CryptoToolkit/ aes/round1/conf1/saferpls-slides.pdf
http:// csrc.nist.gov/CryptoToolkit/ aes/round1/conf1/saferpls-slides.pdf

 57

[11] Prentice Hall, What is Bluetooth?, at

http://www.developer.com/ws/proto/print.php/10948_1433291_4

[12] A dedicated Bluejacking website, at http://www.bluejackq.com/

[13] http://www.trifinite.org/

[14] BMW, BMW Bluetooth hands-free system, at

http://www.bmwtransact.com/bluetooth/

[15] Ollie Whitehouse, War Nibbling: Bluetooth Insecurity, at

http://www.atstake.com/research/ reports/acrobat/atstake_war_nibbling.pdf

[16] Adam Laurie, Serious flaws in bluetooth security lead to disclosure of personal

data, at http://www.thebunker.net/security/bluetooth.htm

[17] Marcel Holtmann, Bluetooth and Linux, at

http://www.holtmann.org/linux/bluetooth/

[18] J. Kelsey, B. Schneier, and D. Wagner, Key Schedule Weakness in SAFER+, at

http://www.schneier.com/paper-safer.html

[19] Bluetooth tutorials, at http://www.palowireless.com/infotooth/tutorial.asp

http://www.developer.com/ws/proto/print.php/10948_1433291_4
http://www.bluejackq.com/
http://www.trifinite.org/
http://www.bmwtransact.com/bluetooth/
http://www.atstake.com/research/ reports/acrobat/atstake_war_nibbling.pdf
http://www.thebunker.net/security/bluetooth.htm
http://www.holtmann.org/linux/bluetooth/
http://www.schneier.com/paper-safer.html
http://www.schneier.com/paper-safer.html
http://www.palowireless.com/infotooth/tutorial.asp

 58

[20] Wired News, Bluetooth Mobile Phone statistics, at

http://www.wired.com/news/privacy/0,1848,64463,00.html

[21] Ryan Naraine, Source Code for Cabir Cell Phone Worm Released, at

http://www.eweek.com/article2/0,1759,1745949,00.asp

[22] Ollie Whitehouse, CanSecWest/core04, at

http://www.cansecwest.com/csw04/csw04-Whitehouse.pdf

[23] Frank Stajano and Ross Anderson. “The Resurrecting Duckling: Security Issues

for Ad-hoc Wireless Networks”. Springer-Verlag Berlin Heidelberg, 1999.

[24] Ford-Long Wong and Frank Stajano. “Multi-channel protocols”. Springer-

Verlag Berlin Heidelberg, 2005.

[25] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg. “Manual

authentication for wireless devices”. 2004.

[26] McCune, Perrig, and Reiter. “Seeing is believing: Using Camera Phones for

Human-Verifiable Authentication”. Carnegie Mellon Univerity, 2005.

[27] Eric Gauthier. “A man-in-the-middle attack using Bluetooth in a WLAN

interworking environment”. Orange, 2004.

http://www.wired.com/news/privacy/0,1848,64463,00.html
http://www.cansecwest.com/csw04/csw04-Whitehouse.pdf

 59

[28] Bellovin and Merritt. “Encrypted Key Exchange: Password-Based Protocols

Secure Against Dictionary Attacks”. In Proceedings of the IEEE Symposium on

Research in Security and Privacy, Oakland, 1992.

[29] Mihir Bellare and Phillip Rogaway. “The AuthA Protocol for Password-Based

Authenticated Key Exchange”. IEEE Computer Society, 2000.

[30] Daivd P. Jablon. “Strong Password-Only Authenticated Key Exchange”. ACM

Computer Communication Review, October 1996.

[31] Hager and Midkiff. “An Analysis of Bluetooth Security Vulnerabilities”, IEEE

Computer Society, 2003.

[32] Markus Jakobsson and Susanne Wetzel. “Security Weakness in Bluetooth”.

Proceeding of the RSA Conference, LNCS 2020, 2001.

[33] Wong, Stajano, and Clulow. “Repairing the Bluetooth Pairing Protocol”.

Thirteenth International Workshop in Security Protocols, Apr 2005.

[34] C. Gehrmann and K. Nyberg. “Enhancements to Bluetooth Baseband Security”.

Proceedings of Nordsec 2001, Nov 2001.

[35] Ford-Long Wong and Frank Stajano. “Location Privacy in Bluetooth”.

Springer-Verlag Berlin Heidelberg, 2005.

 60

[36] Fathi Taibi and Mazliza Othman. “A Proposed Bluetooth Service-level Security”.

In Proceedings of the International Conference on Information Technology and

Multimedia atUNITEN, Aug 2001.

[37] Keijo M.J. Haataja. “Detailed descriptions of new proof-of-concept Bluetooth

seuciryt analysis tools and new secrutiy attacks”. Dept of Computer Science,

University of Kuopio, 2005.

[38] Levi, Cetinatas, Aydos, et al. “Relay Attacks on Bluetooth Authentication and

Solution”. Springer-Verlag Berlin Heidelberg, 2004.

[39] Karl E Persson and D. Manivanan. “Secure Connections in Bluetooth

Scatternets”. Proceedings of the 36th Hawaii International Conference on System

Sciences, 2003.

[40] Dave Singelee and Bart Preneel. “Security Overview of Bluetooth”. COSIC

Internal Report, June 2004.

[41] Tom Karygiannis and Les Owens. “Wireless Network Security – 802.11,

Bluetooth, and Handheld Devices”. National Institute of Standards and Technology

Special Publication 800-48, Nov 2002.

[42] Marek Bialoglowy, Bluetooth Security Review, Part 1, at

http://www.securityfocus.com/infocus/1830

http://www.securityfocus.com/infocus/1830

 61

[43] Guy Kewney, Bluetooth Scare a Load of Hooey, at

http://www.eweek.com/article2/0,1759,1591184,00.asp

	San Jose State University
	SJSU ScholarWorks
	2006

	Bluetooth Security Protocol Analysis and Improvements
	Chi Shing Lee
	Recommended Citation

	Microsoft Word - cs298Report.doc

