10 research outputs found

    Cryptanalysis of the RSA-CEGD protocol

    Full text link
    Recently, Nenadi\'c et al. (2004) proposed the RSA-CEGD protocol for certified delivery of e-goods. This is a relatively complex scheme based on verifiable and recoverable encrypted signatures (VRES) to guarantee properties such as strong fairness and non-repudiation, among others. In this paper, we demonstrate how this protocol cannot achieve fairness by presenting a severe attack and also pointing out some other weaknesses.Comment: 8 pages, 1 figur

    Unfairness of a protocol for certified delivery

    Get PDF
    Recently, Nenadić \emph{et al.} (2004) proposed the RSA-CEGD protocol for certified delivery of e-goods. This is a relatively complex scheme based on verifiable and recoverable encrypted signatures (VRES) to guarantee properties such as strong fairness and non-repudiation, among others. In this paper, we demonstrate how this protocol cannot achieve fairness by presenting a severe attack and also pointing out some other weaknesses

    Design and implementation of extensible middleware for non-repudiable interactions

    Get PDF
    PhD ThesisNon-repudiation is an aspect of security that is concerned with the creation of irrefutable audits of an interaction. Ensuring the audit is irrefutable and verifiable by a third party is not a trivial task. A lot of supporting infrastructure is required which adds large expense to the interaction. This infrastructure comprises, (i) a non-repudiation aware run-time environment, (ii) several purpose built trusted services and (iii) an appropriate non-repudiation protocol. This thesis presents design and implementation of such an infrastructure. The runtime environment makes use of several trusted services to achieve external verification of the audit trail. Non-repudiation is achieved by executing fair non-repudiation protocols. The Fairness property of the non-repudiation protocol allows a participant to protect their own interests by preventing any party from gaining an advantage by misbehaviour. The infrastructure has two novel aspects; extensibility and support for automated implementation of protocols. Extensibility is achieved by implementing the infrastructure in middleware and by presenting a large variety of non-repudiable business interaction patterns to the application (a non-repudiable interaction pattern is a higher level protocol composed from one or more non-repudiation protocols). The middleware is highly configurable allowing new non-repudiation protocols and interaction patterns to be easily added, without disrupting the application. This thesis presents a rigorous mechanism for automated implementation of non-repudiation protocols. This ensures that the protocol being executed is that which was intended and verified by the protocol designer. A family of non-repudiation protocols are taken and inspected. This inspection allows a set of generic finite state machines to be produced. These finite state machines can be used to maintain protocol state and manage the sending and receiving of appropriate protocol messages. A concrete implementation of the run-time environment and the protocol generation techniques is presented. This implementation is based on industry supported Web service standards and services.EPSRC, The Hewlett Packard Arjuna La

    Design and implementation of extensible middleware for non-repudiable interactions

    Get PDF
    Non-repudiation is an aspect of security that is concerned with the creation of irrefutable audits of an interaction. Ensuring the audit is irrefutable and verifiable by a third party is not a trivial task. A lot of supporting infrastructure is required which adds large expense to the interaction. This infrastructure comprises, (i) a non-repudiation aware run-time environment, (ii) several purpose built trusted services and (iii) an appropriate non-repudiation protocol. This thesis presents design and implementation of such an infrastructure. The runtime environment makes use of several trusted services to achieve external verification of the audit trail. Non-repudiation is achieved by executing fair non-repudiation protocols. The Fairness property of the non-repudiation protocol allows a participant to protect their own interests by preventing any party from gaining an advantage by misbehaviour. The infrastructure has two novel aspects; extensibility and support for automated implementation of protocols. Extensibility is achieved by implementing the infrastructure in middleware and by presenting a large variety of non-repudiable business interaction patterns to the application (a non-repudiable interaction pattern is a higher level protocol composed from one or more non-repudiation protocols). The middleware is highly configurable allowing new non-repudiation protocols and interaction patterns to be easily added, without disrupting the application. This thesis presents a rigorous mechanism for automated implementation of non-repudiation protocols. This ensures that the protocol being executed is that which was intended and verified by the protocol designer. A family of non-repudiation protocols are taken and inspected. This inspection allows a set of generic finite state machines to be produced. These finite state machines can be used to maintain protocol state and manage the sending and receiving of appropriate protocol messages. A concrete implementation of the run-time environment and the protocol generation techniques is presented. This implementation is based on industry supported Web service standards and services.EThOS - Electronic Theses Online ServiceEPSRC : Hewlett Packard Arjuna LabGBUnited Kingdo

    Proceedings of the 3rd International Workshop on Formal Aspects in Security and Trust (FAST2005)

    Get PDF
    The present report contains the pre-proceedings of the third international Workshop on Formal Aspects in Security and Trust (FAST2005), held in Newcastle upon Tyne, 18-19 July 2005. FAST is an event affliated with the Formal Methods 2005 Congress (FM05). The third international Workshop on Formal Aspects in Security and Trust (FAST2005) aims at continuing the successful effort of the previous two FAST workshop editions for fostering the cooperation among researchers in the areas of security and trust. The new challenges offered by the so-called ambient intelligence space, as a future paradigm in the information society, demand for a coherent and rigorous framework of concepts, tools and methodologies to provide user\u27s trust&confidence on the underlying communication/interaction infrastructure. It is necessary to address issues relating to both guaranteeing security of the infrastructure and the perception of the infrastructure being secure. In addition, user confidence on what is happening must be enhanced by developing trust models effective but also easily comprehensible and manageable by users

    Keeping Fairness Alive : Design and formal verification of optimistic fair exchange protocols

    Get PDF
    Fokkink, W.J. [Promotor]Pol, J.C. van de [Promotor

    Formal Aspects in Security and Trust

    Get PDF
    his book constitutes the thoroughly refereed post-proceedings of the Third International Workshop on Formal Aspects in Security and Trust, FAST 2005, held in Newcastle upon Tyne, UK in July 2005. The 17 revised papers presented together with the extended abstract of 1 invited paper were carefully reviewed and selected from 37 submissions. The papers focus on formal aspects in security and trust policy models, security protocol design and analysis, formal models of trust and reputation, logics for security and trust, distributed trust management systems, trust-based reasoning, digital assets protection, data protection, privacy and ID issues, information flow analysis, language-based security, security and trust aspects in ubiquitous computing, validation/analysis tools, web service security/trust/privacy, GRID security, security risk assessment, and case studies

    Security analysis of (un-) fair non-repudiation protocols

    No full text
    Abstract. An approach to protocol analysis using asynchronous product automata (APA) and the simple homomorphism verification tool (SHVT) is demonstrated on several variants of the well known Zhou-Gollmann fair non-repudiation protocol. Attacks on these protocols are presented, that, to our knowledge, have not been published before. Finally, an improved version of the protocol is proposed.
    corecore