

C

Consiglio Nazionale delle Ricerche

Proceedings of the 3rd International Workshop
on Formal Aspects in Security and Trust

(FAST2005)

TT.. DDiimmiittrraakkooss,, FF.. MMaarrttiinneellllii,, PP.. RRyyaann,, SS.. SScchhnneeiiddeerr

IIT TR-13/2005

Technical report

Luglio 2005

Iit

Istituto di Informatica e Telematica

Preface

The present report contains the pre-proceedings of the third international Workshop
on Formal Aspects in Security and Trust (FAST2005), held in Newcastle upon Tyne,
18-19 July 2005. FAST is an event affiliated with the Formal Methods 2005 Congress
(FM05).

The third international Workshop on Formal Aspects in Security and Trust
(FAST2005) aims at continuing the successful effort of the previous two FAST work-
shop editions for fostering the cooperation among researchers in the areas of security
and trust. The new challenges offered by the so-called ambient intelligence space, as
a future paradigm in the information society, demand for a coherent and rigorous
framework of concepts, tools and methodologies to provide user’s trust&confidence
on the underlying communication/interaction infrastructure. It is necessary to ad-
dress issues relating to both guaranteeing security of the infrastructure and the
perception of the infrastructure being secure. In addition, user confidence on what
is happening must be enhanced by developing trust models effective but also easily
comprehensible and manageable by users.

FAST sought for original papers focusing of formal aspects in: security and trust
policy models; security protocol design and analysis; formal models of trust and rep-
utation; logics for security and trust; distributed trust management systems; trust-
based reasoning; digital assets protection; data protection; privacy and ID issues;
information flow analysis; language-based security; security and trust aspects in
ubiquitous computing; validation/analysis tools; web service security/trust/privacy;
GRID security; security risk assessment; case studies

This report contains revised versions of 18 papers (16 full + 2 short) selected
out of 37 submissions. Each paper was reviewed by at least three members of the
international Program Committee (PC).

We wish to thank the the PC members for their valuable efforts in properly
evaluating the submissions, and the FM05 organizers for accepting FAST as an
affiliated event and for providing a perfect environment for running the workshop.

Thanks are also due to BCS-FACS and IIT-CNR for the financial support for
FAST2005.

July 2005 Theo Dimitrakos
Fabio Martinelli
Peter Y A Ryan
Steve Schneider

FAST 2005 co-Chairs

Workshop Organizers

Theo Dimitrakos, BT
Fabio Martinelli, IIT-CNR
Peter Y A Ryan,University of Newcastle
Steve Schneider, University of Surrey

Invited Speakers

Cédric Fournet, Microsoft Research (Cambridge)

Program Committee

Elisa Bertino, Purdue University, USA
John A Clark, University of York, UK
Frédéric Cuppens, ENST Bretagne, France
Rino Falcone, ISTC-CNR, Italy
Simon Foley, University College Cork, Ireland
Roberto Gorrieri, University of Bologna, Italy
Masami Hagiya, University of Tokyo, Japan
Chris Hankin, Imperial College (London), UK
Valerie Issarny, INRIA, France
Christian Jensen, DTU, Denmark
Audun Jøsang, DSTC, Australia
Jan Jürjens, TU München, Germany
Yuecel Karabulut, SAP, Germany
Igor Kotenko, SPIIRAS, Russia
Heiko Krumm, University of Dortmund, Germany
Fabio Massacci, University of Trento, Italy
Stefan Poslad, Queen Mary College, UK
Catherine Meadows, Naval Research Lab, USA
Ron van der Meyden, University of New South Wales, Australia
Andrew Myers, Cornell University, USA
Mogens Nielsen, University of Aarhus, Denmark
Indrajit Ray, Colorado State University, USA
Babak Sadighi Firozabadi, SICS, Sweden
Pierangela Samarati, University of Milan, Italy
Ketil Stølen, SINTEF, Norway
Kymie Tan, Carnegie Mellon University, USA
William H. Winsborough, George Mason University, USA

Local Organization

Alessandro Falleni, IIT-CNR
Ilaria Matteucci, IIT-CNR

Table of Contents

On the Formal Analyses of the Zhou-Gollmann Non-repudiation Protocol 1
S. Pancho-Festin, D. Gollmann

Formal Reasoning about a Specification-based Intrusion Detection for Dynamic
Auto-configuration Protocols in Ad hoc Networks. 15
T. Song, C. Ko, C.H. Tseng, P. Balasubramanyam, A. Chaudhary, K. N. Levitt

A formal approach for reasoning about a class of Diffie-Hellman protocols . . . 31
R. Delicata, S. Schneider

Eliminating Implicit Information Leaks by Transformational Typing and Unifica-
tion . 45
B. Köpf, H. Mantel

Abstract Interpretation to Check Secure Information Flow in programs with input-
output security annotationsl . 61
N. De Francesco, L. Martini

Opacity Generalised to Transition Systems . 77
J. W. Bryans, M. Koutny, L. Mazar, P.Y.A. Ryan

Unifying Decidability Results on Protection Systems Using Simulations 93
C. Enea

Proof Obligations Preserving Compilation (Extended abstract) 109
G. Barthe, T. Rezk, A. Saabas

A Logic for Analysing Subterfuge in Delegation Chains . 125
H. Zhou, S. N. Foley

Probable Innocence Revisited . 137
K. Chatzikokolakis, C. Palamidessi

Relative trustworthiness . 153
J. W. Klwer, A. Waaler

Secure Untrusted Binaries - Provably! . 167
S. Winwood, M.M.T. Chakravarty

Normative specification: a tool for trust and security . 183
O. Pacheco

Type-Based Distributed Access Control vs. Untyped Attackers 199
T. Chothia, D. Duggan

A security management information model derivation framework: from goals to
configurations . 215
R. Laborde ,F. Barrre, A. Benzekri

On Anonymity with Identity Escrow . 233
A. Mukhamedov, M. D. Ryan

Relational Structuring of Security Decision Databases . 243
M. Hamdi, N. Boudriga

Formal Verication of a Timed Non-Repudiation Protocol 251
K. Wei, J. Heather

On the Formal Analyses of the Zhou-Gollmann

Non-repudiation Protocol

Susan Pancho-Festin1 and Dieter Gollmann2

1 Dept. of Computer Science, University of the Philippines-Diliman
sbpancho@up.edu.ph

2 TU Hamburg-Harburg,Germany
diego@tu-harburg.de

Abstract. Most of the previous comparisons of formal analyses of se-
curity protocols have concentrated on the tabulation of attacks found
or missed. More recent investigations suggest that such cursory com-
parisons can be misleading. The original context of a protocol as well
as the operating assumptions of the analyst have to be taken into ac-
count before conducting comparative evaluations of different analyses of
a protocol. In this paper, we present four analyses of the Zhou-Gollmann
non-repudiation protocol and trace the differences in the results of the
four analyses to the differences in the assumed contexts. This shows that
even contemporary analyses may unknowingly deviate from a protocol’s
original context.

1 Introduction

The observations derived from the comparative evaluation of formalisa-
tions and analyses of the Needham-Schroeder public key and shared key
protocols [1] suggest that different protocol models affect the resulting
analysis results, to the extent that it explains why some analyses fail
to find attacks detected by other methods [2]. Although it is now gen-
erally accepted that this explains the previously undocumented attack
discovered by Lowe [3] on the Needham-Schroeder public key protocol,
the wider effects of protocol models have not been always considered
in previous comparisons of protocol results. This results in the continued
misinterpretation of a protocol’s security particularly when it is implicitly
assumed that different analyses are directly comparable without recourse
to the details of their protocol models.

Contemporary protocols encompass a larger scope. Some attempt to
offer security guarantees that do not fit traditional definitions of au-
thentication, confidentiality or integrity. The scope of newer protocols
is broader, their properties often more complex and the implementation

1

details more convoluted. This provides a richer ground for misinterpreta-
tion of requirements and conflicts in both formalisation and implemen-
tation. Intuition suggests that if differences in formalisation are already
observed in relatively simple protocols such as those in the Needham-
Schroeder family, then the more recent and more complex protocols are
even more susceptible to the production of different protocol models, and
possibly, to different analysis results. In this paper we present the Zhou-
Gollmann Non-repudiation protocol as an example of a contemporary,
non-conventional security protocol where differences in the results from
several analyses are attributed to changes in the assumed protocol con-
text.

2 The Zhou-Gollmann Non-repudiation Protocol

The Zhou-Gollmann non-repudiation protocol [4] was analysed by its au-
thors using the SVO logic [5], by Schneider using CSP/FDR [6] and by
Bella and Paulson using the Isabelle theorem prover [7]. These analyses
did not report the more recent attacks reported by Gürgens and Rudolph
[8] using asynchronous product automata (APA) and the simple homo-
morphism verification tool (SHVT). The primary cause for the conflicting
results is in the differences in assumptions among the four analyses with
respect to the storage of evidence and the behaviour of participants, par-
ticularly the trusted third party (TTP).

Non-repudiation is a fairly new security requirement compared to au-
thentication and confidentiality. As such, there are fewer protocols that
provide this property; there are even fewer formal analyses of these pro-
tocols. The Zhou-Gollmann (ZG) protocol [4] is unique in the sense that
there are several existing analyses of it; this allows us to compare how
different methods formalise the new concept of non-repudiation.

Non-repudiation is the property wherein both the message sender and
recipient obtain evidence of having sent or received a message, respec-
tively. This evidence must be independently verifiable by a third party.
Evidence of receipt is given to the message sender to prove that the re-
cipient has received a message. Evidence of origin is given to the message
recipient to prove that the sender has indeed sent a message.

In the ZG protocol, there is an additional requirement of fairness.
It should not be possible for either sender or recipient to be in a more
advantageous position over the other. Fairness ensures that both evidence
of receipt and origin can only be held after the protocol completes. If

2

one party abandons a protocol session, no acceptable evidence must be
generated for that session.

1. A→ B : fEOO, B, L, C,EOO
2. B → A : fEOR, A,L, EOR
3. A→ TTP : fSUB, B, L,K, sub K
4. B ↔ TTP : fCON , A,B, L,K, con K
5. A↔ TTP : fCON , A,B,L,K, con K

where

– A ↔ B : X : A fetches message X from B via an ftp-get operation or some
analogous means. TTP is the trusted third party.

– L is a unique label
– K is the key
– C is the commitment, where C = {M}K
– fEOO, fEOR, fSUB, fCON : flags to indicate the purpose of a (signed) message
– EOO = (fEOO, B, L, C)SA : evidence of origin of commitment C
– EOR = (fEOR, A, L, C)SB : evidence of receipt of commitment C
– sub K = (fSUB, B, L,K)SA : evidence of submission of key K
– con K = (fCON , A,B, L,K)STTP : evidence of confirmation of key K issued by

the TTP

Fig. 1. Zhou-Gollmann Non-repudiation Protocol

The ZG protocol is shown in Figure 1. Note that, even if the commit-
ment C is produced via the encryption of the message M with key K, this
is not undertaken to ensure message secrecy. Rather, the commitment is
first sent to the recipient who signs it and returns it to the sender. Both
the sender and recipient’s signature on this commitment and its corre-
sponding label L comprises the first part of the evidence of receipt and
evidence of origin respectively. To complete both evidence, the sender and
recipient must individually obtain con K from the trusted third party via
an ftp-get operation.

If A denies having sent the message M, B presents to the judge M, C,
L, K, EOO and con K. The judge will check if [4]:

– con K was signed by the TTP.

– EOO was signed by A.

– M = {C}K−1

3

If these checks are confirmed then the judge upholds B’s claim. A simi-
lar procedure is followed if the dispute concerns B’s denial of receipt of M .
However, the checks carried out by the judge rest on several assumptions
which we will discuss within our framework.

3 Modelling Protocol Goals

The protocol is defined by two general goals:

1. Non-repudiation, both of origin and receipt, and

2. Fairness

The first general goal requires that both A and B have evidence of
receipt and origin respectively. The second goal is an additional require-
ment, and has been defined by the protocol authors as:

“A non-repudiation protocol is fair if it provides the originator and
the recipient with valid irrefutable evidence after completion of the
protocol, without giving a party an advantage over the other at any
stage of the protocol run.” [4]

3.1 Zhou and Gollmann’s Analysis

In [5], the authors used the SVO logic [9] to verify their protocol. The
protocol goals were formalised from the point of view of the judge who
will preside over a dispute. Thus, the two general non-repudiation goals
were formalised as:

G1 The judge J believes (A said M).

G2 The judge J believes (B received M).

There are certain assumptions under which these goals are checked;
in particular, the authors assumed that J holds the public signature ver-
ification keys of A, B and the TTP as well as the evidence presented by
A, B, or both. Other assumptions relate to the behaviour of the TTP .
This analysis did not formalise fairness as an explicit protocol goal, which
seems to be due to the limitations of the belief logic SVO [5].

4

3.2 Schneider’s Analysis

In Schneider’s CSP analysis [6], the protocol goals were analysed from two
different perspectives: the judge’s and the participants’. From the judge’s
point of view, the validity of origin and/or receipt claims is determined
purely from the evidence presented. The judge is assumed not to have
observed the protocol run. From each participant’s point of view, fair-
ness is expected during the protocol’s execution. Schneider asserts that
participants can only expect fairness if they follow the protocol [6].

Both non-repudiation and fairness were formalised in Schneider’s anal-
ysis.

1. Non-repudiation of Origin:

– B possesses EOO = (fEOO, B, L,C)SA
– B possesses con K = (fCON , A,B,L,K)STTP

It is assumed that if B has these signed messages as evidence as well as
the components L,C,M , andK, thenAmust have sent (fEOO, B, L,C)SA
and (fSUB, B, L,K)SA .

2. Non-repudiation of Receipt:

– A possesses EOR = (fEOR, A, L,C)SB
– A possesses con K = (fCON , A,B,L,K)STTP

It is assumed that if A has these signed messages as evidence as well
as L, C, M and K, then B must have sent (fEOR, A, L,C)SB and that
B can obtain (fCON , A,B,L,K)STTP from the TTP .

3. Fairness for A: If B has proof of origin for M , then the proof of
receipt must be available to A. This relies on the assumption that
only A knows the key K, and that A sends this key only once to the
TTP . Thus, B will only obtain the message M only when the TTP
has made the key available to both A and B.

4. Fairness for B: If A has proof of receipt for M , then the proof of origin
must be available to B.

3.3 Bella and Paulson’s Analysis

In [7], Bella and Paulson used the Isabelle theorem prover to analyse
the ZG protocol. Their formalisation of the protocol’s goals follows the
same line as that pursued by Schneider, i.e., both validity of evidence
and fairness were modelled. In their analysis, the validity of evidence and
fairness was specified in terms of the guarantees that each party may
expect from the protocol.

5

1. Guarantees for A: (To justify A’s claim that B did receive the message
M .)
– Validity of Evidence.
• con K shows that A bound the key K to the label L. This

means that, since con K is available, the TTP has received
sub K from A. In sub K, A has bound K to L.
• The other evidence in A’s possession is EOR. This proves that
B has received A’s EOO, where A binds C to L.

– Fairness. If B holds con K, then either A has it, or it is made
available to A. This fairness guarantee for A also states that con K
will not be available if A has not submitted sub K; and A will not
submit sub K until A has received EOR from B.

2. Guarantees for B: (To justify B’s claim that A did send the message
M .)
– Validity of Evidence.
• As with A, if B holds con K, then B could only have obtained

this via the ftp-get operation from the TTP . The TTP would
have made this available only if A has submitted sub K to the
TTP .
• B also presents as evidence EOO, which shows that A has

bound the commitment C to the key K via the label L.
– Fairness. If A holds con K then it is also available to B.

3.4 Gürgens and Rudolph’s Analysis

In their analysis [8], Gürgens and Rudolph defined the protocol goals in
terms of predicates that must hold true for each participant.

1. For party A (originator), the predicate that must hold true is (NRR(B)).
This predicate states that if B has a valid EOO and con K for a
particular message M , then A must have a valid EOR and either
possesses or has access to con K.

2. For party B (recipient), the predicate that must hold true is (NRO(A)).
This predicate states that ifA has a valid EOR and con K for a partic-
ular message M , then B must have a valid EOO and either possesses
or has access to con K.

3.5 Remarks

Of the four analyses, three defined the protocol’s goals in terms of the
correctness of evidence as well as fairness. Only the SVO logic analysis

6

[5] did not explicitly formalise fairness. Thus, the SVO analysis is limited
to results with respect to the validity of evidence only. For the other
analyses, goals were defined in terms of the evidence each participant
holds as well as what may be assumed with respect to the availability of
evidence to the other party.

4 Modelling Cryptographic Schemes

The ZG protocol makes non-standard use of encryption wherein it is
utilised not to keep a message secret, but rather to split a message M into
a commitment C and a key K. The commitment C = {M}K is first sent
out by the sender to the recipient together with the sender’s signature
on the commitment. The recipient sends back its own signature on the
commitment. The key K that will allow B to decrypt the message is sent
by A to the trusted third party TTP who checks that the key and the
label is signed by A. If this is the case, the TTP signs the key, the label
and the identity of the two parties. This signed message will now be made
available to both A and B via an ftp-like server allowing them to have
access to it.

All of the analyses we have considered have formalised the crypto-
graphic functions in an abstract manner and assumed perfect encryption.
Keys cannot be guessed and certain parties keep their private keys secret.
Zhou and Gollmann did not require specific properties as to the unique-
ness of the key K. Bella and Paulson [7] explicitly allowed for A re-using
an old key to encrypt a message M ; their only restriction was that A does
not use private signature keys for this purpose. They also assumed that
the TTP checks if the key sent in message 3 is indeed a shared key and
not a private signature key3. Gürgens and Rudolph [8] explicitly state
that, in their interpretation of the ZG protocol, A must choose a new
label L and a new key K for each protocol run. Schneider [6] did not
specify an explicit assumption for the uniqueness of K. The implication
of A’s re-use of an old key is that other participants who have a copy of
the key K (perhaps from previous protocol runs conducted with A) can
try out this key for decrypting A’s commitments.

5 Modelling Communications

The protocol makes three important assumptions on protocol communi-
cations:
3 The check they perform relies on the length of shared keys and signature keys.

7

1. The communications link is not permanently broken. Since the proto-
col relies on an ftp-get operation to allow parties A and B fair access
to con K in the last part of the protocol, it has to be assumed that,
eventually, both parties will be able to obtain this evidence from the
TTP.

2. The TTP does not store evidence indefinitely. In [4], it was suggested
that timestamps be used to set a lifetime for the availability of the
evidence from the TTP. It is further assumed that the TTP does not
overwrite existing evidence stored in the public directory.

3. A message label is unique and creates a link between the commitment
and the key [4]. Zhou and Gollmann gave several suggestions on how
this label may be constructed:

– L, where L is independent of the message M . M can be defined
at a later stage in the protocol (step 3).

– L = H(M) where H is a collision-free, one-way hash function.
This links L to M at step 1.

– L = H(M,K), if M belongs to a small message space.

We shall now see how these assumptions were formalised by the four
analyses.

5.1 Zhou and Gollmann’s Analysis

In the protocol authors’ own analysis using SVO logic [5], they maintained
the same assumptions on communications, but did not formally model
them.

5.2 Schneider’s Analysis

Schneider modelled communications via a medium through which all mes-
sages are sent, received, or retrieved (in the case of the ftp-get operation).
Schneider further allowed for this medium to be unreliable with the fol-
lowing restrictions:

1. Messages cannot be altered in transit. Errors can occur in the trans-
mission but it is not possible for corrupted messages to be delivered;
these messages will be detected and disposed of. Schneider allows for
deliberately altered messages and assumes that the modification has
been carried out by some agent.

8

2. Messages cannot be mis-delivered. Initially, Schneider considered a
more unreliable medium which allows for messages to be mis-delivered.
In that context, however, Schneider discovered that fairness for party
A cannot be guaranteed since it is possible for the key K to be mis-
delivered to B and never reach the TTP .

Schneider did not model the expiry of the evidence stored at the TTP
but assumed a liveness property wherein, once a message has been made
available via ftp to an agent i, then it will “...always be available to any
agent i′...” [6].

Schneider did not specifically model the uniqueness of the labels used
in the messages but did note that the label has to be unique for each
protocol run.

5.3 Bella and Paulson’s Analysis

In Bella and Paulson’s analysis [7], a trace is a list of network events
consisting of either of the following:

– Says A B X: A sends X to B

– Gets A X: A receives X

– Notes A X: A notes down X

Their model does not force events to happen, i.e., it is possible that
the preconditions for a certain event have been met but the event does
not occur. This allows for assumption of an unreliable communications
medium, i.e., a message that has been sent may not be received and pro-
tocol runs may be abandoned. However, they did assume that messages
cannot alter during transmission.

The uniqueness of labels was assumed and a label was modelled as a
nonce. They assumed that, for the first message in the protocol, A chooses
a fresh label. Bella and Paulson did not seem to consider setting a lifetime
on the evidence stored at the TTP .

5.4 Gürgens and Rudolph’s Analysis

In Gürgens and Rudolph’s analysis [8], they modelled the assumption
that the communications medium is not permanently broken by putting
a restriction on the behaviour of a dishonest agent. They assumed that a
dishonest agent cannot permanently block the delivery of sub K from A
to the TTP nor the retrieval of con K from the TTP . Thus, they assumed

9

that a dishonest agent can only remove messages to which it is explicitly
named as the intended recipient.

They further assumed that the evidence in the TTP has a limited
lifetime. However, they imposed their own policy on the storage and life-
time of evidence at the TTP . Evidence is available only until A and B
have retrieved it. They further assumed that the TTP has some way of
determining whether A and B have retrieved the evidence. These are
additional assumptions and were not part of the original protocol de-
scription. Although Zhou and Gollmann acknowledged that the evidence
cannot be kept at the TTP indefinitely, they did not specify that the
evidence be deleted soon after it is retrieved by both A and B. They had
proposed to use a timestamp defined by A relative to the TTP ’s clock;
this timestamp T specifies a deadline for the storage of evidence at the
TTP . B can refuse to acknowledge a commitment sent by A if B does
not agree with the deadline. This suggestion does not require additional
actions on the part of the TTP . Furthermore, the protocol authors did
not require that A and B inform the TTP that they have retrieved the
evidence; they assumed that the TTP only notarises message keys and
provides directory services.

Gürgens and Rudolph’s Attack No. 1
α.1 A→ B : fEOO, B, L,C,EOO
α.2 B → A : fEOR, A, L,EOR
α.3 A→ TTP : fSUB, B, L,K, sub K
α.4 A↔ TTP : fCON , A,B,L,K, con K
α.5 B ↔ TTP : fCON , A,B,L,K, con K
β.1 A→ B : fEOO, B, L,C2, EOO2

β.2 B → A : fEOR, A, L,EOR2

This attack requires A to first complete a protocol run with B. After
this run, A possesses EOR signed by B and con K signed by the TTP .
con K will be deleted by the TTP after steps α.4 and α.5. In the second
protocol run, A uses the same key K and label L that it used in the first
run but sends a new commitment C2, where C2 = {M2}K . After receiving
EOR2 from B, A can present this together with the con K it received
from the first run as “evidence” of receipt for M2 although A will never
complete the second protocol run.

In the second attack, Gürgens and Rudolph considered that L =
H(M,K).

10

Gürgens and Rudolph’s Attack No. 2
α.1 A→ B : fEOO, B, L,C1, EOO1

: where L = H(M2,K), C1 = {M1}K
α.2 B → A : fEOR, A, L,EOR1

α.3 A→ TTP : fSUB, B, L,K, sub K
α.4 A↔ TTP : fCON , A,B,L,K, con K
α.5 B ↔ TTP : fCON , A,B,L,K, con K
β.1 A→ B : fEOO, B, L,C2, EOO2

: where L is the same and C2 = {M2}K
β.2 B → A : fEOR, A, L,EOR2

The label L is constructed from the second message, M2 of A and
the key K that A will use for both runs. After α.5, B has K and C1.
Although Zhou and Gollmann did not explicitly state that A and B check
the evidence they obtained, it is reasonable to expect that A and B check
their respective evidence since it is assumed that the TTP is a lightweight
notary only. When B detects that L and C1 do not match, he would be
warned against proceeding in protocol run β with A.

Gürgens and Rudolph’s third attack is against a variation of the ZG
protocol that utilises timestamps [10]; we do not discuss this attack since
the other analyses refer to the original protocol.

6 Modelling Participants

In a non-repudiation protocol, it is expected that both parties at the out-
set do not trust each other. It is for this reason that both parties wish to
obtain evidence of the other party’s participation in the protocol. In the
SVO logic analysis [5], it was assumed that the TTP is trustworthy. It
was further assumed that either party may abort a protocol run, without
disputes, at certain stages. Since this analysis was conducted from the
point of view of a judge that will preside over disputes, there were addi-
tional assumptions with respect to the public signature verification keys
of A, B and the TTP . It was assumed that these keys are valid.

Schneider [6] allowed for participants not following the protocol; how-
ever, he assumed that a participant does not divulge his secret signing
key. Each participant is modelled in terms of the messages it can trans-
mit and receive, retrieve from the TTP and present as evidence in case
of disputes. Schneider further assumed that a participant can only expect
fairness if it follows the protocol. Bella and Paulson [7] assumed that A,
B, and the TTP do not belong to the set of compromised agents. Without
this assumption, the intruder would have access to SA, SB , and STTP .

11

Gürgens and Rudolph analysed scenarios wherein A deliberately tries
to obtain unfair evidence for a message. However, their attacks work not
because A was “allowed” to misbehave. The ZG non-repudiation proto-
col is motivated by the possibility that A or B will not follow protocol
rules. The Gürgens and Rudolph attacks work because they redefined the
behaviour of the TTP .

7 Modelling the Intruder

In the SVO logic analysis [5], no intruder is modelled and the objective was
to determine the beliefs that may be derived by parties A and B. This was
due to the limited scope of a belief logic method [5]. In Schneider’s analysis
[6], it was observed that the two parties essentially need protection from
each other. Bella and Paulson [7] analysed the protocol both with and
without a spy. The spy is assumed to be capable of faking messages and
is in control of a set of bad agents. However, they did not include the
TTP , A, or B in the set of bad agents. Gürgens and Rudolph assumed
that only B and the TTP are honest.

8 Conclusion

Schneider did not detect the Gürgens and Rudolph attacks since he did
not assume that evidence in the TTP server expires. Thus, in Schneider’s
model, if A attempts to re-use an old label, there will be duplicate entries
in the TTP ’s server and it is assumed that the TTP will detect this. Bella
and Paulson did not detect the attack since they also assumed the same
properties for evidence storage. Zhou and Gollmann’s SVO logic analysis
was not intended to find flaws in the protocol. Gürgens and Rudolph
modified the original context by assuming that evidence stored in the
TTP is immediately deleted after A and B have retrieved the evidence.
They further assumed that the server would know when to delete such
a message. Thus, the two attacks they found are only relevant to their
version of the ZG protocol.

The Zhou-Gollmann non-repudiation protocol and its analyses pre-
sented reinforce the observation that incompatibilities in formalisations
are not restricted to the well-known discrepancies in the analyses of the
Needham-Schroeder public key and conventional key protocols. In order
to objectively compare the results of different analyses, it is clearly vital
that we must take due account of the protocol’s original security context
as well as the assumptions in the formal protocol models.

12

Different analyses may be compared by comparing their security con-
texts. This includes the definition of goals (both of the protocol and the
analyses) and the drawing out of assumptions with respect to communi-
cations, participants, cryptographic functions, and the intruder. Discrep-
ancies in at least one of these areas could render differences in analyses
results. Such observation may seem trivial, but there is still a tendency in
some comparative discussions to forget the security contexts and instead
concentrate on the discovery of supposedly new attacks.

9 Future Work

The observations derived from the four analyses of the Zhou-Gollmann
protocol were based on an informal comparison of five aspects of the pro-
tocol model. An interesting extension of our work would be to determine
if these five aspects (and possibly others) could be formalised in a specific
framework of analysis.

It was shown how a “new” attack was discovered by one analysis
through the differences in its formalisation of the protocol. It would be
natural to ask whether such differences have resulted in the omission of
attacks on this and other protocols.

References

1. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM 21 (1978) 993–999

2. Pancho, S.: Paradigm shifts in protocol analysis. In: Proceedings of the 1999 ACM
New Security Paradigms Workshop, ACM Press (1999) 70–79

3. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science 1055, Springer-Verlag (1996) 147–166

4. Zhou, J., Gollmann, D.: A fair non-repudiation protocol. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy. (1996) 55–61

5. Zhou, J., Gollmann, D.: Towards verification of non-repudiation protocols. In: Pro-
ceedings of 1998 International Refinement Workshop and Formal Methods Pacific,
Canberra, Australia. (1998) 370–380

6. Schneider, S.: Formal analysis of a non-repudiation protocol. In: Proceedings of
the 11th IEEE Computer Security Foundations Workshop. (1998)

7. Bella, G., Paulson, L.C.: Mechanical proofs about a non-repudiation protocol. In
Boulton, R.J., Jackson, P.B., eds.: Proceedings of the 14th International Confer-
ence on Theorem Proving in Higher Order Logics. Number 2152 in Lecture Notes
in Computer Science, Springer Verlag (2001) 91–104

8. Gürgens, S., Rudolph, C.: Security analysis of (un-)fair non-repudiation protocols.
In: Proceedings of the Conference on Formal Aspects of Security. (2002)

13

9. Syverson, P.F., van Oorschot, P.C.: On unifying some cryptographic protocol log-
ics. In: Proceedings of the IEEE Symposium on Research in Security and Privacy.
(1994) 14–28

10. Zhou, J., Deng, R., Bao, F.: Evolution of fair non-repudiation with TTP. In: Pro-
ceedings of the 1999 Australasian Conference on Information Security and Privacy
(ACISP). (1999)

14

Formal Reasoning about a Specification-based Intrusion Detection
for Dynamic Auto-configuration Protocols in Ad hoc Networks

Tao Song1, Calvin Ko2, Chinyang Henry Tseng1, Poornima Balasubramanyam1, Anant Chaudhary1,
Karl N. Levitt1

Computer Security Laboratory, University of California, Davis

{ tsong, ctseng, pbala,achaudhary, knlevitt}@ucdavis.edu

2Sparta Inc., Saratoga, CA 95070

calvin.ko@sparta.com

Abstract. As mobile ad hoc networks (MANETs) are increasingly deployed in critical

environments, security becomes a paramount issue. The dynamic and decentralized nature of

MANETs makes their protocols very vulnerable to attacks, for example, by malicious insiders,

who can cause packets to be misrouted or cause other nodes to have improper configuration. This

paper addresses security issues of auto-configuration protocols in ad hoc networks.

Auto-configuration protocols enable nodes to obtain configuration information (e.g., an IP address)

so that they can communicate with other nodes in the network. We describe a formal approach to

modeling and reasoning about auto-configuration protocols to support the detection of malicious

insider nodes. With respect to this family of protocols, our approach defines a global security

requirement for a network that characterizes the "good" behavior of individual nodes to assure the

global property. This behavior becomes local detection rules that define a distributed

specification-based intrusion detection system aimed at detecting malicious insider nodes. We

formally prove that the local detection rules (identifying activity that is monitored) together with

“assumptions” that identify system properties which are not monitored imply the global security

requirement. This approach, novel to the field of intrusion detection, can, in principle, yield an

intrusion detection system that detects any attack, even unknown attacks, that can imperil the

global security requirement.

Keywords: Formal reasoning, Intrusion Detection, Ad hoc network, Network Security

1 Introduction

Mobile ad hoc networks (MANETs), which offer infrastructure-less communication over wireless
channels, are envisioned to be an integral part of future computing. MANETs are particularly attractive
in application areas in which a fixed network infrastructure either does not exist or is temporarily
disabled because the MANET is being employed in an environment subject to natural or malicious
faults. Often, these MANETs are deployed in highly critical environments and should be protected.
MANETs present a highly challenging environment [21, 6], requiring new approaches to keeping them
secure. The dynamic and distributed nature of a MANET makes it vulnerable to security attacks.
Unlike wired networks in which an attacker must gain physical access to the wired link or sneak
through security holes in routers or firewalls, wireless attacks may come from anywhere. An important
consideration is the security of the protocols employed in MANETs. Protocols designed for MANETs

15

are highly cooperative, relying on all the participating nodes to follow the protocol. A malicious node
which deliberately performs bad operations in a MANET could highly impact the operation of the
entire network.

We take a specification-based intrusion-detection approach [10] to address the problem of detecting
insider attacks in MANETs. Specification-based intrusion detection has been applied to successfully
detect attacks on traditional [9] and ad hoc network protocols [18]. Briefly, the approach requires that
the valid behavior of a node be identified (by an "expert", by discovery, or a combination of these two
approaches); network monitoring is employed to check the operations of nodes, where any activity
inconsistent with the specification is judged to be a violation. This approach can be retrofitted on to
existing protocols and complements other preventive approaches. A unique contribution of this paper is
that we employ formal reasoning to analyze whether the detection rules, that constitute the
specifications, are sufficiently strong to detect all attacks, even unknown attacks, that violate security
requirements. The readers might be suspicious of our claim that all attacks are detectable. The keys, as
demonstrated in [16] are the assumptions used in the proof that, in effect, rule out behavior not
expected to occur and the fact that the proof of the detection rules guarantee that any activity that
threatens the overall network policy is detectable.

A specification-based Intrusion detection approach in a MANET is discussed in [15]. In this paper,
we focus the investigation on an auto-configuration protocol for MANETs, namely the Dynamic
Registration and Configuration Protocol (DRCP) [11, 20]. DRCP is a subnet configuration protocol
that enables a node to obtain configuration information (e.g., an IP address) in order to communicate in
wireless networks. Besides ad hoc routing protocols, auto-configuration protocols, such as DRCP, are
critical elements in a MANET. DRCP has been proposed to overcome shortcomings of Dynamic Host
Configuration Protocol (DHCP) and facilitates dynamic, rapid and efficient configuration in the
unpredictable ad hoc wireless network environment. Due to mobility, instability of wireless links, and
other unpredictable environmental characteristics, auto-configuration protocols designed for MANETs
usually allow multiple nodes to provide configuration information to improve performance. These
extensions, coupled with mobility, make it difficult to assure the security posture of the network. Thus,
the design of the intrusion detection system benefits from a formal approach to reasoning about
security – the focus of this paper.

We define a global security requirement for the subnet operating with the DRCP protocol and
analyze the local detection rules that are intended to restrict the behavior of individual nodes. We have
developed a proof framework for reasoning about security, through which we formally prove that the
local detection rules ensure the global security requirements.

There are two significant contributions to this paper. First, we analyze security aspects of DRCP,
including security requirements and possible generic attack methods on DRCP, and propose a
specification-based intrusion detection mechanism to ensure that these security requirements are met;
our intrusion detection system is requirements-driven rather than attack-driven. Second, we developed
a formal model for DRCP and verified the enforcement of the security requirements; the proof is
carried out using the ACL2 theorem prover [8]. We chose the DRCP protocol for study since it
possesses features that are characteristic of other auto configuration protocols that may be used in
MANETs, making the general results of the study applicable and useful for other MANET
auto-configuration protocols.

Specification-based intrusion detection is an IDS methodology that compares, at run time, the
behavior of objects with their associated security specifications, the latter capturing the correct

16

behavior of the objects. The specifications are usually manually crafted based on the security policy,
the expected functional behavior of the objects, and the expected usage. Specification-based detection
does not detect intrusions directly -- it detects the effect of the intrusions as run-time violations of the
specifications. This approach has been successfully applied to monitor security-critical programs [9],
applications [7], and protocols [9, 18, 19], and is beginning to be used in commercial host-based
intrusion detection products. Since the approach provides a systematic framework for developing
specifications/constraints such that security breaches may be described as violations of these
constraints, it can detect known as well as unknown attacks. An added benefit is that such an approach,
as it rests on specifications, can support reasoning which in our case demonstrates that the rules that
define the intrusion detection system together with certain assumptions are sufficiently strong to
guarantee that the intrusion detection system will detect all attacks that could case the overall security
requirements of the MANET to be violated.

The remainder of the paper is organized as follows. A framework for reasoning is introduced in
Section 2. Section 3 provides a brief overview of the DRCP protocol and attacks against the protocol.
We present a specification-based IDS in Section 4. Formalization and verification are covered in
Section 5. Section 6 discusses our work relative to others’ in intrusion detection and in formal methods
as applied to security reasoning. Section 7 concludes the paper along with a brief description of our
ongoing and future work.

2 Formal network model and hierarchical framework

2.1 A Hierarchical Framework for Formal Reasoning

Fig. 1. Hierarchical Framework for Verification

Figure 1 depicts a hierarchical framework to verify security aspects of protocols, DRCP being the
one under study in this paper. In this framework, a formal network model is used to focus on abstract
security-critical properties of ad hoc networks. We define security requirements of DRCP and reason
about the enforcement of the security requirements by a specification-based intrusion detection system,
characterized itself by a formal model. There are two important components for the
specification-based intrusion detection - formal specifications and monitoring mechanisms. The formal
specifications define valid behavior of DRCP nodes, and the monitoring mechanisms collect

A formal network model (N)

Formal specifications for protocols(S)

Security requirements of protocols (SR)

Verification: N^M^H^S=>SR

Monitoring (M) Assumption (H)

17

information from the ad hoc network and analyze the behavior of DRCP nodes according to the formal
specifications. The main goal of our verification is to prove that the specification-based IDS can
achieve the stated global security requirements of a DRCP network. Assumptions are introduced to
cover some properties that may not be covered by the intrusion detection approach, for example
functionality that (we assure and believe) cannot be impacted by an attacker. A similar framework was
used to reason the detection rules of host-based IDS [14, 16].

2.2 A Formal network model

The network model defines security-critical elements of a MANET. A network is defined as a tuple
(N, S, OP, s0, δ), where N is a set of nodes, S is a set of possible states, OP is a set of network
operations, s0 is the initial state and δ is a function which maps network operations from a previous
state to a current state.

A network trace is a sequence of events, e.g. e1,…ek, that occurs in the network. The sequence of events
moves the network from s0, to s1, …to sk. Denote T as the set of possible traces (T = {E*}).

The state of a network comprises the states of individual nodes. Let NS be a function that return the
state of a node i, when the network is in state S, NS(S, i) -> state of node i.

A Connection matrix C is an important component of the current state. C[i][j] denotes the whether
there is a direct link between node i and node j. The connection matrix will be updated according to
dynamic changes of the DRCP network.

Security requirements describe properties of systems inspired by the traditional concerns:
confidentiality, integrity, and availability of resources. A security requirement is defined as a function
SR, which accepts network traces as input and returns true if these network traces satisfy the
requirement. A security requirement SR characterizes a set of authorized network traces AT, which
includes all network traces that satisfy the security requirement.

In our approach, formal specifications are used as detection rules in specification-based intrusion
detection. Each specification is denoted as a function SP and defines a set of valid network traces VT,
which includes all finite traces of a network accepted by the specification. Any trace violating the
specification will not be members of the valid set VT, and will be detected by the intrusion detection.

In our verification, we attempt to answer the question of whether a valid trace defined by formal
specifications is an authorized trace defined by security requirements. We claim that security
requirements are enforced by specifications if a set of valid traces VT defined by the specifications is a
subset of the set of authorized traces AT defined by the security requirements. If the security
requirements are enforced, any trace violating the security requirements (outside authorized set AT)
will be detected by the specifications (outside valid set VT). The verification is carried out with ACL2
theorem prover, and the enforcement of security requirements is defined and proved as theorems in
ACL2.

2.3 Automated verification with ACL2

ACL2 is a re-implemented extended version of Nqthm [5], intended for large scale verification
efforts. The ACL2 system consists of a programming language based on Common Lisp, a theory
based first order logic and total recursive functions, and a theorem prover [8].

18

ACL2 has two significant advantages for our purposes: scalability and automatic proof. ACL2 has
been successfully used to reason about the logic of industrial applications, including the AMD5K86
floating-point division proof [4] and the JAVA virtual machine proof [12]. Proofs of theorems in ACL2
are automatically established by the theorem prover using mathematical induction and other methods,
but human intervention is usually required to introduce lemmas that guide a proof. In the
mechanization of our framework, structures and functions in ACL2 are used to formalize declarative
components of the framework, including an abstract network model, formal specifications of DRCP,
assumptions, and security requirements. To perform the verifications, we define appropriate theorems
in ACL2 and prove them using mathematical induction and the other proof mechanism of ACL2.

3 Overview of DRCP

DRCP provides rapid client configuration and reconfiguration in a MANET. In particular, DRCP
allows rapid configuration and detects the need to reconfigure without relying on signals from other
layers. The primary configuration data obtained using DRCP is an IP address. Once a node has an IP
address, it can then communicate with other servers to obtain additional information. Other
configuration information such as IP addresses of DNS servers and of DCDP (Distributed
Configuration Distribution Protocol) [11] servers can be provided using DRCP.

A node with a DRCP process running is initially assumed only to know which of its interfaces are
configured using DRCP. If there are multiple interfaces, then some interfaces may be configured by
DRCP, others are configured manually. After boot-up, a node assumes all of its DRCP interfaces are
configured to be DRCP clients and attempts to discover a DRCP node acting as a DRCP server. The
client continues to send DRCP_DISCOVER messages broadcast on the local subnet to the
DRCP_SERVER_PORT. On discovering a DRCP server, the node gets configuration information
and starts communicating within the network.

Fig. 2. Example Operation of DRCP

If a DRCP interface does not have a local address pool, it remains a DRCP client. A node becomes
a DRCP server for an interface when it has configuration information, including an address pool. A

E

1

2
A

1

2
B

1

2
D

1

2
C

E

1

2
A

1

2

1

2
C D

1

2
B

(a) (b)

19

DRCP node does not get this configuration information through DRCP, but from preset information
(e.g., in a configuration file) or another protocol like DCDP.

A DRCP server takes the first address from its address-pool and other configuration information to
configure its own interface for that subnet. The node is then ready to serve other nodes on that subnet.
An interesting but security-challenging characteristic of DRCP is that a node can act as a DRCP Server
on some of its interfaces and a DRCP Client on other interfaces. We illustrate how a node could be
both a server and a client using an example network shown in Figure 2.

The example shows five network nodes, A, B, C, D each having two network interfaces, and a
border gateway node E. The border gateway runs both DRCP and DCDP protocols. Initially, A, B, C,
and D are not configured. The DRCP server program running on node E periodically broadcasts a
DRCP_ADVERTISE message, which reaches nodes A and B. Nodes C and D do not get the message
because they are not sufficiently close to E. Upon receiving a DRCP_ADVERTISE message, node A
broadcasts a DRCP_DISCOVER message. Node E then sends back a DRCP_OFFER message to A
with the configuration data (IP address). Node B performs similar actions to obtain configuration data.
After these message exchanges, nodes E, A, B form a subnet.

In figure 2(a), after the subnet E, A, B, is formed, Node A obtains an IP address pool from E and
becomes a DRCP server for interface 2. Nodes C and D then can obtain configuration information
from Node A (figure 2(b)) and form a subnet (A, C, D). This example illustrates that multiple subnets
can be formed, and a node can serve as a DRCP client on one interface and as a DRCP server on
another interface. Nevertheless, a node is either a DRCP client or a DRCP server for a single interface.

3.1 DRCP Vulnerabilities and Attacks

In general, DRCP node vulnerabilities fall into three categories:
• 1. intentional overuse of scarce resources by the rogue node itself,
• 2. intentionally causing other nodes to overuse scarce resources by a rogue node improperly using

its forwarding function,
• 3. lying about the content of configuration information either by a rogue node corrupting messages

that it is forwarding, or by supplying incorrect configuration information when acting as a DRCP
server.
According to these vulnerabilities, a rogue node can:

• 1. continuously send DRCP_DISCOVER messages requesting new IP addresses to cause the DRCP
server run out of IP addresses

• 2. continuously send DRCP_DISCOVER messages with other nodes’ MAC addresses
• 3. provide incorrect DNS server address or IP address in DRCP_OFFER message sent from a

DRCP server
• 4. pretend to be a legitimate DRCP server and send DRCP_OFFER with incorrect DNS information

or IP address
A rogue node can use these generic attack methods to launch very sophisticated attacks. For

example, the rogue node could identify itself as the DNS server, field DNS queries from a victim node,
and supply answers that cause information to be sent to incorrect rogue nodes. Or a rogue node can
erroneously report another as of yet un-compromised node as a standard server in hopes that the
volume of requests misdirected to that other node will result in a successful DOS attack on that node.

Also, a rogue DRCP server can:

20

• 1. intentionally ignore DRCP_DISCOVER messages from a victim node
• 2. send DRCP_OFFER with incorrect DNS information or IP address. Without initial configuration

information, the victim cannot obtain an IP address and is therefore not able to communicate with
any other node. Note that because of the hierarchical manner in which nodes become DRCP servers,
incorrect data supplied by a rogue DRCP server will be propagated to all lower nodes, thus
amplifying the extent of corruption.

3.2 Example DRCP attacks

Fig. 3. Example DRCP Attack

Figure 3 depicts an example attack that makes use of a DRCP vulnerability, the effect being to deny
a legitimate node from communicating with the network. In particular, the attacker (a rogue node)
provides incorrect configuration information (e.g., IP address, DNS address) to a newly arrived node E.
The effect could be that node E is denied from communication with the network In addition, node E
could be fooled into using wrong information that causes further damage to the network. The scenario
is described as follows.
• 1. A node E moves to the subnet and broadcasts a DRCP Discover message to obtain an IP address

and other information for communication with the subnet.
• 2. An attacker node, after observing the DRCP Discover message from node E, replies to E with a

bogus DRCP Offer message that has incorrect information. This message reaches node E first and is
used by node E to configure its node.

• 3. Node B, which is a DRCP, receives the DRCP Discover message and replies with a correct
DRCP Offer message.
Node E, having already obtained the bogus DRCP Offer message, drops the DRCP Offer message

forwarded by node E.
We do not claim that the vulnerabilities presented are exhaustive, but they permit a wide variety of

attacks – too many and too rich to be amenable to conventional signature-based intrusion detection. In
the next section, we describe our specification-based intrusion detection approach that is capable of
detecting any attack that exploits the vulnerabilities.

B

A

C

E

Border gateway, DCDP Server

1. DRCP Discover
message is broadcast

F

3. Reply from
real server

4. Legitimate
offer dropped

2. Attacker replies with
bogus DRCP message

21

4 A Formal Specification-based Intrusion-Detection

This section introduces the specification-based intrusion-detection approach we employ to protect a
DRCP network. Other intrusion detection approaches include signature-based detection [13, 2] and
anomaly detection approaches [1]. While signature-based detection offers low detection latency and a
low number of false positives, it requires well-established signatures to be in place. In the case of the
anomaly detection approach, "normal" profiles, usually statistical, need to be built from network and
individual system events, including possible user and system activities. It will be a significant
challenge to establish and dynamically tune normal profile in this domain so that the false positive rate
is not unacceptably high. While statistical anomaly detection, in principle, can detect unknown attacks,
the success of this methodology depends greatly on establishing effective normative profiles - a
considerable challenge in a noisy wireless dynamic environment. As opposed to these approaches,
the primary goal of the specification-based approach is to detect when a system / network fails to meet
certain global security requirements. In addition, the approach identifies the root cause of the failure so
that corrective action can be taken to deal with an intrusion.

Our approach involves decomposition of the global security requirements into formal specifications
of individual network nodes. Cooperative network monitors are used to observe the behavior of
individual nodes and report alerts when a node violates the local behavioral specifications. The
approach has the advantage that the security officers are able to understand at a high level the security
property that the intrusion detection system guarantees. In addition, the approach can, in principle
detect all attacks (known or unknown) that cause the system to fail to meet the global security
requirements but with few false positives. False positives may be caused by specifications that are too
strong for the global security requirements or by their being a similarity between attacks and normal
behavior of the system. For example, a very mobile node can cause a DOS attack. In contrast,
signature-based intrusion detection can only detect known or variants of known attacks but with few
false positives, and anomaly-based intrusion detection can detect unknown attacks but at the expense of
many false positives which are caused by non-proficiency of the statistical rules.

4.1 Global Security Requirement

Our formal network model consists of a collection of mobile computing nodes, each running a
DRCP agent. In our approach, the ultimate goal of the intrusion detection system is to ensure that the
network of DRCP nodes can meet certain global security requirements that are critical to the mission of
the MANET. The security requirements can encompass many aspects of security (e.g., integrity,
availability) in addition to cryptographic requirements on the messages being exchanged. Our focus for
the IDS is to achieve security requirements that are related to the integrity and the availability of a
DRCP network. Informally, a general critical security requirement for DRCP is:

An unconfigured network node in a subnet must be configured with a correct IP address (as
well as DNS, default router, networking mask) within X seconds.

Such a requirement is obviously important since a network node needs correct configuration
information in order to communicate with other nodes in the network. To support reasoning with
respect to the requirement, we break it down into the four properties listed in Table 1; we view a
requirement as being safety-related if it bears on integrity, and liveness-related if it bears on
availability.

22

Table 1. System Requirement for DRCP

 Security requirements Aspects Corresponding attacks
1. A network node in a subnet will be configured

with an unused IP address of the subnet.
Safety Rogue server, IP spoof

2. No two nodes have the same IP address. Safety IP spoof
3. A network node in a subnet will be given

correct configuration information, including
default router, DNS server, and network mask.

Safety Man-in-the-middle attack

4. A node without an IP address will be given one
within X seconds

Liveness DOS attack

The identification of global security requirements of a DRCP network determines what activity the

IDS must detect. Give a global security requirement, one can reason about, informally, about whether a
given attack will be detected. For example, given the stated security requirements of DRCP, it is easy
to see that the IDS can detect the attack described in Section 3. Obviously, a more formal analysis is
needed to further assure that the IDS can really detect the attack. This can be performed using the
formal framework described in section 5.

Fig. 4. Global Requirements and Local Specification for DRCP protocol

One simple way to detect breaches of the global security requirement is to observe the activity of the
whole network and check whether it breaks the global security requirements. As the global security
requirements are usually concerned with global properties of the network, checking for these global
security requirements requires collection of all activity in the network and keeping track of the global
state. As an example, in order to check whether property 1 has been breached, one could keep track of
all assigned IP addresses and the network messages that are associated with the assignment of IP
addresses. Nevertheless, such a centralized monitoring approach is inappropriate for a MANET

Local Spec
Local Spec

Local Spec

Local Spec

Local Spec

Local Spec

Global Requirements

23

because of the mobility of nodes and bandwidth limitations – an IDS that requires as much bandwidth
as the normal functions of the MANET is unacceptable.

In contrast, our intrusion detection approach focuses on the behavior at individual network nodes.
We enforce the global security requirements by deploying local behavioral specifications for individual
network nodes such that the local behavioral specifications imply the global security requirements as
depicted in figure 4. The local behavioral specifications are constraints on the operation of the nodes
that can be checked by external monitoring (i.e., monitoring the messages it sends and receives). We
assume that an aggregating mechanism is used to collect states of the network. Network activities of
individual nodes are monitored to detect breaches of the local behavioral specifications with respect to
local data and some (not all!) system data collected from other nodes, e.g. IP address of other nodes.
For the most part, if no violation of local behavioral specifications is detected in any node, one can be
assured that the global security requirements are satisfied.

4.2 Motivation for local behavioral specifications

Towards producing a local behavioral specification of the protocol, we formalize parts of the
protocol specification that are security-relevant (i.e., related to the global security requirements). The
local behavioral specification captures, formally, the behavioral of a node in sending and responding to
protocol messages. Then, we employ formal verification techniques to guarantee that the set of local
behavioral specifications imply the global security requirements.

Suppose it is true that the specification is strong enough so that the global security requirement can
be guaranteed if all the DRCP agents adhere to the specification. Then, one should be able to formally
verify that the specification implies the system requirements. Otherwise, there are weaknesses in the
specification, and the verification system may output a counterexample showing a sequence of events
that leads to the undesirable situation. This sequence if synthesized by the theorem prover, constitutes a
"signature" of an attack that is not noted by the IDS. One could, in principle, monitor the entire
system to see whether this sequence occurs – but focusing the IDS on local rules is more efficient.

Again, why do we monitor for violation of the individual constraints of DRCP agents instead of
directly monitoring activity with respect to the global system requirements? While it is nice to know
that some global DRCP system requirement has been violated, it is more informative to know what is
the root cause. A major benefit of our specification-based approach is that it provides knowledge of the
latter. If we monitor for violation of global requirements, additional reasoning is required to determine
the root cause. An example of such a requirement is "if a client sends a request it must obtain a valid IP
address within a fixed amount of time". Detecting that this requirement is violated does not tell
anything about potential root causes such as: (a) the server sends out incorrect IP addresses and invalid
messages in general (b) the server ignores requests, or (c) there is an agent that requests IP addresses at
abnormally high rates and has therefore depleted the server's address pool.

In addition, in many cases it not practical to monitor for the system requirement directly. This is
because the detector usually possesses only local information, and evaluation of the global system
requirement usually requires global knowledge about the current state of the system. Therefore, if we
are able to enforce global system requirements with local behavioral specifications (i.e., those that must
be satisfied by DRCP processes) and detect an alert, we simultaneously obtain a root cause. No further
reasoning is required. In fact, the reasoning has already been performed by formal verification that
shows how local behavioral specifications imply global requirements.

24

4.3 Generation of local behavioral specification

We choose ESTELLE[3] to formally capture the behavior of the DRCP protocol; later we
translate this description into ACL2 to support verification. ESTELLE is an ISO standard and has been
used in formal description and analysis of several military link-layer and network-layer protocols.
ESTELLE, which is based on Extended Finite State Machine (EFSM) theory, is well-suited to model
network protocols.

Fig. 5. An EFSM Model of DRCP – Server Part

Figure 5 depicts the server part of the DRCP Local behavioral specification. The specification is

derived from an informal protocol specification as well as from other DRCP documents. The DRCP
agent will move to the “Server Init” state if it has obtained a configuration pool (e.g., locally
configured or obtained through DCDP). The server can send a DRCP_ADVERTISE message
periodically send a Gratuitous DRCP_OFFER for existing IP address. Upon receiving a DISCOVER
message, it will send a DRCP_OFFER to offer an unused IP address to the requesting client. The local
behavioral specification of DRCP in ESTELLE is listed below. The specification basically describes
the possible states of a DRCP node and how the node transitions from one state to another state when
an event occurs.

body Node_BODY for NODE;
state INIT, DISCOVERING, BINDING, SERVER,WAITING;
initialize to INIT; //initial state
trans when GetIPPool() from Init to Server_Init; //change the state to Server if an IP pool is

available
trans when SetIPPool() from Server_Init to Listen;//ready to accept DRCP requests after

being configured
trans when send(unicast.Gratuitous_Offer) from Listen to Listen;//send out Gratuitous offers
trans when broadcast.DISCOVER // broadcast DRCP Discover
 from Listen to Reply;
 from Reply to Reply;
trans when unicast.DISCOVER //unicast DRCP Discover

Reply

Listen

1. Recv DISCOVER

2. Send OFFER
3. Send Gratuitous OFFER

4. Send ADVERTISE

4. Send ADVERTISE

Has obtained
Configuration Pool

Server Init

Assign an IP
address to itself

25

 from Listen to Reply;
trans when send(unicast.OFFER(ipinfo)) //send out DRCP offers
 from Reply to Listen;……
If the original DRCP design is sufficient to guarantee all required properties, then one can just use

the formal protocol specification as the detection rule to detect the presence of network activity such
that the properties will not hold. Otherwise, we need to define additional constraints on the behavior of
the DRCP agent in order to guarantee the required properties. Formal reasoning techniques can tell
whether the specification is sufficiently strong to guarantee certain security properties. In this paper we
first consider properties that can be assured with the current DRCP design. In particular, we focus on
two top-level requirements:
• DRCP nodes will be configured with an IP address in the subnet, and

• No two nodes have the same IP address

5 Formalization and Verification

This section discusses our experience in applying formal methods to assure that the
specification-based intrusion detection system can achieve what it claims: it can guarantee the detection
of any activity that impacts the global security requirements. In general, formal methods are
mathematically based techniques that rely on descriptions of system elements and properties, and
enable one to show that the system elements achieve more abstract properties of the system. Formal
methods provide a framework in which one can specify, develop, and verify systems in a systematic
manner.

5.1 Formalization of security requirements

We have developed a framework for formal reasoning about the cooperative monitoring of the
DRCP protocol. This framework consists of a network model, a monitoring model, behavioral
specifications, assumptions, and security requirements. Security requirements are abstract properties
that represent what it means for the DRCP protocol to be secure; we believe our requirements capture
such behavior, but recognize that other requirements are possible – and can be dealt with in our
methodology. Formal methods, including formal specification and analysis techniques, are used to
describe the behavioral specification as well as in mathematically proving that the behavioral
specification is strong enough to guarantee certain critical system requirements. The security
requirements are formalized as functions in ACL2. These functions accept audit traces of DRCP nodes
as parameters and verify security-related properties according to current packets and history
information. For instance, the second security property, “No two nodes have the same IP address,” is
formalized as a function that rejects any audit trace containing two DRCP_OFFER packets with the
same IP address. The ACL2 function is defined as below:

(defun uniqueoffer (packet historyinfo)
 (if (endp historyinfo)
 t
 (and (uniqueofferrec packet (car (getofferlist historyinfo)))

 //a unique IP address for the current offer
 (uniqueoffer packet (cdr (getofferlist historyinfo)))

26

// unique IP addresses for all offers)))
The security property, “A node without an IP address will be given one within X seconds”, is

defined as a function that only accepts audit traces that have corresponding DRCP_OFFERs for each
request from a DRCP client within X seconds. Any request without a corresponding DRCP OFFER
will be considered as a starved request.

(defun no_starve_req (packet historyinfo network)
 (if (endp historyinfo)
 t
 (and (no_starve_req_rec packet (car (getreqlist historyinfo)))

//no starved request for current record
 (no_starve_req (cdr (getreqrlist historyinfo))) //no starved request for all records
)))

5.2 Formalization of Specifications of DRCP

We formally specify the activities of a DRCP server and a client. Our model, codified in ACL2, is in
essence a server and client’s actions expressed as an extended finite state machines (EFSM) and
formalize them using ACL2.

The local behavioral specifications of DRCP protocol are defined as a function which uses incoming
packets and current states as inputs to determine the next state and outgoing packets. A network buffer
stores the packets through the wireless network. The state transitions are defined as below:

(defun statetransition(currstate inpacket outpacket iplist)
 (cond
 ((and (equal currstate ‘Server_init) (getippool))// get IP Pool from DRCP server
 ‘Listen)
 ((and (equal currstate 'Listen) (equalpackettype inpacket 'Discover)(validip iplist)
 'Reply) //send out an offer if a valid IP is available
 ((and (equal currstate 'Listen) (equalpackettype inpacket 'Discover)(not(validip iplist)))
 ‘Server_init) // request new IP pool if no valid IP available
….
We now describe how we prove that these formal DRCP local behavioral specifications imply the

global security requirements.

5.3 Verification about enforcement of security requirements

In verification, we try to demonstrate whether the local behavioral specifications are strong enough
to guarantee the security requirements. We have formalized and verified a few availability
requirements like whether a unique IP will be provided to a DRCP client in a timely manner, which we
say is X seconds. In the verification, we prove that under certain assumptions, if any audit trail does not
violate the local behavioral specifications of DRCP, these audit trail do not violate the security
requirements either. The theorem is defined as:

(defthm specification-requirement
 (implies
 (and

27

 (assumptions packetlist) // assumptions A1 to A4
 (spec packetlist network) //local specification for DRCP nodes
)
 (requirement packetlist nil network)// global requirements for DRCP networks
))
Assumptions are made in our verification to cover properties that may not be monitored by the

behavioral IDS specifications. These assumptions include:
A1: a DRCP server always gets a valid IP pool;
A2: a DRCP server only uses each IP address in the IP pool once;
A3: only one DRCP server is in a subnet;
A4: a DRCP server sends out an offer in T1 seconds after receiving a request; network delay is less

than T2; and T1+2*T2 less than X.
These assumptions are important in analyzing the enforcement of security requirements. They are

sufficient but not certainly the weakest possible assumptions; in our methodology, assumptions can be
reviewed and relaxed, if possible to still carry out the verification. We can use formal reasoning to
determine which assumptions are necessary. For now we ask the reader to accept the reasonableness of
these assumptions.

Some of the assumptions are not always true and may be violated by some unusual behavior of
DRCP nodes. For example, assumption A1 may not hold during the process in which a DRCP server,
which uses up all IP addresses, sends out a request asking for a new IP pool from a DCDP server.
Some of the assumptions can be removed or weakened by using an improved DRCP specification that
can describe the behavior of DRCP more precisely. These assumptions may also be sources for attacks
when they do not hold. Additional detection rules can be developed to monitor whether the
assumptions are violated. For example, DRCP servers get IP pools from DCDP servers by sending out
DCDP requests. Deploying a monitoring scheme with proper DCDP specifications will detect the
violation of assumption A1.

6 Discussions

Monitoring mechanisms are important for achieving security when a network might be subject to
attacks – that exploit vulnerabilities in the protocol design, or the protocol implementation, or that arise
when a node is under the control of an attacker. Since we wish to detect unknown attacks, we reject a
signature-based approach in favor of specification-based intrusion detection. In the IDS approach
presented in this paper, we could have assumed that a centralized monitoring scheme is employed to
collect a complete set of information about the MANET. This centralized approach, although feasible,
scales poorly since every node needs to collect information and send it to a server for analysis. An
alternate mechanism is to employ a cooperative monitoring approach - IDS monitors at each node
make decisions based upon local information and necessary but limited correlated information from
other monitors. Bandwidth costs as well as processing costs associated with message gathering will
improve as compared with centralized monitoring. Further improvement could be obtained if a subset
of nodes is used for monitoring instead of all the nodes. In [17], it is observed that all malicious packets
can be detected by executing the IDS in only a small fraction of the nodes (typically less than 15%).
For example, a set of nodes, that represents a minimum vertex cover of an ad hoc network, can be used
to monitor all the traffic in the network. We are pursuing these ideas in our current research.

28

Our verification methodology makes progress towards the achievement of an important claim of
specification-based intrusion detection: a zero false negative rate in detecting all attacks that violate the
security requirements. Since we have proved that the specifications can ensure that the security
requirements will not be violated, it is trivial to prove the any violation of the security requirements
implies violations of the specification. This means all attacks that violate the security requirements will
be detected by the specification-based intrusion detection. Another important aspect of the
specification-based approach is a low false positive rate. This aspect is not addressed in our verification
presently, but we believe that determining a near-minimal rule set that is necessary to carry out the
proof is a possible approach. Right now, the amount of search to determine such a rule set is
expensive but we are considering heuristic search methods to reduce the search.

7 Conclusions and Future Work

We have applied specification-based intrusion detection to detect insider attacks on DRCP. DRCP is
used to automatically configure nodes in a MANET with IP addresses, and other data, a newly arriving
node requires to interface to the network. It is especially important to secure this protocol since if it is
compromised, no IP layer connectivity can be established or there will be unintended sharing of
addresses.

We defined global security requirements and created rules that characterize a specification-based
intrusion detection system that enforces these global requirements, i.e., detect activity that could cause
the security requirements to be violated. Local behavioral specifications are developed to define normal
behavior of DRCP. In our results, we have proved that the local behavioral specifications of DRCP can
ensure that the global security requirements will hold. Any violation of global security requirements
will result in a violation of local specifications and raise an alert. We claim that the intrusion
detection system is efficient (because it monitors behavior of individual nodes), has no false negatives
(with respect to the global requirements we defined).

Future work includes improving the formal specifications of DRCP as the basis for arguing that
the IDS issues few (hopefully no) false positives, reasoning about other wireless protocols like OLSR
and simulating the specification-based intrusion detection on a test bed as a way to validate our proof
and our claim about IDS overhead.

References

[1] J. P. Anderson, "Computer security threat monitoring and surveilance," Technical report, James P. Anderson

Co., Fort Washington, PA, April 1980.

[2] Matthew A. Bishop, Computer Security: Art and Science, Addison Wesley Longman, 2002.

[3] S. Budkowski and P. Dembinski, “An Introduction to Estelle: A specification language for distributed

systems,” Computer Networks and ISDN Systems, vol. 14, no. 1, pp. 3--24, 1991.

[4]Bishop Brock, Matt Kaufmann and J Moore,"ACL2 Theorems about Commercial Microprocessors," in

proceedings of Formal Methods in Computer-Aided Design (FMCAD'96), Springer-Verlag, pp. 275-293, 1996

[5] R. S. Boyer and J S. Moore, A computational logic, Academic Press, New York, 1979.

29

[6]Yian Huang and Wenke Lee, "Attack Analysis and Detection for Ad Hoc Routing Protocols," in proceedings of

The 7th International Symposium on Recent Advances in Intrusion Detection (RAID 2004), Sophia Antipolis,

France, September 2004

[7] K. Ilgun, R. Kemmerer, and P. Porras , “State Transition Analysis: A Rule-based Intrusion Detection

Approach”, In IEEE Transactions of Software Engineering, 2(13):181-199, March 1995.

[8] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, “Computer-Aided Reasoning: An Approach”,

Kluwer Academic Publishers, June, 2000

[9] C. Ko, J. Rowe, P. Brutch, K. Levitt, ”System Health and Intrusion Monitoring Using a hierarchy of

Constraints”, In Proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection

(RAID), 2001.

[10] C. Ko, M. Ruschitzka and K. Levitt, “Execution Monitoring of Security-Critical Programs in Distributed

Systems: A Specification-based Approach,” In Proceedings of the 1997 IEEE Symposium on Security and

Privacy, May 1997.

[11] A. J. McAuley, K. Manousakis, “Self-Configuring Networks”, IEEE Milcom 2000, Los Angeles, October

2000.

[12]J Moore,"Proving Theorems about Java-like Byte Code," in Correct System Design - Issues, Methods and

Perspectives, 1999.

[13] M. Roesch, ”Snort: Lightweight Intrusion Detection for Networks”, Proc. Of USENIX LISA ’99, Seattle,

Washington, November 1999, pp. 229-238.

[14] Tao Song, Jim Alves-Foss, Calvin Ko, Cui Zhang, Karl Levitt, “Using ACL2 to Verify Security Properties of

Specification-based Intrusion Detection Systems,” In Proceedings of the Fourth International Workshop on the

ACL2 Theorem Prover and Its Applications, 2003.

[15] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C. Ko, R. Balupari, C-Y. Tseng, T.

Bowen, K. Levitt and J. Rowe, "A General Cooperative Intrusion Detection Architecture for MANETs," In

Proceedings of the 3rd IEEE International Workshop on Information Assurance, March 2005

[16] Tao Song, Calvin Ko, Jim Alves-Foss, Cui Zhang and Karl Levitt, “Formal Reasoning about Intrusion

Detection Systems,” In Proceedings of the 7th International Symposium on Recent Advances in Intrusion

Detection (RAID), 2004.

[17] Dhanant Subhadrabandhu, Saswati Sarkar, and Farooq Anjum, “Efficacy of Misuse Detection in Adhoc

Networks, ” In proceeding of IEEE Communications Society Conference on Sensor and Ad Hoc

Communications and Networks, 2004.

[18]C.Y. Tseng, P. Balasubramanyam, C. Ko, R. Limprasittiporn, J. Rowe, K. Levitt, "A Specification-Based

Instrusion Detection system for AODV," 2003 ACM Workshop on security of Ad Hoc and Sensor Networks

(SASN '03), October 21, 2003.

[19]Chinyang Henry Tseng, Tao Song, Poornima Balasubramanyam, Calvin Ko, Karl Levitt, "A

Specification-based Intrusion Detection Model for OLSR," submited to International Symposium on Recent

Advances in Intrusion Detection (RAID), 2005

[20]Ravi Vaidyanathan, Latha Kant, Anthony McAuley, Michael Bereschinsky, “Performance Modeling and

Simulation of Dynamic and Rapid Auto-configuration Protocols for Ad-hoc Wireless Networks,” in proceeding

of Annual Simulation Symposium 2003.

[21]Lidong Zhou and Zygmunt J. Haas. Securing ad hoc networks. IEEE Network Magazine, 13(6), November/

December 1999.

30

A formal approach for reasoning about a class of
Diffie-Hellman protocols

Rob Delicata and Steve Schneider
{R.Delicata, S.Schneider}@surrey.ac.uk

Department of Computing, University of Surrey, Guildford, GU2 7XH, UK.

Abstract. We present a framework for reasoning about secrecy in a class of
Diffie-Hellman protocols. The technique, which shares a conceptual origin with
the idea of a rank function, uses the notion of a message-template to determine
whether a given value is generable by an intruder in a protocol model. Tradition-
ally, the rich algebraic structure of Diffie-Hellman messages has made it difficult
to reason about such protocols using formal, rather than complexity-theoretic,
techniques. We describe the approach in the context of the MTI A(0) protocol,
and derive the conditions under which this protocol can be considered secure.

1 Introduction

Formal protocol analysis techniques have a simplicity which is due, in part, to
the high level of abstraction at which they operate. Such abstractions are justified
since any attack discovered at the abstract level will tend to be preserved in a
more concrete model. In general, however, failure to discover an attack does not
imply correctness, and in seeking to establish correctness we must be mindful
of the assumptions on which our abstractions are based.

Protocols based on the Diffie-Hellman scheme [7] present an interesting
verification challenge since, in this context, we cannot assume such an abstract
view of cryptography. Certain algebraic properties (such as the homomorphism
of exponentiation in(gx)y = (gy)x) must be represented for the protocol to reach
its functional goal, and other properties (such as the cancellation of multiplica-
tive inverses) must also be considered if we wish to prove a meaningful se-
curity result. As a consequence, such protocols have tended to be evaluated in
complexity-theoretic models (see [4], for example) which aim to reduce the cor-
rectness of the protocol to some well-defined hard problem, such as the com-
putation of discrete logarithms in a finite field. The resulting proofs tend to be
difficult to conduct and evaluate, and a small change in the protocol will often
require an entirely new proof to be constructed.

With some exceptions [11,12,1] formal techniques have been slow in rising
to the challenge of Diffie-Hellman. This paper presents a theorem-proving ap-
proach to the verification of a class of Diffie-Hellman protocols. Although our

31

rA, rB, rC Random integers, chosen byA, B andC respectively
tA, tB Ephemeral public-keys,tA = grA, tB = grB

xA,xB,xC Private long-term keys ofA, B andC respectively
yA,yB Public keys ofA andB: yA = gxA, yB = gxB

ZAB The shared secret betweenA andB
x∈R X An elementx chosen at random from the setX

Fig. 1.Protocol notation

approach is quite general we present it in the context of the MTI A(0) protocol
of Matsumoto, Takashima and Imai [10]. This protocol is chosen for the sim-
plicity of its messages and non-standard use of Diffie-Hellman (in particular,
the computation of a shared key asgx ·gy = gx+y). Some of the MTI protocols
satisfy an interesting property — which we call I/O-independence — that en-
ables us to model the protocols at a very abstract level. The protocols and the
concept of I/O-independence are described in Section 2. Our model revolves
around the idea of a message-template which, suitably instantiated, can repre-
sent any value that an intruder can deduce (under a defined set of capabilities).
A particular value remains secret if it cannot be realised via any instantiation
of the message-template. This model, and its associated definition of secrecy, is
described in Section 3 and applied to the MTI A(0) protocol in Section 4. Al-
though we do not describe it in such language, our approach shares a conceptual
origin with the notion of a rank function [13], and is informed by the approach
of Pereira and Quisquater [12]; we explore these relationships, and conclude, in
Section 5.

2 The MTI protocols

Three infinite classes of authenticated key agreement protocols fall under the
banner of MTI [10]. All of the MTI protocols appear amenable to analysis in
our framework but, in this paper, we focus on one particular protocol, A(0). The
protocol combines long-term and ephemeral key contributions to provide au-
thentication in the Diffie-Hellman scheme. A summary of notation, following
[3], is given in Figure 1. In protocol A(0) (Figure 2) principalA (who wishes
to establish a shared-secret withB) generates a long-term secret,xA, and pub-
lishes the corresponding public-keyyA = gxA. B does the same withxB andyB.
A randomly choosesrA, computeszA = grA and sends it toB. In response,B
randomly choosesrB, computeszB = grB and sends it toA. B then computes
ZAB = zxB

A yrB
A = (grA)xB · (gxA)rB = grAxB+xArB andA computesZAB = grBxA+xBrA.

The protocol aims to convince each principal that no one, aside from the other

32

A B

rA ∈R Zq

zA = grA
zA

−−−−→ rB ∈R Zq

zB = grB

ZAB = zxA
B yrA

B

zB
←−−−− ZAB = zxB

A yrB
A

Fig. 2.MTI A(0) protocol

protocol participant, can learn the shared-secretZAB. This property is often
termedimplicit key authentication; here we simply refer to it assecrecy.

All of the MTI protocols involve the exchange of two messages,zA and
zB, each of which is computed within the principal and not as a function of a
previously received message. (Contrast this with protocols like Cliques, where
a principalB may receive an inputm from A, apply some function tom and
send the result on toC.) We capture this notion in the property of Input/Output-
independence:

Definition 1. In a Diffie-Hellman protocol a principal P is I/O-independent if P
does not transmit any message which is dependent on the value of a previously
received message.

We say that a protocol is I/O-independent if every honest principal is I/O-
independent.

Proposition 1. Protocol A(0) is I/O-independent.

We will see in the next section that the property of I/O-independence enables us
to model protocols at a very abstract level.

3 A model for I/O-independent Diffie-Hellman protocols

In this section we present a model for I/O-independent protocols based around
the idea of amessage-templatewhich defines the general form of any message
generable by an intruder in a given protocol.

We begin by noting that transmitted messages are elements of some group
G in which the Decisional Diffie-Hellman problem is believed to be hard. A
generatorg of G is agreed by all principals and there exists an identity element
1 such that1 · x = 1, for all x ∈ G. We assume that elements ofG can be ex-
pressed asg raised to the power of a sum of products of random numbers. This
assumption permits, for example,gxy+z, wherex, y andz are random numbers,

33

but excludes values such asg(gx) since the exponent is itself a group element.
The users of the system therefore manipulate two types of element, (i) random
exponents, and (ii) powers ofg, and we assume that only the latter will be sent
on the network.

3.1 The intruder

We divide the users of the system into a set of honest principals,{A,B}, who
will always adhere to the protocol, and a malevolent intruder,C, whose goal is
to subvert the protocol.

Some elements of (i) (from above) will be known initially to the intruder
(such as random numbers he has chosen himself), and some elements of (ii)
will become known to the intruder during the course of the protocol. The I/O-
independent nature of the protocols means that an active intruder cannot influ-
ence any of the values sent by honest participants, since the functions which
produce these values are not dependent on any external input. This is important,
since it is then sufficient to assume that the intruder knows these values from the
start.

Following [12], we divide the intruder’s initial knowledge into a setE of
exponents and a setP of known powers ofg, wherex∈ P indicates knowledge
of gx but not of x (unlessx ∈ E). We then define the computations that the
intruder can perform

Definition 2 (intruder capabilities). Given a set P of initially known powers
of g and a set E of initially known exponents, the intruder cangrowP based on
the following operations:
1. given m1 ∈ P and m2 ∈ P add m1 +m2 to P
2. given m∈ P and n∈ E add mn, m(n−1) to P
3. given m∈ P add−m to P

In other words, we allow the intruder to (1) computegm1 ·gm1 = gm1+m2 given
knowledge ofgm1 andgm2, (2) compute the exponentiations(gm)n, (gm)n−1

given
knowledge ofgm andn, and (3) compute the inverse1gm = g−m givengm. More-
over, these capabilities can be combined:

Example 1.Suppose thatP = {1, rA} andE = {rC}. The intruder can deduce
(i) −rA ∈ P by rule 3 fromrA, (ii) 1rC ∈ P by rule 2 and−rA +1rC ∈ P by rule
1 from (i) and (ii), representing the computation ofgrC−rA.

Crucially, the intruder is not able to usem1 ∈P andm2 ∈P to deducem1m2.

In this model, the intruder’s entire knowledge can be defined as the closure of
P under the deductions of Definition 2 and setE. In any useful protocol,E and

34

P will initially be non-empty, and the resulting knowledge sets will be infinite.
For this reason, it will be infeasible to enumerate these sets bygrowing Pvia
successive application of rules 1–3.

3.2 System definition

An examination of the sorts of values that can be deduced by an intruder leads to
the following observation: a generable value can be written as some number of
elements ofP multiplied by some product of (possibly inverted) elements from
E. For instance, the value derived in Example 1 can be written as−1(rA)(r0

C)+
1(1)(r1

C) (noting the difference between the group identity1 and the integer 1).
In fact, we can go further by defining a polynomial over the variables ofE and
P which represents any value generable by the intruder using rules 1–3, above.

Definition 3. Let F be a finite family of functions that map elements of E to
integer powers: F⊆ f in E→ Z.

GivenE = {xC}, for example, we may defineF = {{xC 7→ −1}}.

Definition 4. Let h be a higher-order function which, for a member of F, maps
elements of P to integers:h: F → (P→ Z).

As an example, givenP = {rA} andF = {{xC 7→ −1}}, we might choose to
defineh({xC 7→ −1}) = {rA 7→ 1}.

Definition 5 (message-template).Fix some E and P. Then:

v(F,h) = ∑
f∈F

(
∑
p∈P

hf ,p · p

)(
∏
e∈E

efe

)

We call v the message-templatefor a system defined byE andP. Intuition is
little help here, so consider a simple example:

Example 2.Given the system defined byP= {rA} andE = {xC}, consider how
the valueg−rAx−1

C +5rAxC can be expressed.P andE result in the following poly-
nomial:

v(F,h) = ∑
f∈F

(
hf ,rA ·x

fxC
C

)
To express a particular generable value we must defineF andh. Recall thatF
is a family of functions. Suppose thatF = {{xC 7→ −1},{xC 7→ 0},{xC 7→ 1}},
then we have:

35

v(F,h) = (h{xC 7→−1},rA
·x−1

C)+(h{xC 7→0},rA
·x0

C)+(h{xC 7→1},rA
·x1

C)

Finally, suppose thath is defined such thath({xC 7→ −1}) = {rA 7→ 1},
h({xC 7→ 0}) = {rA 7→ 0} andh({xC 7→ 1}) = {rA 7→ 5}. This results in:

v(F,h) = (−1· rA) · (x−1
C)+(0· rA) · (x0

C)+(5· rA)(x1
C)

which is the value−rAx−1
C +5rAxC.

As a more complex example, consider the following:

Example 3.Let P = {1, rA, rB}, E = {xC, rC}. Then:

v(F,h) = ∑
f∈F

(hf ,1 ·1+hf ,rA · rA +hf ,rB · rB)
(

x
fXC
C · r frC

C

)
In this polynomial, the valuegrC−rA from Example 1 can be represented by defin-
ing:

F = {{xC 7→ 0, rC 7→ 0},{xC 7→ 0, rC 7→ 1}}

andh such that:

h({xC 7→ 0, rC 7→ 0}) = {1 7→ 0, rA 7→ −1, rB 7→ 0}
h({xC 7→ 0, rC 7→ 1}) = {1 7→ 1, rA 7→ 0, rB 7→ 0}

We then obtain:v(F,h) = (0 · 1+−1 · rA + 0 · rB)(x0
C · r0

C)+ (1 · 1+ 0 · rA +
0· rB)(x0

C · r1
C) =−rA + rC.

As stated, our intention is that, for a given system (defined byE andP),
the polynomialv(F,h) expresses the general form of all values deducible by
an intruder, fromP and E, by appeal to the deduction rules of Definition 2.
We embed the ability of a polynomial to take a certain value in the concept of
realisability:

Definition 6. A value m is realisable (written realisable(m)) if there exists func-
tions F and h such that v(F,h) = m.

That is, a valuem is realisable if there exists a solution to the equationv(F,h)−
m= 0. If m is not realisable we write¬realisable(m). DefinePubto be a closure
containing all possible polynomials for a given system.Pubis the set containing
all realisable values of that system: the set ofpublicmessages.

Theorem 1 (Faithfulness).Fix some P and E and Pub as defined above. Pub
is closed under the deductions of Definition 2.

36

Proof. By induction. For the base case we show that, wheneverp ∈ P, p is
realisable.

Base case: Given somep∈ P, p is realisable withv(F,h) by defining

F = {{e 7→ 0 | e∈ E}}

and:

h({e 7→ 0 | e∈ E}) = {p 7→ 1}∪{q 7→ 0 | q∈ P\{p}}

Inductive step: There are three cases, corresponding to the three intruder
deduction rules: (i)realisable(m1)∧ realisable(m2) =⇒ realisable(m1 +m2),
(ii) realisable(m1)∧n∈ E =⇒ realisable(m1n)∧ realisable(m1n−1), and (iii)
realisable(m1) =⇒ realisable(−m1).

(i) Assumem1 = v(F1,h1) andm2 = v(F2,h2). Thenm1 + m2 is realisable
with v(F3,h3) by definingF3 = F1∪F2 andh such that:

h3(f) =

h1(f) if f ∈ dom(h1)\dom(h2)
h2(f) if f ∈ dom(h2)\dom(h1)
λp.h1(f)(p)+h2(f)(p) if f ∈ dom(h1)∩dom(h2)

(ii) For the first conjunct assumem1 = v(F1,h1) andn ∈ E. Then,m1n is
realisable withv(F2,h2) by defining:

F2 = { f ⊕{n 7→ (F1(n)+1)} | f ∈ F1}

andh2 such that:

h2(f) = h1(f ⊕{n 7→ (f (n)−1)})

The second conjunct follows the above, with addition in place of the sub-
traction in the definition ofh2.

(iii) Assumem1 = v(F1,h1). Then−m1 is realisable withv(F1,h2) whereh2

is defined such thath2(f)(p) =−(h1(f)(p)).
ut

Our intention is for the model to respect the fact that some values are im-
possible for an intruder to guess. We achieve this by assuming that the variables
(rA, xC etc.) aresymbolic, that each is distinct from all others, and that the set of
variables is disjoint from the set of integers.

Assumption 1 (P∪E)∩Z = /0

The following example makes clear why this restriction is necessary:

37

Example 4.Consider the system defined byP = {1} andE = {xC}. If variables
are numbers, then any group valuegX can be realised by definingX = v(F,h),
whereF = {{xC 7→ 0}} andh({xC 7→ 0}) = {1 7→ X}, yielding v(F,h) = (1 ·
X)x0

C = X.

Assumption 1 means that, for the group identity1, we have that1 /∈ Z and, in
particular,1 6= 1. However, we grant special privileges to the group identity such
that1 ·m= m, for all m. Note that an elementn∈ E \P will typically only be
realisable if1 ∈ P. That is,n is realisable byv(F,h), whereF = {{n 7→ 1}} and
h({n 7→ 1}) = {1 7→ 1}, giving 1· (1 ·n1) = n.

Condition 1 1 ∈ P =⇒ P∩E = /0

We require that the above condition be true of any protocol model. To see
why this is necessary consider the system given byE = {xC}, P = {1,xC}.
The valuexC can be realised in two ways,xC = v(F,h1) = v(F,h2), where
F = {{xC 7→ 0},{xC 7→ 1}}, andh1, h2 are defined such that:

– h1({xC 7→ 0}) = {1 7→ 0,xC 7→ 1}, h1({xC 7→ 1}) = {1 7→ 0,xC 7→ 0}
– h2({xC 7→ 0}) = {1 7→ 0,xC 7→ 0}, h2({xC 7→ 1}) = {1 7→ 1,xC 7→ 0}

The first case yieldsv(F,h1) = (xC)x0
C + (0)x1

C = xC and the second results in
v(F,h2) = (0)x0

C +(1)x1
C = xC. Sinceh1 6= h2, butv(F,h1) = v(F,h2), the exam-

ple allows the same value to be derived in two separate ways.

3.3 Secrecy

In a Diffie-Hellman protocol, a principalu performs some key computation
function on an inputz to derive a secretZuv believed to be shared withv. We
denote this functionkuv with Zuv = kuv(z).

Example 5.In the standard Diffie-Hellman protocol [7], a principalA, appar-
ently running withB and using the ephemeral secretxA performs the key com-
putationkAB(z) = zxArepresenting the shared secretZAB = gzxA.

Definition 7 (Secrecy).Given a system defined by E and P, a key computation
function k maintains secrecy iff:

∀m.realisable(m) =⇒ ¬realisable(k(m))

Intuitively, secrecy is defined as an anti-closure property of the set of generable
values: the result of applyingk to a realisable value should never result in a
realisable value. If this property does not hold then an intruder will possess two
values,x and y, such that, ifx is sent to some principal she will computey,
wrongly believing it to be secret.

38

4 Reasoning about the MTI A(0) protocol

A complete model of an I/O-independent protocol is a combination of the message-
template with an appropriate key computation function. In this section we present
a model of the MTI A(0) protocol and use it to deduce the conditions under
which the protocol guarantees the secrecy of a shared key.

Define EA(0) = {rC,xC}, PA(0) = {1, rA, rB,xA,xB}, representing a run of
the MTI A(0) protocol. We wish to show that the key computation function
kA(0)

ab (z) = zxa +xbra maintains secrecy. There are eight cases to consider:

1. a = A∧b = C 5. a = A∧b = A
2. a = B∧b = C 6. a = B∧b = B
3. a = C∧b = A 7. a = A∧b = B
4. a = C∧b = B 8. a = B∧b = A

We treat each in turn.

Cases1–4

Let a = A andb = C. We are trying to show that, for anyz whererealisable(z),
¬realisable(kA(0)

AC (z)). There exists someF1 andh1 such thatv(F1,h1) = z. If we

can find someF2 andh2 such thatv(F2,h2) = kA(0)
AC (z) we will have shown that

kA(0)
AC (z) is realisable and is therefore, not secret.

Note thatkA(0)
AC (z) = zxA + xCrA is a linear combination, and that the linear

combination will be realisable if each of its components is realisable. In gen-
eral zxA will be realisable ifz does not mentionxA (sincexA ∈ P but xA /∈ E).
Consider, then,z= rC, given byv(F1,h1) where:

F1 = {{rC 7→ 1}}
h1({rC 7→ 1}) = {1 7→ 1}∪{p 7→ 0 | p∈ P\{1}}

then zxA = rCxA is realisable byv(F1,h3) whereh3({rC 7→ 1}) = {xA 7→ 1}.
Similarly, xCrA is realisable byv(F3,h4), where:

F3 = {{xC 7→ 1}}
h4({xC 7→ 1}) = {rA 7→ 1}∪{p 7→ 0 | p∈ P\{rA}}

Theorem 1 then tells us that, sincerealisable(rCxA) andrealisable(xCrA), the
sumrCxA +xCrA is also realisable, and is given byv(F2,h2), where:

F2 = F1∪F3 = {{rC 7→ 1},{xC 7→ 1}}
h2({rC 7→ 1}) = {xA 7→ 1}∪{p 7→ 0 | p∈ P\{xA}}
h2({xC 7→ 1}) = {rA 7→ 1}∪{p 7→ 0 | p∈ P\{rA}}

39

From this we conclude that the intruder can deduce a pair of values,rC and
rCxA+xCrA, related by the key computation functionkA(0)

AC , and so secrecy fails.
This failure should come as no surprise sinceb = C represents the intruder’s
legitimate participation in the protocol. Any honest principal who willingly en-
gages in a protocol run with the intruder cannot hope to maintain secrecy of the
resulting session-key. We note that similar conclusions can be reached in cases
2–4.

Cases5 and 6 (b = a)

Let a = A, b = A. The corresponding key computation is given bykA(0)
AA (z) =

zxA + xArA. Note thatxArA is the multiplication of two elements fromP. The
intruder model only allows the addition of elements fromP and, sincexA /∈ E
andrA /∈ E, the componentxArA is unrealisable. Consequently, forzxA + xArA

to be realisable,zxA must be a linear combination that includes−xArA (since
−xArA + xArA = 0 is realisable). Consider the simplest case, wherez = −rA,
which is realisable, sincerA ∈ P. The result ofkA(0)

AA (−rA) = −rAxA +xArA = 0
is realisable byv(F5,h5), where, for instance:

F5 = {{rC 7→ 0},{xC 7→ 0}}
h5({rC 7→ 0}) = {p 7→ 0 | p∈ P}
h5({rC 7→ 0}) = {p 7→ 0 | p∈ P}

As a result, the intruder can deduce a pair of values−rA and 0 such that 0=
kA(0)

AA (−rA) and, again, secrecy fails. A similar result holds for case 6, wherea=
b = B. This attack is a simpler version of one discovered by Just and Vaudenay
[9] and described by Boyd and Mathuria [3]. In the original attack,z was set
to be rC− rA and the resulting session-key computed asgxArC (wherexArC is
realisable). The attack depends on the willingness ofA to engage in the protocol
with someone claiming her identity, and can be seen as stipulating a condition on
an implementation: namely, that a principal should only engage in the protocol
if the other party has a distinct identity.

Cases7 and 8 (b 6= a)

For the final cases, assumea= A andb= B (a similar result holds fora= B and
b = A). The key computation is given bykA(0)

AB (z) = zxA + xBrA. For secrecy to

fail there must exist somez= v(F1,h1) andkA(0)
AB (z) = v(F2,h2) such that:

v(F1,h1) ·xA +xBrA = v(F2,h2)

40

Consider the coefficient ofx0
Cr0

C. We have:

h2({xC 7→ 0, rC 7→ 0}) = {1 7→ n1, rA 7→ n2, rB 7→ n3,xA 7→ n4,xB 7→ n5}
h1({xC 7→ 0, rC 7→ 0}) = {1 7→m1, rA 7→m2, rB 7→m3,xA 7→m4,xB 7→m5}

for somem1 . . .m5 ∈ Z, n1 . . .n5 ∈ Z where the coefficients on both sides are the
same:

m1xA +m2rAxA +m3rBxA +m4x2
A +m5xBxA +xBrA

=
n1 +n2rA +n3rB +n4xA +n5xB

By assumption we have that variables are symbolic and that a given symbolx
is distinct from all others. Specifically, we note thatxBrA is distinct from all
other terms on either side of the equation and, therefore, there are no values of
the coefficients which enable the equality to be met. We conclude that, for any
realisablez, kA(0)

AB (z) is unrealisable.

Results

The analysis enables us to state the following result:

Theorem 2. Given EA(0) = {rC,xC}, PA(0) = {1, rA, rB,xA,xB},

a 6= C∧b 6= C∧a 6= b =⇒ kA(0)
ab maintains secrecy

ut
This tells us that protocol A(0) maintains the secrecy of the session-key

precisely when the initiator and responder are distinct entities and neither of
them is the intruderC.

5 Discussion

5.1 The link with rank functions

Although we have not described our approach in such terms, it shares a con-
ceptual origin with the notion of arank function. In the context of protocol
verification, a rank function describes an invariant property of a system [13].
This property will define the sorts of messages that may pass through the sys-
tem, crucially distinguishing certain values that should remain secret. The rank
function effectively partitions the message-space of a protocol by assigning a
rank ofpub to public andsec to secret messages. Traditionally a rank function

41

is defined over the message-space of a protocol model expressed in the process
algebra CSP [14], and a central rank theorem gives a series of proof obliga-
tions on the rank function whose achievement allows us to conclude that only
messages of rankpub ever appear on the network. Previous work has applied the
rank function approach in the context of Diffie-Hellman protocols [6]. However,
a fundamental difficulty with this approach is the necessity to statically assign
a rank to messages. It is interesting to note that the present work side-steps this
issue by defining (via the message-template) the setPub of public messages.
This set corresponds to the set of messages assigned a rank ofpub by the rank
approach.1

5.2 Pereira and Quisquater’s approach

Recently, Pereira and Quisquater [12] developed a formal model of the Cliques
conference key agreement protocols [2], based on linear logic, and discovered
attacks on each of the claimed security properties. In the model, secrecy is de-
fined as the inability of an intruder to discover a pair of values(gx,gy) such that,
if a principal is sentgx, he will compute the keygy. Values are assumed to take
the form ofg raised to a product of exponents, and secrecy becomes the inability
of an intruder to learn a pair of messages separated by the ratioy

x. The model
allows the intruder togrow a set of known ratios, in the hope that some secret
ratio(s) remain unobtainable. This ratio-centric view of secrecy seems partic-
ularly natural for Diffie-Hellman exchanges, and our initial attempts at mod-
elling the MTI protocols sought to embrace this approach. However, it turns
out that this view of secrecy does not generalise in the obvious way. Consider,
for example, a valuez in the A(0) protocol, and the key computation function
kA(0)

ab (z) = zxa +xbra. The ratio betweenkA(0)
ab (z) andz — xa + xbra

z — is still in
terms ofz, due to the presence of addition in the exponents. This fact makes it
difficult to derive the set of secret ratios, since a ratio cannot be stated without
recourse to the argument to the key computation function. The present work can
be viewed as an attempt to provide a more general view of Diffie-Hellman key
computation.

In a different respect, Pereira’s and Quisquater’s model is more general than
ours, since it applies to protocols which fail to satisfy the property of I/O-
independence. This property, recall, tells us that no user of the protocol ever
sends out any message which is dependent on a previously received message.
In the Cliques protocols, protocol participants tend to receive a message, per-
form some computation on that message and send out the result. Pereira and

1 In fact,Pub is similar to Heather’s concept of a minimal rank function [8].

42

Quisquater call such user operationsservices.2 These services are encoded in
terms of the values added to the exponent of an incoming message. For in-
stance, a principal may receive a messagegx and generate and send the message
gxyz (wherey andz are known to that principal). The intruder can then (with
some restrictions) use the principal as an oracle, enabling him to send a spu-
rious messagegc and receivegcyz in return. The fact that the property of I/O-
independence does not allow such services to be expressed in our model is not a
fundamental limitation but a restriction which enables us to describe our work in
a clean manner. One could envisage weakening this assumption by internalising
such services in the intruder (in the style of Broadfoot and Roscoe[5]) where,
for example, the multiplication of a value withyz is encoded as an additional
intruder deduction. The message-template would need to be redesigned to ac-
count for these additional capabilities. In contrast to the present work, such a
message-template would tend to be protocol specific.

5.3 Conclusion and further work

We have presented a framework for reasoning about secrecy in a class of Diffie-
Hellman protocols, and demonstrated the approach by a consideration of se-
crecy in the MTI A(0) protocol. The work hinges around the idea of a message-
template, an object which defines, in a highly abstract way, the values that can
be deduced by an intruder under a given set of capabilities. A protocol model is
given as a combination of a message-template and a function representing the
key computation applied by a principal to derive a shared secret.

This work is nascent, but we are currently applying it to other protocols,
both within and without the MTI suite. This requires us to relax the condition of
I/O-independence and widen our model to address situations in which protocol
participants provideservices. In many cases, this extension appears straightfor-
ward. Thead hocnature of the secrecy proof in Section 4 is unfortunate, and it
would be useful to derive a general framework for such proof (as is achieved in
[12], for instance). There also appears to be interesting links between the idea
of a message-template and the concept ofidealused within the strand space ap-
proach [15]. Future work will investigate whether this correspondence enables
us to deduce general principles with which a protocol can be proven correct.

Acknowledgements

Thanks to David Pitt, Joshua Guttman and James Heather for interesting discus-
sions on this work and to the anonymous referees for their careful reviewing.

2 In these terms, a principal is I/O-independent if it provides no services.

43

References

1. Martín Abadi and Véronique Cortier. Deciding knowledge in security protocols under equa-
tional theories. In31st International Colloquium on Automata, Languages and Program-
ming: ICALP’04, volume 3142 ofLecture Notes in Computer Science. Springer-Verlag,
2004.

2. Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. Authenticated group key agreement
and friends. InProceedings of the 5th ACM Conference on Computer and Communication
Security. ACM Press, 2000.

3. Colin Boyd and Anish Mathuria.Protocols for Authentication and Key Establishment.
Springer-Verlag, 2003.

4. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Provably authenticated group
Diffie-Hellman key exchange — the dynamic case. InAdvances in Cryptology: Proceedings
of ASIACRYPT ’01, volume 2248 ofLecture Notes in Computer Science. Springer-Verlag,
2001.

5. Philippa Broadfoot and A. W. Roscoe. Internalising agents in CSP protocol models. In
Workshop on Issues in the Theory of Security: WITS ’02, 2002.

6. Rob Delicata and Steve Schneider. Temporal rank functions for forward secrecy. InPro-
ceedings of the 18th Computer Security Foundations Workshop: CSFW-18. IEEE Computer
Society Press, 2005.

7. Whitfield Diffie and Martin E. Hellman. New directions in cryptography.IEEE Transactions
on Information Theory, IT-22(6), 1976.

8. James Heather. ‘Oh! ... Is itreally you?’using rank functions to verify authentication proto-
cols. Ph.D Thesis, Royal Holloway, University of London, 2001.

9. Mike Just and Serge Vaudenay. Authenticated multi-party key agreement. InAdvances in
Cryptology: Proceedings of ASIACRYPT ’96, volume 1163 ofLecture Notes in Computer
Science. Springer-Verlag, 1996.

10. Tsutomu Matsumoto, Youichi Takashima, and Hideki Imai. On seeking smart public-key-
distribution systems.Transactions of the IECE of Japan, E69(2), 1986.

11. Catherine Meadows. Extending formal cryptographic protocol analysis techniques for group
protocols and low-level cryptographic primitives. InWorkshop on Issues in the Theory of
Security: WITS ’00, 2000.

12. Olivier Pereira and Jean-Jacques Quisquater. Security analysis of the Cliques protocols
suites. InProceedings of the 14th IEEE Computer Security Foundations Workshop: CSFW-
14. IEEE Computer Society Press, 2001.

13. Steve Schneider. Verifying authentication protocols with CSP. InProceedings of The 10th
Computer Security Foundations Workshop: CSFW-10. IEEE Computer Society Press, 1997.

14. Steve Schneider.Concurrent and Real-time Systems: The CSP Approach. John Wiley and
Sons, Ltd, 2000.

15. F. Javier Thayer Fábrega, Jonathan Herzog, and Joshua Guttman. Strand spaces: Proving
security protocols correct.Journal of Computer Security, 7(2/3), 1999.

44

Eliminating Implicit Information Leaks by
Transformational Typing and Unification

Boris Köpf and Heiko Mantel

Information Security, ETH Zürich, Switzerland
{Boris.Koepf,Heiko.Mantel}@inf.ethz.ch

Abstract. Before starting the security analysis of an existing system,
the most likely outcome is often already clear, namely that the system is
not entirely secure. Modifying a program such that it passes the analysis
is a difficult problem and usually left entirely to the programmer. In this
article, we show that and how unification can be used to compute such
program transformations. This opens a new perspective on the problem
of correcting insecure programs. We demonstrate that integrating our
approach into an existing transforming type system can also improve
the precision of the analysis and the quality of the resulting programs.

1 Introduction

Security requirements like confidentiality or integrity can often be adequately
expressed by restrictions on the permitted flow of information. This approach
goes beyond access control models in that it controls not only the access to data,
but also how data is propagated within a program after a legitimate access.

Security type systems provide a basis for automating the information flow
analysis of concrete programs [SM03]. If type checking succeeds then a program
has secure information flow. If type checking fails then the program might be
insecure and should not be run. After a failed type check, the task of correct-
ing the program is often left to the programmer. Given the significance of the
problem, it would be very desirable to have automated tools that better support
the programmer in this task. For the future, we envision a framework for the
information flow analysis that, firstly, gives more constructive advice on how a
given program could be improved and, secondly, in some cases automatically
corrects the program, or parts thereof, without any need for interaction by the
programmer. The current article focuses on the second of these two aspects.

Obviously, one cannot allow an automatic transformation to modify programs
in completely arbitrary ways as the transformed program should resemble the
original program in some well-defined way. Such constraints can be captured
by defining an equivalence relation on programs and demanding that the trans-
formed program is equivalent to the original program under this relation. A
second equivalence relation can be used to capture the objective of a transfor-
mation. The problem of removing implicit information leaks from a program can
be viewed as the problem of making alternative execution paths observationally
equivalent. For instance, if the guard of a conditional depends on a secret then

45

the two branches must be observationally equivalent because, otherwise, an un-
trusted observer might be able to deduce the value of the guard and, thereby,
the secret. The PER model [SS99] even reduces the problem of making an entire
program secure to the problem of making the program equivalent to itself.

In our approach, meta-variables are inserted into a program and are instan-
tiated with programs during the transformation. The problem of making two
program fragments equivalent is cast as a unification problem, which allows us
to automatically compute suitable substitutions using existing unification algo-
rithms. The approach is parametric in two equivalence relations. The first re-
lation captures the semantic equivalence to be preserved by the transformation
while the second relation captures the observational equivalence to be achieved.

We define two concrete equivalence relations to instantiate our approach and
integrate this instance into an existing transforming type system [SS00]. This
results in a security type system that is capable of recognizing some secure pro-
grams and of correcting some insecure programs that are rejected by the original
type system. Moreover, the resulting programs are faster and often substantially
smaller in size. Another advantage over the cross-copying technique [Aga00],
which constitutes the current state of the art in this area, is that security poli-
cies with more than two levels can be considered. Besides these technical advan-
tages, the use of unification yields a very natural perspective on the problem of
making two programs observationally equivalent. However, we do not claim that
using unification will solve all problems with repairing insecure programs or that
unification would be the only way to achieve the above technical advantages.

The contributions of this article are a novel approach to making the infor-
mation flow in a given program secure and the demonstration that transforming
security type systems can benefit from the integration of this approach.

2 The Approach

The observational capabilities of an attacker can be captured by an equivalence
relation on configurations, i.e. pairs consisting of a program and a state. Namely,
(C1, s1) is observationally equivalent to (C2, s2) for an attacker a if and only if
the observations that a makes when C1 is run in state s1 equal a’s observations
when C2 is run in s2. The programs C1 and C2 are observationally equivalent for
a if, for all states s1 and s2 that are indistinguishable for a, the configurations
(C1, s1) and (C2, s2) are observationally equivalent for a. The resulting relation
on programs is only a partial equivalence relation (PER), i.e. a transitive and
symmetric relation that need not be reflexive. If a program C is not observa-
tionally equivalent to itself for a then running C in two indistinguishable states
may lead to different observations and, thereby, reveal the differences between
the states or, in other words, let a learn secret information. This observation is
the key to capturing secure information flow in the PER model [SS99] in which
a program is secure if and only if it is observationally equivalent to itself.

In this article, we focus on the removal of implicit information leaks from a
program. There is a danger of implicit information leakage if the flow of control
depends on a secret and the alternative execution paths are not observationally

46

equivalent for an attacker. The program if h then l:=1 else l:=0, for instance,
causes information to flow from the boolean guard h into the variable l, and this
constitutes an illegitimate information leak if h stores a secret and the value of
l is observable for the attacker. Information can also be leaked in a similar way,
e.g., when the guard of a loop depends on a secret, when it depends on a secret
whether an exception is raised, or when the target location of a jump depends
on a secret. For brevity of the presentation, we focus on the case of conditionals.

We view the problem of making the branches of a conditional equivalent as a
unification problem under a theory that captures observational equivalence. To
this end, we insert meta-variables into the program under consideration that can
be substituted during the transformation. For a given non-transforming security
type system, the rule for conditionals is modified such that, instead of checking
whether the branches are equivalent, the rule calculates a unifier of the branches
and applies it to the conditional. Typing rules for other language constructs are
lifted such that they propagate the transformations that have occurred in the
analysis of the subprograms. In summary, our approach proceeds as follows:

1. Lift the given program by inserting meta-variables at suitable locations.
2. Repair the lifted program by applying lifted typing rules.
3. Eliminate all remaining meta-variables.

The approach is not only parametric in the given security type system and in the
theory under which branches are unified, but also in where meta-variables are
placed and how they may be substituted. The latter two parameters determine
how similar a transformed program is to the original program. They also limit the
extent to which insecure programs can be corrected. For instance, one might de-
cide to insert meta-variables between every two sub-commands and to permit the
substitution of meta-variables with arbitrary programs. For these choices, lifting
P1 = if h then l:=1 else l:=0 results in if h then (α1; l:=1;α2) else (α3; l:=0;α4)
and the substitution {α1\l:=0, α2\ε, α3\ε, α4\l:=1} (where ε is denotes the
empty program) is a unifier of the branches under any equational theory as the
substituted program is if h then (l:=0; l:=1) else (l:=0; l:=1). Alternatively, one
might decide to restrict the range of substitutions to sequences of skip state-
ments. This ensures that the transformed program more closely resembles the
original program, essentially any transformed program is a slowed-down ver-
sion of the original program, but makes it impossible to correct programs like
P1. However, the program P2 = if h then (skip; l:=1) else l:=1, which is inse-
cure in a multi-threaded setting (as we will explain later in this section), can
be corrected under these choices to if h then (skip; l:=1) else (skip; l:=1). Alter-
natively, one could even decide to insert higher-order meta-variables such that
lifting P1 leads to if h then α1(l:=1) else α2(l:=0) and applying, e.g., the uni-
fier {α1\(λx.skip), α2\(λx.skip)} results in if h then skip else skip while applying
the unifier {α1\(λx.x), α2\(λx.l:=1)} results in if h then l:=1 else l:=1. These
examples just illustrate the wide spectrum of possible choices for defining in
which sense a transformed program must be equivalent to the original program.
Ultimately it depends on the application, how flexible one is in dealing with

47

the trade-off between being able to correct more insecure programs and having
transformed programs that more closely resemble the original programs.

There also is a wide spectrum of possible choices for defining the (partial)
observational equivalence relation. For simplicity, assume that variables are clas-
sified as either low or high depending on whether their values are observable by
the attacker (low variables) or secret (high variables). As a convention, we denote
low variables by l and high variables by h, possibly with indexes and primes.
Given that the values of low variables are only observable at the end of a program
run, the programs P3 = (skip; l := 0) and P4 = (l := h; l := 0) are observationally
equivalent and each is equivalent to itself (which means secure information flow
in the PER model). However, if the attacker can observe also the intermediate
values of low variables then they are not equivalent and, moreover, only P3 is
secure while P4 is insecure. If the attacker can observe the timing of assignments
or the duration of a program run then P2 = if h then (skip; l:=1) else l:=1 is
insecure and, hence, not observationally equivalent to itself. In a multi-threaded
setting, P2 should be considered insecure even if the attacker cannot observe the
timing of assignments or the duration of a program run. If P3 = (skip; l := 0)
is run in parallel with P2 under a shared memory and a round-robin scheduler
that re-schedules after every sub-command then the final value of l is 0 and 1 if
the initial value of h is 0 and 1, respectively. That is, a program that is observa-
tionally equivalent to itself in a sequential setting might not be observationally
equivalent to itself in a multi-threaded setting – for the same attacker.

3 Instantiating the Approach

We are now ready to illustrate how our approach can be instantiated. We intro-
duce a simple programming language, a security policy, an observational equiv-
alence, and a program equivalence to be preserved under the transformation.

Programming Language. We adopt the multi-threaded while language (short:
MWL) from [SS00], which includes assignments, conditionals, loops, and a com-
mand for dynamic thread creation. The set Com of commands is defined by

C ::= skip | Id :=Exp | C1;C2 | if B then C1 else C2 | while B do C | fork(CV)

where V is a command vector in Com =
⋃

n∈N Comn. Expressions are variables,
constants, or terms resulting from applying binary operators to expressions. A
state is a mapping from variables in a given set Var to values in a given set Val .
We use the judgment 〈|Exp, s|〉 ↓ n for specifying that expression Exp evaluates
to value n in state s. Expression evaluation is assumed to be total and to occur
atomically. We say that expressions Exp and Exp′ are equivalent to each other
(denoted by Exp≡Exp′) if and only if they evaluate to identical values in each
state, i.e. ∀s ∈ S : ∀v ∈ Val : 〈|Exp, s|〉 ↓ v ⇔ 〈|Exp′, s|〉 ↓ v.

The operational semantics for MWL is formalized in Figures 5 and 6 in the
appendix. Deterministic judgments have the form 〈|C, s|〉 _ 〈|W, t|〉 expressing
that command C performs a computation step in state s, yielding a state t
and a vector of commands W , which has length zero if C terminated, length
one if it has neither terminated nor spawned any threads, and length > 1 if

48

threads were spawned. That is, a command vector of length n can be viewed
as a pool of n threads that run concurrently. Nondeterministic judgments have
the form 〈|V, s|〉 _ 〈|V ′, t|〉 expressing that some thread Ci in the thread pool V
performs a step in state s resulting in the state t and some thread pool W . The
global thread pool V ′ results then by replacing Ci with W . For simplicity, we
do not distinguish between commands and command vectors of length one in
the notation and use the term program for referring to commands as well as to
command vectors. A configuration is then a pair 〈|V, s|〉 where V specifies the
threads that are currently active and s defines the current state of the memory.

In the following, we adopt the naming conventions used above. That is, s, t
denote states, Exp denotes an expression, B denotes a boolean expression, C
denotes a command, and V,W denote command vectors.

Security Policy and Labellings. We assume a two-domain security policy, where
the requirement is that there is no flow of information from the high domain to
the low domain. This is the simplest policy under which the problem of secure
information flow can be studied. Each program variable is associated with a secu-
rity domain by means of a labeling lab : Var → {low , high}. The intuition is that
values of low variables can be observed by the attacker and, hence, should only
be used to store public data. High variables are used for storing secret data and,
hence, their values must not be observable for the attacker. As mentioned before,
we use l and h to denote high and low variables, respectively. An expression Exp
has the security domain low (denoted by Exp : low) if all variables in Exp have
domain low and, otherwise, has security domain high (denoted by Exp : high).
The intuition is that values of expressions with domain high possibly depend on
secrets while values of low expressions can only depend on public data.

Observational Equivalence. The rules in Figure 1 inductively define a relation
lL ⊆ Com ×Com that will serve us as an observational equivalence relation.

The relation lL captures observational equivalence for an attacker who can
see the values of low variables at any point during a program run and cannot
distinguish states s1 and s2 if they are low equal (denoted by s1 =L s2), i.e. if
∀var ∈ Var : lab(var) = low =⇒ s1(var) = s2(var). He cannot distinguish two
program runs that have equal length and in which every two corresponding states
are low equal. For capturing this intuition, Sabelfeld and Sands introduce the
notion of a strong low bisimulation. The relation lL also captures this intuition
and, moreover, programs that are related by lL are also strongly bisimilar. That
is, lL is a decidable approximation of the strong bisimulation relation.

Definition 1 ([SS00]). The strong low-bisimulation uL is the union of all
symmetric relations R on command vectors V, V ′ ∈ Com of equal size, i.e. V =
〈C1, . . . , Cn〉 and V ′ = 〈C ′

1, . . . , C
′
n〉, such that

∀s, s′, t∈ S : ∀i∈{1 . . . n} : ∀W ∈ Com:
[(V R V ′ ∧ s =L s′ ∧ 〈|Ci, s|〉 _ 〈|W, t|〉)
⇒∃W ′ ∈ Com: ∃t′ ∈ S: (〈|C ′

i, s
′|〉 _ 〈|W ′, t′|〉 ∧W R W ′ ∧ t =L t′)]

49

skip lL skip
[Skip]

Id : high

skip lL Id :=Exp
[SkipHA1]

Id : high

Id :=Exp lL skip
[SkipHA2]

Id : high Id ′ : high

Id :=Exp lL Id ′:=Exp′
[HA]

Id : low Exp : low Exp′ : low Exp ≡ Exp′

Id :=Exp lL Id :=Exp′
[LA]

C1 lL C′
1, . . . , Cn lL C′

n

〈C1, . . . , Cn〉 lL 〈C′
1, . . . , C

′
n〉

[PComp]
C lL C′ V lL V ′

fork(CV) lL fork(C′V ′)
[Fork]

B, B′ : low B ≡ B′ C1 lL C′
1 C2 lL C′

2

if B then C1 else C2 lL if B′ then C′
1 else C′

2

[LIte]
B, B′ : low B ≡ B′ C lL C′

while B do C lL while B′ do C′ [WL]

B, B′ : high C1 lL C′
1 C1 lL C′

2 C1 lL C2

if B then C1 else C2 lL if B′ then C′
1 else C′

2

[HIte]
C1 lL C′

1 C2 lL C′
2

C1; C2 lL C′
1; C

′
2

[SComp]

B′ : high C1 lL C′
1 C1 lL C′

2

skip; C1 lL if B′ then C′
1 else C′

2

[SkipHIte1]
B : high C1 lL C′

1 C2 lL C′
1

if B then C1 else C2 lL skip; C′
1

[SkipHIte2]

Fig. 1. A notion of observational “equivalence”

Theorem 1 (Adequacy of lL). If V lL V ′ is derivable then V uL V ′ holds.

The proofs of this and all subsequent results will be provided in an extended
version of this article.

Remark 1. Note that lL and uL are only partial equivalence relations, i.e. they
are transitive and symmetric, but not reflexive. For instance, the program l:=h
is not lL-related to itself because the precondition of [LA], the only rule in
Figure 1 applicable to assignments to low variables, rules out that high variables
occur on the right hand side of the assignment. Moreover, the program l:=h is
not strongly low bisimilar to itself because the states s and t (defined by s(l) = 0,
s(h) = 0, t(l) = 0, t(h) = 1) are low equal, but the states s′ and t′ resulting after
l:=h is run in s and t, respectively, are not low equal (s′(l) = 0 6= 1 = t′(l)).

However, lL is an equivalence relation if one restricts programs to the lan-
guage Slice that we define as the largest sub-language of Com without assign-
ments of high expressions to low variables, assignments to high variables, and
loops or conditionals having high guards. On Slice, lL even constitutes a congru-
ence relation. This sub-language is the context in which we will apply unification
and, hence, using the term unification under an equational theory is justified. ♦

Program Equivalence. We introduce an equivalence relation ' to constrain the
modifications caused by the transformation. Intuitively, this relation requires a
transformed program to be a slowed down version of the original program. This
is stronger than the constraint in [SS00].

Definition 2. The weak possibilistic bisimulation ' is the union of all sym-
metric relations R on command vectors such that whenever V R V ′ then for all
states s, t and all vectors W there is a vector W ′ such that

〈|V, s|〉 _ 〈|W, t|〉 =⇒ (〈|V ′, s|〉 _∗ 〈|W ′, t|〉 ∧WRW ′)
and V = 〈〉 =⇒ 〈|V ′, s|〉 _∗ 〈|〈〉, s|〉 .

50

4 Lifting a Security Type System

In this section we introduce a formal framework for transforming programs by
inserting and instantiating meta-variables. Rather than developing an entirely
new formalism from scratch, we adapt an existing security type system from
[SS00]. We show that any transformation within our framework is sound in the
sense that the output is secure and the behavior of the original program is
preserved in the sense of Definition 2.

Substitutions and Liftings. We insert meta-variables from a set V = {α1, α2, . . . }
into a program by sequential composition with its sub-terms. The extension of
MWL with meta-variables is denoted by MWLV . The set ComV of commands
in MWLV is defined by1

C ::= skip | Id :=Exp | C1;C2 | C;X | X;C
if B then C1 else C2 | while B do C | fork(CV) ,

where placeholders X, Y range over V. Analogously to MWL, the set of all com-
mand vectors in MWLV is defined by ComV =

⋃
n∈N(ComV)n. Note that the

ground programs in MWLV are exactly the programs in MWL. The operational
semantics for such programs remain unchanged, whereas programs with meta-
variables are not meant to be executed.

Meta-variables may be substituted with programs, meta-variables or the spe-
cial symbol ε that acts as the neutral element of the sequential composition
operator (“;”), i.e. ε;C = C and C; ε = C2. When talking about programs in
ComV under a given substitution, we implicitly assume that these equations have
been applied (from left to right) to eliminate the symbol ε from the program.
Moreover, we view sequential composition as an associative operator and implic-
itly identify programs that differ only in the use of parentheses for sequential
composition. That is, C1; (C2;C3) and (C1;C2);C3 denote the same program.

A mapping σ : V → ({ε} ∪ V ∪ ComV) is a substitution if the set {α ∈ V |
σ(α) 6= α} is finite. A substitution mapping each meta-variable in a program
V to {ε} ∪ Com is a ground substitution of V . A substitution π mapping all
meta-variables in V to ε is a projection of V . Given a program V in Com , we
call every program V ′ in ComV with πV ′ = V a lifting of V .

For example, the program if h then (α1; skip;α2; l:=1) else (α3; l:=1) is in fact
a lifting of if h then (skip; l:=1) else l:=1. In the remainder of this article, we will
focus on substitutions with a restricted range.

Definition 3. A substitution with range {ε} ∪ StutV is called preserving, where
StutV is defined by C ::= X | skip | C1;C2 (the Ci range over StutV).

The term preserving substitution is justified by the fact that such substitutions
preserve a given program’s semantics as specified in Definition 2.

1 Here and in the following, we overload notation by using C and V to denote com-
mands and command vectors in ComV , respectively.

2 Note that skip is not a neutral element of (“;”) as skip requires a computation step.

51

Theorem 2 (Preservation of Behavior).

1. Let V ∈ ComV . For all preserving substitutions σ, ρ that are ground for V ,
we have σ(V) ' ρ(V).

2. Let V ∈ Com . For each lifting V ′ of V and each preserving substitution σ
with σ(V ′) ground, we have σ(V ′) ' V .

Unification of Programs. The problem of finding a substitution that makes
the branches of conditionals with high guards observationally equivalent can
be viewed as the problem of finding a unifier for the branches under the equa-
tional theory lL.3 To this end, we lift the relation lL⊆ Com × Com to a
binary relation on ComV that we also denote by lL.

Definition 4. V1, V2 ∈ ComV are observationally equivalent (V1 lL V2) iff
σV1 lL σV2 for each preserving substitution σ that is ground for V1 and V2.

Definition 5. A lL-unification problem ∆ is a finite set of statements of the
form Vil?

LV ′
i , i.e. ∆ = {V0l?

LV ′
0 , . . . , Vnl?

LV ′
n} with Vi, V

′
i ∈ ComV for all

i ∈ {0, . . . , n}. A substitution σ is a preserving unifier for ∆ if and only if σ
is preserving and σVi lL σV ′

i holds for each i ∈ {0, . . . , n}. A lL-unification
problem is solvable if the set of preserving unifiers U(∆) for ∆ is not empty.

A Transforming Type System. The transforming type system in Figure 2 has
been derived from the one in [SS00]. We use the judgment V ↪→ V ′ : S for de-
noting that the MWLV -program V can be transformed into an MWLV -program
V ′. The intention is that V ′ has secure information flow and reflects the seman-
tics of V as specified by Definition 2. The slice S is a program that is in the
sub-language SliceV and describes the timing behavior of V ′. The novelty over
[SS00] is that our type system operates on ComV (rather than on Com) and
that the rule for high conditionals has been altered. In the original type system, a
high conditional is transformed by sequentially composing each branch with the
slice of the respective other branch. Instead of cross-copying slices, our rule in-
stantiates the meta-variables occurring in the branches using preserving unifiers.
The advantages of this modification are discussed in Section 6. Note that the
rule [Condh] does not mandate the choice of a specific preserving unifier of the
branches. Nevertheless, we can prove that the type system meets our previously
described intuition about the judgment V ↪→ V ′ : S. To this end, we employ
Sabelfeld and Sands’s strong security condition for defining what it means for
a program to have secure information flow. Many other definitions are possible
(see e.g. [SM03]).

Definition 6. A program V ∈ Com is strongly secure if and only if V uL V
holds. A program V ∈ ComV is strongly secure if and only if σV is strongly
secure for each substitution σ that is preserving and ground for V .

3 The term equational theory is justified as we apply unification only to programs in the
sub-language SliceV for which lL constitutes a congruence relation (see Remark 1).

52

skip ↪→ skip : skip
[Skp]

Id : high

Id :=Exp ↪→ Id :=Exp : skip
[Assh]

C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2

C1; C2 ↪→ C′
1; C

′
2 : S1; S2

[Seq]

Id : low Exp : low

Id :=Exp ↪→ Id :=Exp : Id :=Exp
[Assl]

B : low C ↪→ C′ : S

while B do C ↪→ while B do C′ : while B do S
[Whl]

C1 ↪→ C′
1 : S1 . . . Cn ↪→ C′

n : Sn

〈C1, . . . , Cn〉 ↪→ 〈C′
1, . . . , C

′
n〉 : 〈S1, . . . , Sn〉

[Par]
C1 ↪→ C′

1 : S1 V2 ↪→ V ′
2 : S2

fork(C1V2) ↪→ fork(C′
1V

′
2) : fork(S1S2)

[Frk]

B : low C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2

if B then C1 else C2 ↪→ if B then C′
1 else C′

2 : if B then S1 else S2

[Condl]

B : high C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2 σ ∈ U({S1l?
LS2})

if B then C1 else C2 ↪→ if B then σC′
1 else σC′

2 : skip; σS1

[Condh]
X ↪→ X : X

[Var]

Fig. 2. A transforming security type system for programs with meta-variables

Theorem 3 (Soundness Type System). If V ↪→ V ′ : S can be derived then
(1) V ′ has secure information flow, (2) V ' V ′ holds,4 and (3) V ′ uL S holds.

The following corollary is an immediate consequence of Theorems 2 and 3. It
shows that lifting a program and then applying the transforming type system
preserves a program’s behavior in the desired way.

Corollary 1. If V ∗ ↪→ V ′ : S is derivable for some lifting V ∗ ∈ ComV of a
program V ∈ Com then V ′ has secure information flow and V ' V ′.

5 Automating the Transformation

In Section 4, we have shown our type system to be sound for any choice of lift-
ings and preserving unifiers in the applications of rule [Condh]. For automating
the transformation, we have to define more concretely where meta-variables are
inserted and how unifiers are determined.
Automatic Insertion of Meta-Variables. When lifting a program, one is faced
with a trade off: inserting meta-variables means to create possibilities for cor-
recting the program, but it also increases the complexity of the unification prob-
lem. Within this spectrum our objective is to minimize the number of inserted
meta-variables without losing the possibility of correcting the program.

To this end, observe that two programs C1 and C2 within the sub-language
PadV , the extension of StutV with high assignments, are related via lL when-
ever they contain the same number of constants, i.e., skips and assignments to
high variables (denoted as const(C1) = const(C2)), and the same number of
occurrences of each meta-variable α (denoted by |C1|α = |C2|α). Note that the
positioning of meta-variables is irrelevant.

Lemma 1. For two commands C1 and C2 in PadV we have C1 lL C2 if and
only if const(C1) = const(C2) and ∀α ∈ V : |C1|α = |C2|α.
4 Here and in the following, we define ' on ComV by C ' C′ iff σC ' σC′ for any

substitution σ that is preserving and ground for C and for C′.

53

Id : high X fresh

Id :=Exp ⇀ Id :=Exp; X

C1 ⇀ C′
1 V2 ⇀ V ′

2 X, Y fresh

fork(C1V2) ⇀ X; (fork(C′
1V

′
2)); Y

C1 ⇀ C′
1; X C2 ⇀ C′

2

C1; C2 ⇀ C′
1; C

′
2

Fig. 3. A calculus for computing most general liftings

Moreover, observe that inserting one meta-variable next to another does not
create new possibilities for correcting a program. This, together with Lemma 1,
implies that inserting one meta-variable into every subprogram within PadV is
sufficient for allowing every possible correction. We use this insight to define a
mapping ⇀: Com → ComV that calculates a lifting of a program by inserting
one fresh meta-variable at the end of every sub-program in PadV , and between
every two sub-programs outside PadV . The mapping is defined inductively: A
fresh meta-variable is sequentially composed to the right hand side of each sub-
program. Another fresh meta-variable is sequentially composed to the left hand
side of each assignment to a low variable, fork, while loop, or conditional. A
lifting of a sequentially composed program is computed by sequentially compos-
ing the liftings of the subprograms while removing the terminal variable of the
left program. The three interesting cases are illustrated in Figure 3. The liftings
computed by ⇀ are most general in the sense that if two programs can be made
observationally equivalent for some lifting then they can be made equivalent for
the lifting computed by ⇀. In other words, ⇀ is complete.

Theorem 4. Let V ′
1 , V ′

2 , V1, and V2 be in ComV and let V1, V2 ∈ Com .
1. If Vi ⇀ Vi can be derived then Vi is a lifting of Vi (i = 1, 2).

2. Suppose V1 (V2) shares no meta-variables with V ′
1 , V ′

2 , and V2 (V ′
1 , V ′

2 , and
V1). If V1 ⇀ V1 and V2 ⇀ V2 can be derived and V ′

1 and V ′
2 are liftings

of V1, V2, respectively, then U({V ′
1l?

LV ′
2}) 6= ∅ implies U({V1l?

LV2}) 6= ∅.
Furthermore, U({V ′

1l?
LV ′

1}) 6= ∅ implies U({V1l?
LV1}) 6= ∅.

Integrating Standard Unification Algorithms. Standard algorithms for unifica-
tion modulo an associative and commutative operator with neutral element and
constants (see, e.g., [BS01] for background information on AC1 unification) build
on a characterization of equality that is equivalent to the one in Lemma 1. This
correspondence allows one to employ existing algorithms for AC1-unification
problems with constants and free function symbols (like, e.g., the one in [HS87])
to the unification problems that arise when applying the rule for conditionals
and then to filter the output such that only preserving substitutions remain.5

Automating Unification. In the following, we go beyond simply applying an ex-
isting unification algorithm by exploiting the specific shape of our unification
5 For the reader familiar with AC1 unification: In the language StutV one views ε

as the neutral element, skip as the constant, and ; as the operator. For SliceV , the
remaining language constructs, i.e., assignments, conditionals, loops, forks, and ;
(outside the language StutV) must be treated as free constructors.

54

C1l?
LC2 :: η C1, C2 ∈ StutV

X; C1l?
LC2 :: η[X\ε]

[Seq1]
C1l?

LC2 :: η C1, C2 ∈ StutV

skip; C1l?
Lskip; C2 :: η

[Seq2]

C1l?
LC′

1 :: η1 C2l?
LC′

2 :: η2 C1,C
′
1∈NSeqV

C1; C2l?
LC′

1; C
′
2 :: η1 ∪ η2

[Seq3]
C ∈ StutV ∪ {ε}
Xl?

LC :: {X\C}
[Var1]

C1l?
LC′

1 :: η1 C2l?
LC′

2 :: η2 C1,C
′
1∈StutV∪{ε}, C2,C

′
2∈NStutV

C1; C2l?
LC′

1; C
′
2 :: η1 ∪ η2

[Seq4]

Id : low Exp1 ≡ Exp2

Id :=Exp1l
?
LId :=Exp2 :: ∅

[Asg]
Cl?

LC′ :: η V l?
LV ′ :: η2

fork(CV)l?
Lfork(C′V ′) :: η1 ∪ η2

[Frk]

Fig. 4. Unification calculus

problems and the limited range of substitutions in the computation of unifiers.
Recall that we operate on programs in SliceV , i.e., on programs without assign-
ments to high variables, without assignments of high expressions to low variables,
and without loops or conditionals having high guards.

The operative intuition behind our problem-tailored unification algorithm is
to scan two program terms from left to right and distinguish two cases: if both
leftmost subcommands are free constructors, (low assignments, loops, condi-
tionals and forks) they are compared and, if they agree, unification is recursively
applied to pairs of corresponding subprograms and the residual programs. If one
leftmost subcommand is skip, both programs are decomposed into their max-
imal initial subprograms in StutV and the remaining program. Unification is
recursively applied to the corresponding subprograms. Formally, we define the
language NSeqV of commands in SliceV without sequential composition as a
top-level operator, and the language NStutV of commands in which the leftmost
subcommand is not an element of StutV . NStutV is given by C ::= C1;C2, where
C1 ∈ NSeqV and C2 ∈ SliceV .

The unification algorithm in Figure 4 is given in form of a calculus for deriv-
ing judgments of the form C1l?

LC2 :: η, meaning that η is a preserving unifier
of the commands C1 and C2. The symmetric counterparts of rules [Seq1],[Var1]
are omitted, as are the rules for loops, conditionals and command vectors, be-
cause they are analogous to [Frk]. Note that the unifiers obtained from recursive
application of the algorithm to sub-programs are combined by set union. This is
admissible if the meta-variables in all subprograms are disjoint, as the following
lemma shows:

Lemma 2. Let V1, V2 ∈ SliceV and let every variable occur at most once in
(V1, V2). Then V1l?

LV2 :: η implies η ∈ U({V1l?
LV2})

Observe that the stand-alone unification algorithm is not complete, as it re-
lies on the positions of meta-variables inserted by ⇀. However, we can prove a
completeness result for the combination of both calculi.

55

Completeness. If conditionals with high guards are nested then the process of
transformational typing possibly involves repeated applications of substitutions
to a given subprogram. Hence, care must be taken in choosing a substitution in
each application of rule [Condh] because, otherwise, unification problems in later
applications of [Condh] might become unsolvable.6 Fortunately, the instantiation
of our framework presented in this section does not suffer from such problems.

Theorem 5 (Completeness). Let V ∈ Com , V , W ∈ ComV , W be a lifting
of V , and V ⇀ V .

1. If there is a preserving substitution σ with σW lL σW , then V ↪→′ V ′ : S
for some V ′, S ∈ ComV .

2. If W ↪→ W ′ : S for some W ′, S ∈ ComV then V ↪→′ V ′ : S′ for some
V ′, S′ ∈ ComV .

Here, the judgment V ↪→′ V ′ : S denotes a successful transformation of V to V ′

by the transformational type system, where the precondition σ ∈ U({S1l?
LS2})

is replaced by S1l?
LS2 :: σ in rule [Condh].

6 Related Work and Discussion

Type-based approaches to analyzing the security of the information flow in
concrete programs have received much attention in recent years [SM03]. This
resulted in security type systems for a broad range of languages (see, e.g.,
[VS97,SV98,HR98,Mye99,Sab01,SM02,BN02,HY02,BC02,ZM03,MS04]).

Regarding the analysis of conditionals with high guards, Volpano and Smith
[VS98] proposed the atomic execution of entire conditionals for enforcing obser-
vational equivalence of alternative execution paths. This somewhat restrictive
constraint is relaxed in the work of Agat [Aga00] and Sabelfeld and Sands [SS00]
who achieve observational equivalence by cross-copying the slices of branches.
The current article introduces unification modulo an equivalence relation as an-
other alternative for making the branches of a conditional observationally equiv-
alent to each other. Let us compare the latter two approaches more concretely
for the relation lL that we have introduced to instantiate our approach.

The type system introduced in Section 4 is capable of analyzing programs
where assignments to low variables appear in the branches of conditionals with
high guards, which is not possible with the type system in [SS00].

Example 1. If one lifts C = if h1 then (h2:=Exp1; l:=Exp2) else (l:=Exp2) where
Exp2 : low using our lifting calculus, applies our transforming type system, and
finally removes all remaining meta-variables by applying a projection then this
results in if h1 then (h2:=Exp1; l:=Exp2) else (skip; l:=Exp2), a program that is
strongly secure and also weakly bisimilar to C. Note that the program C cannot
be repaired by applying the type system from [SS00]. ♦

6 A standard solution would be to apply most general unifiers. Unfortunately, they do
not exist in our setting

56

Another advantage of our unification-based approach over the cross-copying
technique is that the resulting programs are faster and smaller in size.

Example 2. The program if h then (h1:=Exp1) else (h2:=Exp2) is returned un-
modified by our type system, while the type system from [SS00] transforms it
into the bigger program if h then (h1:=Exp1; skip) else (skip;h2:=Exp2). If one ap-
plies this type system a second time, one obtains an even bigger program, namely
if h then (h1:=Exp1; skip; skip; skip) else (skip; skip; skip;h2:=Exp2). In contrast, our
type system realizes a transformation that is idempotent, i.e. the program re-
sulting from the transformation remains unmodified under a second application
of the transformation. ♦

Non-transforming security type systems for the two-level security policy can be
used to also analyze programs under a policy with more domains. To this end, one
performs multiple type checks where each type check ensures that no illegitimate
information flow can occur into a designated domain. For instance, consider a
three-domain policy with domains D = {top, left , right} where information may
only flow from left and from right to top. To analyze a program under this policy,
one considers all variables with label top and left as if labeled high in a first type
check (ensuring that there is no illegitimate information flow to right) and, in a
second type check, considers all variables with label top and right as if labeled
high. There is no need for a third type check as all information may flow to
top. When adopting this approach for transforming type systems, one must take
into account that the guarantees established by the type check for one domain
might not be preserved under the modifications caused by the transformation
for another domain. Therefore, one needs to iterate the process until a fixpoint
is reached for all security domains.

Example 3. For the three-level policy from above, the program C = if t then (t:=t′;
r:=r′; l:=l′) else (r:=r′; l:=l′) (assuming t, t′ : top, r, r′ : right and l, l′ : left)
is lifted to C = if t then (t:=t′; r:=r′;α1; l:=l′;α2) else (r:=r′;α3; l:=l′;α4) and
transformed into if t then (t:=t′; r:=r′; l:=l′) else (r:=r′; skip; l:=l′) when analyz-
ing security w.r.t. an observer with domain left . Lifting for right then results in
if t then (t:=t′;α1; r:=r′; l:=l′;α2) else (α3; r:=r′; skip; l:=l′;α4). Unification and
projection gives if t then (t:=t′; r:=r′; l:=l′; skip) else (skip; r:=r′; skip; l:=l′). Ob-
serve that this program is not secure any more from the viewpoint of a left–
observer. Applying the transformation again for domain left results in the se-
cure program if t then (t:=t′; r:=r′; skip; l:=l′; skip) else (skip; r:=r′; skip; l:=l′; skip),
which is a fixpoint of both transformations. ♦

Note that the idempotence of the transformation is a crucial prerequisite (but
not a sufficient one) for the existence of a fixpoint and, hence, for the termination
of such an iterative approach. As is illustrated in Example 2, the transformation
realized by our type system is idempotent, whereas the transformation from
[SS00] is not.

Another possibility to tackle multi-level security policies in our setting is to
unify the branches of a conditional with guard of security level D′ under the
theory

⋂
D 6≥D′ lD. An investigation of this possibility remains to be done.

57

The chosen instantiation of our approach preserves the program behavior in
the sense of a weak bisimulation. Naturally, one can correct more programs if
one is willing to relax this relationship between input and output of the transfor-
mation. For this reason, there are also some programs that cannot be corrected
with our type system although they can be corrected with the type system in
[SS00] (which assumes a weaker relationship between input and output).

Example 4. if h then (while l do (h1:=Exp)) else (h2:=1) is rejected by our type
system. The type system in [SS00] transforms it into the strongly secure program
if h then (while l do (h1:=Exp); skip) else (while l do (skip);h2:=1). Note that this
program is not weakly bisimilar to the original program as the cross-copying of
the while loop introduces possible non-termination. ♦

If one wishes to permit such transformations, one could, for instance, choose a
simulation instead of the weak bisimulation when instantiating our approach.
This would result in an extended range of substitutions beyond StutV . For in-
stance, to correct the program in Example 4, one needs to instantiate a meta-
variable with a while loop. We are confident that, in such a setting, using our
approach would even further broaden the scope of corrections while retaining
the advantage of transformed programs that are comparably small and fast.

7 Conclusions

We proposed a novel approach to analyzing the security of information flow in
concrete programs with the help of transforming security type systems where
the key idea has been to integrate unification with typing rules. This yielded a
very natural perspective on the problem of eliminating implicit information flow.

We instantiated our approach by defining a program equivalence captur-
ing the behavioral equivalence to be preserved during the transformation and
an observational equivalence capturing the perspective of a low-level attacker.
This led to a novel transforming security type system and calculi for automat-
ically inserting meta-variables into programs and for computing substitutions.
We proved that the resulting analysis technique is sound and also provided a
relative completeness result. The main advantages of our approach include that
the precision of type checking is improved, that additional insecure programs
can be corrected, and that the resulting programs are faster and smaller in size.

It will be interesting to see how our approach performs for other choices of
the parameters like, e.g., observational equivalences that admit intentional de-
classification [MS04]). Another interesting possibility is to perform the entire
information flow analysis and program transformation using unification with-
out any typing rules, which would mean to further explore the possibilities of
the PER model. Finally, it would be desirable to integrate our fully automatic
transformation into an interactive framework for supporting the programmer in
correcting insecure programs.

58

References

[Aga00] J. Agat. Transforming out Timing Leaks. In Proceedings of the 27th ACM
Symposium on Principles of Programming Languages, pages 40–53, 2000.

[BC02] G. Boudol and I. Castellani. Noninterference for Concurrent Programs and
Thread Systems. Theoretical Computer Science, 281:109–130, 2002.

[BN02] A. Banerjee and D. A. Naumann. Secure Information Flow and Pointer Con-
finement in a Java-like Language. In Proceedings of the 15th IEEE Computer
Security Foundations Workshop, pages 253–270, Cape Breton, Nova Scotia,
Canada, 2002.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–
532. Elsevier Science, 2001.

[HR98] N. Heintze and J. G. Riecke. The SLam Calculus: Programming with Secrecy
and Integrity. In Proceedings of the 25th ACM Symposium on Principles of
Programming Languages, pages 365–377, 1998.

[HS87] A. Herold and J. Siekmann. Unification in Abelian Semigroups. Journal of
Automated Reasoning, 3:247–283, 1987.

[HY02] K. Honda and N. Yoshida. A uniform type structure for secure information
flow. In Proceedings of the 29th ACM Symposium on Principles of Program-
ming Languages, pages 81–92. ACM Press, 2002.

[MS04] Heiko Mantel and David Sands. Controlled Declassification based on Intran-
sitive Noninterference. In Proceedings of the 2nd ASIAN Symposium on Pro-
gramming Languages and Systems, APLAS 2004, LNCS 3303, pages 129–145,
Taipei, Taiwan, November 4–6 2004. Springer-Verlag.

[Mye99] A. Myers. JFlow: Practical mostly-static information flow control. In Sympo-
sium on Principles of Programming Languages, pages 228–241, 1999.

[Sab01] A. Sabelfeld. The Impact of Synchronisation on Secure Information Flow in
Concurrent Programs. In Proceedings of Andrei Ershov 4th International Con-
ference on Perspectives of System Informatics, volume 2244 of LNCS, pages
225–239, 2001.

[SM02] A. Sabelfeld and H. Mantel. Static Confidentiality Enforcement for Distributed
Programs. In Proceedings of the 9th International Static Analysis Symposium,
SAS’02, volume 2477 of LNCS, pages 376–394, Madrid, Spain, 2002.

[SM03] A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security.
IEEE Journal on Selected Areas in Communication, 21(1):5–19, 2003.

[SS99] A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Se-
quential Programs. In Proceedings of the 8th European Symposium on Pro-
gramming, LNCS, pages 50–59, 1999.

[SS00] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded
Programs. In Proceedings of the 13th IEEE Computer Security Foundations
Workshop, pages 200–215, Cambridge, UK, 2000.

[SV98] G. Smith and D. Volpano. Secure Information Flow in a Multi-Threaded
Imperative Language. In 25th ACM Symposium on Principles of Programming
Languages, San Diego, California, pages 355–364, 1998.

[VS97] D. Volpano and G. Smith. A Type-Based Approach to Program Security. In
TAPSOFT 97, volume 1214 of LNCS, pages 607–621, 1997.

[VS98] D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Lan-
guage. In Proceedings of the 11th IEEE Computer Security Foundations Work-
shop, pages 34–43, Rockport, Massachusetts, 1998.

59

[ZM03] S. Zdancewic and A. Myers. Observational determinism for concurrent pro-
gram security. In Proceedings of the 16th IEEE Computer Security Foundations
Workshop, 2003, pages 29–47. IEEE Computer Society, 2003.

A Semantics of MWL

The operational semantics for MWL are given in Figures 5 and 6.

〈|Ci, s|〉 _ 〈|W ′, t|〉
〈|〈C0 . . . Cn−1〉, s|〉 _ 〈|〈C0 . . . Ci−1〉W ′〈Ci+1 . . . Cn−1〉, t|〉

Fig. 5. Small-step nondeterministic semantics

〈|skip, s|〉 _ 〈|〈〉, s|〉 〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉 _ 〈|〈〉, [Id = n]s|〉
〈|C1, s|〉 _ 〈|〈〉, t|〉

〈|C1; C2, s|〉 _ 〈|C2, t|〉
〈|C1, s|〉 _ 〈|〈C′

1〉V, t|〉
〈|C1; C2, s|〉 _ 〈|〈C′

1; C2〉V, t|〉 〈|fork(CV), s|〉 _ 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True

〈|if B then C1 else C2, s|〉 _ 〈|C1, s|〉
〈|B, s|〉 ↓ False

〈|if B then C1 else C2, s|〉 _ 〈|C2, s|〉
〈|B, s|〉 ↓ True

〈|while B do C, s|〉 _ 〈|C;while B do C, s|〉
〈|B, s|〉 ↓ False

〈|while B do C, s|〉 _ 〈|〈〉, s|〉

Fig. 6. Small-step deterministic semantics

60

Abstract Interpretation to Check Secure

Information Flow in programs with input-output
security annotations

N. De Francesco, L. Martini

Dipartimento di Ingegneria dell’Informazione, Università di Pisa,
Via Diotisalvi, 2, 52126 Pisa, Italy
{nico, luca.martini}@iet.unipi.it

Abstract.
We present a method based on abstract interpretation to check secure infor-
mation flow in programs with dynamic structures where input and output
channels are associated with security levels. In the concrete operational se-
mantics each value is annotated with a security level dynamically taking into
account both the explicit and the implicit information flows. We define a col-
lecting semantics associating to each program point the set of concrete states
of the machine when the point is reached. The abstract domains are obtained
from the concrete ones by keeping the security levels and forgetting the ac-
tual values. An element of the abstract domain of states is a table whose
rows correspond to the instructions of the program. An abstract operational
semantics is defined on the abstract domain, and an efficient implementation
is shown, operating a fixpoint iteration similar to that of the Java bytecode
verification. The approach allows certifying a larger set of programs with
respect to the typing approaches to check secure information flow.

1 Introduction

The secure information flow within programs in multilevel secure systems requires
that information at a given security level does not flow to lower levels ([14]). Ana-
lyzing secure information flow allows a finer inspection of confidentiality than that
obtained by using access control mechanisms. In fact access control mechanisms con-
trol only the release of information, but are not able to check the propagation of the
information within the accessed entity. Instead, checking information flows makes
it possible to control, once given an access right, whether the accessed information
is properly used, according to some confidentiality policy.

We consider sequential programs communicating with the external environment
by means of input and output channels. The program defines also a security policy
by assigning a security level to each channel. A program has secure information
flow if the observation of a channel having some security level does not reveal any
information about the values input from channels associated with higher security
levels. The language includes dynamic structures and pointers.

We analyze secure information flow by means of abstract interpretation (AI).
Abstract interpretation [11–13] is a method for analyzing programs in order to
collect approximate information about their run-time behavior. It is based on a
non-standard semantics, that is a semantic definition in which a simpler (abstract)
domain replaces the standard (concrete) one, and the operations are interpreted
on the new domain. Using this approach different analyses can be systematically
defined. Moreover, the proof of the correctness of the analysis can be done in a
standard way. In the paper first we define a concrete operational semantics which
handles, in addition to execution aspects, the level of the flow of information of the

61

P ::= {D;C}
D ::= T x |in σ a | out σ a| D ; D
T ::= int | S
S ::= struct s {D}
C ::= t : x = E | t : x.f = E | t : x = new s | t : a?x | t : a!E |skip

t : if(E) C else C; | t : while(E) C; | C;C
E ::= k | E Op E | x | x.f

Fig. 1. Language grammar

program. The basis of the approach is that each value is annotated by a security
level. Also each channel is associated with a security level, representing the lub of
the levels of the data present in the channel. The level of the input data is assumed
to be that specified for the channel by the security policy. The level of data flowing
through the variables and structures of the program is calculated dynamically taking
into account the information flows. We then define a collecting semantics associating
to each program point (instruction) the set of concrete states in which the machine
can be when the point is reached. We prove that the program is secure if in all
states of the collecting semantics the level of each channel is less than or equal to
that specified by the policy defined by the program. The proofs of all theorems can
be found in the internal report [16].

The abstract domains are obtained from the concrete ones by keeping the secu-
rity levels and forgetting the actual values. A main point is the domain of references.
A state of the abstract semantics is a table having a row for each instruction. Each
row is the abstraction of all concrete states in which the machine can be when exe-
cuting the corresponding instruction. The table may be built by a fixpoint iteration
algorithm similar to that used by bytecode verification in the Java Virtual Machine
[24]. As a consequence, it is particularly efficient.

2 The Model

We consider the simple language illustrated in Figure 1. We indicate with k a literal
value and with s, f, x, a, respectively, generic structure, field, variable and channel
name. E represents the expressions and C the commands. Each instruction is labeled
by a label t ∈ B = {0, 1, . . . , n− 1} , where n is the number of instructions in the
program. Besides basic data, the language handles dynamic structures. We denote
by New the subset of the new instructions in B.

Every program P can retrieve data from a set of input channels and can send
data to a set of output channels. If a is an input channel, the command a?x takes
an item from a and assign it to variable x. The command a!e sends the value of
expression e over the output channel a, provided that e is an expression returning
a basic type (int). In the following, we denote as NamesI (respectively, NamesO)
the set of input (output) channels used by a program; moreover Names=NamesI ∪
NamesO and NamesI ∩ NamesO = ∅. We assume that programs are type correct.

The input and output channels represent the external environment in which the
program is executed, that is all the interactions of the program occur by means
of the channels and an external server is not able to inspect the internal state of
the program. A security policy assigns to each input and output channel a security
level, representing a fixed degree of secrecy. The security policy is expressed by the
declaration of the channels. A channel a is declared by using the keyword in (out)
to indicate that is an input (output) channel and by indicating also its security
level. Security levels are defined as a finite lattice (L,vL), ranged over by σ, τ, . . .
and partially ordered by vL. In the following we indicate by S : Names → L the
security policy specified by the channels declarations.

62

P1. 1: a?x; 2: b!x;

P2. 1: y=1; 2:a?x; 3: if (x==0) 4: y=0; else 5: skip; 6: b!y

P3. 1: a?x; 2: if (x==0) 3: d?y; else skip;

P4. 1: a?x; 2: while (x>0) (3: b!1; 4: x=x-1;)

P5. 1: d?x; 2: while (x>0) (3: b!1; 4: a?x;)

P6. 1: a?x; 2: while (x>0) 3: x=x-1; 4: b!1;

P7. 1: a?y; 2: y:=0; 3: b!y;

P8. 1: s1=new S; 2: s2=new S; 3: a?x; 4: if(x) 5: s3=s1; else 6: s3=s2; 7: s3.f=1;

Fig. 2. Some examples

Definition 1 (secure information flow). Let P be a program and S a security

policy for P . Given σ ∈ L, let us denote by Names
vσ
I (NamesvσO) the set of channels a

belonging to NamesI (NamesO) such that S(a) v σ. P has σ-secure information flow
(is σ-secure) under S if all concrete executions starting from the same configuration

of input channels Names
vσ
I , input the same sequence of values from channels in

Names
vσ
I and output the same sequence of values on channels in Names

vσ
O . P has

secure information flow (is secure) if it is σ-secure for each σ ∈ L.

An external attacker having secrecy level σ cannot infer information that is more
secret than σ from a σ-secure program if he can inspect only input and output
channels with level less than or equal to σ.

Let us show some examples of programs. Consider the programs in Figure 2
and suppose that a and d are input channels and b is an output channel. Moreover
S(a) = h, S(b) = S(d) = l, with l @ h. Since in this example there are only two
security levels, we can say that channels b and d are public, while channel a is
private.

Program P1 shows an explicit insecure information flow, since the value output
on channel b depends on the value input from a: private information is made avail-
able to a public observer. Program P2 is insecure because it is possible to know if the
private input is zero by observing the value present on the public output channel.
In program P3 the private value affects the contents of input channel d, from which
an item is taken only if the input is zero. Note that we consider observable both
the input and the output channels. In program P4 the number of the values output
on channel b depends on the input value. In program P5 the first iteration of the
while is driven by a low value, while the following iterations depend on high level
information. Also program P6 may have an illicit information flow, even if the value
output on channel b is always the same: it is possible that, due to an infinite loop, no
value is output on channel b. Program P7 is secure, since the output value, which is
constant, does not depend on the input: even if y it is written with a high value, af-
terward it is assigned a constant value, and this one is given as an output. Consider
program P8 and suppose that S is an user-defined structure with two int fields f

and g, and that s1, s2, s3 are references of type S. Please notice that, depending
on the value taken from the high level input channel a, instruction 7 updates field
f of two different objects (created at the first two instructions). Now consider the
two cases in which instruction 7 is followed by: (i) 8:b!s1.g; (ii) 8:b!s1.f;. In
case (i) the program is secure because field g of object created at instruction 1 is
the same in any computation. On the contrary, in case (ii), the value of the field
s1.f depends on the input: by aliasing, the assignment in instruction 7 could have
modified it.

3 Concrete semantics

In this section we define the concrete semantics of the language. To take into account
the security level of data, we annotate each value v flowing through the variables

63

v ∈ V = (Z ∪ A)× L
µ ∈ M = Var → V
c ∈ C = Names→ (Z? × L)

A = Ae × New

ξ ∈ Ξ = A →Mstruct

q ∈ Q = B ×Env ×M×Ξ × C

Fig. 3. Domains of the concrete semantics.

Const 〈k, µ, ξ〉 E−→(k,⊥L)
Op
〈E1, µ, ξ〉 E−→(ve1, σ1), 〈E2, µ, ξ〉 E−→(ve2 , σ2)

〈E1 opE2, µ, ξ〉 E−→(ve1 op v
e
2 , σ1 tL σ2)

Value
x
〈x, µ, ξ〉 E−→µ(x)

Value
x.f

µ(x) = ((`, t), σ1), ξ(`, t)(f) = (ve, σ2)

〈x.f, µ, ξ〉 E−→(ve, σ1 tL σ2)

Fig. 4. Concrete semantics of expressions

and the structure fields with a security level, representing the least upper bound of
the security levels of the explicit and implicit information flows on which v depends.
A value is a pair (ve, σ), where ve is an execution value and σ a security level. The
domains of the concrete semantics are shown in Figure 3. An execution value may
be an integer k ∈ Z or a reference to an user-defined structure. A reference is in
turn a pair (`, t), where ` ∈ Ae is a heap address and t ∈ New is the label of the
instruction which created the corresponding structure. This tag will be useful in
the abstraction to coalesce into a same abstract structure all structures created at
the same instruction. The memory is represented by means of two functions: one
denoted by µ, that associates every variable with its value, and the other, denoted by
ξ, that associates the addresses (references) with the respective structure instances.
Every structure in the heap can be represented by a memory whose variables are
the fields. Valid fields names are in the domain F . We denote by MS the domain
of memories having the fields of structure S as variables, and by Mstruct the set:
Mstruct =

⋃ {MS|S used in P}. The state of input and output channels c ∈ C
is a mapping from the names of the channels to pairs (s, σ), where s ∈ Z? is
a finite sequence of values and σ a security level. Initially, the security level of
each input channel a is set to S(a), that is the security level defined for a by the
security specification. As a consequence, each value taken from an input channel a
is annotated with S(a). The security level of the output channels is initially set to
the minimum level ⊥L. The security level of the channels can be modified by the
computation, when the channel is accessed.

The concrete semantics is defined by means of a set of rules: the rules for ex-
pressions are shown in Figure 4 and the rules for instructions in Figure 5. Let us

consider the rules for expressions, defining a relation
E−→ ⊆ (expr ×M× Ξ) × V .

Rule Const assigns the bottom security level to any constant value. Rule Op calcu-
lates the security level of the result of an operation as the lub of the security levels
of the operands. Rule Valuex returns the value of the variable in the memory. Rule
Valuex.f annotates the resulting value with the lub of the security levels of the
reference and of the value stored in the field.

The rules for instructions (Figure 5) define a relation −→ ⊆ Q × Q between
the states of the computation. The set of concrete states is Q = B × Env ×M×
Ξ × C, where Env = B → L. Each state q ∈ Q is a tuple 〈t, ρ, µ, ξ, c〉 describing
the configuration of the machine when executing the command t: µ and ξ define
the values of variables and structures fields, while c represent the status of the
channels. We also keep in each state a security environment ρ ∈ Env, assigning
to every program point a security level representing the level of the implicit flow
under which the corresponding command is executed. In the following, given an
instruction label t and a set Q of states, we use the notation Q(t) to denote the set

64

Assign
t:x=E

〈E, µ, ξ〉 E−→(ve, σ)

〈t, ρ, µ, ξ, c〉−→〈succ(t), ρ, µ [x← (ve, ρ(t) tL σ)] , ξ, c〉

Assign
t:x.f=E

〈E, µ, ξ〉 E−→(ve, σ1), µ(x) = ((`, t1), σ2), σ3 = σ1 tL σ2 tL ρ(t)

〈t, ρ, µ, ξ, c〉−→〈succ(t), ρ, µ, ξ [(`, t1), f ← (ve, σ3)] , c〉

New
t:x=new S

fresh(ξ) = `

〈t, ρ, µ, ξ, c〉−→〈succ(t), ρ, µ [x← ((`, t), ρ(t))] , ξ [(`, t)← µS⊥] , c〉

Input
t:a?x

c(a) = (k · s, σ), a ∈ NamesI

〈t, ρ, µ, ξ, c〉−→〈succ(t), ρ, µ [x← (k, ρ(t) tL σ)] , ξ, c [a← (s, ρ(t) tL σ)]〉

Output
t:b!E

〈E, µ, ξ〉 E−→(k, σ1), c(b) = (s, σ2), b ∈ NamesO

〈(t, ρ, µ, ξ, c〉−→〈succ(t), ρ, µ, ξ, c [b← (k · s, ρ(t) tL σ1 tL σ2)]〉

If
t:if (E) C
else C, (true)

〈E, µ, ξ〉 E−→(true, σ)

〈t, ρ, µ, ξ, c〉−→
D
succtrue(t), ρ [t′ ← ρ(t′) tL σ]∀t′∈scope(t) , µ, ξ, c

E

While
t:while (E) C
(true)

〈E, µ, ξ〉 E−→(true, σ)

〈t, ρ, µ, ξ, c〉−→
D
succtrue(t), ρ [t′ ← ρ(t′) tL σ]∀t′∈scope(t) , µ, ξ, c

E

Fig. 5. Concrete semantics of commands

of states in Q corresponding to instruction t. A value (ve, τ) evaluated, assigned or
tested while the execution is under a security environment σ, changes its security
level into σ t τ . The environment, initially set to ⊥L for all commands, can be
updated by the conditional and repetitive commands. With succ(t) we indicate the
successive instruction to be executed. All commands have only one successor, except
the conditional and repetitive commands that have two successors, depending on
the value of the guard; they are denoted by succtrue(t) and succfalse(t). We assume
that the first instruction of the program has label t0 and that for the last instruction
is succ(t) = end.

Rule Assignt:x=e annotates the security level of the value to be assigned with
the lub of the security level resulted by the evaluation of the expression and the
environment of the instruction t. The notation µ [x← (ve, σ)] stands for the memory
obtained by µ by updating the contents for the variable x with the value (ve, σ). Rule
Assignt:x.f=e annotates the value to be assigned with the lub of 1) the security level
resulted by the evaluation of the expression, 2) the security level of the reference,
and 3) the environment of t. In the rule, the notation ξ [(`, t), f ← v] indicates the
heap ξ′ obtained from ξ by updating the field f of the structure located at address
` (and created at instruction t) with the value v.

Rule New contains the notation ξ [(`, t)← µS⊥], meaning that, during the exe-
cution of instruction t, in the heap ξ a new structure of type S is created at address
`, its fields containing the default value. We assume the default value is the pair
(0,⊥L). In the premise of the rule the function fresh : Ξ → A is used to find a free
location in the heap to store the new structure.

Rule Input takes a value from the specified input channel and assigns it to the
destination variable, annotated with the lub of the level σ of the channel and the
environment of t. Also the level of the channel is updated in the same way. As a
consequence, if ρ(t) is higher than σ, the level of the channel is upgraded, to record
the fact that the manipulation of the channel depends on an information flow with
level σ @L ρ(t). Analogously, in the Output rule, the level of the specified output

65

maxE : Q×B → L maxE(Q, t) =
F
L {ρ(t)| 〈t′, ρ, µ, ξ, c〉 ∈ Q}

maxM : Q× V ar→ L maxM(Q, x) =
F
L {σ| 〈t, ρ, µ, ξ, c〉 ∈ Q,µ(x) = (ve, σ)}

maxΞ : Q×A×F → L maxΞ(Q, `, t, f) =
F
L {σ| 〈t, ρ, µ, ξ, c〉 ∈ Q, ξ(`, t)(f) = (ve, σ)}

maxC : Q× Names→ L maxC(Q, a) =
F
L {σ| 〈t, ρ, µ, ξ, c〉 ∈ Q, c(a) = (s, σ)}

Fig. 6. Auxiliary functions for merging

channel is possibly upgraded taking into account the level of the value and that of
the environment of the instruction.

The If and While rules, whatever branch is chosen, affect the environment of
all the instructions belonging to the scope of the command, taking into account
the level of the condition. The set scope(t) contains all the instructions that can
be executed or not depending on the condition. In the If case, scope(t) includes all
the instructions belonging to only one branch starting from the If. For the While
command, scope(t) includes all instructions following the While, that is the instruc-
tions belonging to the loop (the true part of the While) and also all instructions
after the loop until the end of the program (the false part). The inclusion of these
instructions takes into account the possibility of an infinite loop: in this case, the
commands following the loop will never be executed. Updating the environment is
necessary to trace implicit flow: the value of the condition (with its security level)
drives the execution of the instructions in scope(t). The table shows only the rule
to be applied when the condition is true. The rule to be applied when the condition
is false (not shown) is equal except that has succfalse instead of succtrue.

Definition 2 (initial state). Given an initial configuration i0 : NamesI → Z? of
the input channels, the initial state is defined as q(i0) = 〈t0, ρ⊥, µ0, ξλ, c0〉, where
ρ⊥ associates ⊥L to all instruction labels, µ0 associates to every variable declared
in the program the default value, ξλ is the heap with empty domain (that is, the
everywhere undefined function). The state c0 is such that for all a ∈ NamesI , c0(a) =
(i0(a),S(a)) and for all a ∈ NamesO , c0(a) = (λ,⊥L).

We now define a collecting semantics, associating with each instruction the set of
states in which the instruction can be executed in any computation.

First we define an alignment operation align(Q) which, given a set of states Q,
aligns all the states corresponding to the same instruction. align(Q) increments Q
with some extra states: for each instruction t and each state q ∈ Q(t), a state q′ is
added to Q having the same execution values occurring in q, but where the security
levels of the environment, memory variables, fields of structures and channels are
upgraded to the lub in L of the levels occurring in the states in Q(t) for the same
items. In Fig. 6 are shown some auxiliary functions used in the alignment process.

Let Q be a set of states: then maxM(Q, x) is the lub of the security levels of
x in the memories occurring in the states of Q. For each t ∈ B, maxE(Q, t) is the
lub of the values of ρ(t) in the environment occurring in the states of Q. For each
field f of each structure created at instruction (`, t) ∈ A, maxΞ(Q, `, t, f) is the
lub of the values held by the field f in the heap occurring in the states of Q. For
each channel a ∈ Names, maxC(Q, a) is the lub of the security levels held by the
channel a in the states of Q. Finally, given a value v = (ve, τ), with ve ∈ (Z ∪ A),
up(v, σ) = (ve, τ tLσ) is the value obtained by keeping unaltered the execution part
of the value and upgrading the annotation of v.

Now we can define the align function. Consider a set Q ⊆ Q of states. Given a
state q = 〈t, ρ, µ, ξ, c〉 ∈ Q let alignt(q,Q) = 〈t, ρ′, µ′, ξ′, c′〉} with:

∀t′ ∈ B : ρ′(t′) = maxE(Q(t), t′) ∀x ∈ V ar : µ′(x) = up(µ(x),maxM(Q(t), x))
∀(`, t′) ∈ dom(ξ), f ∈ dom(ξ(`, t′)) : ξ′(`, t′)(f) = up(ξ(`, t′)(f),maxΞ(Q(t), `, t′, f))
∀a ∈ Names : c′(a) = up(c(a),maxC(Q, a))
align(Q) = (

⋃
q∈Q alignt(q,Q)) ∪Q

66

Definition 3 (concrete next operator next). Given a set of concrete states
Q ⊆ Q, the application of the next operator yields the aligned set of states that are
either in Q, or reached in one step of computation starting from a state in Q.

next(Q) = align(Q ∪ {q|∃q′ ∈ Q : q′−→ q})

Proposition 1 (monotonicity of next). next is monotone in (℘(Q),⊆).

The concrete collecting semantics sem ∈ ℘(Q) is the set of all aligned concrete
states belonging to all executions.

Definition 4 (collecting semantics). The concrete collecting semantics sem ∈
℘(Q) is the lub of the following increasing chain, defined for all n ∈ N:

sem0 = {q(i0)| ∀i0 ∈ (NamesI → Z?)}
semn+1 = next(semn)

Performing align at each step of semn aligns the security annotations of the states
corresponding to the join point of different branches of a conditional instruction,
in order to properly manage implicit flows. Consider, for example, program P2 of
figure 2. If we consider an execution in which the input value is 0, the branch true
of the if command is executed, and at instruction 5 the state is q = 〈5,⊥ρ, µ,⊥ξ, c〉,
with µ(y) = (0, σ) where the annotation σ of 0 records the implicit flow of level σ
under which the assignment to y has been performed. If, instead, the input value
is different from 0, variable x is not affected in the conditional command and the
state q′ = 〈5,⊥ρ, µ′,⊥ξ, c′〉 is reached, where µ′(y) = (1,⊥L). This state does not
represent the implicit flow, since the level of the value held by y is low. Instead,
the contents of y has been affected also in this case by the implicit flow of level
σ. The violation becomes evident only if there exists another execution in which
y is updated in another branch of the conditional command. Since the alignment
operation is applied to the chain semn, there exists at least one j such that semj

contains a state 〈5,⊥ρ, µ′′,⊥ξ, c′〉 where µ′′(y) = (1, σ). This state derives from the
alignment of q and q′ and represents the effect of the implicit flow on y in the case
in which the false branch has been chosen. The following theorem states that the
collecting semantics correctly represents the secure information flow property.

Theorem 1 (secure information flow). A program P has secure information
flow under a security policy S if for each concrete state 〈t, ρ, µ, ξ, c〉 ∈ sem, for each
channel a, if c(a) = (δ, σ), δ ∈ Z?, then σ v S(a).

Proof Sketch. The proof is made by proving σ-security for a generic σ. We define
a notion of σ-equivalence between states, such that two states are equivalent iff 1)
each annotation on memory, heap, environment and channels is either v σ or 6v σ on
both states and 2) they agree (have the same execution values) on data annotated
by security levels v σ. It holds that, under the hypothesis of the theorem, two
σ-equivalent states have the same execution values on input/output channels with
level v σ. Consider two executions starting from the same values on channels in
Names

vσ
I . Until a conditional or repetitive instruction is reached with a high (6v σ)

guard, the two executions perform the same instructions reaching at each step σ-
equivalent states. When a conditional command is reached with a high guard it is
possible that the two executions make different sequences of instructions, possibly
leading to not σ-equivalent states. However all instructions executed until the end
of the command is reached have a high environment in both executions. Thus, if a
variable is updated, the value is annotated with a level 6v σ. Analogously for the
fields of the structures and for the input and output channels. Note that, while we
are in the scope of the conditional command, no input and/or output channel a

67

can be affected with S(a) v σ, otherwise sem does not respect the condition of the
theorem. Let both computations reach the end of the conditional commands, say
instruction t, at states q1 and q2, respectively. Let i and j be the corresponding
indexes of the chain semn, that is q1 ∈ semi and q2 ∈ semj . We have that, due
to the alignment applied by next, there are in semmax(i,j)(t) two states, say q′1
and q′2, corresponding resp. to the alignment of q1 and q2, that is with the same
execution values of q1 and q2, but with the security levels upgraded to the maximum
values between the two execution paths. It holds that q′1 and q′2 are σ-equivalent,
since only the elements not updated in any of the two branches can have a low
annotation. The above reasoning can be iterated starting from q′1 and q′2. If at least
one of the two executions does not reach the end of the command, this means that
a while with a high condition has been reached, but in this case all instructions
of the program reachable from the while are given a high environment and no
input/output operation on a channel may be executed without raising the security
level of the channel to a high value. By hypothesis, channels with security level v σ
cannot be affected from this point on. The same occurs when a while with a high
guard is reached not belonging to a conditional command. ut

4 Abstract domains

The method consists in definining a concrete and an abstract domain and two
functions between them: an abstraction function α and a concretization function
γ. The kind of abstraction and concretization function are choosen according to
the property that one need to prove. Neverthless, to ensure the correctness of the
method, the two functions have to be related by a Galois Connection or a Galois
Insertion, satisfying the properties Galois and Connection or Galois and Insertion
in the definition below.

Definition 5. (Galois Connection/Insertion) Let (C,⊆) and (A,v) be two
complete lattices. Two functions α : C 7→ A and γ : A 7→ C form a Galois inser-
tion between (C,⊆) and (A,v), iff all the following conditions hold:

– α-Monotonicity: ∀y, y′ ∈ C. y ⊆ y′ ⇒ α(y) v α(y′)
– γ-Monotonicity: ∀a, a′ ∈ A. a v a′ ⇒ γ(a) ⊆ γ(a′)
– Galois: ∀y ∈ C. y ⊆ γ(α(y))
– Connection: ∀a ∈ A. α(γ(a)) vA a
– Insertion: ∀a ∈ A. α(γ(a)) = a

For both connection and insertion, it must hold that, if y ∈ C and α(y) = a ∈ A,
then, if we concretize a, we obtain a set that contains the original one (y) (Galois)
; if moreover we concretize a and then we abstract the result of the concretization,
we obtain an abstract element which is less than or equal to a (connection) or equal
to the starting element (insertion). Thus the insertion represents a more precise
and non redundant abstraction with respect to the connection. Once defined the
domains, given a concrete semantics acting on objects belonging to the concrete
domain, the abstract interpretation theory provides systematic methods to design an
abstract semantics such that it correctly approximates the concrete one. Moreover,
showing that the concrete and the abstract domains are connected by a Galois
Insertion will be useful to prove that the abstract flow equations converge to a
fixpoint [20].

The abstract domains are obtained by eliminating from the concrete values
both the execution values and execution addresses. Every value maintains instead
its security annotation. Simple values (int) are no longer held and are represented
with a · symbol. In order to make the heap finite we abstract onto the same element

68

A\ = ℘(New), V\ = ({·} ∪ {⊥,>} ∪ A\)× L ranged over by v\1, v
\
2, . . .

vV : v\1 vV v\2 iff v\1 = (T1, σ1) ∧ v\2 = (T2, σ2) ∧ T1 ⊆ T2 ∧ σ1 vL σ2∨
∨ v\1 = (·, σ1) ∧ v\2 = (·, σ2) ∧ σ1 vL σ2

tV : v\1 tV v\2 =

8
<
:

(T1 ∪ T2, σ1 tL σ2) if v\1 = (T1, σ1) ∧ v\2 = (T2, σ2)

(·, σ1 tL σ2) if v\1 = (·, σ1) ∧ v\1 = (·, σ2)
>V otherwise

uV : v\1 uV v\2 =

8
<
:

(T1 ∩ T2, σ1 uL σ2) if v\1 = (T1, σ1) ∧ v\2 = (T2, σ2)

(·, σ1 uL σ2) if v\1 = (·, σ1) ∧ v\1 = (·, σ2)
⊥V otherwise

⊥V = (⊥,⊥L) >V = (>,>L)

α1
V (v) =

(·, σ) v = (k, σ), k ∈ Z
({t}, σ) v = ((`, t), σ), (`, t) ∈ A y ∈ ℘(V), αV (y) =

G
V

vi∈y
α1
V (vi)

γV(v\) =

8
>><
>>:

{(k, σ′)|k ∈ Z, σ′ vL σ} v\ = (·, σ)
{((`, t), σ′)|t ∈ T, (`, t) ∈ A, σ′ vL σ} v\ = (T, σ)

V v\ = >V
∅ v\ = ⊥V

Fig. 7. Lattice of abstract values

αM(y)(x) = αV ({µ(x)|µ ∈ y})
γM(µ\) =

˘
µ ∈M|∀x ∈ X.µ(x) ∈ γV(µ\(x))

¯

αΞ(y)(t) = αM ({ξ(`, t)|ξ ∈ y, (`, t) ∈ dom(ξ)})
γΞ(ξ\) =

˘
ξ ∈ Ξ|∀t ∈ New.ξ(t) ∈ γM(ξ\(t))

¯

αC(y)(a) =
F
L{σ| c(a) = (δ, σ), c ∈ y}

γC(c
\) =

˘
c ∈ C|∀a ∈ Names.c(a) = (s, σ), s ∈ Z?, σ vL c\(a)

¯

Fig. 8. Abstraction and concretization functions for the abstract domains

different structures created at the same label. Moreover, an abstract address `\ is
composed of a set of labels in New. In this way `\ records all the possible creation
points of the structures pointed to by it during the computation. The operations
defined on the lattice of abstract values (V \,v\V ,t\V ,u\V ,⊥\V ,>\V) are reported in
Figure 7. The abstraction of a set of simple values is the least upper bound of their
security levels. We assume that αV returns the bottom element of V\ if applied
to the empty set. Dually for the concretization function. The same for the other
abstraction functions. The abstraction of a set of concrete references is an abstract
reference that contains both the least upper bound of their security levels and a set
T ⊆ New of instruction points. T contains all the instructions at which the structure
referenced is created. For example, if v1 = ((`1, t1), σ1) and v2 = ((`2, t2), σ2), then
v\ = αV({v1, v2}) = ({t1, t2}, σ1 tL σ2).

An abstract memory µ\ ∈ M\
X = X → V\ maps every variable in the set X to

an abstract value. Two abstract memories can be compared only if their domains
are the same. When X = V ar we omit the subscript and indicate the domain with
M\. An abstract heap ξ\ ∈ Ξ\ = New→M\

struct is a map from structure creation
points to abstract memories representing fields contents. Two heaps ξ\1, ξ

\
2 can be

compared only if each abstract address points to structures of the same type, i.e.
∀t ∈ New, ξ\1(t) and ξ\2(t) are comparable memories. Input and output channels are
represented in the abstract domain C\ = Names→ L with tuples of security levels,
one for each channel. Here, for brevity, we omit the description of lattice operations
(that are defined in a standard way) on the domains M\, Ξ\ and C\, showing in
Figure 8 their corresponding abstraction/concretization functions.

The abstract domain of states is Q\ = B → (L×M\ ×Ξ\ × C\). It contains all
functions associating the instruction labels B with elements in (L×M\×Ξ\×C\).
Given an abstract state q\ ∈ Q\, and an instruction label t ∈ B, q\(t) =

〈
σ, µ\, ξ\, c\

〉

is a tuple composed of a security level representing the security environment of t, an

69

abstract memory, heap and channels. We use q\(t).env to denote σ. We denote by

dom(q\) = {t | q\(t) =
〈
σ, µ\, ξ\, c\

〉
∧µ\ 6= ⊥\M∧ξ\ 6= ⊥\Ξ∧c\ 6= ⊥\C} the instruction

addresses to which q\ assigns a defined value for memory, heap and channels. We
have that (Q\,vQ) is a lattice, where, the operation vQ is defined as the pointwise
application of the corresponding operation on the fields of the abstract states. Let
us now consider the abstraction and concretization functions between the concrete
and abstract domains of the states.

αQ : ℘(Q) → Q\ is defined as follows. Let Q be a set of concrete states in
Q = B ×Env ×M×Ξ × C. For each t ∈ B, it is αQ(Q)(t) =

〈
σ, µ\, ξ\, c\

〉
where

σ =
⊔
L{ρ(t)| 〈t′, ρ, µ, ξ, c〉 ∈ Q} µ\ = αM({µ| 〈t, ρ, µ, ξ, c〉 ∈ Q})

ξ\ = αΞ({ξ| 〈t, ρ, µ, ξ, c〉 ∈ Q}) c\ = αC({c| 〈t, ρ, µ, ξ, c〉 ∈ Q})
If an instruction t does not occur in Q, then the abstraction functions αM, αΞ

and αC will produce bottom values, excluding t from dom(αQ(Q)). Note that the
security environment of an instruction t (whether t is in dom(αQ(Q)) or not) in the
abstract state is the lub of the security environments assigned to t by all states in
Q. On the contrary, the abstract memory, heap and channels associated to t are the
lub of the abstractions of the concrete memories, heaps and channels, respectively,
occurring the states of Q corresponding to the execution of the instruction with
label t. For the concretization function γQ : Q\ → ℘(Q) we have:

γQ(q\) = { 〈t, ρ, µ, ξ, c〉 |t ∈ dom(q\), ∀t′ ∈ B, ρ(t′) v q\(t′).env, q\(t) =
〈
σ, µ\, ξ\, c\

〉
,

µ = γM(µ\), ξ = γΞ(ξ\), c = γC(c\)}
Proposition 2. The pairs of functions (αV ,γV), (αM, γM), (αΞ , γΞ), (αC , γC) and
(αQ, γQ) are Galois Insertions.

5 Abstract semantics and correctness

In this section we give an abstract semantics of the language allowing to finitely
execute the program in the abstract domain.

Const ˙
k, µ\, ξ\

¸ E\−→(·,⊥L)
Op

˙
E1, µ

\, ξ\
¸ E\−→(·, τ1),

˙
E2, µ

\, ξ\
¸ E\−→(·, τ2)

˙
E1 opE2, µ

\, ξ\
¸ E\−→(·, τ1 tL τ2)

Value
x

˙
x, µ\, ξ\

¸ E\−→µ\(x)
Value

x.f

µ\(x) = (T, σ),
F
V,t∈T ξ

\(t)(f) = (w, τ), w ∈ A\ ∪ {·}
˙
x.f, µ\, ξ\

¸ E\−→(w, τ tL σ)

Fig. 9. Abstract expressions semantics

Figure 9 describes the abstract semantics of expressions. The rules of the ab-

stract semantics for instructions are shown in Figure 10. They define a relation
C\−→

between the abstract states: if the premise of the rule is true, the rule transforms
the state q\ in the state q̄\ as described by the rule. There is only one rule for if

and while: in both cases, besides propagating the state unchanged to the succes-
sors, the field env of all the instructions in scope(t) are updated. Rules Valuex.f
and Assignx.f=e need some explanations. In the abstract semantics, the structure
addresses are lost and the references, besides the security level, contain the set T of
possible creation points. Then, in order to obtain the abstract value x.f needed by
Rule Valuex.f , it is necessary to compute the lub of ξ\(ti)(f) for all the ti in the
set T . Similarly, to execute Rule Assignx.f=e, an assignment must be performed
for each abstract structure that x might refer to.

70

Assign
t:x=e

q\(t) =
˙
σ, µ\, ξ\, c\

¸
, q\(succ(t)) =

˙
σ′, µ′\, ξ′\, c′\

¸
,
˙
E,µ\, ξ\

¸ E\−→(w, τ)

q̄\(succ(t)) =
˙
σ′, µ′\ tM µ\ [x← (w, σ tL τ)] , ξ′\ tΞ ξ\, c′\ tC c\

¸

Assign
t:x.f=e

q\(t) =
˙
σ, µ\, ξ\, c\

¸
, q\(succ(t)) =

˙
σ′, µ′\, ξ′\, c′\

¸
,
˙
E, µ\, ξ\

¸ E\−→(w, τ1),

µ\(x) = (T, τ2), τ3 = σ tL τ1 tL τ2
q̄\(succ(t)) =

D
σ′, µ′\ tM µ\, ξ′\ tΞ ξ\[tj , f ← (w, τ3)]∀tj∈T , c

′\ tC c\
E

New
t:x=new S

q\(t) =
˙
σ, µ\, ξ\, c\

¸
, q\(succ(t)) =

˙
σ′, µ′\, ξ′\, c′\

¸

q̄\(succ(t)) =
˙
σ′, µ′\ tM µ\ [x← (t, σ)] , ξ′\ tΞ ξ\, c′\ tC c\

¸

Input
t:a?x

q\(t) =
˙
σ, µ\, ξ\, c\

¸
, q\(succ(t)) =

˙
σ′, µ′\, ξ′\, c′\

¸
, τ = c\(a) tL σ

q̄\(succ(t)) =
˙
σ′, µ′\ tM µ\ [x← τ] , ξ′\ tΞ ξ\, c′\ tC c\ [a← τ]

¸

Output
t:b!E

q\(t) =
˙
σ, µ\, ξ\, c\

¸
, q\(succ(t)) =

˙
σ′, µ′\, ξ′\, c′\

¸
,
˙
E, µ\, ξ\

¸ E\−→(·, τ)

q̄\(succ(t)) =
˙
σ′, µ′\ tM µ\, ξ′\ tΞ ξ\, c′\ tC c\ [b← σ tL τ]

¸

If, while
t:if (E) C
else C
while E C

q\(t) =
˙
σ, µ\, ξ\, c\

¸
,
˙
E, µ\, ξ\

¸ E\−→(·, τ),

q\(succtrue(t)) =
˙
σ′, µ′\, ξ′\, c′\

¸
, q\(succfalse(t)) =

˙
σ′′, µ′′\, ξ′′\, c′′\

¸
,

q̄\(succtrue(t)) =
˙
σ′ tL τ, µ′\ tM µ\, ξ′\ tΞ ξ\, c′\ tC c\

¸

q̄\(succfalse(t)) =
˙
σ′′ tL τ, µ′′\ tM µ\, ξ′′\ tΞ ξ\, c′′\ tC c\

¸
,

∀t′ ∈ scope(t) : q̄\(t′).env = τ tL q\(t′).env

Fig. 10. Abstract semantics of commands

Definition 6 (next\ operator). Given an abstract state q\, the application of the
next\ operator yields the state reached in one step of computation from each instruc-
tion:

next\(q\) =
⊔
{q̄\|q\ C\−→ q̄\}

Proposition 3 (monotonicity of next\). next\ is monotone in (Q\,v\).

Definition 7 (initial abstract state q\0). For the initial state q\0 we have dom(q\0) =

{t0} and q\0(t0) =
〈
⊥L,⊥M,⊥Ξ , c\0

〉
, where for all a ∈ NamesI , c

\
0(a) = S(a) and

for all a ∈ NamesO, c
\
0(a) = ⊥L.

Definition 8 (abstract semantics). The abstract semantics sem \ ∈ Q\ is the
least upper bound in (Q\,v\) of the following increasing chain, defined for all n ∈ N:

sem\
0 = q\0

sem\
n+1 = next\(An)

Proposition 4 (Local correctness). next\ is a safe approximation of next:

∀Q ∈ ℘(Q) : next(Q) ⊆Q γQ(next\(αQ(Q)))

Theorem 2 (Global correctness). α(sem) v\ sem\.

A consequence of the above theorem is the following corollary. Its meaning is
that we can use the abstract as a means to check secure information flow.

Corollary 1. If, given t ∈ B with sem\(t) =
〈
t, µ\, ξ\, c\

〉
, then ∀a ∈ Names, c(a) vL

S(a), then the considered program has secure information flow.

71

Instruction env x a b d

1:d?x l l h l l

2:While (x > 0) l h h h l

3:b!1 h h h h l

4:a?x h h h h l

end: h h h h l

(a)

Instruction env x s1 s2 s3 1.f 1.g 2.f 2.g

1:s1=new S l l ∅, l ∅, l ∅, l l l l l

2:s2=new S l l 1, l ∅, l ∅, l l l l l

3:a?x l l 1, l 2, l ∅, l l l l l

4:if(x) 5: else 6: l h 1, l 2, l ∅, l l l l l

5:s3=s1 h h 1, l 2, l ∅, l l l l l

6:s3=s2 h h 1, l 2, l ∅, l l l l l

7:s3.f=1 h h 1, l 2, l {1, 2}, l l l l l

8:??? h h 1, l 2, l {1, 2}, l h l h l

(b)

Fig. 11. Abstract semantics of the programs a) P5 and b) P8, calculated using Iflow

6 A prototype tool

A prototype tool (Iflow1) that, given a program, constructs its abstract semantics
sem\, has been developed. Iflow accepts programs written in the language described
in Section 2. The lattice L has been defined as the simplest two-level chain {L,H},
with L @L H , but the tool can be easily extended to manage with generic lattices.
Iflow has been written in C++, using Flex [27] and Bison [15] as scanner and parser
generators. After having parsed the input file, Iflow builds the initial abstract state
q\0. Then, starting from q\0, it performs a least fixed computation using the Kildall
working list algorithm [22]. Finally, it dumps sem\. Giving Iflow a “verbose” switch,
it is possible to dump also each step of the fixpoint calculation.

As an example, consider the application of the algorithm to programs P5 and
P8 in Figure 2. In Figure 11, we summarize the abstract execution, showing the
result of the algorithm (sem\) in the two cases. Let us briefly explain how the state
in Figure 11(a) is computed for P5. Initially, the entry point of the program is
inserted in the working list and abstractly executed. Every instruction brings its
successor into the working list, and, until instruction 4 is executed, the states are
unchanged from their default value. Execution of instruction 4 lifts the value of x
to h. Then, when the while instruction is newly executed, the environment of all
the instructions in its scope (3,4) is upgraded. The new execution of the loop lifts
the security level of channel b to h (because of the environment, see Rule Output),
thus making the program insecure. In Figure 11(b) we show the abstract semantics
for program P8. We can notice that, before executing instruction 7, s3 may refer
either to the object created at 1 or to the object created at 2. After the abstract
execution of instruction 7, the field f of both the two abstract objects is upgraded.

Let us now give a short account of the complexity of such analysis: for space
complexity, it is O(N · log(M) · n) where N =](V ar) +](New) if the maximum
number of fields of each structure is constant, M is the number of elements in
L and n is the number of program points. The time complexity is theoretically
O(N2 ·M · n): every application of an abstract rule has a linear complexity in N
due to the least upper bound operation on the abstract memory and heap, and, in
the worst case, the abstract state of every instruction can assume up to O(N ·M)
different values during the verification process. However, in practice, the number of
abstract executions is much smaller. As suggested in [23] the dataflow analysis can
be conducted at the level of the basic blocks instead of single instructions, saving
only the state for the beginning of each basic block and calculating the others on
the fly: this can reduce the space complexity to O(N · log(M) · B), and the time
complexity to O(N2 ·M · B), where B is the number of basic blocks.

1 Iflow is freely available at the URL: http://www.ing.unipi.it/∼o1103499

72

7 Related work and Conclusions

A recent survey of works on secure information flow is [29]. The problem has been
coped with mainly by means of typing. In type-based approaches, each variable
is assigned a security level, which is part of the type of the variable and secure
information flow is checked by means of a type system; see, for example, [30, 1, 25,
7, 32]. The work [3] handles secure information flow in object-oriented languages,
with particular attention to pointers and objects. In [28, ?] references, exceptions
and let-polymorphism are treated for a call-by-value λ-calculus.

With respect to typing, AI can give a finer inspection of information flows. In
fact, in order to check input/output non-interference, it is not necessary to associate
security levels to variables: a variable, during its life, can hold data with different
security levels without affecting non-interference, provided that the output channels
contain data with level less that or equal to the channel’s level. Consider for example
program P7 in section 2. Here variable y first holds a high level datum (input from a
high level channel), and after it is overwritten with a low level one (a constant): since
it is this constant to be output on the low level channel, the program is correct. This
program is certified by our approach, while it is not accepted by typing approaches.
We think that also declassification (see, for example [26]) can be suitably handled by
abstract interpretation. Other papers based on AI [31, 18] takes as abstract domain
the lattice of levels and perform an AI with almost the same power of typing (in
terms of class of certified programs). Thus they do not exploit all the power of
abstract interpretation. For example, they do not certify program P7 above. On the
other hand, the focus of [18] is the definition of a framework based on AI able to
represent a parameterized notion of non-interference. Approaches that are able to
cope with “temporary breaking of security”, similar to that presented by program
P7, are based on theorem proving [19, 21]. AI is also exploited in [2] to annotate
programs with pre and postconditions defining variable dependences.

Some previous papers of the team to which the authors belong cope with the
definition of abstractions suitable to check secure information flow, based on the
annotation of data with security levels. The works [8, 6, 4, 9] handle secure informa-
tion flow in stack based machine languages, while the papers [5, 17] consider high
level languages, including parallel ones. In these papers abstract transition systems
are used, possibly having a high number of states: the same instruction may belong
to different states, characterized by different security environments and memories.
The number of states being high, the abstraction is not suitable to be directly used
for a definition of an analysis tool for checking secure information flow. In fact there
is a need for other techniques to be combined with this abstraction method: in the
above papers we used model checking to complete the verification process (a similar
combination of abstraction and model checking is used in [10]). In the present paper,
instead, the abstract semantics is a table composed of a row for each program point
and is built by an efficient fixpoint algorithm using the abstract rules. Finally, the
previous papers of the authors do not cope with pointers and dynamic structures,
here handled by a suitable abstract domain.

References

1. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency.
In 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages Proceedings, pages 147–160. Texas, Usa, 1999.

2. T. Amtoft and A. Banerjee. Information flow analysis in logical form. In R. Gia-
cobazzi, editor, SAS 2004 (11th Static Analysis Symposium), Verona, Italy, August
2004, volume 3148 of LNCS, pages 100–115. Springer-Verlag, 2004.

73

3. A. Banerjee and D. A. Naumann. Representation independence, confinement and
access control. In 29th ACM Symposium on Principles of Programming Languages
Proceedings, pages 166–177, 2002.

4. R. Barbuti, C. Bernardeschi, and N. De Francesco. Analyzing information flow prop-
erties in assembly code by abstract interpretation. Computer Journal, 47(1):25–45,
2004.

5. R. Barbuti, C. Bernardeschi, and N. D. Francesco. Abstract interpretation of op-
erational semantics for secure information flow. Information Processing Letters,
83(2):101–108, 2002.

6. R. Barbuti, C. Bernardeschi, and N. D. Francesco. Checking security of java bytecode
by abstract interpretation. In The 17th ACM Symposium on Applied Computing:
Special Track on Computer Security Proceedings, pages 229–236. Madrid, March 2002.

7. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In The ACM SIG-
PLAN Workshop on Types in Language Design and Implementation (TLDI), January
2005.

8. C. Bernardeschi and N. D. Francesco. Combining abstract interpretation and model
checking for analysing security properties of Java bytecode. In Third International
Workshop on Verification, Model Checking and Abstract Interpretation Proceedings,
pages 1–15. LNCS 2294, Venice, January 2002.

9. C. Bernardeschi, N. D. Francesco, and G. Lettieri. An abstract semantics tool for
secure information flow of stack-based assembly programs. Microprocessors and Mi-
crosystems, 26(8):391–398, 2002.

10. P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V.Wiels, and G. Zanon. Checking secure
interactions of smart card applets. In ESORICS 2000 Proceedings, 2000.

11. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages Pro-
ceedings, pages 238–252. Los Angeles, California, 1977.

12. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Comp., 2:511–547, 1992.

13. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretations.
In ACM POPL’92 Proceedings, pages 83–94, 1992.

14. D. E. Denning. A lattice model of secure information flow. Comm. ACM, 19(5):236–
243, 1976.

15. C. Donnely and R. Stallman. Bison, the YACC-compatible parser generator. Free
Software Foundation, November 1995.

16. N. D. Francesco and L. Martini. Technical Report IET-05-01, IET - Dipartimento di
Ingegneria dell’Informazione, Università di Pisa, 2005.

17. N. D. Francesco, A. Santone, and L. Tesei. Abstract interpretation and model checking
for checking secure information flow in concurrent systems. Fundam. Inf., 54(2-3):195–
211, 2003.

18. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proc. ACM Symp. on Principles of Pro-
gramming Languages, pages 186–197, January 2004.

19. B. Jacobs, W. Pieters, and M. Warnier. Statically checking confidentiality via dynamic
labels. In Workshop on Issues in the Theory of Security proceedings. ACM, 2005.

20. N. D. Jones and F. Nielson. Abstract interpretation: a semantic based tool for program
analysis. S. Abramsky, D.M. Gabbay, T.S.E. Maibaum(Eds.), Handbook of Logic in
Computer Science, Vol. 4:527–636, Oxford University Press, Oxford 1995.

21. R. Joshi and K. Leino. A semantic approach to secure information flow. Science of
Computer Programming, 37(1-3):113–138, May 2000.

22. G. Kildall. A unified approach to global program optimization. In Proceedings of the
1st Annual ACM Symposium on Principles of Programming Languages, pages 194–206,
1973.

23. X. Leroy. Java bytecode verification: Algorithms and formalizations. Journal of Au-
tomated Reasoning, 30(3-4):235–269, 2003.

24. T. Lindholm and F. Yellin. The Java virtual machine specification. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1996.

74

25. A. C. Myers. Jflow: Practical mostly-static information flow control. In ACM POPL’99
Proceedings, pages 228–241, 1999.

26. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In
CSFW, pages 172–186. IEEE Computer Society, 2004.

27. V. Paxson. Flex, a fast scanner generator, version 2.5, March 1995.
28. F. Pottier and S. Conchon. Information flow inference for free. In ACM ICFP’00

Proceedings, pages 46–57, 2000.
29. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal

on Selected Areas in Communications, 21(1):5–19, 2003.
30. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.

Journal of Computer Security, 4(3):167–187, 1996.
31. M. Zanotti. Security typings by abstract interpretation. In Proc. of The 9th Static

Analysis Symp., pages 360–375. LNCS 2477, 2002.
32. S. Zdancewic and A. Myers. Secure information flow via linear continuations. Higher

Order and Symbolic Computation, 15(2/3), Kluwer Academic Publishers, The Nether-
lands 2002.

75

76

Opacity Generalised to Transition Systems

Jeremy W. Bryans1, Maciej Koutny1, Laurent Mazaré2, and Peter Y.A. Ryan1

1 School of Computing Science, University of Newcastle,
Newcastle upon Tyne, NE1 7RU, United Kingdom

2 Laboratoire VERIMAG; 2, av. de Vignates, Gières, France

Abstract. Recently, opacity has proved a promising technique for de-
scribing security properties. Much of the work has been couched in terms
of Petri nets. Here, we extend the notion of opacity to the model of la-
belled transition systems and generalise opacity in order to better rep-
resent concepts from the literature on information flow. In particular,
we establish links between opacity and the information flow concepts of
anonymity and non-inference. We also investigate ways of verifying opac-
ity when working with Petri nets. Our work is illustrated by an example
modelling requirements upon a simple voting system.
Keywords: opacity, non-deducibility, anonymity, non-inference, Petri
nets, observable behaviour, labelled transition systems.

Introduction

The notion of secrecy has been formulated in various ways in the computer
security literature. However, two views of security have been developed over
the years by two separate communities. The first one starts from the notion
of information flow, describing the knowledge an intruder could gain in terms
of properties such as non-deducibility or non-interference. The second view was
initiated by Dolev and Yao’s work and focussed initially on security protocols [7].
The idea here is to describe properly the capability of the intruder. Some variants
of secrecy appeared, such as strong secrecy, giving more expressivity than the
classical secrecy property but still lacking the expressivity of information flow
concepts.

Recently, opacity has proved to be a promising technique for describing se-
curity properties. Much of the work has been couched in terms of Petri nets.
In this paper, we extend the notion of opacity to the more general framework
of labelled transition systems. When using opacity we have fine-grained control
over the observation capabilities of the players, and we show one way that these
capabilities may be encoded. The essential idea is that a predicate is opaque if an
observer of the system will never be able to establish the truth of that predicate.

In the first section, after recalling some basic definitions, we present a gen-
eralisation of opacity, and show how this specialises into the three previously
defined variants. In Section 2, we show how opacity is related to previous work
in security. In Section 3, we consider the question of opacity checking. After
restricting ourselves to Petri nets, we give some decidability and undecidability

77

2 J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan

properties. As opacity is undecidable as soon as we consider systems with infinite
number of states, we present an approximation technique which may provide a
way of model checking even in such cases. Finally, in Section 4, we consider a
voting scheme, and show how the approximation technique might be used. All
the proofs are available in [6].

1 Basic Definitions

The set of finite sequences over a set A will be denoted by A∗, and the empty
sequence by ε. The length of a finite sequence λ will be denoted by len(λ), and
its projection onto a set B ⊆ A by λ |B .

Definition 1 A labelled transition system (LTS) is a tuple Π = (S ,L, ∆,S0),
where S is the (potentially infinite) set of states, L is the (potentially infinite)
set of labels, ∆ ⊆ S × L × S is the transition relation, and S0 is the nonempty
(finite) set of initial states. We consider only deterministic LTSs, and so for any
transitions (s , l , s ′), (s , l , s ′′) ∈ ∆, it is the case that s ′ = s ′′1.
A run of Π is a pair (s0, λ), where s0 ∈ S0 and λ = l1 . . . ln is a finite sequence of
labels such that there are states s1, . . . , sn satisfying (si−1, li , si), for i = 1, . . . ,n.
We will denote the state sn by s0⊕λ, and call it reachable from s.
The set of all runs is denoted by run(Π), and the language generated by Π is
defined as L(Π) = {λ | ∃ s0 ∈ S0 : (s0, λ) ∈ run(Π)}.

Let Π = (S ,L, ∆,S0) be an LTS fixed for the rest of this section, and Θ be
a set of elements called observables. We will now aim at modelling the different
capabilities for observing the system modelled by Π . First, we introduce a general
observation function and then, specialise it to reflect limited information about
runs available to an observer.

Definition 2 Any function obs : run(Π) → Θ∗ is an observation function. It
is called label-based and: static / dynamic / orwellian / m-orwellian (m ≥ 1) if
respectively the following hold (below λ = l1 . . . ln):

– static: there is a mapping obs ′ : L → Θ ∪ {ε} such that for every run (s , λ)
of Π, obs(s , λ) = obs ′(l1) . . . obs ′(ln).

– dynamic: there is a mapping obs ′ : L×L∗ → Θ∪{ε} such that for every run
(s , λ) of Π, obs(s , λ) = obs ′(l1, ε)obs ′(l2, l1) . . . obs ′(ln , l1 . . . ln−1).

– orwellian: there is a mapping obs ′ : L × L∗ → Θ ∪ {ε} such that for every
run (s , λ) of Π, obs(s , λ) = obs ′(l1, λ) . . . obs ′(ln , λ).

– m-orwellian: there is a mapping obs ′ : L × L∗ → Θ ∪ {ε} such that for
every run (s , λ) of Π, obs(s , λ) = obs ′(l1, κ1) . . . obs ′(ln , κn), where for i =
1, . . . ,n, κi = lmax{1,i−m+1}lmax{1,i−m+1}+1 . . . lmin{n,i+m−1}.

In each of the above four cases, we will often use obs(λ) to denote obs(s , λ)
which is possible as obs(s , λ) does not depend on s.

1 A nondeterministic LTS can be transformed into a deterministic one through a
relabeling that assigns a unique label to each transition.

78

Opacity Generalised to Transition Systems 3

Note that allowing obs ′ to return ε allows one to model invisible actions. The
different kinds of observable functions reflect different computational power of
the observers. Static functions correspond to an observer which always interprets
the same executed label in the same way. Dynamic functions correspond to an
observer which has potentially infinite memory to store labels, but can only use
knowledge of previous labels to interpret a label. Orwellian functions correspond
to an observer which has potentially infinite memory to store labels, and can
use knowledge (either subsequent or previous) of other labels to (re-)interpret a
label. m-orwellian functions are a restricted version of the last class where the
observer can store only a bounded number of labels. Static functions are nothing
but 1-orwellian ones; static functions are also a special case of dynamic functions;
and both dynamic and m-orwellian are a special case of orwellian functions.

It is possible to define state-based observation functions. For example, a
state-based static observation function obs is one for which there is obs ′ :
S → Θ ∪ {ε} such that for every run (s , l1 . . . l1), we have obs(s , l1 . . . ln) =
obs ′(s)obs ′(s⊕l1) . . . obs ′(s⊕l1 . . . ln).

Let us consider an observation function obs . We are interested in whether an
observer can establish a property φ (a predicate over system states and traces)
for some run having only access to the result of the observation function. We
will identify φ with its characteristic set: the set of runs for which it holds.

Now, given an observed execution of the system, we would want to find out
whether the fact that the underlying run belongs to φ can be deduced by the
observer (note that we are not interested in establishing whether the underlying
run does not belong to φ; to do this, we would rather consider the property
φ = run(Π) \ φ).

What it means to deduce a property can mean different things depending on
what is relevant or important from the point of view of real application. Below,
we give a general formalisation of opacity and then specialise it in three different
ways.

Definition 3 A predicate φ over run(Π) is opaque w.r.t. the observation func-
tion obs if, for every run (s , λ) ∈ φ, there is a run (s ′, λ′) /∈ φ such that
obs(s , λ) = obs(s ′, λ′

). Moreover, φ is called: initial-opaque / final-opaque /
total-opaque if respectively the following hold:

– there is a predicate φ′ over S0 such that for every run (s , λ) of Π, we have
φ(s , λ) = φ′(s).

– there is a predicate φ′ over S such that for every run (s , λ) of Π, we have
φ(s , λ) = φ′(s⊕λ).

– there is a predicate φ′ over S ∗ such that for every run (s , l1 . . . ln) of Π, we
have φ(s , l1 . . . ln) = φ′(s , s⊕l1, . . . , s⊕l1 . . . ln).

In the first of above three cases, we will often write s ∈ φ whenever (s , λ) ∈ φ.

All these definitions of opacity are purely possibilistic: we make no reference
to the probability of φ. For a probabilistic treatment of opacity, the reader is
referred to [13].

79

4 J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan

Initial-opacity has been illustrated by the dining cryptographers example
(in [4] with two cryptographers and [5] with three). It would appear that it is
suited to modelling situations in which initialisation information such as crypto
keys, etc., needs to be kept secret. More generally, situations in which confidential
information can be modelled in terms of initially resolved non-determinism (i.e.
non-determinism resolved before the first transition) can be captured in this way.
Final-opacity models situations where the final result of a computation needs to
be secret. Total-opacity is a generalisation of the two other properties asking not
only the result of the computation and its parameters to be secret but also the
states visited during computation.

Proposition 1. Let φ and φ′ be two predicates over run(Π). If φ is opaque
w.r.t. an observation function obs and φ′ ⇒ φ, then φ′ is opaque w.r.t. obs.

2 Opacity in Security

The goal of this section is to show how our notion of opacity relates to other con-
cepts commonly used in the formal security community. We will compare opacity
to forms of anonymity and non-interference, as well as discuss its application to
security protocols.

2.1 Anonymity

Anonymity is concerned with the preservation of secrecy of identity of a user
through the obscuring of the actions of that user. It is a function of the behaviour
of the underlying (anonymising) system, as well as being dependent on capability
of the observer.

For concreteness, assume a system with n users (indexed by i) each of whom
can perform a single action αi . Intuitively, if the observer cannot distinguish
these actions, and, as far as the observer is concerned, any α may have been
performed by any of the users, then the system is anonymous with respect to
the α actions.

The static, dynamic and orwellian forms of observation function presented in
Definition 2 model three different strengths of observer. We now introduce two
observation functions needed to render anonymity in terms of suitable opacity
properties.

Let Π = (S ,L, ∆,S0) be an LTS fixed for the rest of this section, and A =
{a1, . . . , an} ⊆ L be a set of labels over which anonymity is being considered.
Moreover, let α, α1, . . . , αn /∈ L be fresh labels.
The first observation function, obss

A, is static and defined so that obss
A(λ) is

obtained from λ by replacing each occurrence of ai by α. The second observation
function, obsd

A, is dynamic and defined thus: let ai1 , . . . , aiq (q ≥ 0) be all the
distinct labels of A appearing within λ listed in the (unique) order in which they
appeared for the first time in λ; then obs(λ) is obtained from λ by replacing
each occurrence of aij by αj . For example,

obss
{a,b}(acdba) = αcdαα and obsd

{a,b}(acdba) = α1cdα2α1.

80

Opacity Generalised to Transition Systems 5

Strong anonymity In [23], a definition of strong anonymity is presented for the
process algebra CSP. In our (LTS) context, this definition translates as follows.

Definition 4 Π is strongly anonymous w.r.t. A if L(Π) = L(Π ′), where Π ′

is obtained from Π by replacing each transition (s , ai , s
′) with n transitions:

(s , a1, s
′), . . . , (s , an , s ′).

In our framework, we have that

Definition 5 Π is O-anonymous w.r.t. A if, for every sequence µ ∈ A∗, the
predicate φµ over the runs of Π defined by

φµ(s , λ) =
(
len(λ |A) = len(µ) ∧ λ |A 6= µ

)

is opaque w.r.t. obss
A.

We want to ensure that every possible sequence µ (with appropriate length
restrictions) of anonymised actions is a possible sequence within the LTS. In
Definition 5 above, the opacity of the predicate φµ ensures that the sequence µ
is a possible history of anonymised actions, because it is the only sequence for
which the predicate φµ is false, and so φµ can only be opaque if µ is a possible
sequence.

Theorem 1. Π is O-anonymous w.r.t. A iff it is strongly anonymous w.r.t. A.

Weak anonymity A natural extension of strong anonymity is weak anonymity2.
This models easily the notion of pseudo-anonymity : actions performed by the
same party can be correlated, but the identity of the party cannot be determined.

Definition 6 Π is weakly anonymous w.r.t. A if π(L(Π)) ⊆ L(Π), for every
permutation π over the set A.

In our framework, we have that

Definition 7 Π is weak-O-anonymous if, for every sequence µ ∈ A∗, the pred-
icate φµ over the runs of Π introduced in Definition 5 is opaque w.r.t. obsd

A.

Theorem 2. Π is weak-O-anonymous w.r.t. A iff it is weak-anonymous w.r.t. A.

Other observation functions Dynamic observation functions can model for
example the downgrading of a channel. Before the downgrade nothing can be
seen, after the downgrade the observer is allowed to see all transmissions on
that channel. A suitable formulation would be as follows.

Suppose that A represents the set of all possible messages on a confidential
channel, and δ ∈ L \A represents an action of downgrading that channel. Then

2 We believe that this formulation of weak anonymity was originally due to Ryan and
Schneider.

81

6 J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan

obs(λ) is obtained from λ by deleting each occurrence of ai which is preceded
(directly or indirectly) by an occurrence of δ. In other words, if the downgrade
action appears earlier in the run, then the messages on the channel are observed
in the clear, otherwise nothing is observed.

Orwellian observation functions can model conditional or escrowed anonymity,
where someone can be anonymous when they initially interact with the system,
but some time in the future their identity can be revealed, as outlined below.

Suppose that there are n identities Idi , each identity being capable of per-
forming actions represented by ai ∈ A. Moreover, α /∈ L represents the encrypted
observation of any of these actions, and ρi ∈ L\A represents the action of identity
Idi being revealed. Then obs(λ) is obtained from λ by replacing each occurrence
of ai by α, provided that ρi never occurs within λ.

2.2 Non-Interference

Opacity can be linked to a particular formulation of non-interference. A discus-
sion of non-interference can be found in [10] and [22]. The basic idea is that labels
are split into two sets, High and Low . Low labels are visible by anyone, whereas
High labels are private. Then, a system is non-interfering if it is not possible
for an outside observer to gain any knowledge about the presence of High labels
in the original run (the observer only sees Low labels). This notion is in fact
a restriction of standard non-interference. It was originally called non-inference
in [19], and is called strong non-deterministic non-interference in [11].

Definition 8 Π satisfies non-inference if L(Π) |Low ⊆ L(Π).

In other words, for any run (s , λ) of Π , there exists a run (s ′, λ′
) such that

λ
′
is λ with all the labels in High removed.
The notion of non-interference (and in particular non-inference) is close to

opacity as stated by the two following properties. First, we show that it is possible
to transform certain initial opacity properties into non-inference properties.

Proposition 2. Any initial opacity property involving static observation func-
tions can be reduced to a non-inference property.

A kind of converse result also holds, in the sense that one can transform any
non-inference property to a general opacity property.

Proposition 3. Any non-inference property can be reduced to an opacity prop-
erty.

Non-interference in general makes a distinction between public (Low) and
private (High) messages, and any revelation of a high message breaks the non-
interference property. We believe that the ability to fine-tune the obs function
may make opacity better suited to tackling the problem of partial information
flow, where a message could provide some partial knowledge and it may take a
collection of such leakages to move the system into a compromised state.

82

Opacity Generalised to Transition Systems 7

2.3 Security Protocols

Opacity was introduced in the context of security protocols in [16]. With one
restriction, the current version of opacity is still applicable to protocols. Namely,
since we require the number of initial states to be finite, the initial choices made
by the various honest agents must come from bounded sets.

To formalise opacity for protocols in the present framework, labels will be
messages defined by the simple grammar

m ::= a | 〈m,m〉 | {m}m
where a ranges over a set A of atomic messages; 〈m1,m2〉 represents the pairing
(concatenation) of messages m1 and m2; and {m1}m2

is the encoding of message
m1 using message m2. A subset K of A is the set of keys, each key k in K having
an inverse denoted by k−1. The notation E ` m, where m is a message and E
is a finite set of messages (environment), comes from Dolev-Yao theory [7] and
denotes the fact that m is deducible from E .

Two messages, m1 and m2, are similar for environment E iff E ` m1 ∼
m2 where ∼ is the smallest (w.r.t. set inclusion) binary relation satisfying the
following:

a ∈ Atoms

a ∼ a

u1 ∼ u2 v1 ∼ v2

〈u1, v1〉 ∼ 〈u2, v2〉
E ` k−1 u ∼ v

{u}k ∼ {v}k
¬ E ` k−1 ¬ E ` k ′−1

{u}k ∼ {v}k ′

In other words, messages are similar if it is not feasible for an intruder to distin-
guish them using the knowledge E . Such a notion was introduced in [2], where
it was shown to be sound in the computational model, and its generalisation
including the case of equational theories appears in [1].

To state which part of a message is visible from the outside, we will use the
notion of a pattern [2], which adds a new message � to the above grammar, rep-
resenting undecryptable messages. Then, pattern(m,E) is the accessible skeleton
of m using messages in E as knowledge and E ` m1 ∼ m2 ⇔ pattern(m1,E) =
pattern(m2,E). It is defined thus:

pattern(a,E) = a

pattern(〈m1,m2〉,E) = 〈pattern(m1,E), pattern(m2,E)〉

pattern({m1}m2
,E) =

{
{pattern(m1)}m2

if E ` m2

� otherwise .

To simplify the presentation, we assume that a security protocol is repre-
sented by an LTS Π = (S ,L, ∆,S0) (for protocols semantics, see [15]). As proto-
cols are commonly interested in initial opacity (opacity on the value of one of the
parameter, e.g., a vote’s value), the predicate φ will be a suitable subset of S0.
The observation function obs will be orwellian with obs(li , λ) = pattern(li ,E),
where E is the set of messages appearing in λ. (note that, in the case of a
bounded protocol, an m-orwellian function will be sufficient). Then, opacity of
φ w.r.t. obs is equivalent to the concept introduced in [16].

83

8 J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan

3 Opacity Checking

Opacity is a very general concept and many instantiations of it are undecidable.
This is even true when LTSs are finite. We will formulate such a property as
Proposition 5 (part 4), but first we state a general non-decidability result.

Proposition 4. Opacity is undecidable.

Proof. We will show that the reachability problem for Turing machines is re-
ducible to (final) opacity. Let TM be a Turing machine and s be its (non-initial)
state. We construct an instance of the final opacity as follows: Π is given by the
operational semantics of TM , the observation function obs is constant, and φ
returns true iff the final state of a run is different from s . Since s is reachable
in TM iff φ is final opaque w.r.t. obs , opacity is undecidable.

It follows from the above proposition that the undecidability of the reachabil-
ity problem for a class of machines generating LTSs renders opacity undecidable.
We will therefore restrict ourselves to Petri nets, a rich model of computation
in which the reachability problem is still decidable [21]. Furthermore, Petri nets
are well-studied structures and there is a wide range of tools and algorithms for
their verification.

3.1 Petri Nets

We will use Petri nets with weighted arcs [21], and give their operational se-
mantics in terms of transition sequences.3 Note that this varies slightly from the
one used in [4] where the step sequence semantics allowed multiple transitions
to occur simultaneously. Here, transitions are clearly separated.

A (weighted) net is a triple N = (P ,T ,W) such that P and T are disjoint
finite sets, and W : (T × P) ∪ (P × T) → N. The elements of P and T are
respectively the places and transitions, and W is the weight function of N . In
diagrams, places are drawn as circles, and transitions as rectangles. If W (x , y) ≥
1 for some (x , y) ∈ (T × P) ∪ (P × T), then (x , y) is an arc leading from x to
y . As usual, arcs are annotated with their weight if this is 2 or more. The pre-
and post-multiset of a transition t ∈ T are multisets of places, preN (t) and
postN (t), respectively given by

preN (t)(p) = W (p, t) and postN (t)(p) = W (t , p),

for all p ∈ P . A marking of a net N is a multiset of places. Following the standard
terminology, given a marking M of N and a place p ∈ P , we say that p is marked
if M (p) ≥ 1 and that M (p) is the number of tokens in p. In diagrams, M will
be represented by drawing in each place p exactly M (p) tokens (black dots).
Transitions represent actions which may occur at a given marking and then lead

3 It should be stressed that the transitions in the Petri net context correspond to the
labels rather than arcs in the LTS framework.

84

Opacity Generalised to Transition Systems 9

to a new marking. A transition t is enabled at a marking M if M ≥ preN (t).
Thus, in order for t to be enabled at M , for each place p, the number of tokens in
p under M should at least be equal to the total number of tokens that are needed
as an input to t , respecting the weights of the input arcs. If t is enabled at M ,
then it can be executed leading to the marking M ′ = M − preN (t) + postN (t).
This means that the execution of t ‘consumes’ from each place p exactly W (p, t)
tokens and ‘produces’ in each place p exactly W (t , p) tokens. If the execution
of t leads from M to M ′ we write M [t〉M ′ and call M ′ reachable from M . A
marked Petri net Σ = (N ,S0) comprises a net N = (P ,T ,W) and a finite set
of initial markings S0. It generates the LTS ΠΣ = (S ,T , ∆,S0) where S is the
set of all the markings reachable from the markings in S0, T is the set of labels,
and ∆ is defined by (M , t ,M ′) ∈ ∆ if M [t〉M ′. The language of Σ is that of ΠΣ .

In the case of Petri nets, there are still some undecidable opacity problems.

Proposition 5. The following problems are undecidable for Petri nets:

1. Initial opacity when considering a static observation function.
2. Initial opacity when considering a state-based static observation function.
3. Initial opacity when considering an orwellian observation function even in

the case of finite LTSs generated by marked nets.
4. Opacity when considering a constant observable function even in the case of

finite LTSs generated by a marked nets.

An analysis of the proof of the last result identifies two sources for the com-
plexity of the opacity problem. The first one is the complexity of the studied
property, captured through the definition of φ. In particular, the latter may be
used to encode undecidable problems and so in practice one should presumably
restrict the interest to relatively straightforward versions of opacity, such as the
initial opacity. The second source is the complexity of the observation function,
and it is presumably reasonable to restrict the interest to some simple classes of
observation functions, such as the static observation functions. This should not,
however, be considered as a real drawback since the initial opacity combined with
an n-orwellian observation function yields an opacity notion which is powerful
enough to deal, for example, with bounded security protocols (section 2.3).

What now follows is a crucial result stating that initial opacity with an n-
orwellian observation function is decidable provided that the LTS generated by
a marked Petri net is finite4. In fact, this result could be generalised to any
finite LTS; i.e., in the case of a finite LTS, initial opacity w.r.t. an n-orwellian
observation function is decidable.

3.2 Approximation of Opacity

As initial opacity is, in general, undecidable when LTSs are allowed to be infinite,
we propose in this section a technique which might allow us to verify it, at least
in some cases, using what we call under/over-opacity.

4 Note that the finiteness of LTS is decidable, and can be checked using the standard
coverability tree construction [21].

85

10 J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan

Definition 9 For i = 1, 2, 3, let Πi be an LTS. Moreover, let obsi be an ob-
servation function and φi a predicate for the runs of Πi such that the following
hold:

(∀ ξ ∈ run(Π1) ∩ φ1) (∃ ξ′ ∈ run(Π2) ∩ φ2) obs1(ξ) = obs2(ξ
′)

(∀ ξ ∈ run(Π3) \ φ3) (∃ ξ′ ∈ run(Π1) \ φ1) obs3(ξ) = obs1(ξ
′) .

Then φ1 is under/over-opaque (or simply uo-opaque) w.r.t. obs1 if for every
ξ ∈ run(Π2) ∩ φ2 there is ξ′ ∈ run(Π3) \ φ3 such that obs3(ξ) = obs1(ξ

′).

Intuitively, Π2 provides an over-approximation of the runs satisfying φ1, while
Π3 provides an under-approximation of those runs that do not satisfy φ1. One
can then show that uo-opacity w.r.t. obs1 implies opacity w.r.t. obs1. Given Π1,
obs1 and φ1, the idea then is to be able to construct an over-approximation and
under-approximation to satisfy the last definition. A possible way of doing this
in the case of marked Petri nets is described next.

Uo-opacity for Petri nets Suppose that Σ = (N ,S0) is a marked Petri net,
Π1 = ΠΣ , obs1 is a static observation function for Π1 and φ1 ⊆ S0 is an initial
opacity predicate for Π1.

Deriving over-approximation The over-approximation is obtained by generating
the coverability graph Π2 of Σ (see [9] for details), starting from the initial
nodes in S0 ∩ φ1. The only modification of the original algorithm needed is that
in our setup there may be several starting nodes S0 ∩ φ1 rather than just one.
However, this is a small technical detail. The observation function obs2 is static
and defined in the same way as obs1. The predicate φ2 is true for all the initial
nodes S0 ∩ φ1. Crucially, Π2 is always a finite LTS.

Proposition 6. (∀ ξ ∈ run(Π1) ∩ φ1) (∃ ξ′ ∈ run(Π2) ∩ φ2) obs1(ξ) = obs2(ξ
′).

Deriving under-approximation A straightforward way of finding under-approxi-
mation is to impose a maximal finite capacity max for the places of Σ (for
example, by using the complement place construction), and then deriving the
LTS Π3 assuming that the initial markings are those in S0 \φ1. The observation
function obs3 is static and defined in the same way as obs1. The predicate φ3 is
false for all the initial nodes S0 \ φ1.

Clearly, Π3 is always a finite LTS. However, for some Petri nets with an
infinite reachability graph (as shown later on by our example), this under-
approximation may be too restrictive, even if one takes arbitrarily large bound
max . Then, in addition to using instance specific techniques, one may attempt
to derive more generous under-approximation, in the following way.

We assume that there are some (invisible) transitions in Σ mapped by obs1

to ε transitions, and propagate the information that a place could become un-
bounded due to infinite sequence of invisible transitions. The construction re-
sembles the coverability graph generation.

86

Opacity Generalised to Transition Systems 11

As in the case of the reachability graph, the states in Π3 are ω-markings (see
the proof of Proposition 6). Then Π3 is built by starting from the initial states
S0 \ φ1, and performing a depth-first exploration. At each visited ω-marking
M , we find (for example, using a nested call to a coverability graph generation
restricted to the invisible transitions starting from M) whether there exists M ′ >
M reachable from M through invisible transitions only5; then we set M (p) = ω,
for every place p such that M ′(p) > M (p). Note that the above algorithm may
be combined with the capacity based approach and then it always produces a
finite Π3. In general, however, Π3 is not guaranteed to be finite.

It should be pointed out that Π3 generated in this way will not, in general,
be a deterministic LTS, but this does not matter as the only thing we will be
interested in is the language it generates.

Proposition 7. (∀ ξ ∈ run(Π3) \ φ3) (∃ ξ′ ∈ run(Π1) \ φ1) obs3(ξ) = obs1(ξ
′).

Deciding uo-opacity Assuming that we have generated over- and under- ap-
proximations Π2 and Π3, uo-opacity holds iff obs2(L(Π2)) ⊆ obs3(L(Π3)). And
the latter problem is decidable whenever Π2 and Π3 are finite LTSs as it then
reduces to that of inclusion of two regular languages.

4 A Simple Voting Scheme

To illustrate our work, we give an example of a simple voting system. Another
one, inspired by an anonymity requirement required in the chemical industry, is
described in [6].

In this example, we consider a vote session allowing only two votes: 1 and 2.
We then describe a simple voting scheme in the form of a Petri net (see figure 1).
The voting scheme contains two phases. The first one called voting phase (when
there is a token in Voting) allows any new voter to enter the polling station
(transition NV) and vote (transitions V 1 and V 2). Votes are stored in two places
Results1 and Results2. A particular voter A is identified, and we formulate our
properties with respect to A. After an indeterminate time, the election enters
the counting phase (when there is a token in Counting, after executing transition
C , and no token in Voting). Then the different votes are counted. Votes for 1 are
seen via transition C1 and vote for 2 via C2. This net has one obvious limitation.
At the end, there still can be some tokens left in places Results1 and Results2
so this scheme does not ensure that every vote is counted.

We want to verify that the vote cast by A is secret: the two possible initial
markings are {Voting , 1} and {Voting , 2}. We prove that it is impossible to detect
that “1” was marked (a symmetric argument would show that it is impossible
to detect whether “2” was marked). The observation function is static and only
transitions C1 and C2 are visible, i.e., obs(C1) = C1, obs(C2) = C2 and
obs(t) = ε for any other transition t .

5 This search does not have to be complete for the method to work, however, the more
markings M ′ we find, the better the overall result is expected to be.

87

12 J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan

NV

V1 V2

C

C1 C2

A1 A2

Waiting

Results1 Results2

Voting

Counting

1 2

0

1

tA1

16

tC

20

tNV

2

tC

8

tNV

17

tNV

tNV

tA1

19

tC

21

tV1

25

tV2

3

tC1

6

tNV

tNV

7

tC 9

tV1

13

tV2

4

tNV tC1 tNV

5

tNV

tNV

tC1

tNV

tNV tV1

10

tC

11

tV2

tNV tV2

tV1

14

tC

tC1 tNV tNV tV1 tV2

12

tC

tC1 tC2 tNV

tC2 tNV

15

tC1

tC2 tNV

18

tNV

tNV

tNV

tA1

tNV tV1

22

tC

23

tV2tA1

tNV tV2

tV1

26

tC

tC1 tNV

tA1

tNV tV1 tV2

24

tC

tC1 tC2 tNV

tC2 tNV

Fig. 1. Net for the voting system, and below its coverability graph.

To verify opacity, we will use the under/over approximation method. The
coverability graph (over-approximation) can be computed (see figure 1) using,
for example, Tina [25]. After application of the observation function and simplifi-
cation, we obtain that obs2(L(Π2)) = {C1,C2}∗(see section 3.2 for the definition
of Π2.)

However, the simple under approximation using bounded capacity places will
not work in this case, as for any chosen maximal capacity max , the language
L(Π3) will be finite whereas obs2(L(Π2)) is infinite. Thus, we use the second
under approximation technique. The following array represents the reachable
states of the system starting from marking {Voting , 2} using this technique.

Waiting Voting Results1 Results2 1 2 Counting
A ω 1 ω ω 0 1 0
B ω 1 ω ω 0 0 0
C ω 0 ω ω 0 1 1
D ω 0 ω ω 0 0 1

88

Opacity Generalised to Transition Systems 13

The behaviour of this reachability graph, i.e. obs3(L(Π3)), is simple:

C1C2 C1 C2

A

C

B

D

ε

εε

Thus, the under-approximation is in this case: obs3(L(Π3)) = {C1,C2}∗,
and so obs2(L(Π2)) ⊆ obs3(L(Π3)) holds. We can now conclude that opacity of
φ w.r.t. obs is verified and so the vote cast by A is kept secret.

5 Related Work

Concepts similar to opacity have been studied using epistemic logics, or logics
of knowledge [8]. These logics include a “knowledge” operator, representing the
case where an agent knows a fact, and are particularly suitable for reasoning
about security within a multi-agent context [17, 12, 3]. The semantics can be
given within a “possible worlds” model: an agent knows a fact in a given world
if it is true in every world that the agent considers possible. Opacity appears to
be closely related to this knowledge operator, in that a property is opaque when
the observer cannot be sure that it is true (see also below). That is, there is a
world (a high level trace) that the observer considers possible, in which the fact
does not hold. In [26] the notion of ignorance is developed, where an agent is
ignorant of a fact φ when it cannot say for certain either that φ holds or that
¬ φ holds. In our terms, an agent would be ignorant of φ if both φ and ¬ φ were
opaque.

There is a clear and strong relationship between our work and that contained
in [14], and through it also with that in [8]. For example, final-opacity could be
understood, using the terminology of [14], in the following way. To start with,
we assume that an agent i is modelled by our obs function and, for every point
(r ,m), we have ri (m) = obs(r ,m). In other words, the i-th agent (in the sense
of [14]) is observing the system. To model predicates within our approach, we
then use information functions of [14], saying that f is such a function and, for
every point (r ,m), f (r ,m) returns a true or false value which only depends on
the m-th state of the run r . Then, applying Definition 3.3 of [14], results in
the following rendering of our notion of final-opacity: “for every point (r ,m)
there is another point (r ′,m ′) such that obs(r ,m) = obs(r ′,m ′) and f (r ,m) =
¬ f (r ′,m ′)”. Indeed, this looks very similar to the definition used by us, but is
in fact strictly stronger, since our definition should correspond to the following:
“for every point (r ,m) with f (r ,m) = true, there is another point (r ′,m ′) such
that obs(r ,m) = obs(r ′,m ′) and f (r ′,m ′) = false”. And the notion based on
Definition 3.3 of [14] is basically equivalent to opacity of both f and f ′ = ¬ f . We
therefore feel that there is no straightforward way of embedding our approach

89

14 J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan

within that proposed in [14] (and so also [8]). We also feel that the basic reason
behind this is that our notion of information hiding is ‘asymmetric’ in a sense
that different values are obscured in possibly different ways. To make this more
concrete, we could propose a slight modification of the definition from [14] along
the following lines:

Assume additionally that for every v in the range of f there exists pos-
sibly empty set Mask(v) of values in the domain of f . Then, if f is a
j -information function, then agent j maintains f -secrecy w.r.t. i in sys-
tem R if, for all points (r ,m) and values v ∈ Mask(f (r ,m)) there is a
point (r ′,m ′) such that ri (m) = r ′

i (m
′) and f (r ′,m ′) = v .

Intuitively, Mask(v) provides sufficient obscurity from the point of view of agent
j about the actual value of v . In our case we could then set Mask(true) = false
and Mask(false) = ∅ (the latter to indicate that we do not care about the
states where our predicate is false). And final-opacity would then be expressible
using the modified definition. Our hypothesis is that such a modification consti-
tutes an interesting true weakening of the security notion discussed in [14], and
consequently it deserves an investigation in its own right.

6 Conclusions

We have presented a general definition of opacity that extends previous work.
This notion is no longer bound to the Petri net formalism and applies to any
labelled transition system. However, restricting ourselves to initial opacity in
the case of Petri nets allows us to find some decidability results. Furthermore,
in this general model we can show how opacity relates to other information flow
properties such as anonymity or non-inference.

Non-decidability results show that the opacity problem is a complex one. Its
complexity is related to the complexity of the checked property, the complexity
of the adversary’s observational capabilities and the complexity of the system.
The first point can be addressed by considering initial opacity which is still very
expressive. The second one can be simplified by considering only n-orwellian
observation functions. To solve the third problem, we can restrict ourselves to
finite automata but this causes us to lose significant expressive power.

In the case of infinite Petri nets, over- and under- approximating gives a way
of checking opacity. This technique works well in the case of our voting example.
We intend in future work to find a better abstraction for Petri nets and some
well suited abstractions for other formalisms.

Some of the work done within epistemic logic has been with a view to model
checking (see [18, 20, 24] for recent examples). Automatic verification is also an
important goal of our work, and so exploring the connections between epistemic
logic and opacity should prove a strong basis for further research.

90

Opacity Generalised to Transition Systems 15

Acknowledgments

This research was supported by the EPSRC DIRC, GOLD and SCREEN projects,
the RNTL project PROUVE-03V360, the ACI project ROSSIGNOL and DSTL.

References

1. M.Abadi and V.Cortier: Deciding Knowledge in Security Protocols under Equa-
tional Theories. In: ICALP (2004)

2. M.Abadi and P.Rogaway: Reconciling two Views of Cryptography (The computa-
tional soundness of formal encryption). In: IFIP TCS2000 (2000)

3. P.Bieber: A Logic of Communication in a Hostile Environment. In: CSFW (1990)
4. J.W.Bryans, M.Koutny and P.Y.A.Ryan: Modelling Opacity using Petri Nets.

ENTCS 121 (2005)
5. J.W.Bryans, M.Koutny and P.Y.A.Ryan: Modelling Dynamic Opacity using Petri

Nets with Silent Actions. In: FAST (2004)
6. J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan: Opacity Generalised to Tran-

sition Systems. CS-TR 868, University of Newcastle (2004)
http://www.cs.ncl.ac.uk/research/pubs/trs/abstract.php?number=868

7. D.Dolev and A.C.Yao: On the Security of Public Key Protocols. IEEE Transactions
on Information Theory 29 (1983)

8. R.Fagin, J.Y.Halpern, Y.Moses and M.Y.Vardi: Reasoning about Knowledge. MIT
press (1995)

9. A.Finkel: The Minimal Coverability Graph for Petri Nets. LNCS 674 (1993)
10. R.Focardi and R.Gorrieri: A Taxonomy of Trace-Based Security Properties for

CCS. In: CSFW (1994)
11. R.Focardi and R.Gorrieri: Classification of Security Properties: Information flow.

LNCS 2171 (2000)
12. J.Glasgow, G.Macewen and P.Panangaden: A Logic for Reasoning about Security.

ACM Transactions on Computer Systems 10 (1992)
13. Y. Lakhnech and L. Mazaré: Probabilistic Opacity for a Passive Adversary and

its Application to Chaum’s Voting Scheme. Verimag Technical Report 2005-04,
(2005).

14. J.Y.Halpern and K.O’Neill: Anonymity and Information Hiding in Multiagent Sys-
tems. In: CSFW (2003)

15. F.Jacquemard, M.Rusinowitch and L.Vigneron: Compiling and Verifying Security
Protocols. In: LPAR (2000)

16. L.Mazaré: Using Unification For Opacity Properties. In: WITS (2004)
17. L.Moser: A Logic of Knowledge and Belief for Reasoning about Security. In: CSFW

(1989)
18. W.Nabialek, A.Niewiadomski, W.Penczek, A.Polórla and M.Szreter: Verics 2004:

A Model Checker of Real-Time and Multi-agent Systems. In: CS&P (2004)
19. C.O’Halloran: A Calculus of Information Flow. In: ESORICS (1990)
20. F.Raimondi and A.Lomuscio: Verification of Multiagent Systems via Ordered Bi-

nary Decision Diagrams: an Algorithm and its Implementation. TR-04-01, King’s
College (2004)

21. W.Reisig and G.Rozenberg (Eds.): Lectures on Petri Nets. LNCS 1491 & 1492
(1998)

22. P.Y.A.Ryan: Mathematical Models of Computer Security. LNCS 2171 (2000)

91

16 J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan

23. S.Schneider and A.Sidiropoulos: CSP and Anonymity. In: ESORICS (1996)
24. S.van Otterloo, W.van der Hoek and M.Woolridge: Model Checking a Knowledge

Exchange Scenario. In: IJCAI (2003)
25. Time Petri Net Analyzer. http://www.laas.fr/tina/ (2004)
26. W.van der Hoek and A.Lomuscio: A Logic for Ignorance. ENTCS 85 (2004)

92

Unifying Decidability Results on Protection

Systems Using Simulations ⋆

Constantin Enea

Faculty of Computer Science, “Al.I.Cuza” University of Iasi, Romania,
cenea@infoiasi.ro

Abstract. We investigate two possible definitions of simulation between
protection systems. The resulting simulation relations are used to unify
the proofs of decidability of the safety problem for several classes of
protection systems from the literature, notably the take-grant systems
([4]) and the MTAM systems with acyclic creation graphs([9]).

1 Introduction and Preliminaries

Access control is one of the facets of the implementation of security policies. In
access control models, the security policy is implemented by an assignment of
access rights to the objects composing the system and by the rules allowing the
creation and/or destruction of new objects and the modification of their access
rights.

A powerful model of access control systems is the access matrix model [2].
In this model, the protection state of the system is characterized by the set of
access rights that different entities (subjects or objects) have over other entities
and by the set of commands which may change this state, by creating/destroying
subjects or objects or by adding/removing rights. The expressive power of this
model is sufficiently large to include other models like take-grant systems ([4]),
SPM systems ([8]), ESPM systems ([1]), TAM systems ([9]), etc.

The basic decision problem in an access matrix model is the safety problem:
given two entities A and B and a right R, decide whether the system can evolve
into a state in which A has right R over B. Very early, it was shown that this
problem is undecidable ([2]) and remains like that, even for systems without
subject/object destruction ([3]). Consequently, a number of restrictions have
been proposed [2, 4, 9] for which the safety problem is decidable.

In this paper we propose two notions of simulation between protection sys-
tems that allow us to define a class of access control models for which the safety
problem is decidable. We prove that several classes of protection systems from the
litterature fall into this class, notably the take-grant systems and the monotonic
typed access matrix systems with an acyclic creation graph.

⋆ The research reported in this paper was partially supported by the program ECO-
NET 08112WJ/2004-2005 and by the National University Research Council of Ro-
mania, grants CNCSIS 632/28/2004 and CNCSIS 632/50/2005.

93

Our contributions consist in defining such simulation relations on access ma-
trix models of protection systems and using them to unify and clarify the proof
of decidability of the safety problem for the classes of protection systems above.
As to our knowledge, this is the first attempt to define simulation relations on
such models. We also obtain a slight generalization of the decidability result in
[9] as we will see in Subsect. 5.1.

The paper is organized as follows: in the second section we remind the notion
of a protection system, in the access matrix presentation of [2]. We then define
in Sect. 3 and 4, two notions of simulation between protection systems and show
how we can use them to solve the safety problem. Also, these two simulation
relations allow us to define, in the fifth section, a class of protection systems for
which the safety problem is decidable. We then prove that the mono-operational,
the take-grant, and the monotonic typed access matrix systems with acyclic cre-
ation graphs fall into this class. The last section contains some conclusions.

2 Protection Systems

We use protection systems modeled as in [2]. Here, the protection state of a
system is modeled by an access matrix with a row for each subject and a column
for each object. The cells hold the rights that subjects have on objects.

A protection system is defined over a finite set of generic rights and contains
commands that specify how the protection state can be changed. The commands
are formed of a conditional part which tests for the presence of rights in some cells
of the access matrix and an operational part which specifies the changes made
on the protection state. The changes are specified using primitive operations for
subject/object creation and destruction and for entering/removing rights.

Definition 21 A protection scheme is a tuple S = (R,C), where R is a finite
set of rights and C is a finite set of commands of the following form:

command c(x1, x2, · · · , xn)
if r1 in [xs1 , xo1]

· · ·
rk in [xsk

, xok
]

then
op1

· · ·
opm

Above, c is a name, x1, x2, · · · , xn are formal parameters and each opi is one of
the following primitive operations: enter r into [xs, xo], delete r from [xs, xo],
create subject xs, create object xo, destroy subject xs and destroy object xo.
Also, r, r1, · · · rk are rights from R and s, s1,· · ·, sk, o, o1,· · ·, ok are integers
between 1 and n.

We will call a command mono-operational if it contains only one primitive op-
eration and monotonic if it does not contain “destroy subject”, “destroy object”
and “delete” operations.

94

Definition 22 A configuration over R is a tuple Q = (S,O, P), where S is the
set of subjects, O the set of objects, S ⊆ O and P : S ×O → P(R) is the access
matrix. We will denote by Cf(R) the set of configurations over R.

As we can see, all subjects are also objects. This is a very natural assumption
since, for example, processes in a computer system may be accessed by, or may
access other processes. The objects from O − S will be called pure objects.

Definition 23 A protection system is a tuple ψ = (R,C,Q0), where (R,C) is a
protection scheme and Q0 a configuration over R, called the initial configuration.
A protection system is mono-operational (monotonic) if all commands in C are
mono-operational (monotonic).

We will call the subjects (objects) from S0 (O0) initial subjects (objects).
The six primitive operations mean exactly what their name imply (for details

the reader is reffered [2]). We will denote by ⇒op the application of a primitive
operation op in some configuration.

Definition 24 Let ψ = (R,C,Q0) be a protection system, Q and Q′ two con-
figurations over R and c(x1, · · ·xn) ∈ C a command like in Definition 21. We say
that Q′ is obtained from Q in ψ, applying c with the actual arguments o1,· · ·,

on, denoted by Q→
c(o1,···,on)
ψ Q′, if:

– ri ∈ P (osi
, ooi

), for all 1 ≤ i ≤ k;
– there exist configurations Q1,· · ·, Qm such that Q ⇒op′

1
Q1 ⇒op′

2
· · · ⇒op′m

Qm and Qm = Q′ (op′i is the primitive operation obtained after substituting
x1,· · ·,xn with o1,· · ·,on).

When the command c and the actual arguments o1,· · ·, on are understood
from the context, we will write only Q→ψ Q

′. We consider also →∗

ψ, the reflexive
and transitive closure of →ψ. We say that a configuration Q over R is reachable
in ψ if Q0 →∗

ψ Q.
For protection systems like above, we consider the following safety problem:

given s an initial subject, o an initial object and a right r, decide if a state in
which s has right r over o is reachable. This is a less general safety problem than
the one in [2], but it is more natural and used more frequently in the literature
([1, 4, 8, 9]).

Definition 25 Let ψ = (R,C,Q0 = (S0, O0, P0)) be a protection system, s ∈
S0, o ∈ O0 and r ∈ R. A configuration Q = (S,O, P) over R is called leaky for
(s, o, r) if s ∈ S, o ∈ O and r ∈ P (s, o).

We say that ψ is leaky for (s, o, r) if there exists a reachable configuration
leaky for (s, o, r). Otherwise, ψ is called safe for (s, o, r), denoted by ψ ⊳ (s, o, r).

Now we can define the safety problem as follows:
Safety problem (SP)

Instance: protection system ψ, s ∈ S0, o ∈ O0, r ∈ R;
Question: is ψ safe for (s, o, r)?

95

3 Simulations

The problem to decide if a protection system is safe was shown to be undecidable
in [2], by designing a protection system that simulates a Turing machine. The
most important source of undecidability is the creation of objects, which makes
the system infinite-state. Hence, techniques to reduce the state space of the
system are well suited. In this paper we will refer to an abstraction technique,
namely the simulation relation ([6]).

Definition 31 Let ψ1 = (R1, C1, Q
1
0 = (S1

0 , O
1
0, P

1
0)) and ψ2 = (R2, C2, Q

2
0 =

(S2
0 , O

2
0, P

2
0)) be two protection systems. Also, let ρo ⊆ O1

0×O
2
0 and ρr ⊆ R1×R2

be two relations. For any Q1 = (S1, O1, P1) ∈ Cf(R1) and Q2 = (S2, O2, P2) ∈
Cf(R2), we say that Q2 simulates Q1 w.r.t. ρo and ρr, denoted by Q1 ≺ρo,ρr

Q2,
if:

1. ρo(S1 ∩ S
1
0) ⊆ S2 ∩ S

2
0 ;

2. ρo(O1 ∩O
1
0) ⊆ O2 ∩O

2
0;

3. for any s ∈ S1 ∩ S
1
0 , o ∈ O1 ∩O

1
0 and r ∈ R1, if r ∈ P1(s, o) then there exist

s′ ∈ ρo(s), o
′ ∈ ρo(o) and r′ ∈ ρr(r) such that r′ ∈ P2(s

′, o′).

Above, ρ(s) = {s′|ρ(s, s′)}, for any relation ρ.
The relations ρo and ρr are used to relate the “access powers” of subjects

from two different protection systems. For example, having right r over an object
o in the first system is considered to be the same as having a right r′ ∈ ρr(r)
over an object o′ ∈ ρo(o) in the second system. In this context, a configuration
Q2 from ψ2 simulates a configuration Q1 from ψ1, if every initial subject from
Q2 has at least the same “access power” as the initial subject from Q1 to which
is related by ρo.

The simulation relation we define next, is more general than the one in [6],
because one transition step in the first system can be simulated by zero, one or
more transition steps in the second system.

Definition 32 Let ψ1 = (R1, C1, Q
1
0) and ψ2 = (R2, C2, Q

2
0) be two protection

systems, and ρo, ρr relations like above. We say that H ⊆ Cf(R1) × Cf(R2) is
a simulation relation from ψ1 to ψ2 w.r.t. ρo and ρr if for any Q1 ∈ Cf(R1) and
Q2 ∈ Cf(R2), H(Q1, Q2) implies that:

1. Q1 ≺ρo,ρr
Q2;

2. for any Q′

1 ∈ Cf(R1) such that Q1 →ψ1
Q′

1 there exists Q′

2 ∈ Cf(R2) such
that Q2 →∗

ψ2
Q′

2 and H(Q′

1, Q
′

2).

Definition 33 Let ψ1 = (R1, C1, Q
1
0) and ψ2 = (R2, C2, Q

2
0) be two protection

systems, and ρo, ρr relations like above. We say that ψ2 simulates ψ1 w.r.t. ρo
and ρr, denoted by ψ1 ≺ρo,ρr

ψ2, if there exists a simulation relation H from ψ1

to ψ2 w.r.t. ρo and ρr such that H(Q1
0, Q

2
0). We write ψ1 ≺ ψ2 if there exist ρo

and ρr like above such that ψ1 ≺ρo,ρr
ψ2.

96

The usefulness of the simulation relation is proved by the next theorem. We
will show that solving some instances of SP in a protection system that simulates
another may lead to solving an instance of SP in the initial system.

Theorem 31 Let ψ1 = (R1, C1, Q0 = (S0, O0, P0)) and ψ2 = (R2, C2, Q
′

0 =
(S′

0, O
′

0, P
′

0)) be two protection systems, and ρo, ρr two relations like above. If
ψ1 ≺ρo,ρr

ψ2, then:

[
(∀s′ ∈ ρo(s))(∀o

′ ∈ ρo(o))(∀r
′ ∈ ρr(r))(ψ2 ⊳ (s′, o′, r′))

]
⇒

[
ψ1 ⊳ (s, o, r)

]
,

for any s ∈ S0, o ∈ O0 and r ∈ R1.

Proof Suppose by contradiction that ψ1 is not safe for (s, o, r). Then, there
exists the follwing computation in ψ1:

Q0 →ψ1
Q1 →ψ1

· · · →ψ1
Ql,

such that Ql is leaky for (s, o, r).
ψ1 ≺ρo,ρr

ψ2 implies that there exists a simulation relation H from ψ1 to ψ2

such that H(Q0, Q
′

0). Hence, we have in ψ2 the following computation:

Q′

0 →∗

ψ2
Q′

1 →∗

ψ2
· · · →∗

ψ2
Q′

l,

such that H(Qi, Q
′

i) for all 0 ≤ i ≤ l.
Consequently, Ql ≺ρo,ρr

Q′

l and, since r ∈ Pl(s, o), we obtain that there exists
s′ in ρo(s), o

′ in ρo(o) and r′ in ρr(r) such that r′ ∈ P ′

l (s
′, o′), where Pl is the

access matrix of Ql and P ′

l the access matrix of Q′

l. So, Q′

l is leaky for (s′, o′, r′)
and ψ2 is not safe for (s′, o′, r′), contradicting the supposition made above. �

The result above implies that ψ2 is a weak-preserving abstraction of ψ1 in the
sense that only positive answers to instances of SP in ψ2 may lead to solving
instances of SP in ψ1.

We will now prove that in some conditions, the existence of simulation rela-
tions in both senses may transform ψ2 into a strong-preserving abstraction of ψ1.
This means that, also negative answers to instances of SP in ψ2 are important
for solving instances of SP in ψ1.

We say that a relation ρ ⊆ D1 ×D2 is injective if ρ(x1) ∩ ρ(x2) = ∅, for any
x1, x2 ∈ D1.

Corollary 31 Let ψ1 = (R1, C1, Q0 = (S0, O0, P0)) and ψ2 = (R2, C2, Q
′

0 =
(S′

0, O
′

0, P
′

0)) be two protection systems, and ρo, ρr two relations like above.
If ψ1 ≺ρo,ρr

ψ2, ψ2 ≺ρ−1

o ,ρ
−1

r
ψ1 and ρo, ρr are injective then:

[
(∀s′ ∈ ρo(s))(∀o

′ ∈ ρo(o))(∀r
′ ∈ ρr(r))(ψ2 ⊳ (s′, o′, r′))

]
⇔

[
ψ1 ⊳ (s, o, r)

]
,

for any s ∈ S0, o ∈ O0 and r ∈ R1.

Proof The result is immediate, applying Theorem 31 for ψ1 ≺ρo,ρr
ψ2 and

ψ2 ≺ρ−1

o ,ρ
−1

r
ψ1. �

97

Next, we exemplify the use of simulation relations in the analysis of protec-
tion systems. We will show that an weak-preserving abstraction of a protection
system can be obtained by adding commands or by removing the non-monotonic
primitive operations from all the commands. Then, for monotonic protection sys-
tems, we prove that an abstraction can be obtained by splitting each command
into mono-operational commands.

Example 31 Let ψ = (R,C,Q0 = (S0, O0, P0)) and ψ′ = (R,C ′, Q0) be two
protection systems such that C ⊆ C ′.

We say that two configurations Q = (S,O, P) and Q′ = (S′, O′, P ′) from
Cf(R) are equal up to names, denoted by Q ≈ Q′, if:

– O ∩O0=O
′ ∩O0;

– there exists a bijection φ : O → O′ such that:

• φ(o) = o, for every o ∈ O ∩O0 (φ preserves initial objects);

• φ(S) = S′ (φ preserves subjects);

• r ∈ P (s, o) ⇔ r ∈ P ′(φ(s), φ(o)), for any s ∈ S, o ∈ O and r ∈ R.

It can be easily proved that ψ ≺idO0
,idR

ψ′, considering the simulation relation
H ⊆ Cf(R) × Cf(R), given by H(Q,Q′) iff Q ≈ Q′.

Example 32 Let ψ = (R,C,Q0 = (S0, O0, P0)) be a protection system. We
suppose w.l.o.g. that the commands in C do not delete a right that they have
just entered or destroy an object that they have just created. We will prove that
ψ is simulated by its monotonic restriction, i.e., by the system which acts like ψ
but does not destroy any object and does not delete any right.

Let ψm = (R,Cm, Q0), where Cm is the set of commands obtained from the
ones in C, by removing all non-monotonic primitive operations.

We can prove that ψ ≺idO0
,idR

ψm, considering the following relation H:
given Q = (S,O, P) and Q′ = (S′, O′, P ′) from Cf(R), we have H(Q,Q′) if:

– O ∩O0 ⊆ O′ ∩O0;

– there exists an injection φ : O → O′, such that:

• φ(o) = o, for every o ∈ O ∩O0;

• φ(S) ⊆ S′;

• r ∈ P (s, o) ⇒ r ∈ P ′(φ(s), φ(o)), for any s ∈ S, o ∈ O and r ∈ R.

Example 33 Let ψ = (R,C,Q0) be a monotonic protection system. We can
prove that ψ is simulated by the mono-operational system that results by split-
ting all the commands from C into mono-operational commands.

To this end, we will reuse the relation H defined by H(Q,Q′) if Q ≈ Q′ and
prove that it is a simulation from ψ to ψmo w.r.t. idO0

and idR.

98

4 Quasi-bisimulations

We present another type of simulation relation between protection systems, that
resembles to a bisimulation relation ([7]) but does not induce an equivalence
relation over protection systems. That is why we will call this relation a quasi-
bisimulation. It differs from the simulation relation presented earlier by the fact
that initial subjects must have the same “access power” and we must be able
to simulate one step from a protection system with a sequence of zero or more
steps in the other system.

Definition 41 Let ψ1 = (R1, C1, Q
1
0 = (S1

0 , O
1
0, P

1
0)) and ψ2 = (R2, C2, Q

2
0 =

(S2
0 , O

2
0, P

2
0)) be two protection systems. Also, let ρo ⊆ O1

0×O
2
0 and ρr ⊆ R1×R2

be two relations. For any Q1 = (S1, O1, P1) ∈ Cf(R1) and Q2 = (S2, O2, P2) ∈
Cf(R2), we say that Q2 is quasi-bisimilar to Q1 w.r.t. ρo and ρr, denoted by
Q1 �ρo,ρr

Q2, if:

1. ρo(S1 ∩ S
1
0) ⊆ S2 ∩ S

2
0 ;

2. ρo(O1 ∩O
1
0) ⊆ O2 ∩O

2
0;

3. For any s ∈ S1 ∩ S1
0 , o ∈ O1 ∩ O1

0 and r ∈ R1, r ∈ P1(s, o) iff there exist
s′ ∈ ρo(s), o

′ ∈ ρo(o) and r′ ∈ ρr(r) such that r′ ∈ P2(s
′, o′).

Definition 42 Let ψ1 = (R1, C1, Q
1
0) and ψ2 = (R2, C2, Q

2
0) be two protection

systems, and ρo, ρr relations like above. We say that B ⊆ Cf(R1)×Cf(R2) is a
quasi-bisimulation relation from ψ1 to ψ2 w.r.t. ρo and ρr if for any Q1 ∈ Cf(R1)
and Q2 ∈ Cf(R2), B(Q1, Q2) implies that:

1. Q1 �ρo,ρr
Q2

2. for any Q′

1 ∈ Cf(R1) such that Q1 →ψ1
Q′

1 there exists Q′

2 ∈ Cf(R2) such
that Q2 →∗

ψ2
Q′

2 and B(Q′

1, Q
′

2).
3. for any Q′

2 ∈ Cf(R2) such that Q2 →ψ2
Q′

2 there exists Q′

1 ∈ Cf(R1) such
that Q1 →∗

ψ1
Q′

1 and B(Q′

1, Q
′

2).

Definition 43 Let ψ1 = (R1, C1, Q
1
0) and ψ2 = (R2, C2, Q

2
0) be two protection

systems, and ρo, ρr relations like above. We say that ψ2 is quasi-bisimilar to ψ1

w.r.t. ρo and ρr, denoted by ψ1 �ρo,ρr
ψ2, if there exists a quasi-bisimulation

relation B from ψ1 to ψ2 w.r.t. ρo and ρr, such that B(Q1
0, Q

2
0). We write ψ1 � ψ2

if there exist ρo and ρr like above such that ψ1 �ρo,ρr
ψ2.

Next, we will prove the usefulness of the quasi-bisimulations, showing that if
we have two protection systems such that ψ1 � ψ2, solving an instance of SP in
ψ1 is equivalent with solving one or more instances of SP in ψ2. This could still
be more efficient if the state space of ψ2 is much smaller than the one of ψ1.

Theorem 41 Let ψ1 = (R1, C1, Q0 = (S0, O0, P0)) and ψ2 = (R2, C2, Q
′

0 =
(S′

0, O
′

0, P
′

0)) be two protection systems, and ρo, ρr two relations like above. If
ψ1 �ρo,ρr

ψ2, then:
[
(∀s′ ∈ ρo(s))(∀o

′ ∈ ρo(o))(∀r
′ ∈ ρr(r))(ψ2 ⊳ (s′, o′, r′))

]
⇔

[
ψ1 ⊳ (s, o, r)

]
,

for any s ∈ S0, o ∈ O0 and r ∈ R1.

Proof Similar to the proof of Theorem 31. �

99

5 A Class of Decidable Protection Systems

Definition 51 A protection system ψ = (R,C,Q0) is called a finite protection
system if the commands from C do not contain “create” primitive operations.

It is well known ([5]) that the safety problem for finite protection systems is
decidable.

Definition 52 We define Dec to be the class of protection systems that has the
following properties:

– if ψ is a finite protection system then ψ ∈ Dec;
– if ψ′ ∈ Dec and ψ ≺ρo,ρr

ψ′, ψ′ ≺ρ−1

o ,ρ
−1

r
ψ, for some ρo and ρr injective

relations, then ψ ∈ Dec;
– if ψ′ ∈ Dec and ψ � ψ′ then ψ ∈ Dec.

By Corollary 31 and Theorem 41, we obtain that the safety problem for the
protection systems from Dec is decidable.

We will show that it contains three other well-known classes of protection
systems for which the safety problem is decidable: MTAM systems with acyclic
creation graphs([9]), mono-operational protection systems([2]) and take-grant
systems([4]).

By showing that these three classes of protection systems are included in
Dec, we unify their proof of decidability for the safety problem. We show that
the safety problem is decidable because these protection systems are simulated
by systems that have all the needed objects created even from the initial config-
uration and no commands that can create objects afterwards.

5.1 MTAM Systems with Acyclic Creation Graphs

In [9], the authors propose an extension of the access matrix model, the typed
access matrix model (TAM, for short), that assigns a type to each object of a
configuration.

Formally, a TAM system is a tuple τ = (R, T,C,Q0 = (S0, O0, t0, P0)), where
R is a finite set of rights, T a finite set of types, C a finite set of typed commands
and Q0 the initial configuration.

Configurations are tuples Q = (S,O, t, P), where S, O and P are as before,
and t : O → T is a function that assigns a type to every object.

The typed commands differ from the commands of a protection system de-
fined as in Sect. 2, by the fact that they test the type of each argument and the
primitive operations used to create objects are: “create subject s of type t” and
“create object o of type t”.

τ is called a monotonic TAM system (MTAM, for short) if the commands
from C do not contain operations that delete rights or destroy objects.

We say that an MTAM system is in canonical form if the “create” commands
(commands that contain at least one “create” primitive operation) are uncon-
ditional (the conditional part is empty). In [9] was proved that MTAM systems
can always be considered to be in canonical form.

100

If c is a typed command like in Fig. 1, ti is called a child type of c if “create
subject xi of type ti” or “create object xi of type ti” appears in c. Otherwise, ti
is called a parent type of c.

The creation graph of a TAM system τ = (R, T,C,Q0) is a directed graph
with the set of vertices T and an edge from t1 to t2 if there exists a command
c ∈ C such that t1 is a parent type of c and t2 a child type of c.

The safety problem SP can be defined analogously for TAM systems.

The main decidability result of [9] is:

Theorem

SP for MTAM systems with acyclic creation graphs is decidable.

A TAM system τ = (R, T,C,Q0 = (S0, O0, t0, P0)) can be described using a
protection system ψτ = (R ∪ T,C ′, Q′

0 = (O0, O0, P
′

0)), where:

P ′

0(s, o) =

P0(s, o), if s 6= o and s ∈ S0

P0(s, o) ∪ {t0(s)}, if s = o and s ∈ S0

{t0(s)}, if s = o and s ∈ O0 − S0

∅, otherwise.

and C ′ = {γ(c)|c ∈ C}, with γ the transformation from Fig. 1 (i1,· · ·, il are
integers between 1 and n such that xil does not appear in a “create” operation).

command c(x1 : t1, x2 : t2, · · · , xn : tn) command γ(c)(x1, x2, · · · , xn)
if r1 in [xs1

, xo1
]

· · ·
rk in [xsk

, xok
]

then
op1

· · ·
opm

if ti1 in [xi1 , xi1]
· · ·
til

in [xil
, xil

]
r1 in [xs1

, xo1
]

· · ·
rk in [xsk

, xok
]

then
op′

1

· · ·
op′

m′

Fig. 1. The transformation γ.

The primitive operations of γ(c) are obtained by copying the ones from c,
excepting the case of a “create subject s of type t” or “create object s of type
t” primitive operation, when we add in γ(c) two operations: “create subject s”
or “create object s” and “enter t in [s,s]”.

From now on, when we say TAM systems, we mean protection systems like
ψτ . Hence, an MTAM system is in canonical form if in the conditional part of
every “create” command we test only rights from T .

101

In the following, we will obtain using quasi-bisimulations, the decidability
of the safety problem for a class of protection systems more general than the
MTAM systems with acyclic creation graphs.

If ψ = (R,C,Q0) is a protection system, denote by Tψ(X) the set of terms
defined over the set of variables X and the signature Σψ, where

Σψ = {ci of arity n | c(x1, · · · , xn) ∈ C and 1 ≤ i ≤ n} ∪ {o of arity 0 | o ∈ O0}
∪{∅ of arity 0}

By Tψ we will denote the set of ground terms.
For a command c(x1, · · · , xn) ∈ C, we say that xi, for some 1 ≤ i ≤ n, is

a child argument of c if “create subject xi” or “create object xi” appears in
c. Otherwise, xi is a parent argument of c. We define the relation ≡Q over the
objects of a configuration Q = (S,O, P) ∈ Cf(R) as follows:

o ≡Q o if o ∈ O0;
o ≡Q o′ if o and o′ were created as the i-th argument of a command c

applied with op1 , · · · , opm
as parent arguments for o

and with o′p1 , · · · , o
′

pm
as parent arguments for o′,

and opj
≡Q o′pj

, for all 1 ≤ j ≤ m.

(p1, · · · , pm are the indexes of the parent arguments of c)

The fact that o was created as the i-th argument of a command c applied
with op1 , · · · , opm

as parent arguments, can be memorized in a configuration Q in
many ways. For example, we can modify the system ψ by adding a right parent
and a right ci, for all c(x1, · · · , xn) ∈ C and 1 ≤ i ≤ n, and by transforming every
command c(x1, · · · , xn) ∈ C, such that after creating xi, for some 1 ≤ i ≤ n, we
enter ci in [xi, xi] and parent in [xpj

, xi] for all xpj
parent arguments of c. In

the following, for the simplicity of the exposition, we will not formalize this.
Clearly, the relation above is an equivalence and to every equivalence class

we can uniquely associate a ground term from Tψ. Consequently, we will denote
an equivalence class by [t]Q, where t is the corresponding term from Tψ.

In the following, when we say equivalence relation we mean the relation ≡Q
and when we say equivalence class, we mean an equivalence class of ≡Q.

Definition 53 Let ψ = (R,C,Q0) be a protection system. We say that a term
from Tψ is accessible if there exists Q ∈ Cf(R) such that Q0 →∗

ψ Q and [t]Q 6= ∅.
By Acc(ψ) we will denote the set of accessible terms.

Definition 54 A monotonic protection system ψ = (R,C,Q0) is called creation-
independent if R can be partitioned into two disjunctive sets Rc and Re such
that:

– the “create” commands test for and enter only rights from Rc;
– the other commands (the commands that contain only “enter” operations)

enter only rights from Re.

102

We can easily see that MTAM systems are particular cases of creation-
independent protection systems in which Rc = T , Re = R and the tests for
the rights in Rc are as in command γ(c) from Fig. 1.

If ψ = (R,C,Q0) is a protection system, we will denote by Reachψ(Q,C ′),
where Q ∈ Cf(R) and C ′ ⊆ C, the set of reachable configurations from Q using
only commands from C ′.

Now, we prove that for any creation-independent system ψ, any t ∈ Acc(ψ)
and any reachable configuration Q, we can apply in Q a sequence of “create”
commands to create an object from an equivalence class represented by t.

Lemma 51 Let ψ = (R,C,Q0) be a creation-independent protection system
and C ′ ⊆ C the set of “create” commands. Then,

(∀t ∈ Acc(ψ))(∀Q ∈ Reachψ(Q0, C)(∃Q′ ∈ Reachψ(Q,C ′))(|[t]Q′ | = |[t]Q| + 1)

Proof From Definition 54, we can see that the application of a “create”
command is not influenced in any way by the application of a command from
C − C ′.

Because, ψ is also monotonic, we can easily obtain the result above. �

Theorem 51 Let ψ = (R,C,Q0) be a creation-independent protection system.
If Acc(ψ) is finite then, ψ belongs to Dec.

Proof If ψ is a creation-independent protection system, then R can be parti-
tioned into Rc and Re as in Definition 54.

Let ψf = (R,Cf , Q
′

0 = (S′

0, O
′

0, P
′

0)) be a protection system, where Cf ⊆ C

is the set of commands that do not create objects and:

– O′

0 = {t|t ∈ Acc(ψ)}. Clearly, O0 ⊆ O′

0;
– S′

0 is the set of subjects from O′

0;
– P ′

0 is defined such as it’s restriction to objects from O0 is P0 and in the cells
of the other objects we have the rights from Rc entered by the corresponding
“create” commands.

In other words, Q′

0 is obtained from Q0 applying “create” commands such
that we obtain objects from equivalence classes represented by all terms in
Acc(ψ).

We will prove that ψ is quasi-bisimilar to ψf w.r.t idO0
and idR.

In the following, for a configuration Q = (S,O, P), fQ : O → Acc(ψ) is a
function such that f(o) = t iff o ∈ [t]Q.

We consider the following relation B: given Q = (S,O, P) reachable in ψ and
Q′ = (S′, O′, P ′) configuration from Cf(R), we have B(Q,Q′) if:

– O0 ⊆ O and O′ = Acc(ψ);
– r ∈ P ′(t1, t2) iff there exists s ∈ [t1]Q and o ∈ [t2]Q such that r ∈ P (s, o).

To prove that B is a quasi-bisimulation, let Q and Q′ be two configurations
like above such that B(Q,Q′).

Clearly, Q �idO0
,idR

Q′.

103

Now, let Q1 be a configuration such that Q →ψ Q1. If we apply a “create”
command then, we can find Q′

1 = Q′, such that Q′ →∗

ψf
Q′

1 and B(Q1, Q
′

1). Oth-

erwise, suppose we apply a command c(x1, · · · , xn) ∈ C ′, with actual arguments
o1, · · · , on. Since B(Q,Q′), we can apply c(x1, · · · , xn) with actual arguments
fQ(o1), · · · , fQ(on) in Q′ and obtain a configuration Q′

1 such that B(Q1, Q
′

1).
For the reverse, suppose we have Q′ →ψf

Q′

1, for some configuration Q′

1.
Clearly, in this step we apply a command c(x1, · · · , xn) that contain only “enter”
primitive operations. Suppose it is applied using t1,· · ·,tn ∈ Acc(ψ) as actual
arguments.

Since ψ is monotonic and create-independent, we can reach in ψ from Q a
configuration Q such that B(Q,Q′) and the access matrix of Q includes that of
Q and has in plus one object oi for each ti above, such that oi ∈ [ti]Q and oi
has in his cells the same rights as ti in Q′ (the creation of objects is possible by
Lemma 51 and the rights can be entered in the cells of oi because, once we have
applied in ψ a command that contains only “enter” primitive operations, we can
apply it later eventually with equivalent actual arguments).

Now, in Q we can apply c with o1,· · ·,on as actual arguments and obtain a
configuration Q1 such that B(Q1, Q

′

1).
The fact that B(Q0, Q

′

0) ends our proof. �

Using Theorem 51, we will prove that MTAM systems with acyclic creation
graphs and mono-operational protection systems belong to Dec.

Corollary 51 MTAM systems with acyclic creation graphs belong to Dec.

Proof As stated above we suppose that MTAM systems are in canonical form
and consequently, they are creation-independent.

Since the creation graph is acyclic, we have also that the set of accessible
terms is finite and we can apply Theorem 51, to obtain the statement of this
corollary. �

5.2 Mono-operational Protection Systems

Mono-operational protection systems ([2]) are protection systems with mono-
operational commands. We will show that they are included in Dec in two steps,
by proving first that the subclass of monotonic mono-operational protection
systems is included in Dec.

Theorem 52 Monotonic mono-operational protection systems belong to Dec.

Proof In the following we will consider protection systems such that every
object is also a subject. This can be assumed without loss of generality by
introducing an otherwise empty row for each pure object.

Hence, let ψ = (R,C,Q0 = (O0, O0, P0) be a monotonic mono-operational
protection system, such that the commands in C do not contain “create object”
primitive operations.

104

We will prove that ψ is quasi-bisimilar to some monotonic mono-operational
system ψ′ that is creation-independent and has Acc(ψ′) finite. Consequently, by
Theorem 51, ψ′ ∈ Dec and from the definition of Dec, ψ ∈ Dec.

Let ψ′ = (R ∪ {alive}, C ′, Q′

0 = (O0, O0, P
′

0)), where P ′

0 is defined by:

P ′

0(s, o) =

{
P0(s, o) ∪ {alive}, if s = o;
P0(s, o), otherwise.

and C ′ is obtained from C in the following way:

– modify each conditional part of an “enter” command (command that con-
tains an “enter” primitive operation) c(x1, · · · , xn) ∈ C by adding tests of
the form: alive in [xi, xi], for all 1 ≤ i ≤ n;

– add a command cs(x) that has the conditional part empty and only a prim-
itive operation “create subject x”.

– remove each “create” command c(x1, · · · , xn) that creates a subject xi, for
some 1 ≤ i ≤ n, and add an “enter” command with the conditional part
of c, modified as in the first case, and a primitive operation “enter alive in
[xi, xi]”.

Now, we prove that ψ �idO0
,idR

ψ′, using the following relation B: if Q =
(O,O, P) ∈ Cf(R) and Q′ = (O′, O′, P ′) ∈ Cf(R ∪ {alive}), we have B(Q,Q′)
if:

– O0 ⊆ O and O0 ⊆ O′;
– if O′

alive = {o|o ∈ O′ and alive ∈ P ′(o, o)} then, there exists a bijection
φ : O → O′

alive, such that:
• φ(o) = o, for every o ∈ O ∩O0;
• r ∈ P (o1, o2) ⇔ r ∈ P ′(φ(o1), φ(o2)), for all o1, o2 ∈ S and r ∈ R.

We can easily prove that B is a quasi-bisimulation relation, if we take in consid-
eration the following:

– applying a “create” command in ψ is equivalent with applying in ψ′ the
“create” command cs and an “enter” command that gives to this new subject
the alive right to himself;

– in ψ′ we can create more subjects than in ψ, but if they do not have the
alive right to themselves, they are useless. In fact, only to commands that
enter the alive right in ψ′, we associate a “create” command in ψ.

Clearly, ψ′ is create-independent since the only “create” command does not
test or enter any right. Acc(ψ′) is finite, because all the created objects in ψ′ are
from an equivalence class represented by the same term cs(∅). �

Theorem 53 Mono-operational protection systems belong to Dec.

Proof Let ψ = (R,C,Q0) be a mono-operational system.
From Example 32 we have that ψ ≺idO0

,idR
ψm, where ψm = (R,Cm, Q0) is

the monotonic restriction of ψ.
As Cm ⊆ C, from Example 31 we have also that ψm ≺idO0

,idR
ψ.

The fact that idO0
and idR are injective and ψm is a monotonic mono-

operational protection system, which by Theorem 52 belongs to Dec, concludes
our proof. �

105

5.3 Take-grant Systems

Take-grant systems ([4]) are protection systems ψ = (R,C,Q0 = (O0, O0, P0)),
where R = {t, g, c} and C is the set of commands shown in Fig. 2, for all
α, β, γ ∈ R. It is clear that the system is monotonic and all objects are also
subjects.

In the original paper, take-grant systems were presented as graph trans-
formation systems. A configuration Q = (O,O, P) is represented as a labeled
directed graph, using subjects as nodes and cells in the matrix as labeled arcs
(if P (o1, o2) 6= ∅, we have an arc from o1 to o2 labeled with P (o1, o2)). The
commands in Fig. 2 are represented as graph transformations that introduce
nodes and/or arcs.

We say that two nodes are connected if there exists a path between them,
independent of the directionality or labels of the arcs. The decidability of the
safety problem is obtained from the following theorem:

Theorem

Let ψ be a take-grant system. ψ is leaky for (o1, o2, r) iff in G0 (the graph that
represents Q0) o1 and o2 are connected and there exists an incoming arc in o2
labeled with t or c if r = t or with r if r ∈ {g, c}.

command takeα(x, y, z) command grantα(x, y, z) command create(x, y)
if t in [x, y]

α in [y, z]
then

enter α in [x, z]

if g in [x, y]
α in [x, z]

then
enter α in [y, z]

create subject y

enter t in [x, y]
enter g in [x, y]
enter c in [x, y]

command callα(x, y, z, u)

command callα,β(x, y, z, u)

command callα,β,γ(x, y, z, u)

if α in [x, y]
c in [x, z]

then

if α in [x, y]
β in [x, y]
c in [x, z]

then

if α in [x, y]
β in [x, y]
γ in [x, y]
c in [x, z]

then

create subject u
create subject u

create subject u

enter α in [u, y]
enter t in [u, z]

enter α in [u, y]
enter β in [u, y]
enter t in [u, z]

enter α in [u, y]
enter β in [u, y]
enter γ in [u, y]
enter t in [u, z]

Fig. 2. Take-grant commands.

We will prove that take-grant protection systems are in Dec, by showing
that they are quasi-bisimilar to a finite protection system with the same initial
configuration.

106

Theorem 54 Take-grant systems belong to Dec.

Proof If ψ = (R,C,Q0 = (O0, O0, P0)) is a take-grant protection system like
above, let ψf = (R,C ′, Q0), where C ′ contains all the commands of the following
form:

command ci,α(x, y, z, x1, · · · , xi)
if connected(x, y, x1, · · · , xi)

α in [z, y]
then

enter α in [x, y]

where 0 ≤ i ≤ |O0|−2 and α ∈ R. connected(x, y, x1, · · · , xi) is a set of conditions
obtained from the conditions below, choosing one from each line:

β1 in [x, x1] or β1 in [x1, x]
β2 in [x1, x2] or β2 in [x2, x1]

· · ·
βi+1 in [xi, y] or βi+1 in [y, xi].

Above, βk, for 1 ≤ k ≤ i+ 1, can be any right from R.
Intuitively, connected(x, y, x1, · · · , xi) checks if in the graph that represents

the configuration in which we apply ci,α, the nodes x and y are connected by a
path of length i+ 2 that passes through x1,· · ·,xi.

We will prove that ψ �idO0
,idR

ψf , considering the following relation B: given
Q1 = (S1, O1, P1) reachable from Q0 and Q2 = (S2, O2, P2) ∈ Cf(R), we have
B(Q1, Q2) if:

– O2 = O0;
– r ∈ P1(s, o) ⇔ r ∈ P2(s, o), for any s ∈ S0, o ∈ O0 and r ∈ R.

Now, we will prove that B is a quasi-bisimulation relation between ψ and ψf
w.r.t. idO0

and idR.
Q1 �idO0

,idR
Q2 is straightforward from the definition of B.

Now suppose that Q1 →ψ Q
′

1 by a command c.
If c is takeα, then suppose it is applied with some actual arguments s1, s2

and s3. If all these objects are initial then, because c is also present in C ′, we
can apply it with the same actual arguments in Q2 and obtain a configuration
Q′

2 such that B(Q′

1, Q
′

2).
If not, we have two cases: whether or not s1 and s3 are both initial objects. If

they are not both initial objects then, we can findQ′

2 = Q2 such that Q2 →∗

ψf
Q′

2

and B(Q′

1, Q
′

2).
If s1 and s3 are both from O0 then from the main result of [4] stated above,

we have that there exists some initial objects o1,· · ·,oi, for some i between 0
and |O0| − 2, such that connected(s1, s3, o1, · · · , oi) is true and also, there exists
some initial object o such that α ∈ P0(o, s3). Since ψ and ψf are monotonic,
these conditions are true also in Q2 and thus, we can apply a command from C ′

to add α in [s1, s3]. Consequently, we can obtain a configuration Q′

2 such that
Q2 →∗

ψf
Q′

2 and B(Q′

1, Q
′

2).

107

The case when c is grantα is similar.
If c is a create or call command then, we can find Q′

2 = Q2 such that
Q2 →∗

ψf
Q′

2 and B(Q′

1, Q
′

2).

For the reverse, suppose that Q2 →ψf
Q′

2. Also, from the main result of [4],
we can find a configuration Q′

1 such that Q1 →∗

ψ Q
′

1 and B(Q′

1, Q
′

2).
The fact that B(Q0, Q0) concludes our proof. �

6 Conclusions

In this paper we have introduced two notions of simulation between protection
systems. As a model for protection systems we have used the well-known access
matrix model of Harrison, Ruzzo and Ullman ([2]). We have shown how we can
use the resulting simulation relations to solve the safety problem for protection
systems.

Then, we have used these relations to unify the proofs of decidability of
the safety problem for several classes of protection systems from the literature:
the mono-operational protection systems ([2]), the take-grant protection sys-
tems ([4]), and the monotonic typed access matrix systems with acyclic creation
graphs ([9]). All these protection systems are infinite-state systems, but we have
shown that they are simulated by some protection systems that do not create
objects and consequently, are finite-state systems.

In future work, we will try to extend the results presented here and obtain
new decidability results of the safety problem for protection systems. We will
also try to consider other models for protection systems than the access matrix
model used in this paper.

References

1. Ammann, P.E., Sandhu, R.: Extending the creation operation in the schematic
protection model. In Proc. of the 6th Annual Computer Security Applications
Conference (1990) 304-348

2. Harrison, M.A., Ruzzo, W.L., Ullman, J.D: Protection in operating systems. Com-
munications of ACM 19(8) (1976) 461-471

3. Harrison, M.A., Ruzzo, W.L.: Monotonic protection systems. In DeMillo et al.
(editors) “Foundations of Secure Computation”, Academic Press 1978

4. Lipton, R.J., Snyder, L.: A linear time algorithm for deciding subject security.
Journal of ACM 24(3) (1977) 455-464

5. Lipton, R.J., Snyder, L.: On synchronization and security. In Demillo et al. (editors)
“Foundations of Secure Computation” Academic Press 1978

6. Milner, R.: An algebraic definition of simulation between programs. In Proc. of the
2nd International Joint Conference on Artificial Intelligence (1971) 481-489

7. Park, D.: Concurrency and automata on infinite sequences. In Proc. of the 5th
GI-Conference on Theoretical Computer Science (1981) 167-183

8. Sandhu, R.: The schematic protection model: its definition and analysis for acyclic
attenuating schemes. Journal of ACM 35(2) (1988) 404-432

9. Sandhu, R.: The typed access matrix model. In Proc. of the IEEE Symposium on
Research in Security and Privacy (1992) 122-136

108

Proof Obligations Preserving Compilation

Extended abstract

Gilles Barthe1 and Tamara Rezk1 and Ando Saabas2

1 INRIA Sophia Antipolis, France, {Gilles.Barthe,Tamara.Rezk}@sophia.inria.fr
2 Institute of Cybernetics, Tallinn Technical University, Estonia, ando@cs.ioc.ee

Abstract. The objective of this work is to study the interaction be-
tween program verification and program compilation, and to show that
the proof that a source program meets its specification can be reused to
show that the corresponding compiled program meets the same specifi-
cation. More concretely, we introduce a core imperative language, and
a bytecode language for a stack-based abstract machine, and a non-
optimizing compiler. Then we consider for both languages verification
condition generators that operate on programs annotated with loop in-
variants and procedure specifications. In such a setting, we show that
compilation preserves proof obligations, in the sense that the proof obli-
gations generated for the source annotated program are the same that
those generated for the compiled annotated program (using the same
loop invariants and procedure specifications). Furthermore, we discuss
the relevance of our results to Proof Carrying Code.

1 Introduction

1.1 Background and contribution

Interactive verification techniques provide a means to guarantee that programs
are correct with respect to a formal specification, and are increasingly being
supported by interactive verification environments that can be used to prove
the correctness of safety critical or security sensitive software. For example, in-
teractive verification environments are being used to certify the correctness of
smartcard software, both for platforms and applications.

However interactive verification environments typically operate on source
code programs whereas it is clearly desirable to obtain correctness guarantees
for compiled programs, especially in the context of mobile code where code
consumers may not have access to the source program. Therefore it seems natural
to study the relation between interactive program verification and compilation.

In this paper, we focus on the interaction between compilation and verifica-
tion condition generators (VC generators), which are used in many interactive
verification environments to guarantee the correctness of source programs, and
by several proof carrying code (PCC) architectures to check the correctness of
compiled programs. Such VC generators operate on annotated programs that
carry loop invariants and procedure specifications expressed as preconditions

109

and postconditions, and yield a set of proof obligations that must be discharged
in order to establish the correctness of the program.

The main technical contribution of the paper is to show in a particular set-
ting that compilation preserves proof obligations, in the sense that the set of
proof obligations generated for an annotated source code program P is equal to
the set of proof obligations generated for the corresponding annotated compiled
program C(()P) (we let C(.) be some compilation function), where annotations
for C(()P) are directly inherited from annotations in P . The immediate practical
consequence of the equivalence is that the results of interactive source program
verification (i.e. the proofs that are built interactively) can be reused for check-
ing compiled programs, and hence that it is possible to bring the benefits of
interactive program verification (at source code level) to the code consumer.

One important question is whether preservation of proof obligations can be
derived from the semantical correctness of the compiler (in the sense that com-
piled programs have the same semantics as their source counterpart), and thus
can be established independently of the exact definition of the compiler. The
answer is negative: our results hold for a specific compiler that does not perform
any optimization, and simple program optimizations invalidate preservation of
proof obligations. We return to this point in Section 5.

Another question is the choice of the source and target languages: our source
and target languages are loosely inspired from Java (e.g. we handle procedure
calls differently), as our main application scenario deals with Java-enabled mobile
phones.

1.2 Application scenarios

In this paragraph, we propose a scenario that exploits preservation of proof
obligations to bring the benefits of interactive source program verification to the
code consumer. The scenario may be viewed as an instance of Proof Carrying
Code (PCC) [9], from which it inherits benefits including its robustness under the
code/specification being modified while transiting from producer to consumer
and/or under the assumption of a malicious producer, and issues including the
difficulty of expressing security policies for applications, etc.

Scenario Consider a mobile phone operator that is keen of offering its customers
a new service and has the possibility to do so by deploying a program C(P)
originating from an untrusted software company. The operator is worried about
the negative impact on its business if the code is malicious or simply erroneous,
and wants to be given guarantees for C(P). For liability reasons, the operator
does not want to see the source code, and for intellectual property reasons, the
software company does not want to disclose its source code nor does it authorize
the operator to modify the compiled code to insert additional checks.

The equivalence of proof obligations can be used to justify the following
scenario: the operator provides a partial specification of the program, e.g. a pre-
condition φ and a postcondition ψ for the program main procedure, and requires
the company to show that the program meets this partial specification. There
are two possibilities: either the software company verifies directly C(P), which

110

is definitely a possibility but not the most comfortable one, or thanks to preser-
vation of proof obligations, it can also set to verify P , and benefits from the
structured nature of modern programming languages in which we assume that
P has been written. To verify P , the software company suitably annotates the
program, leading to an annotated program P ′. Then it generates the set of proof
obligations for P ′ and discharges each proof obligation using some verification
tool that produces proofs. The compiled annotated program is sent to the oper-
ator, together with the set of proof obligations and their proofs. Upon reception,
the operator checks that the compiled annotated program provided by the soft-
ware company matches the partial specification it formulated in the first place
(here it has to check that the precondition and postcondition are unchanged),
and then run its own verification condition generator, and checks with the help
of the proofs provided by the software company that these proof obligations can
be discharged.

Our application scenario is being considered for specific application domains,
such as midlets, where operators currently dispose of a large number of GSM
applications that they do not want to distribute to their customers due to a lack
of confidence in the code. Of course, we do not underestimate that our approach
is costly, both by the infrastructure it requires, and by the effort involved in using
it (notably by involving program verification). However, the pay-off is that our
approach enables to prove precisely properties of programs, i.e. in particular
correct programs will not be rejected because of some automatic method which
is overly conservative (i.e. rejects correct programs).

Our approach can also be used in other mobile code scenarios. Consider for
example a repository of certified algorithms; the algorithms have been written
in different programming languages, but they are stored in the directory as
compiled programs, e.g. as CLR programs. Prior to adding a new algorithm,
say an efficient algorithm to verify square root, the maintainer of the repository
asks for a certificate that the algorithm indeed computes the square root. The
correctness of the algorithm must be established through interactive verification,
say by the implementer of the algorithm. The implementer has the choice to
write a proof using a program logic for the language in which the algorithm was
developed, or using an appropriate bytecode logic. Once again, it seems likely
that the first approach would be favored, and therefore that proof obligation
preserving compilation would be useful.

1.3 Related work

There are several lines of work concerned with establishing a relation between
source programs and compiled programs. The most established line of work is
undoubtedly compiler verification [7], which aims at showing that a compiler
preserves the semantics of programs.

A more recent line of work is translation validation, proposed by A. Pnueli,
M. Siegel and E. Singerman [11], and credible compilation, proposed by M. Ri-
nard [13], aim at showing for each individual run of the compiler that the result-
ing target program implements correctly the source program, i.e. has the same

111

semantics. This is achieved by the automatic generation of invariants for each
program point in the source code that must be satisfied at the corresponding
program points in the source code. This technique does not allow to verify that a
given specification is satisfied. Related work has also been done by X. Rival [14,
15], who uses abstract interpretation techniques to infer invariants at the source
level and compile these invariants for the target level.

Our work is complementary to approaches to Proof-Carrying Code based
on certifying compilation. In [10], Necula and Lee propose to focus on safety
properties which can be proved automatically through an extended compiler
that synthesizes annotations from the information it gathers about a program,
and a checker that discharges proof obligations generated by the verification
condition generator. Certifying compilers are very important for the scalability
of PCC, but of course the requirement of producing certificates automatically
reduces the scope of properties it can handle.

There are also some recent works on program specification and verification
that involve at source level and target levels: the Spec# project [3] has defined
an extension of C# with annotations and type support for nullity discrimina-
tion. Such annotated programs are then compiled (with their specifications) to
extended .NET files, which can be run using the .NET platform. Specifications
are checked at run-time or verified using a static checker (called Boogie). This
work does not consider explicitly the relationship between source and compiled
program verification (but the Spec# methodology implicitly assumes some re-
lation between the two, otherwise letting users to specify source code and have
Boogie verifying the corresponding compiled program would be meaningless).
In a similar line of work, L. Burdy and M. Pavlova [6] have extended the proof
environment Jack, which provides a verification condition generator for JML-
annotated sequential Java programs, with a verification condition generator for
extended Java class files that accommodate compiled JML annotations. How-
ever, they do not establish any formal relation between the two VC generators.
Independently of this work, F. Bannwart and P. Müller [2] have considered proof
compilation for a substantial fragment of sequential Java, and have discuss the
translation of proofs from source code to bytecode. However, their work does not
discuss automatic proof verification, neither establishes the correctness of proof
compilation in their setting. None of these works discusses optimizations.

For completeness, we also mention the existence of many Hoare-like logics
and weakest precondition calculi for low-level languages such as the JVM or
.NET or assembly languages, see e.g. [1, 5, 8, 12, 16]; many of these works have
been proposed in the context of PCC.

Contents The remaining of the paper is organized as follows. Section 2 introduces
syntax and annotation language, and VC generators for the assembly and source
languages. Preservation of proof obligations is addressed in Section 3. Section 4
illustrates how our approach can be applied to guarantee program correctness.
Finally, we conclude in Section 5 with related work and directions for future
research.

112

2 Language and Proof Systems Definitions

In the sequel, we let V be the set of values that are manipulated by programs
(here V = Z), and assume given a set A ⊆ V × V → V of arithmetic operations
and a set C ⊆ V ×V → {0, 1} of comparison operators. Furthermore, we assume
given a set M of procedure names and a set X of program variables.

2.1 The assembly language

The assembly language SAL is a stack-based language with conditional and
unconditional jumps, procedure calls and exceptions. It is powerful enough to
compile the core imperative language described in Section 2.2.

instr ::= prim op primitive arithmetic operation
| push n push n on stack
| load x load value of x on stack
| store x store top of stack in x

| if cmp j conditional jump
| goto j unconditional jump
| assert Φ assertion Φ

| nop no operation
| invoke m procedure invocation
| throw throw an exception
| return end of program

where op : A, and cmp : C, and x : X , and n : V, j : N, m : M and Φ is an assertion.

Fig. 1. Instruction set

SAL programs are sets of procedures with a distinguished procedure main.
Each procedure m consists of a function from its set Pm of program points to
instructions where the set of instructions is defined in Figure 1, and of a partial
function Handlerm : Pm ⇀ Pm which specifies for each program point its han-
dler, if any. We write Handlerm(l) ↑ if Handlerm(l) is undefined, and Handlerm(l) ↓
otherwise. Program states are pairs consisting of a global register map, and a
stack of frames, which correspond to the execution context of a procedure, and
which consist of an operand stack, a program counter and the name of the pro-
cedure being executed. The operational semantics is standard (except for assert

that does not change the state, i.e. it is like a no operation instruction). Note
that upon a procedure invocation, a new frame is created with an empty operand
stack and with the program pointer set to 1 (the initial instruction of a proce-
dure). As to exception handling, the intuitive meaning is that if the execution
at program point l in procedure m raises an exception and Handlerm(l) = t,
then control is transfered to t with an empty operand stack. If on the contrary
Handlerm(l) is not defined, then the top frame is popped from the stack and the
exception is transfered to the next frame.

113

In the sequel, we use the successor relation 7→⊆ Pm × Pm which relates in-
struction to their successors. We assume that the successor of an assert instruc-
tion always belongs to the instructions of the procedure (we need this assumption
for the sake of simplicity of definition of proof obligations further on).

Assertion language The assertion language is a standard-first order language
that contains comparison between arithmetic expressions as base assertions, and
is be closed under conjunction and implication. One unusual feature of arith-
metic expressions is that there are two special constants st and top for reasoning
about the stack. The constant top represents the size of the stack in the current
state, while the constant st can be thought of as an array used for an abstract
representation of the operand stack. Thus we can refer to the elements of an
array via expressions of the form st(top − i). The set of arithmetic expressions
is defined inductively as follows:

se ::= top | se− 1
aexpr ::= n | x | aexpr op aexpr | st(se)

where op : A.
The semantics of assertions is standard, except that assertions that refer to

an undefined arithmetic expression, i.e. that contain a reference to an element
outside the stack bounds, are considered to be false.

The definition of the VC generator relies extensively on substitution oper-
ators. Besides the rules for substituting variables, which are standard, we also
have substitution rules for top and for the non-atomic expressions, namely st(top)
and top− 1.

Well-annotated programs Verification condition generators compute from
partially annotated programs a fully annotated program, in which all program
points of each procedure of the program have an explicit precondition attached
to them. VCGens are partial functions that require programs to be sufficiently
annotated in the first place. We call such programs well-annotated.

The property of being well-annotated can be formalized through an induction
principle that is reminiscent of the accessible fragment of a binary relation: that
is, given a procedure Pm, a predicate R on Pm, we define ext R inductively by
the clauses: i) if i ∈ R then i ∈ ext R; ii) if for all j ∈ Pm such that i 7→ j,
we have j ∈ ext R, then i ∈ ext R. Informally, ext R is the set of points from
which all paths eventually arrive at R.

Definition 1 (Well-annotated program).

1. Let Passert
m and P return

m be the set of program points i such that Pm[i] is an
assert instruction and return instruction respectively. Then Pm is a well-
annotated procedure code iff ext (Passert

m ∪ P return

m) = Pm.
2. A program is well-annotated if it comes equipped with functions EPost :

M → Assn and NPost : M → Assn that give the exceptional and normal
postcondition of each procedure, and a function Pre : M → Assn which gives
the precondition of a procedure, preconditions and postconditions assertions
do not contain st or top, and each procedure is well-annotated.

114

Given a well-annotated program, one can generate a precondition for each pro-
gram point. Indeed, the assertion at any given program point can be computed
from the assertions for all its successors; the latter may either be given initially
(as part of the partially annotated program), or have been computed previously.
Note that the definition of well-annotated program does not require programs to
have any particular structure, e.g. unlike [12], they do not rule out overlapping
loops.

Verification condition generator The verification condition generator for
assembly programs, vcga, is defined as a function that takes as input a well-
annotated program P and returns an assertion for each program point in P .
This assertion represents the weakest liberal precondition that an initial state
before the execution of the corresponding program point should satisfy for the
method to terminate in a state satisfying its postcondition, that is NPost(m)
in case of normal termination or EPost(m) in case the method terminates with
an unhandled exception.

The computation of vcga proceeds in a modular way, i.e. procedure by pro-
cedure, and uses annotations from the procedure under consideration, as well as
the preconditions and post-conditions of procedures called by m. Concretely for
each program point, vcga is defined by a case analysis on the instruction Pm[i].

Its definition is given in Figure 2. Notice that we use −2, that does not belong
to the assertion language, instead of −1− 1 as syntactic sugar in the definition.
After calculating vcga of the procedure Pm (w.r.t. the annotations of Pm), we
define the set of proof obligations POm as

POm(Pm, NPost(m), EPost(m))

= {Φi ⇒ vcga(i+ 1) | i ∈ Passert
m }

∪ {NPost(m′) ⇒ vcga(i+ 1) | Pm[i] = invoke m′}

∪ {Pre(m) ⇒ vcga(1)} ∪Mh(m) ∪Mh(m)

where

Mh(m) = {EPost(m′) ⇒ vcga(t) | Pm[i] = invoke m′ ∧ Handlerm(i) = t}

Mh(m) = {EPost(m′) ⇒ EPost(m) | Pm[i] = invoke m′ ∧ Handlerm(i) ↑}

Proof obligations fall in one of the following categories:

– proof obligations that correspond to assertions in code;
– proof obligations triggered by procedure calls, where one has to verify that

the postcondition of the invoked procedure implies the normal precondition
computed for the program point that corresponds to the program point of
the procedure invocation;

– the proof obligation that establishes that the normal precondition computed
for the first program point follows from the procedure precondition;

– proof obligations triggered by procedure calls for the case that such calls raise
an exception that is handled by the procedure m. Here one has to verify

115

that the exceptional postcondition of m implies the normal precondition
computed for the handler of the program point where procedure invocation
occurs;

– proof obligations triggered by procedure calls for the case that such calls
raise an exception that is not handled by the procedure m. Here one has to
verify that the exceptional postcondition of the procedure called implies the
exceptional postcondition of m.

We define the set of proof obligation of a program as the union of the proof
obligations of all its methods:

PO(P) =
⋃

m∈M

POm(Pm, NPost(m), EPost(m))

One can prove that the verification condition generator is sound, in the sense
that if the program P is called with registers set to values that verify the precon-
dition of the procedure main, and P terminates normally, then the final state will
verify the normal postcondition of main. Likewise, if P terminates abnormally,
that is if an exception is thrown and there is no handler, then the final state
will verify the exceptional postcondition of main. Soundness is proved first for
one step of execution, and then extended to execution traces by induction on
the length of the execution.

push n : vcga(i) = vcga(i + 1)[n/st(top), top/top − 1]
prim op : vcga(i) = vcga(i + 1)[st(top − 1) op st(top)/st(top), top − 1/top]
load x : vcga(i) = vcga(i + 1)[x/st(top), top/top − 1]
store x : vcga(i) = vcga(i + 1)[top − 1/top, st(top)/x]
if cmp j : vcga(i) = st(top− 1) cmp st(top) ⇒ vcga(i + j)[top − 2/top]

∧¬(st(top − 1) cmp st(top)) ⇒ vcga(i + 1)[top − 2/top]
goto j : vcga(i) = vcga(i + j)
assert Φ : vcga(i) = Φ,

nop : vcga(i) = vcga(i + 1)
throw : vcga(i) = EPost(m) if Handlerm(i) ↑
throw : vcga(i) = vcga(t) if Handlerm(i) = t

invoke m′ : vcga(i) = Pre(m′)
return : vcga(i) = NPost(m)

Fig. 2. Verification Condition Generator for SAL Procedures

2.2 Source language

The source language IMP is an imperative language with loops and conditionals,
procedures and exceptions.

116

Definition 2. 1. The set AExpr of arithmetic expressions, and AProgIMP of
commands are given by the following syntaxes:

expr ::= x | n | expr op expr
cmpexpr ::= expr cmp expr

comm ::= skip | x := expr | comm; comm | while {I} cmpexpr do comm |
if cmpexpr then comm else comm|try comm catch comm |
throw | call m

where op and cmp are as in Section 2.1 and I is an assertion as defined in
Section 2.1, but without the constants top and st.

2. We define a program P in IMP as a set of procedures (we use m to name
a procedure), and their corresponding bodies, which are a command from
AProgIMP (we use Pm to name a procedure code).

We define a standard verification condition generator vcg, which takes as input
a command and an assertion, and returns an assertion. The function is im-
plicitly parameterized by assertions; concretely, we assume that all procedures
are annotated with a precondition, a normal postcondition, and an exceptional
postcondition.

vcg(skip, Q, R) = Q

vcg(x := e, Q, R) = Q[e/x]
vcg(c1; c2, Q, R) = vcg(c1, vcg(c2, Q, R), R)
vcg(while {I} e do c1, Q, R) = I

vcg(if e1 cmp e2 then c1 else c2, Q, R) =
(e1 cmp e2) ⇒ vcg(c1, Q, R)∧
¬(e1 cmp e2) ⇒ vcg(c2, Q, R)

vcg(try c catch c′, Q, R) = vcg(c, Q, vcg(c′, Q, R))
vcg(throw, Q,R) = R

vcg(call m′), Q, R) = Pre(m′)

Fig. 3. Verification Condition Generator for implies Procedures

We also define inductively the set POc of proof obligations for a command
as follows:

117

POc(skip, Q,R) = ∅
POc(x := e,Q,R) = ∅
POc(c1; c2, Q,R) = POc(c1, vcg(c2, Q,R), R) ∪ POc(c2, Q,R)
POc(while {I} e do c1, Q,R) =

POc(c1, Q,R) ∪ {I ⇒ (e⇒ vcg(c1, I, R) ∧ ¬e⇒ Q)}
POc(if e1 cmp e2 then c1 else c2, Q,R) =

POc(c1, Q,R) ∪ POc(c2, Q,R)
POc(throw, Q,R) = ∅
POc(call m

′, Q,R) = {EPost(m′) ⇒ R} ∪ {NPost(m′) ⇒ Q}
POc(try c catch c′, Q,R) = POc(c,Q, vcg(c′, Q,R)) ∪ POc(c

′, Q,R)

As in SAL, proof obligations fall in one of the following categories:

– proof obligations that correspond to annotations in while loops;
– proof obligations triggered by procedure calls,
– proof obligations triggered by procedure calls for the case that such calls

raise an exception that is handled by the procedure m.

We define for every procedure m with body c, the set of proof obligations
POm(c,NPost(m), EPost(m)) as:

POc(c,NPost(m), EPost(m))∪
{Pre(m) ⇒ vcg(c,NPost(m), EPost(m))}

That is, the proof obligations of a method are those generated by the body
of the methods plus the proof obligation that establishes that the precondition
computed for the body of the methods follows from the procedure precondition.

Finally, the set of proof obligation for a program P is defined as the union
of proof obligations for each method in P :

PO(P) =
⋃

m∈M

POm(Pm, NPost(m), EPost(m))

3 Proof obligations preserving compilation

This section shows that the sets of proof obligations are preserved by a standard
non-optimizing compiler. The consequence of this result is that having annota-
tions and proofs of proof obligations for the source code, the same evidence can
be used to prove automatically the correctness of its corresponding compiled
program.

Definition 3. The compilation function Cp : AProgIMP → AProgSAL is defined
in Figure 4, using an auxiliary function Ce : AExpr → AProgSAL (also defined in
Figure 4), and another auxiliary function to define exception tables (defined in
Figure 5).

118

The compilation of exception tables defines handlers for program points of in-
structions enclose in the ”try” part of try-catch commands as the first program
point of the code enclose in their ”catch” part.

Throughout this section, we use vcg(p,Q,R) to denote both verification con-
dition generator at source code and bytecode. For the bytecode, vcg(p,Q,R) is
vcga(i) where the normal and exceptional postconditions are Q and R resp. and
where i is the first program point in p.

We begin with an auxiliary lemma about expressions. Given a list P of in-
structions, we use the notation P [i...j] to denote the list of instructions from
instruction at i up to j.

Lemma 1. Let e be an arithmetic expression in AExpr which appears in program
P , and suppose that we have that Ce(e) = Cc(P)[i...j]. Let Q be an assertion in
Assn that includes an arithmetic expression st(top). Assume vcga(j + 1) = Q.
Then vcg(i) = Q[e/st(top), top/top− 1].

The following lemma states that if there exists a handler c′ at source level
for a command c, then any exception thrown in the compilation of c will have a
handler that corresponds to the compilation of c′.

Lemma 2 (Handler Preserving Compiler). Let command try c catch c′ s.t.
it is the inner-most try-catch command enclosing c and let Pm[i . . . j] = Cc(c)
and Pm[i′ . . . j′] = Cc(c

′) be compilations of c and c′. Then for any h ∈ {i . . . j}
that can throw an exception in Pm, Handlerm(h) = i′ and if c is not enclosed in
a try-catch command Handlerm(h) ↑.

The following proposition establishes that compilation “commutes” with ver-
ification condition generation.

Proposition 1. vcg(Cc(c), Q,R) = vcg(c,Q,R)

The following theorem claims that the set of proof obligations of the original
program are the same of the proof obligations generated after compilation.

Theorem 1 (Proof Obligation Preserving Compilation).

POm(Cc(c), Q,R) = POm(c,Q,R)

4 Example

The purpose of this section is to illustrate how the application scenario from
the introduction can be applied to guarantee that compiled applications meet
high-level security properties, such as the absence of uncaught exceptions, as well
as specific security properties, such as non-interference; the latter is encoded in
our language using self-composition as described in [4]. Here the operator will
determine which program variables (in a more realistic language one would focus
on method parameters) of the program P to be certified are to be considered
confidential. In turn, this choice sets the precondition and the postcondition,

119

Ce(x) = load x

Ce(n) = push n

Ce(e op e′) = Ce(e) :: Ce(e
′) :: prim op

Cc(skip) = nop

Cc(x := e) = Ce(e) :: store x

Cc(c1; c2) = Cc(c1) :: Cc(c2)
Cc(while {I} e1 cmp e2 do c) = let l1 = Ce(e1); l2 = Ce(e2); l3 = Cc(c); x = #l3;

y = #l1 + #l2 in goto (#l3 + 1) :: l3 ::
assert I :: l2 :: l1 :: if cmp (pc − x − y)

Cc(if e1 cmp e2 then c1 else c2) = let le = Ce(e1) :: Ce(e2); lc1 = Cc(c1); lc2 = Cc(c2);
x = #lc2; y = #lc1 in le :: if cmp (pc + x + 2) :: lc2

:: goto (y + 1) :: lc1

Cc(call m′((e))) = Ce((e)) :: invoke m′

Cc(throw) = throw

Cc(try c1 catch c2) = let lc1 = Cc(c1); lc2 = Cc(c2);
x = #lc2; in

lc1 :: goto (x + 1) :: lc2

Fig. 4. Compiling IMP to SAL

X (c1; c2) = X (c1) :: X (c2)

X (while e do c) = X (c)

X (if e then c1 else c2) = X (c1) :: X (c2);

X (try c1 catch c2) = let lc1 = Cc(c1); lc2 = Cc(c2);
x = #lc1; in

X (c1) :: X (c2) :: 〈1, x + 1, x + 2〉

X () = ǫ

Fig. 5. Definition of exception tables

namely x = x
′, where x are the low variables of P , and x

′ is a renaming of
the low variables of P . Suppose in addition that the operator does not want the
program to raise uncaught exceptions. Then the code producer must establish

{x = x
′}P ;P ′{x = x

′, false}

where P ′ is a renaming of P with fresh variables x
′ for low variables, and y

′ for
high-variables. False as the exceptional postcondition denotes that an exception
should not be thrown. To make matter precise, consider that P is the program
constituted of two procedures main and aux that take one public parameter x

120

{x = x′}verif == x := y; call aux; x′ := y′; call aux′

{x = x′, false}

{true}
aux == x := 3; while {0 ≤ x} x ≥ 1 do y := y ∗ x; x := x − 1
{x = 0, false}

{x = 0}
aux′ == x′ := 3; while {0 ≤ x′ ∧ x = 0}x′ ≥ 1 do y′ := y′ ∗ x′; x′ := x′ − 1
{x = 0 ∧ x′ = 0, false}

Proof Obligations for main:
x = x′ ⇒ true

false ⇒ false, x = 0 ⇒ x = 0
false ⇒ false x = 0 ∧ x′ = 0 ⇒ x = x′

Proof Obligations for aux:
true ⇒ 0 ≤ 3
0 ≤ x ⇒ (x ≥ 1 ⇒ 0 ≤ x − 1 ∧ x < 1 ⇒ x = 0)

Proof Obligations for aux’:
x = 0 ⇒ 0 ≤ 3 ∧ x = 0
0 ≤ x′ ∧ x = 0 ⇒ (x′ ≥ 1 ⇒ 0 ≤ x′ − 1∧ x = 0 ∧ x < 1 ⇒ x = 0 ∧ x′ = 0)

Fig. 6. Example: Program with specification of Non-Interference

and one private parameter y, with main and aux defined as

main == x := y; call aux

aux == x := 3; while x ≥ 1 do y := y ∗ x;x := x− 1

(Note that the program is non-interfering, since it always return with x = 0.
However, the program is typically rejected by a type system.)

In order to prove the required properties, the software company must pro-
vide appropriate precondition and postcondition for the method aux, as well as
appropriate loop invariants, and discharge the resulting proof obligations for the
program verif defined as

verif == x := y; call aux; x′ := y′; call aux′

The annotated program is given in Figure 6, where we use red to denote the spec-
ification provided by the operator, and green to denote the specification provided
by the software company. We denote with blue the set of proof obligations. In
Figure 7, we show the annotated compiled program.

121

Precondition x = x′

i P [i] vcga(i)

1 load y true
2 store x true
3 invoke aux true
4 load y’ x =0
5 store x’ x = 0
6 invoke aux’ x =0
7 return x =x’

Posts x = x′, false

POmain :
x = x′ ⇒ true

false ⇒ false, x = 0 ⇒ x = 0
false ⇒ false x = 0 ∧ x′ = 0 ⇒ x = x′

Fig. 7. Compilation of the Example (main procedure)

5 Concluding remarks

This paper shows, in a simple context, that it is possible to transfer evidence
of program correctness from a source program to its compiled counterpart. Fur-
thermore, we have shown on simple examples the possible uses of our results,
and discussed some possible application domains. Although not reported here,
we have also implemented a small prototype compiler and proof obligation gen-
erators to experiment our approach small examples.

We now intend to extend our results to (non-optimizing compilers for) pro-
gramming languages such as Java and C#. Furthermore, we intend to extend
our results to optimizing compilers. However, preservation of proof obligations
may be destroyed by simple program optimizations. If we allow optimizations,
it is necessary to focus on a more general property that involves an explicit
representation of proofs.

Property of Proof Compilation For every annotated program P , a proof compiler
is given by:

– a function f that gives for every proof obligation at the assembly level a
corresponding proof obligation at the source level;

– a function that transforms, for every proof obligation ξ at the assembly level,
proofs of f(ξ) into proofs of ξ.

Proof compilation is a generalization of preservation of proof obligations and
allows to bring the benefits of source code verification to code consumers. Like
preservation of proof obligations, it is tied to a specific compiler; additionally,
it is tied to a representation of proofs (although some degree of generality is
possible here).

Preliminary investigations indicate that proof compilation is feasible for most
common program optimizations. These results will be reported elsewhere.

122

Furthermore, we would like to explore further scenarios in which proof com-
pilation could be used advantageously. We only mention two particularly in-
teresting scenarios: the compilation of aspect-oriented programming, and the
compilation of domain-specific languages DSLs into general purpose programs.
The latter application domain seems particularly relevant since one could hope
to exploit the features of DSLs to achieve easy proofs at the source code level.

Another item for future work is an evaluation of the usefulness of preservation
of proof obligations and proof compilation on larger case studies. In the short
term, the most promising application of our technique concerns high-level secu-
rity properties that are often found in security policies for mobile applications;
many of such properties are either recommended internally by the security ex-
perts to developers, or by external companies with strong security expertise (e.g.
some certification authority) to solution providers (e.g. our telecom operator in
the scenario of Subsection 1.2). In the longer term, it would be interesting to in-
vestigate the applicability of our method to the problem of performing dynamic
updates of mobile devices infrastructures; indeed, such a scenario will probably
require to establish that components behave according to their specification.

Acknowledgments We thank Benjamin Grégoire, César Kunz, Dante Zanarini
and the anonymous referees for valuable comments on a preliminary version of
this paper. This work was partially supported by the Estonian-French coopera-
tion program Parrot, the EU projects APPSEM II, eVikings II, and INSPIRED,
the Estonian Science Foundation grant no 5567, and the French ACI Sécurité
SPOPS.

References

1. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource
Guarantees for Smart Devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes

in Computer Science, pages 1–27, 2005.
2. F. Bannwart and P. Müller. A program logic for bytecode. In F. Spoto, editor,

Proceedings of Bytecode’05, Electronic Notes in Theoretical Computer Science. El-
sevier Publishing, 2005.

3. M. Barnett, K.R.M. Leino, and W. Schulte. The spec# programming system: An
overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes in Computer

Science, pages 50–71. Springer-Verlag, 2005.
4. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-

Composition. In R. Foccardi, editor, Proceedings of CSFW’04, pages 100–114.
IEEE Press, 2004.

5. N. Benton. A typed logic for stacks and jumps. Manuscript, 2004.
6. L. Burdy and M. Pavlova. Annotation carrying code. Manuscript, 2005.
7. J. D. Guttman and M. Wand. Special issue on VLISP. Lisp and Symbolic Com-

putation, 8(1/2), March 1995.
8. N.A. Hamid and Z. Shao. Interfacing Hoare Logic and Type Systems for Foun-

dational Proof-Carrying Code. In K. Slind, A. Bunker, and G. Gopalakrishnan,
editors, Proceedings of TPHOLs’04, volume 3223 of Lecture Notes in Computer

Science, pages 118–135. Springer-Verlag, 2004.

123

9. G.C. Necula. Proof-Carrying Code. In Proceedings of POPL’97, pages 106–119.
ACM Press, 1997.

10. G.C. Necula and P. Lee. The Design and Implementation of a Certifying Compiler.
In Proceedings of PLDI’98, pages 333–344, 1998.

11. A. Pnueli, E. Singerman, and M. Siegel. Translation validation. In B. Steffen, edi-
tor, Proceedings of TACAS’98, volume 1384 of Lecture Notes in Computer Science,
pages 151–166. Springer-Verlag, 1998.

12. C.L. Quigley. A Programming Logic for Java Bytecode Programs. In D. Basin
and B. Wolff, editors, Proceedings of TPHOLs’03, volume 2758 of Lecture Notes in

Computer Science, pages 41–54. Springer-Verlag, 2003.
13. M. Rinard. Credible compilation. Manuscript, 1999.
14. X. Rival. Abstract Interpretation-Based Certification of Assembly Code. In L.D.

Zuck, P.C. Attie, A.Cortesi, and S. Mukhopadhyay, editors, Proceedings of VM-

CAI’03, volume 2575 of Lecture Notes in Computer Science, pages 41–55, 2003.
15. X. Rival. Symbolic Transfer Functions-based Approaches to Certified Compilation.

In Proceedings of POPL’04, pages 1–13. ACM Press, 2004.
16. M. Wildmoser and T. Nipkow. Asserting bytecode safety. In S. Sagiv, editor,

Proceedings of ESOP’05, volume 3444 of Lecture Notes in Computer Science, pages
326–341. Springer-Verlag, 2005.

124

A Logic for Analysing Subterfuge in Delegation Chains

Hongbin Zhou and Simon N. Foley

Department of Computer Science,
University College Cork, Ireland.
{zhou,s.foley}@cs.ucc.ie

Abstract. Trust Management is an approach to construct and interpret the trust rela-
tionships among public-keys that are used to mediate security-critical actions. Cryp-
tographic credentials are used to specify delegation of authorisation among public
keys. Existing trust management schemes are operational in nature, defining security
in terms of specific controls such as delegation chains, threshold schemes, and so
forth. However, they tend not to consider whether a particular authorisation policy
is well designed in the sense that a principle cannot somehow bypass the intent of a
complex series of authorisation delegations via some unexpected circuitous route.
In this paper we consider the problem of authorisation subterfuge, whereby, in a
poorly designed system, delegation chains that are used by principals to prove autho-
risation may not actually reflect the original intention of all of the participants in the
chain. A logic is proposed that provides a systematic way of determining whether a
particular delegation scheme using particular authorisation is sufficiently robust to be
able to withstand attempts at subterfuge. This logic provides a new characterisation
of certificate reduction that, we argue, is more appropriate to open systems.

1 Introduction

Many commercial access control systems are closed and tend to rely on centralised authori-
sation policy/servers. An access control decision corresponds to determining whether some
authenticated user has been authorised for the requested operation. This strategy of first de-
termining who the user is and then whether that user is authorised has its critics, citing, for
instance, single point of failure, scalability issues and excessive administrative overhead.
A perhaps overlooked advantage of this approach is that administrators exercise tight con-
trol when granting access. The administrators are familiar with all of the resources that are
available and they make sure that the user gets the appropriate permissions; no more and
no less. The opportunity to subvert the intentions of a good administrator is usually small.

Cryptographic authorisation certificates bind authorisations to public keys and facilitate
a decentralised approach to access control in open systems. Trust Management [15, 5, 8, 16,
2, 6] is an approach to constructing and interpreting the trust relationships among public-
keys that are used to mediate access control. Authorisation certificates are used to specify
delegation of authorisation among public keys. Determining authorisation in these systems
typically involves determining whether the available certificates can prove that the key that
signed a request is authorised for the requested action.

However, these approaches do not consider how the authorisation was obtained. They
do not consider whether a principal can somehow bypass the intent of a complex series
of authorisation delegations via some unexpected circuitous but authorised route. In an
open system no individual has a complete picture of all the resources and services that are
available. Unlike the administrator of the closed system, the principals of an open system
are often ordinary users and are open to confusion and subterfuge when interacting with
resources and services. These users may inadvertently delegate un-intended authorisation
to recipients.

In this paper, we further explore the problem of authorisation subterfuge[11], whereby,
in a poorly designed system, delegation chains that are used by principals to prove autho-
risation may not actually reflect the original intention of all of the participants in the chain.

125

For example, the intermediate principals of a delegation chain may inadvertently issue in-
correct certificates, when the intended resource owner is unclear to intermediate partici-
pants in the chain. Existing Trust Management approaches such as [16] avoid this issue by
assuming that all certificates are correctly in place, well understood by principals, and may
not be improperly used.

However, we argue that subterfuge is a realistic problem that should addressed in a cer-
tificate scheme. For example, the payment systems [1, 3, 13] are vulnerable to authorisation
subterfuge (leading to a breakdown in authorisation accountability) if care is not taken to
properly identify the ‘permissions’ indicating the payment authorisations when multiple
banks and/or provisioning agents are possible. In open systems, a permission for a resource
should be uniquely related back to the resource owner, and this relationship should be un-
derstood by all related principals. If it is not well understood, then it may be subject to
authorisation subterfuge. Therefore, authorisation in open systems should involve deter-
mining whether the available certificates can prove that the key that signed a request was
intentionally authorised for the service.

In this paper we propose the Subterfuge Logic (SL) which can be used for analysing
authorisation subterfuge. The logic is used to determine whether an authorisation through
a delegation chain can be uniquely related to its intended resource and the resource owner.

The paper is organised as follows. In Section 2 we describe a series of subterfuge attacks
that can be carried out on certificate chains. Section 3 explores similarities between these
attacks on certificates and replay attacks on authentication protocols. Analysing a collection
of certificates for potential subterfuge is not unlike checking whether it is possible for
an ‘intruder’ to interfere with a certificate chain. Section 4 proposes the Subterfuge logic
which can be used to determine whether performing a delegation operation might leave
the delegator open to subterfuge. Examples from Section 2 are analysed in Section 5 and
Section 6 illustrate how subterfuge can also arise in local naming. Finally, we conclude in
Section 7.

2 Authorisation Subterfuge

2.1 SPKI/SDSI Authorisation

SPKI/SDSI [8] relies on the cryptographic argument that a public key provides a globally
unique identifier that can be used to refer to its owner in some way. However, public keys
are not particularly meaningful to users and, therefore, SPKI/SDSI provides local names
which provide a consistent scheme for naming keys relative to another. For example, the
local name that Alice uses for Bob is (Alice’s Verisign’s Bob), which refers to Bob’s public
key as certified by the Versign that Alice knows. By binding local names to public keys
with name certificates, principals may delegate their authorisation to others beyond their
locality through a chain of local relationships.

A SPKI/SDSI name certificate is denoted as (K, A, S), where: K specifies the certificate
issuer’s signature key, and identifier A is defined as the local name for the subject S. For
example, (KB, Alice, KA) indicates that KB refers to KA using the local name Alice.
A SPKI/SDSI authorisation certificate is denoted as (K, S, d, T), where: K specifies the
certificate issuer’s signature key; tag T is the authorisation delegated to subject S (by K)
and d is the delegation bit (0/1). For example, KB delegates authorisation T to Alice by
signing (KB, Alice, 0, T), where 0 indicates no further delegation. Note that for the sake
of simplicity, in this paper, we do not include a validity period V in certificates.

Authorisation tags are specified as s-expressions and Example 2.6 in [9] specifies tag
T1= tag (purchase(*range le <amount>),(*set <<items>>)) sych that it

“[...] might indicate permission to issue a purchase order. The amount of the pur-
chase order is limited by the second element of the (purchase) S-expression and,
optionally, a list of purchasable items is given as the third element. The company

126

whose purchase orders are permitted to be signed here will appear in the certificate
permission chain leading to the final purchase order. Specifically, that company’s
key will be the issuer at the head of the (purchase). [...]” [9]

2.2 Authorisation Examples

CC1 : KComA
C1 �� KEmily

C2 �� KAlice
C3 �� KBob

CC2 : KComB
C4 �� KClark

C5 �� KAlice
C6 �� KDavid

(a) certificate chain CC1 and CC2

KComA
�� KEmily

�� KAlice
��

��

KBob

KComB
�� KClark

��
���������

���������
KDavid

(b) delegation graph for T1

Fig. 1. Certificates in a Scenario

A company ComA allows its manager Emily to issue purchase orders, and Emily
may also delegate this right to others. After Emily receives the certificate from ComA,
Emily delegates this right (issuing a purchase order) to an employee Bob via Alice. We
have the following certificates: C1=(KComA, KEmily , 1, T1); C2=(KEmily , KAlice, 1, T1),
and C3=(KAlice, KBob, 0, T1) (Alice delegates this right to employee Bob, But Bob may
not delegate this right to others).

Suppose that there is another company ComB which also uses the tag T1 to issue
purchase orders. Suppose that Alice also works for ComB. Clark, a senior manager in
ComB, holds the right to issue purchase orders, and delegate it to Alice. ComB em-
ployee David accepts authority from Alice to issue purchase orders. We have certificates:
C4=(KComB, KClark, 1, T1); C5=(KClark, KAlice, 1, T1), and C6=(KAlice, KDavid, 0, T1).
Figure 1 gives the certificate chain CC1 and CC2 that Bob and David respectively use to
prove authorisation to issue purchase orders.

2.3 Authorisation Subterfuge

The examples above are effective when separate chains CC1 and CC2 are used to prove
authorisation. However, their combination, depicted in Figure 1(b), result in further del-
egation chains CC3 and CC4 and these lead to some surprising interpretations of how
authorisation is acquired.

CC3 : KComA
C1 �� KEmily

C2 �� KAlice
C6 �� KDavid

CC4 : KComB
C3 �� KClark

C4 �� KAlice
C5 �� KBob

Subterfuge 1: passive attack.Alice’s intention, when she signed C6, was that David should
use chain CC2 as proof of authorisation when making purchases. However, unknown
to Alice, dishonest David collects all other certificates and uses the chain CC3 as his
proof of authorisation.

127

KComA
1 ��
3 �� KEmily

1 ��
3 �� KAlice

1 ��
4 ��

2

��
3

��

KBob

KComB 4 ��2 ��
KClark

4

��
2�����

�������

KDavid

(a) Certificate Chains

KComA
C1 �� KEmily

C2 �� KAlice
C3 ��

C6

��

KBob

KComB
C4 �� KClark

C5

������������
KDavid

(b) Passive Attack

KComA
C1 �� KEmily

C2 �� KAlice
C3 ��

C6

��

KBob

KComB
C4 �� KClark

C5

�����������
KDavid

(c) Outer-Active Attack

KComA
C1 ��

C7

���
��

��
��

��
KEmily

C2 �� KAlice
C3 ��

C6

��

KBob

KComB
C4 �� KClark

C5

�����������
KDavid

(d) Inner-Active attack

KComA
C1 �� KEmily

C2 �� KAlice

C3 ��

C6

��

KBob

KComB
C4 �� KClark

C5

�����������
KDavid

(e) Outer-Intercept attack

KComA
C1 �� KEmily

C2 �� KAlice
C3 ��

C6

��

KBob

KComB
C4 �� KClark

C5

������������
KDavid

(f) Inner-Outer Active Attack

Fig. 2. Attack graphs

This confusion may introduce problems if the certificate chains that are used to prove
authorisation are also used to provide evidence of who should be billed for the transac-
tion. In delegating, Alice believes that chain CC2 (from ComB) provides the appro-
priate accountability for ClarK’s authorisation

Subterfuge 2: outer-active attack. The above passive attack can be transformed into a
more active attack. David sets up a shelf company ComB with fictitious employee
Clark. Using attractive benefits, David masquerading as Clark, lures Alice to join
ComB. Clark delegates authorisations (T1) to Alice that correspond to authorisation
already held by Alice. However, Alice does not realize this and, in the confusion, fur-
ther delegates the authorisation to David; an authorisation from ComA that normally
he would not be expected to hold.

In both of these cases we think of Alice as more confusedin her delegation actions rather
than incompetent; the permission naming scheme influences her local beliefs and it was the
inadequacy of this scheme that led to her confusion. Perhaps Alice has too many certificates
to manage and in the confusion looses track of which permissions should be associated with
which keys.

ComA may attack ComB in the same way to get the money back by CC4. However, if
ComB updates its certificate, then Alice does not hold the right for ComB. ComA cannot
get its money back.

Subterfuge 3: inner-active attack. Clark is a manager in ComA and ComB and colludes
with David (ComB employee). Clark delegates authorisation T1 legitimately obtained
from ComB to Alice. However, suppose that unknown to Alice, Clark is coincidentally
authorised to do T1 by ComA (via C7) and Clark intercepts the issuing of credential
C1 and conceals it. Alice delegates what she believes to be T1 from ComB to David
via C6. However, David can present chain [C7; C5; C6] as proof that his authorisation
originated from ComA.

The above authorisation subterfuge may be avoided if Alice is very careful about how she
delegates. However the following attacks are a bit more difficult for Alice to avoid.

128

Subterfuge 4: (outer-intercept attack) Clark intercepts certificate C2 and conceals it. When
delegating authorisation to David, Alice believes that the chain is [C4; C5; C6] from
ComB, however David knowingly or unknowingly uses a different chain [C 1; C2; C6].

Subterfuge 5: (inner-outer active attack). Alice has a legitimate expectation that so long
as she delegates competently then she should not be liable for any confusion that is a
result of poor system/permission design. Alice can use this view to act dishonestly.
In signing a certificate she can always deny knowledge of the existence of other cer-
tificates and the inadequacy of permission naming in order to avoid accountability.
While Alice secretly owns company ComB, she claims that he cannot be held ac-
countable for the ‘confusion’ when Bob (an employee of ComA) uses the delegation
chain [C4; C5; C3] to place an order for Alice.

2.4 Avoiding Subterfuge: Accounting for Authorisation

The underlying problem with the examples in the previous section is that the permission T1
is not sufficiently precise to permit Alice to distinguish the authorisations that are issued
by different principals. An ad-hoc strategy to avoid this problem would be to ensure that
each permission is sufficiently detailed to avoid any ambiguity in the sense that it is clear
from whom the authorisation originated. This provides a form of accountability for the
authorisation. For example, including a company name as part of the permission may help
avoid the vulnerabilities in the particular example above.

However, at what point can a principal be absolutely sure that an ad-hoc reference to
a permission is sufficiently complete? Achieving this requires an ability to be able to fix a
permission within a global context, that is, to have some form of global identifier and/or
reference for the permission.

Public keys provide globally unique identifiers that are tied to the owner of the key.
These can also be used to avoid permission ambiguity within delegation chains. For ex-
ample, given SPKI authorisation certificate (KComA, KE , 1, [T1.KComA]), there can be no
possibility of subterfuge when Emily delegates to Alice with (KE , KA, 1, [T1.KComA]).
In this case the authorisation [T1.KComA] is globally unique and the certificate makes the
intention of the delegation and where it came from (authorisation accountability) very clear.

SPKI [8] characterises the checking of authorisation as ”is principal X authorised to
do Y?”. However, the examples above illustrate that this is not sufficient; checking ”is
principal X authorised to do Y by Y’s owner Z?”would be more appropriate.

Needless to say that this strategy does assume a high degree of competence on Alice’s
part to be able to properly distinguish between permissions [T1.KComA] and [T1.KComB],
where, for example, each public key could be 342 characters long (using a common ASCII
encoding for a 2048 bit RSA key). One might be tempted to use SDSI-like local names to
make this task more manageable for Alice. However, in order to prevent subterfuge, permis-
sions require a name that is unique across all name spaces where it will be used, not just the
local name space of Alice. In Alice’s local name space the permission [T1.(Emily’s ComA)]
may refer to a different ComA to the ComA that Alice knows.

Another possible source of suitable identifiers is a global X500-style naming service
(if it could be built) that would tie global identities to real world entities, which would in
turn be used within permissions. However, X500-style naming approaches suffer from a
variety of practical problems [10] when used to keep track of the identities of principals. In
the context of subterfuge, a principal might easily be confused between the (non-unique)
common name and the global distinguished name contained within a permission that used
such identifiers.

Certificate chains have been used in the literature to support degrees of accountabil-
ity of authorisation, for example, [3, 13, 1]. The micro-billing scheme [3] uses KeyNote
to help determine whether a micro-check (a KeyNote credential, signed by a customer)
should be trusted and accepted as payment by a merchant. The originator of the chain is
the provisioning agent, who is effectively responsible for ensuring that the transaction is

129

paid for. In [13], delegation credentials are used to manage the transfer of micropayment
contracts between public keys; delegation chains provide evidence of contract transfer and
ensure accountability for double-spending. These systems are vulnerable to authorisation
subterfuge (leading to a breakdown in authorisation accountability) if care is not taken to
properly identify the ‘permissions’ indicating the payment authorisations when multiple
banks and/or provisioning agents are possible.

3 Subterfuge in Satan’s Computer

Authorisation subterfuge is possible when one cannot precisely account for how an autho-
risation is held. In signing a certificate, we assume that the signer is in some way willing
to account for the authorisation that they are delegating. The authorisation provided by a
certificate chain that is not vulnerable to subterfuge can be accounted for by each signer
in the chain. A principal who is concerned about subterfuge will want to check that the
permission that is about to be delegated can also be accounted for by others earlier in the
chain: the accountability ‘buck’ should preferably stop at the head of the chain!

We are interested in determining whether, given a collection of known certificates, it
is safe for a principal to delegate some held authorisation to another principal. By safe we
mean that subterfuge is not possible. In simple terms, this requires determining if it is pos-
sible for a malicious outsider to interfere with a certificate chain with a view to influencing
the authorisation accountability. In order to help understand this we draw comparisons be-
tween subterfuge attacks and attacks on authentication protocols. Our hypothesis is that
techniques for analysing one can be used to analyse the other (as we shall see in the next
section when we use a BAN-like logic to analyse subterfuge in delegation chains).

A certificate is a signed message that is exchanged between principals; an authentica-
tion protocol step can be an encrypted message that is exchanged between principals. A
certificate chain is an ordering of certificates exchanged between principals. An authenti-
cation protocol is an ordering of encrypted messages exchanged between principals. For
example, the chain CC1 could be represented by the following protocol.

msg1 ComA → E : {KComA, KE , 1, T 1}KComA

msg2 E → A : {KE, KA, 1, T 1}KE

msg3 A → B : {KA, KB, 0, T 1}KA

There are differences between authentication protocols and certificate chains. A round of
a typical authentication protocol has a fixed and small number of pre-defined messages,
while the number of participants and messages in a certificate chain are unlimited and,
sometimes, it may not be predetermined.

An attack from Section 2 is represented as follows.

msg2′. I(CA) → A : {KI , KA, 1, T 1}KI

msg3′. A → D : {KA, KD, 0, T 1}KA

Subterfuge attacks involve a malicious user (the intruder I) removing/hiding and replaying
certificates between different certificate chains. These actions are comparable to a combi-
nation of the replay attacks [4]:

Freshness attack“When a message (or message component) from a previous run of a
protocol is recorded by an intruder and replayed as a message component in the current
run of the protocol.”

Parallel session attack“When two or more protocol runs are executed concurrently and
messages from one are used to form messages in another.”

The analysis of an authentication protocol typically centres around an analysis of nonce
properties: if one may correctly respond to the nonce challenge in a round of an authenti-
cation protocol, it is the regular responder.

130

FreshnessA nonce is a number used once in a message. Message freshness fixes a mes-
sage as unique and ties it to a particular protocol run.

Relevancy to originator A nonce is related to its originator. The nonce verifier is also the
nonce provider (originator). The nonce originator generates the nonce and this means
that it can recognise and understand its relationship with the nonce.

Relevance of messageIn a two-party mutual authentication protocol, each principal gen-
erates its own nonce. A principal uses its own nonce and the other principal’s nonce to
relate its own message to the other’s message.

There are some similarities between these nonce properties and the permission proper-
ties that rely on unique permissions.

Uniqueness is required in a permission string to account for its originator within a partic-
ular certificate chain.

Relevancy to originator A permission should be related to its originator and it should be
possible for others along the chain to recognise this relationship.

Relevance of certificatesCertificates can be used to delegate combinations of permissions
that originated from different sources. These new certificates should be account for the
authorisation of the originators.

Lowe [17] defines the correctness of authentication as:

“A protocol guarantees agreement to a participant B (say, as the responder)
for certain data items x if: each time a principal B completes a run of the protocol
as responder using x, which to B appears to be a run with A, then there is a unique
run of the protocol with the principal A as initiator using x, which to A appears to
be a run with B.”

We characterise accountability of authorisation within a certificate chain as follows.

A certificate chain guarantees the principal A’s accountability of authorisation
to a participant B (say, as the delegatee) for certain permission R if: each time a
principal B is delegated a right R, which to B appears to be a certificate chain with
A, then there is a unique certificate chain with the principal A as initial delegator
authorising R.

We use a BAN-style logic to reason about this notion of accountability of authorization.

4 A Logic for Analysing Certificate Chains

In the last thirty years, a variety of techniques for analysing authentication protocols have
been proposed. The previous section demonstrated similarities between (freshness) vulner-
abilities in authentication protocols and (subterfuge) vulnerabilities in delegation chains. In
this section we develop the Subterfuge Logic (SL) which draws on some of the techniques
from BAN-like logics to analyse subterfuge in certificate chains.

4.1 The language

The logic uses the following basic formulae. P , Q,R and S range over principals; X repre-
sents a message, which can be data or formulae or both; φ will be used to denote a formula.
The basic formulae are the following:

– �(X): Formula X is a globally unique identifier. For example, this is typically taken as
true for X.500 distinguished names and for public keys.

– X | P : represents the message X , as guaranteed/accounted for by principal P ; this
means that P is willing to be held accountable for the consequences of action X . For
example, it is in Alice’s interest to delegate T1 |KComA to Bob, as opposed to just T1.

131

– X � P : Principal P is an originator of formula X . In the examples above, we write
T1|KComA to mean that permission T1 was first uttered by KComA in some chain.
Note that we assume that the same global unique formula (permission) cannot originate
from two different principals, that is, if X � P , X � Q and �(X) then P = Q.

– P � X : P is authorised for the action X .
– P � X : P is authorised to delegate X to others.
– P ‖∼ X : P directly says X . This represents a credential that is directly exchanged

between principals.
– P |∼ X : P says X . P directly says X or others say X (who have been delegated to

speak on X by P).

Further formulae can be derived by using propositional logic. If φ 1 and φ2 are formulae,
then φ1 ∧ φ2 (φ1 and φ2), φ1 ∨ φ2 (φ1 or φ2), and φ1 → φ2 are formulae.

SPKI/SDSI credentials can be encoded within the logic as follows. An authorisation
credential (K, S, 0, T) is represented as K ‖∼ (S � T), and credential (K, S, 1, T) repre-
sented as K ‖∼ (S � T ∧ S � T). The purpose of the logic is to permit a principal decide
whether it would be safe for it to delegate an authorisation based on the collection of cre-
dentials that it currently holds. For the examples above, Alice would like to be able to test
whether it is safe for her to write a credential corresponding to KAlice ‖∼ (KDavid � T1).
That is, she wishes that someone further back on the chain will accept accountability for the
action, that is, KAlice � T1|KComA can be deduced (which is not possible for the exam-
ples in Section 2). Note that in signing the credential, Alice is also accepting accountability
for the authorization.

4.2 Inference rules

Gaining Rules

G1 If P holds authorisation for X , for which Q can be held accountable, and Q may
delegate X then P is also authorised for X .

P � X |Q, Q � X

P � X

G2 We have a similar rule for authorisation to delegate.

P � X |Q, Q � X

P � X

Direct delegation

D1 Direct delegation of authority assumes that the delegator accepts responsibility for the
action.

P ‖∼ (Q � X)

P |∼ (Q � X |P), Q � X |P
D2 We have a similar rule for authorisation to delegate.

P ‖∼ (Q � X)

P |∼ (Q � X |P), Q � X |P
D3 The usual conjunction rules apply.

P ‖∼ (φ1 ∧ φ2)

P ‖∼ φ1, P ‖∼ φ2

132

Indirect delegation

I1 If principal P says that Q is authorised to perform an action X (with R accountable),
and P is authorised to delegate X (with R accountable), then Q is authorised to per-
form X (with R accountable).

P |∼ (Q � X |R), P � X |R
Q � X |R

I2 We have a similar rule for authorisation to delegate.

P |∼ (Q � X |R), P � X |R
Q � X |R

I3 If principal P says that Q is authorised to perform action X by P , then P says that Q
is authorised to perform X .

P |∼ (Q � X |P)

P |∼ (Q � X)

I4 Accountability can be stripped from an authorisation. Note, however, that stripping ac-
countability does not refute the existence of the accountability.

P |∼ (Q � X |P)

P |∼ (Q � X)

I5 Accountability is transitive along certificate chains.

P |∼ (Q � X |R), R |∼ (P � X |S)

R |∼ (Q � X |S)

I6 We have a similar rule for authorisation.

P |∼ (Q � X |R), R |∼ (P � X |S)

R |∼ (Q � X |S)

Unique Origin Rules

U1 If Q is authorised for unique X that originated from P then P can be held accountable
for X .

�(X), X � P, Q � X

Q � X |P
U2 We have a similar rule for authorisation to delegate.

�(X), X � P, Q � X

Q � X |P

5 Analysing Authorisation Subterfuge

The example from Section 2 is analysed using the Subterfuge Logic as follows. Certifi-
cates C1 and C2 are encoded by the following formulae. Note that principal names are
abbreviated to their first initial if no ambiguity can arise.

KComA ‖∼ ((KE � T1) ∧ (KE � T1))

KE ‖∼ ((KA � T1) ∧ (KA � T1))

Assumptions regarding uniqueness include the following.

�(KComA), �(KComB), �(KA), �(KB), �(KC), �(KE)

133

Principal ComA is assumed authorised to delegate and accept accountability for the autho-
risations T1 that it originates.

KComA � (T1 |KComA)

Before delegating authority for T1 to Bob, Alice wishes to test whether it is safe to do
so. Alice tests whether ComA accepts accountability for this action, that is she attempts
to deduce KA � T1 | KComA using the above assumptions within the logic. This is not
possible since no assumption is made regarding uniqueness of T1, and, therefore, we cannot
deduce KE |∼ (KA � T1 |KComA); thus Alice refrains from the delegation.

In Trust Management public keys provide globally unique identifiers that are tied to the
owner of the key. These can also be used to avoid authorisation ambiguity within delega-
tion chains. For example, given SPKI certificate (KComA, KE , 1, [T1.KComA]), there can
be no possibility of subterfuge when Emily delegates to Alice by signing the certificate
(KE , KA, 1, [T1.KComA]). In this case the authorisation [T1.KComA] is globally unique,
that is �(T1|KComA) and the certificate makes the intention of the delegation and account-
ability very clear.

The revised certificates are represented in the logic as follows.

KComA ‖∼ ((KE � T1 |KComA) ∧ (KE � T1 |KComA))

KE ‖∼ ((KA � T1 |KComA) ∧ (KA � T1 |KComA))

Given these certificates then Alice can deduce

KA � T1 |KComA

and can safely delegate to Bob as

KA ‖∼ (KB � T1 |KComA)

and we can deduce that KB � T1 |KComA. Considering other certificates, including

KComB ‖∼ ((KC � T1 |KComB) ∧ (KC � T1 |KComB))

KC ‖∼ ((KA � T1 |KComB) ∧ (KA � T1 |KComB))

KA ‖∼ (KD � T1 |KComB)

we can deduce KD � T1 |KComB, the expected authorisation.
Suppose that ComB issues confusing certificates to Clark, who in turn delegates the

incorrect authorisation to Alice.

KComB ‖∼ ((KC � T1 |KComA) ∧ (KC � T1 |KComA))

KC ‖∼ ((KA � T1 |KComA) ∧ (KA � T1 |KComA))

In this case we can deduce KComB |∼ (KA � T1 | KComA) and thus and KA � T1 |
KComB. However, before A delegates this right for KComA, she needs (but cannot hold)
the following formulae KComB � T1 |KComA, or KC � T1 |KComAs. Thus, she should
not delegate and therefore resists the subterfuge attack.

The conventional SPKI/SDSI authorisation certificate reduction rule can be described
as

P ‖∼ (Q � X) ∧ Q |∼ (R � X) → P |∼ (R � X)

in the SL logic (with a similar relationship for delegation of authorisation). Such relation-
ship does not facilitate the tracking of accountability during certificate reduction.

134

6 Subterfuge in Local Names

Subterfuge is also possible when using local name certificates. Ellison and Dohrmann [7]
describe a model based on SPKI/SDSI name certificates for access control in mobile com-
puting platforms. A group leader controls all rights of a group. A group leader may delegate
the right “admitting members” to other principals. For example, K G is a group leader; KG

admits KA as its group member by certificate C1. KG defines a large random number n,
which will be used as KA’s local name for KG’s member. Then, KG issues certificate C2

to KA which means that if KA accepts a principal as (KA’s n), then the principal also
becomes KG’s group G’s member. KA admits KB as KA’s n by C3. Together with C2,
KB also becomes a member of KG’s G as presented in C4. The certificates are as follows.

C1 = (KG, G, KA); C2 = (KG, G, (K′
A
s n)); C3 = (KA, n, KB)

From these we can deduce (KG, G, KB), that is, KB is now a member of group G.
The scheme works in a decentralised manner and thus no single member will hold the

entire membership list. This means that there is no easy way to prove non-membership. The
strategy described in the paper is sufficiently robust as it relies on face-to-face verification
of certificate C2 when a member joins.

However, the nonce is large and there may be potential for confusion during the face-
to-face verification and this can lead to subterfuge. Consider the following certificates.

C′
1 = (KI, GI, KA); C′

2 = (KI, GI, (K
′
A
s n)); C′

3 = (KA, n, KI)

Suppose that the intruder KI wants to join KG’s group G. KI intercepts C2 and issues C ′
2

by using the number in C2. In the confusion, KA issues C′
3 which corresponds to admitting

KC (which the intruder controls) as a member of K I ’s GI for KA. In this case, KC may
use C2 and C ′

3 to prove its membership in KG’s group G.

7 Conclusions

In this paper we described how poorly characterised permissions within cryptographic cre-
dentials can lead to authorisation subterfuge during delegation operations. This subterfuge
results in a vulnerability concerning the accountability of the authorisation provided by a
delegation chain: does the delegation operations in the chain reflect the true intent of the
participants?

The challenge here is to ensure that permissions can be referred to in a manner that
properly reflects their context. Since permissions are intended to be shared across local
name spaces then their references must be global. In the paper we discuss some ad-hoc
strategies to ensure globalisation of permissions. In particular, we consider the use of global
name services and public keys as the sources of global identifiers.

The Subterfuge Logic proposed in this paper provides a systematic way of determining
whether a particular delegation scheme using particular ad-hoc permissions is sufficiently
robust to be able to withstand attempts at subterfuge. This logic provides a new charac-
terisation of certificate reduction that, we argue, is more appropriate to open systems. We
believe that it will be straightforward to extend the Subterfuge Logic to consider subterfuge
in SDSI-like local names (as considered in Section 6).

Trust Management, like many other protection techniques, provide operations that are
used to control access. As with any protection mechanism the challenge is to make sure that
the mechanisms are configured in such a way that they ensure some useful and consistent
notion of security. Subterfuge logic helps to provide assurance that a principal cannot by-
pass security via some unexpected but authorised route. This general goal of analysing un-
expected but authorised access is not limited to just certificate schemes. Formal techniques
that analyse whether a particular configuration of access controls is effective is considered

135

in [12, 14]; strategies such as well formed transactions, separation of duties and protection
domains help to ensure that a system is sufficiently robust to a malicous principle. We are
currently exploring how the subterfuge logic can be extended to include such robustness
building strategies.

8 Acknowledgements

This work is supported by the UCC Centre for Unified Computing under the Science Foun-
dation Ireland WebComG project and by Enterprise Ireland Basic Research Grant Scheme
(SC/2003/007).

References

1. M. Blaze, J. Ioannidis, S. Ioannidis, A. Keromytis, P. Nikander, and V. Prevelakis. Tapi: Trans-
actions for accessing public infrastructure. In Proceedings of the 8th IFIP Personal Wireless
Communications (PWC) Conference, 2003.

2. Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The keynote trust-
management system, version 2, September 1999. IETF RFC 2704.

3. Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Offline micropayments without trusted
hardware. In Financial Cryptography, Grand Cayman, February 2001.

4. John A Clark and Jeremy L Jacob. A survey of authentication protocol literature, version 1.0. In
http://www.cs.york.ac.uk/jac/, 1997.

5. Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, and Ronald L.
Rivest. Certificate chain discovery in spki/sdsi. Journal of Computer Security, 9(4):285–322,
2001.

6. John DeTreville. Binder, a logic-based security language. In Proceedings of the 2002 IEEE
Symposium on Research in Security and Privacy, pages 105–113. IEEE Computer Society Press,
2002.

7. Carl Ellison and Steve Dohrmann. Public-key support for group collaboration. ACM Transac-
tions on Information and System Security (TISSEC), 6(4):547–565, 2003.

8. Carl Ellison, Bill Frantz, Butler Lampson, Ronald L. Rivest, Brian Thomas, and Tatu Ylonen.
Spki certificate theory, September 1999. IETF RFC 2693.

9. Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, and Tatu Ylonen.
Spki examples, September 1998.

10. C.M. Ellison. The nature of a usable PKI. Computer Networks, 31:823–830, 1999.
11. Simon N. Foley and Hongbin Zhou. Authorisation subterfuge by delegation in decentralised

networks. In International Security Protocols Workshop, Cambridge, UK, April 2005.
12. S.N. Foley. A non-functional approach to system integrity. IEEE Journal on Selected Areas in

Communications, 21(1), Jan 2003.
13. S.N. Foley. Using trust management to support transferable hash-based micropayments. In

Proceedings of the 7th International Financial Cryptography Conference, Gosier, Guadeloupe,
FWI, January 2003.

14. S.N. Foley. Believing in the integrity of a system. In IJCAR Workshop on Automated Reasoning
for Security Protocol Analysis. Springer Verlag Electronic Notes in Computer Science, 2004.

15. R. Housley, W. Polk, W. Ford, and D. Solo. Internet x.509 public key infrastructure certificate
and certificate revocation list (crl) profile, April 2002.

16. Ninghui Li et al. Beyond proof-of-compliance: Safety and availability analysis in trust manage-
ment. In Proceedings of 2003 IEEE Symposium on Security and Privacy. IEEE, 2003.

17. G. Lowe. A hierarchy of authentication specifications. In PCSFW: Proceedings of The 10th
Computer Security Foundations Workshop. IEEE Computer Society Press, 1997.

136

Probable Innocence Revisited?

Konstantinos Chatzikokolakis and Catuscia Palamidessi

INRIA Futurs and LIX, École Polytechnique
{kostas,catuscia}@lix.polytechnique.fr

Abstract. In this paper we study probable innocence, a notion of probabilistic
anonymity provided by protocols such as Crowds. The authors of Crowds, Reiter
and Rubin, gave a definition of probable innocence which later has been inter-
preted by other authors in terms of the probability of the users from the point of
view of the observer. This formalization however does not seem to correspond
exactly to the property that Reiter and Rubin have shown for Crowds, the latter,
in fact, is independent from the probability of the users.
We take the point of view that anonymity should be a concept depending only on
the protocol, and should abstract from the probabilities of the users. For strong
anonymity, this abstraction leads to a concept known as conditional anonymity.
The main goal of this paper is to establish a notion which is to probable innocence
as conditional anonymity is to strong anonymity. We show that our definition,
while being more general, corresponds exactly to the property that Reiter and
Rubin have shown for Crowds, under specific conditions. We also show that in the
particular case that the users have of uniform probabilities we obtain a property
similar to the definition of probable innocence given by Halpern and O’Neill.

1 Introduction

Often we wish to ensure that the identity of the user performing a certain action is
maintained secret. This property is called anonymity. Examples of situations in which
we may wish to provide anonymity include: publishing on the web, retrieving informa-
tion from the web, sending a message, etc. Many protocols have been designed for this
purpose, for example, Crowds [1], Onion Routing [2], the Free Haven [3], Web MIX
[4] and Freenet [5].

Most of the protocols providing anonymity use random mechanisms. Consequently,
it is natural to think of anonymity in probabilistic terms. Various notions of probabilis-
tic anonymity have been proposed in the literature, at different levels of strength. The
notion of anonymity in [6], called conditional anonymity in [7, 8], and investigated also
in [9], describes the ideal situation in which the protocol does not leak any information
concerning the identity of the user. This property is satisfied for instance by the Dining
Cryptographers with fair coins [6]. Protocols used in practice, however, especially in
presence of attackers or corrupted users, are only able to provide a weaker notion of
anonymity.

? This work has been partially supported by the Project Rossignol of the ACI Sécurité Informa-
tique (Ministère de la recherche et nouvelles technologies).

137

In [1] Reiter and Rubin have proposed an hierarchy of notions of probabilistic
anonymity in the context of Crowds. We recall that Crowds is a system for anonymous
web surfing aimed at protecting the identity of users when sending (originating) mes-
sages. This is achieved by forwarding the message to another user selected randomly,
which in turn forwards the message, and so on, until the message reaches its destina-
tion. Part of the users may be corrupted (attackers), and one of the main purposes of the
protocol is to protect the identity of the originator of the message from those attackers.

Quoting from [1], the hierarchy is described as follows. Here the sender stands for
the user that forwards the message to the attacker.

Beyond suspicion From the attacker’s point of view, the sender appears no more likely
to be the originator of the message than any other potential sender in the system.

Probable innocence From the attacker’s point of view, the sender appears no more
likely to be the originator of the message than to not be the originator.

Possible innocence From the attacker’s point of view, there is a nontrivial probability
that the real sender is someone else.

In [1] probable innocence was also expressed with a precise mathematical formula and
proved to hold for Crowds under certain conditions. Also, Halpern and O’Neill have
proposed a formal interpretation of the notions above in [8]. In particular, the definition
they give for probable innocence is that, if a user i has been the originator, then the
probability for the attacker that i is the originator is smaller than 1/2. However, the
property of probable innocence that Reiter and Rubin express formally and prove for the
system Crowds in [1] does not mention the user’s probability of being the originator, but
only the probability of the event observed by the attacker. More precisely, the property
proved for Crowds is that the probability that the originator forwards the message to an
attacker (given that an attacker receives eventually the message) is smaller than 1/2.

The property proved for Crowds in [1] depends only on the way the protocol works,
and on the number of the attackers. It is totally independent from the probability of each
user to be the originator. This is of course a very desirable property, since we do not
want the correctness of a protocol to depend on the users’ intentions of originating a
message. For stronger notions of anonymity, this abstraction from the users’ probabil-
ities leads to the notion of probabilistic anonymity defined in [9], which is equivalent
to the conditional anonymity defined in [7, 8]. Note that this definition is different from
the notion of strong probabilistic anonymity given in [7, 8]: the latter depends, again,
on the probabilities of the users.

Another intended feature of our notion of probable innocence is the abstraction
from the specific characteristics of Crowds. In Crowds, there are certain symmetries
that derive from the assumption that the probability that user i forwards the message to
user j is the same for all i and j. The property of probable innocence proved for Crowds
depends strongly on this assumption. We want a general notion that has the possibility
to hold even in protocols which do not satisfy the Crowds’ symmetries.

1.1 Contribution

The main goal of this paper is to establish a general notion of probable innocence which,
like probabilistic anonymity, is independent from the probabilities of the users. We

138

show that our definition, while being more general, corresponds exactly to the property
that Reiter and Rubin have proved for Crowds, under the specific symmetry conditions
which are satisfied by Crowds. We also show that in the particular case that the users
have uniform probability of being the originator, we obtain a property similar to the
definition of probable innocence given by Halpern and O’Neill.

1.2 Plan of the paper

In next section we recall some notions which are used in the rest of the paper: the Prob-
abilistic Automata, the framework for anonymity developed in [9], and the definition
of (strong) probabilistic anonymity given in [9]. In Section 3 we illustrate the Crowds
protocol, we recall the property proved for Crowds and the definition of probable in-
nocence by Halpern and O’Neill, and we discuss them. In Section 4 we propose our
notion of probable innocence and we compare with those of Section 3. The full version
of this paper, including the proofs of all propositions, can be found in [10].

2 Preliminaries

2.1 Probabilistic Automata

In our approach we consider systems that can perform both probabilistic and nonde-
terministic choice. Intuitively, a probabilistic choice represents a set of alternative tran-
sitions, each of them associated to a certain probability of being selected. The sum of
all probabilities on the alternatives of the choice must be 1, i.e. they form a probabil-
ity distribution. Nondeterministic choice is also a set of alternatives, but we have no
information on how likely one alternative is selected.

There have been many models proposed in literature that combine both nondeter-
ministic and probabilistic choice. One of the most general is the formalism of prob-
abilistic automata proposed in [11]. In this work we use this formalism to model
anonymity protocols. We give here a brief description of it.

A probabilistic automaton consists in a set of states, and labeled transitions be-
tween them. For each node, the outgoing transitions are partitioned in groups called
steps. Each step represents a probabilistic choice, while the choice between the steps is
nondeterministic.

Figure 1 illustrates some examples of probabilistic automata. We represent a step
by putting an arc across the member transitions. For instance, in (a), state s1 has two
steps, the first is a probabilistic choice between two transitions with labels a and b, each
with probability 1/2. When there is only a transition in a step, like the one from state
s3 to state s6, the probability is of course 1 and we omit it.

In this paper, we use only a simplified kind of automaton, in which from each node
we have either a probabilistic choice or a nondeterministic choice (more precisely, either
one step or a set of singleton steps), like in (b). In the particular case that the choices
are all probabilistic, like in (c), the automaton is called fully probabilistic.

Given an automaton M , we denote by etree(M) its unfolding, i.e. the tree of all pos-
sible executions of M (in Figure 1 the automata coincide with their unfolding because

139

s2

s1 s1 s1

1/2

a

bc
1/2

1/2

1/3

2/3

c

c

b a
1/2

s3

s6

s5

s4

s8s7

(a)

a
b

c

a c

a

a

b
c

c
1/2 1/2 1/21/2

1/2

1/3

1/6

(b) (c)

Fig. 1. Examples of probabilistic automata

there is no loop). If M is fully probabilistic, then each execution (maximal branch) of
etree(M) has a probability obtained as the product of the probability of the edges along
the branch. In the finite case, we can define a probability measure for each set of execu-
tions, called event, by summing up the probabilities of the elements1. Given an event x,
we will denote by p(x) the probability of x. For instance, let the event c be the set of all
computations in which c occurs. In (c) its probability is p(c) = 1/3×1/2+1/6 = 1/3.

When nondeterminism is present, the probability can vary, depending on how we
resolve the nondeterminism. In other words we need to consider a function ς that, each
time there is a choice between different steps, selects one of them. By pruning the non-
selected steps, we obtain a fully probabilistic execution tree etree(M, ς) on which we
can define the probability as before. For historical reasons (i.e. since nondeterminism
typically arises from the parallel operator), the function ς is called scheduler.

It should then be clear that the probability of an event is relative to the particular
scheduler. We will denote by pς(x) the probability of the event x under the scheduler ς .
For example, consider (a). We have two possible schedulers determined by the choice
of the step in s1. Under one scheduler, the probability of c is 1/2. Under the other, it
is 2/3 × 1/2 + 1/3 = 2/3. In (b) we have three possible schedulers under which the
probability of c is 0, 1/2 and 1, respectively.

2.2 Anonymity systems

The concept of anonymity is relative to the set of anonymous users and to what is visible
to the observer. Hence, following [12, 13] we classify the actions of the automaton into
the three sets A, B and C as follows:

– A is the set of the anonymous actions A = {a(i) | i ∈ I} where I is the set of the
identities of the anonymous users and a is an injective function from I to the set
of actions, which we call abstract action. We also call the pair (I, a) anonymous
action generator.

1 In the infinite case things are more complicated: we cannot define a probability measure for all
sets of execution, and we need to consider as event space the σ-field generated by the cones of
etree(M). However, in this paper, we consider only the finite case.

140

– B is the set of the observable actions. We will use b, b′, . . . to denote the elements
of this set.

– C is the set of the remaining actions (which are unobservable).

Note that the actions in A normally are not visible to the observer, or at least, not for the
part that depends on the identity i. However, for the purpose of defining and verifying
anonymity we model the elements of A as visible outcomes of the system.

Definition 1. An anonymity system is a tuple (M, I, a, B,Z , p), where M is a proba-
bilistic automaton, (I, a) is an anonymous action generator, B is a set of observable
actions, Z is the set of all possible schedulers for M , and for every ς ∈ Z , pς is the
probability measure on the event space generated by etree(M, ς).

For simplicity, we assume the users to be the only possible source of nondeterminism
in the system. If they are probabilistic, then the system is fully probabilistic, hence Z is
a singleton and we omit it.

We introduce the following notation to represent the events of interest:

– a(i) : all the executions in etree(M, ς) containing the action a(i);
– a : all the executions in etree(M, ς) containing an action a(i) for an arbitrary i;
– o : all the executions in etree(M, ς) containing as their maximal sequence of ob-

servable actions the sequence o (where o is of the form b1b2 . . . bn for some b1,
b2, . . . , bn ∈ B). We denote by O (observables) the set of all such o’s.

We use the symbols ∪, ∩ and ¬ to represent the union, the intersection, and the com-
plement of events, respectively.

We wish to keep the notion of observables as general as possible, but we still need to
make some assumptions on them. First, we want the observables to be disjoint events.
Second, they must cover all possible outcomes. Third, an observable o must indicate
unambiguously whether a has taken place or not, i.e. it either implies a, or it implies
¬a. In set-theoretic terms it means that either o is a subset of a or of the complement of
a. Formally2:

Assumption 1 (on the observables)

1. ∀ς ∈ Z . ∀o1, o2 ∈ O. o1 6= o2 ⇒ pς(o1 ∪ o2) = pς(o1) + pς(o2)
2. ∀ς ∈ Z . pς(O) = 1
3. ∀ς ∈ Z . ∀o ∈ O. (pς(o ∩ a) = pς(o)) ∨ pς(o ∩ ¬a) = pς(o)

Analogously, we need to make some assumption on the anonymous actions. We
consider first the conditions tailored for the nondeterministic users: each scheduler de-
termines completely whether an action of the form a(i) takes place or not, and in the
positive case, there is only one such i. Formally:

2 Note that the intuitive explanations here are stronger than the corresponding formal assump-
tions because, in the infinite case, there could be non-trivial sets of measure 0. However in the
case of anonymity we usually deal with finite scenarios. In any case, these formal assumptions
are enough for the ensuring the properties of the anonymity notions that we need in this paper.

141

Assumption 2 (on the anonymous actions, for nondeterministic users)

∀ς ∈ Z . pς(a) = 0 ∨ (∃i ∈ I. (pς(a(i)) = 1 ∧ ∀j ∈ I. j 6= i⇒ pς(a(j)) = 0))

We now consider the case in which the users are fully probabilistic. The assumption
on the anonymous actions in this case is much weaker: we only require that there be at
most one user that performs a, i.e. a(i) and a(j) must be disjoint for i 6= j. Formally:

Assumption 3 (on the anonymous actions, for probabilistic users)

∀i, j ∈ I. i 6= j ⇒ p(a(i) ∪ a(j)) = p(a(i)) + p(a(j))

2.3 Strong probabilistic anonymity

In this section we recall the notion of strong anonymity proposed in [9].
Let us first assume that the users are nondeterministic. Intuitively, a system is strongly

anonymous if, given two schedulers ς and ϑ that both choose a (say a(i) and a(j), re-
spectively), it is not possible to detect from the probabilistic measure of the observables
whether the scheduler has been ς or ϑ (i.e. whether the selected user was i or j).

Definition 2. A system (M, I, a, B,Z , p) with nondeterministic users is anonymous
if

∀ς, ϑ ∈ Z . ∀o ∈ O. pς(a) = pϑ(a) = 1 ⇒ pς(o) = pϑ(o)

The probabilistic counterpart of Definition 2 can be formalized using the concept
of conditional probability. Recall that, given two events x and y with p(y) > 0, the
conditional probability of x given y, denoted by p(x | y), is equal to p(x ∩ y)/p(y).

Definition 3. A system (M, I, a, B, p) with probabilistic users is anonymous if

∀i, j ∈ I. ∀o ∈ O. (p(a(i)) > 0 ∧ p(a(j)) > 0)⇒ p(o | a(i)) = p(o | a(j))

The notions of anonymity illustrated so far focus on the probability of the observ-
ables. More precisely, it requires the probability of the observables to be independent
from the selected user. In [9] it was shown that Definition 3 is equivalent to the notion
adopted implicitly in [6], and called conditional anonymity in [7]. As illustrated in the
introduction, the idea of this notion is that a system is anonymous if the observations do
not change the probability of the a(i)’s. In other words, we may know the probability
of a(i) by some means external to the system, but the system should not increase our
knowledge about it.

Proposition 1 ([9]). A system (M, I, a, B, p) with probabilistic users is anonymous
iff

∀i ∈ I. ∀o ∈ O. p(o ∩ a) > 0 ⇒ p(a(i) | o) = p(a(i) | a)

Note 1. To be precise, the probabilistic counterpart of Definition 2 should be stronger
than that given in Definition 3, in fact it should be independent from the probabilities
of the users, like Definition 2 is. We could achieve this by assuming the system to be
parametric with respect to the probability distribution of the users, and then require
the formula to hold for every possible distribution. Proposition 1 should be modified
accordingly.

142

Note 2. The large number of anonymity definitions often leads to confusion. In the
rest of the paper we will refer to Definition 3 as (strong) probabilistic anonymity. By
conditional anonymity we will refer to the condition in Proposition 1 which corresponds
to the definition of Halpern and O’Neill ([7]). Finally by strong anonymity we will refer
to the corresponding definition in [7] which can be expressed as:

∀i, j ∈ I. ∀o ∈ O : p(a(i) | o) = p(a(j) | o) (1)

3 Probable Innocence

Strong and conditional anonymity are notions which are usually difficult to achieve
in practice. For instance, in the case of protocols like Crowds, the originator needs to
take some initiative, thus revealing himself to the attacker with greater probability than
the rest of the users. As a result, more relaxed levels of anonymity, such as probable
innocence, are provided by real protocols.

3.1 The Crowds protocol

This protocol, presented in [1], allows Internet users to perform web transactions with-
out revealing their identity. The idea is to randomly route the request through a crowd of
users. Thus when the web server receives the request he does not know who is the origi-
nator since the user who sent the request to the server is simply forwarding it. The more
interesting case, however, is when an attacker is a member of the crowd and participates
in the protocol. In this case the originator is exposed with higher probability than any
other user and strong anonymity cannot be achieved. However, it can be proved that
Crowds provides probable innocence under certain conditions.

More specifically a crowd is a group of n users who participate in the protocol.
Some of the users may be corrupted which means they can collaborate in order to reveal
the identity of the originator. Let c be the number of such users and pf a parameter of
the protocol, explained below. When a user, called the initiator or originator, wants to
request a web page he must create a path between him and the server. This is achieved
by the following process:

– The initiator selects randomly a member of the crowd (possibly himself) and for-
wards the request to him. We will refer to this latter user as the forwarder.

– A forwarder, upon receiving a request, flips a biased coin. With probability 1− pf

he delivers the request directly to the server. With probability pf he selects ran-
domly, with uniform probability, a new forwarder (possibly himself) and forwards
the request to him. The new forwarder repeats the same procedure.

The response from the server follows the same route in the opposite direction to
return to the initiator. It must be mentioned that all communication in the path is en-
crypted using a path key, mainly to defend against local eavesdroppers (see [1] for more
details). In this paper we are interested in attacks performed by corrupted members of
the crowd to reveal the initiator’s identity. Each member is considered to have only
access to the traffic routed through him, so he cannot intercept messages addressed to
other members.

143

3.2 Definition of probable innocence

Probable innocence is verbally defined by Reiter and Rubin ([1]) as “the sender (the user
who forwards the message to the attacker) appears no more likely to be the originator
than not to be the originator”. Two different approaches to formalize this notion exist,
the first focuses on the probability of the observables and the second on the probability
of the users.

First approach (focus on the probability of the observables): Reiter and Rubin ([1])
give a definition which considers the probability of the originator being observed by a
corrupted member, that is being directly before him in the path. Let I denote the event
“the originator is observed by a corrupted member” and H1+ the event “at least one
corrupted member appears in the path”. Then probable innocence can be defined as

p(I |H1+) ≤ 1/2 (2)

In [1] it is proved that this property is satisfied by Crowds if n ≥ pf

pf−1/2 (c + 1).
For simplicity, we suppose that a corrupted user will not forward a request to other

crowd members, so at most one user can be observed. This approach is also followed in
[1, 14, 15] and the reason is that by forwarding the request the corrupted users cannot
gain any new information since forwarders are chosen randomly.

We now express the above definition in the framework of this paper (Section 2.2).
Since I ⇒ H1+ we have p(I |H1+) = p(I)/p(H1+). If Ai denotes that “user i is
the originator” and Di is the event “the user i was observed by a corrupted member
(appears in the path right before the corrupter member)” then p(I) =

∑
i p(Di∧Ai) =∑

i p(Di |Ai)p(Ai). Since p(Di |Ai) is the same for all i then the definition (2) can be
written ∀i : p(Di |Ai)/P (H1+) ≤ 1/2.

Let A be the set of all crowd members and O = {oi | i ∈ A} the set of observables.
Essentially a(i) denotes Ai and oi denotes Di. Note that Di is an observable since it
can be observed by a corrupted user (remember that corrupted users share their infor-
mation). Also let h =

∨
i∈A oi, meaning that some user was observed. The definition

(2) can now be written:

∀i ∈ A : p(oi | a(i)) ≤ 1

2
p(h) (3)

This is indeed an intuitive definition for Crowds. However there are many questions
raised by this approach. For example, we are only interested in the probability of one
specific event, what about other events that might reveal the identity of the initiator?
For example the event ¬oi will have probability greater than p(h)/2, is this important?
Moreover, consider the case where the probability of oi under a different initiator j is
negligible. Then, if we observe oi, isn’t it more probable that user i sent the message,
even if p(oi | a(i)) is less than p(h)/2?

If we consider arbitrary protocols, then there are cases where the condition (3) does
not express the expected properties of probable innocence. We give two examples of
such systems in 2 and we explain them below.

Example 1. On the left-hand side of figure 2, n users are participating in a Crowds-
like protocol. The only difference, with respect to the standard Crowds, is that user

144

o1 o2 · · · on

a(1) c
n−pf

l · · · l

a(2) 0

...
... n-1 Crowd

a(n) 0

o1 o2 o3

a(1) 2/3 1/6 1/6

a(2) 2/3 1/6 1/6

a(3) 2/3 1/6 1/6

Fig. 2. Examples of arbitrary (non symmetric) protocols. The value at position i, j represents
p(oj | a(i)) for user i and observable oj .

1 is behind a firewall, which means that he can send messages to any other user but
he cannot receive messages from any of them. In the corresponding table we give the
conditional probabilities p(oj | a(i)), where we recall that oj means that j is the user
who sends the message to the corrupted member, and a(i) means that i is the initiator.
When user 1 is the initiator the probability of observing him is c

n−pf
(there is a c/n

chance that user 1 sends the message to a corrupted user and there is also a chance
that he forwards it to himself and sends it to a corrupted user in the next round). All
other users can be observed with the same probability l. When any other user is the
initiator, however, the probability of observing user 1 is 0, since he will never receive
the message. In fact, the protocol will behave exactly like a Crowd of n− 1 users as it
is shown in the table.

Note that Reiter and Rubin’s definition (3) requires the diagonal of this table to be
less than p(h)/2. In this example the definition holds provided that n−1 ≥ pf

pf−1/2 (c+

1). In fact, for all users i 6= 1, p(oi | a(i)) is the same as in the original Crowds (which
satisfies the definition) and for user 1 it is even smaller. However, probable innocence
is violated. If a corrupted member observes user 1 he can be sure that he is the initiator
since no other initiator leads to the observation of user 1. Indeed p(a(1) | o1) = 1. But
this is against our intuition of probable innocence.

Example 2. On the left-hand side we have an opposite counter-example. Three users
want to communicate with a web server, but they can only access it through a proxy.
We suppose that all users are honest but they do not trust the proxy so they do not
want to reveal their identity to him. So they use the following protocol: the initiator
first forwards the message to one of the users 1, 2 and 3 with probabilities 2/3, 1/6
and 1/6 respectively, regardless of which is the initiator. The user who receives the

145

message forwards it to the proxy. The probabilities of observing each user are shown
in the corresponding table. Regardless of which is the initiator, user 1 will be observed
with probability 2/3 and the others with probability 1/6 each.

In this example Reiter and Rubin’s definition does not hold since p(o1 | a(1)) >
1/2. However all users produce the same observables with the same probabilities hence
we cannot distinguish between them. Indeed the system is strongly anonymous (Defini-
tion 3 holds)! Thus, in the general case, we cannot adopt (3) as the definition of probable
innocence since we want such a notion to be implied by strong anonymity.

However, it should be noted that in the case of Crowds the definition of Reiter
and Rubin is correct, because of a special symmetry property of the protocol. This is
discussed in detail in Section 4.1.

Finally, note that the above definition does not mention the probability of any user.
We are only interested in the probability of the event oi given the fact that i is the
initiator. The user itself might have a very small or very big probability of initiating the
message. This is a major difference with respect to the next approach.

Second approach (focus on the probability of the users): Halpern and O’Neill pro-
pose in [7] a general framework for defining anonymity properties. We give a very
abstract idea of this framework, detailed information is available in [7]. In this frame-
work a system consists of a group of agents, each having a local state at each point of
the execution. The local state contains all information that the user may have and does
not need to be explicitly defined. At each point (r, m) user i can only have access to
his local state ri(m). So he does not know the actual point (r, m) but at least he knows
that it must be a point (r′, m′) such that r′i(m

′) = r′i(m
′). Let Ki(r, m) be the set of

all these points. If a formula φ is true in all points of Ki(r, m) then we say that i knows
φ. In the probabilistic setting it is possible to create a measure on Ki(r, m) and draw
conclusions of the form “formula φ is true with probability p”.

To define probable innocence we first define a formula θ(i, a) meaning “user i per-
formed the event a”. We then say that a system has probable innocence if for all points
(r, m), the probability of θ(i, a) in this point for all users j (that is, the probability that
arises by measuring Kj(r, m)) is less that one half.

This definition can be expressed in the framework of Section 2.2. The probability
of a formula φ for user j at the point (r, m) depends only on the set Kj(r, m) which
itself depends only on rj(m). The latter is the local state of the user, that is the only
things that he can observe. In our framework this corresponds to the observables of
the probabilistic automaton. Thus, we can reformulate the definition of Halpern and
O’Neill as:

∀i ∈ I, ∀o ∈ O : p(a(i) | o) ≤ 1/2 (4)

This definition is similar to the one of Reiter and Rubin but not the same. The difference
is that it considers the probability of the user given an observation, not the opposite. If
this probability is less that one half then intuitively i appear less likely to have per-
formed o than not to.

The problem with this definition is that the probabilities of the users are not part
of the system and we can make no assumptions about them. Consider for example the

146

case where we know that user i visits very often a specific web site, so even if we
have 100 users, the probability that he performed a request to this site is 0.99. Then we
cannot expect this probability to become less than one half under all observations. A
similar remark about strong anonymity led Halpern and O’Neill to define conditional
anonymity. If a user i has higher probability of performing an action than user j then
we cannot expect this to change because of the system. Instead we can request that the
system does not provide any new information about the originator of the action.

4 A new definition of probable innocence

In this section we give a new definition of probable innocence that generalizes the ex-
isting ones by abstracting from the probabilities of the users. In [7], where they define
conditional anonymity, Halpern and O’Neill make the following remark about strong
anonymity. Since the probabilities of the users are generally unknown we cannot expect
that all users appear with the same probability. All that we can ensure is that the system
does not reveal any information, that is that the probability of every user before and
after making an observation should be the same. In other words, the fraction between
the probabilities of any couple of users should not be one, but should at least remain the
same before and after the observation.

We apply the same idea to probable innocence. We start by rewriting relation (4) as

∀i ∈ A, ∀o ∈ O : 1 ≥ p(a(i) | o)
p(

∨
j 6=i a(j) | o) (5)

As we already explained, if the probability of user i is very high then we cannot expect
this fraction to be less than 1. Instead, we could require that it does not surpass the
corresponding fraction of the probabilities before the execution of the protocol. So we
generalize condition (5) in the following definition.

Definition 4. A system (M, I, a, B) has probable innocence if for all user distributions
p, users i ∈ I and observables o ∈ O, the following holds:

(n− 1)
p(a(i))

p(
∨

j 6=i a(j))
≥ p(a(i) | o)

p(
∨

j 6=i a(j) | o)

In probable innocence we consider the probability of a user compared to the prob-
ability of all the other users together. Definition 4 requires that the fraction of these
probabilities after the execution of the protocol should be no bigger than n − 1 times
the same fraction before the execution. The n − 1 factor comes from the fact that in
probable innocence some information about the sender’s identity is leaked. Indeed, if
users are uniformly distributed, each of them has probability 1/n before the protocol,
but the sender appears with probability 1/2 afterwards. In other words, the fraction be-
tween the sender and all other users is 1

n−1 before the protocol and becomes 1 after.
Definition 4 states that this fraction can be increased, thus leaking some information,
but no more than n− 1 times.

Definition 4 generalizes relation (4) and can be applied in cases where the distri-
bution of users is not uniform. However it still involves the probabilities of the users,

147

which are not a part of the system. What we would like is a definition similar to Def.
3 which involves only probabilities of events that are part of the system. To achieve
this we rewrite Definition 4 using the following transformations. For all users we as-
sume that p(a(i)) > 0. Users with zero probability could be removed from Definition
4 before proceeding.

(n− 1)
p(a(i))∑

j 6=i p(a(j))
≥ p(a(i) | o)∑

j 6=i p(a(j) | o) ⇔

(n− 1)
p(a(i))∑

j 6=i p(a(j))
≥

p(o | a(i))p(a(i))
p(o)∑

j 6=i
p(o | a(j))p(a(j))

p(o)

⇔

(n− 1)
∑

j 6=i

p(o | a(j))p(a(j)) ≥ p(o | a(i))
∑

j 6=i

p(a(j))

We obtain a lower bound of the left clause by replacing all p(o | a(j)) with their mini-
mum. So we require that

(n− 1) min
j 6=i
{p(o | a(j))}

∑

j 6=i

p(a(j)) ≥ p(o | a(i))
∑

j 6=i

p(a(j))⇔ (6)

(n− 1) min
j 6=i

p(o | a(j)) ≥ p(o | a(i)) (7)

Condition (7) can be interpreted as follows: for each observable, the probability that
user i produces it should be balanced by the corresponding probabilities of the other
users. It would be more natural to have the sum of all p(o | a(j)) at the left side, in fact
the left side of (7) is a lower bound of this sum. However, since the probabilities of
the users are unknown, we have to consider the “worst” case where the user with the
minimum p(o | a(j)) has the greatest probability of appearing.

Finally, condition (7) is equivalent to the following definition that we propose as a
general definition of probable innocence.

Definition 5. A system (M, I, a, B) has probable innocence if for all observables o ∈
O and for all users i, j ∈ I such that p(a(i)) > 0, p(a(j)) > 0:3

(n− 1)p(o | a(j)) ≥ p(o | a(i))

The meaning of this definition is that in order for p(i)/p(
∨

j 6=i a(j)) to increase at
most by n − 1 times (Def. 4), the corresponding fraction between the probabilities of
the observables must be at most n − 1. Note that in probabilistic anonymity (Def. 3)
p(o | a(i)) and p(o | a(j)) are required to be equal. In probable innocence we allow
p(o | a(i)) to be bigger, thus losing some anonymity, but no more than n− 1 times.

Definition 5 has the advantage of including only the probabilities of the observables
and not those of the users, similarly to the Definition 3 of probabilistic anonymity. It is
clear that Definition 5 implies Definition 4 since we strengthened the first to obtain the

3 Note that we require p(a(i)) > 0 for formal reasons, otherwise p(o | a(i)) is undefined. We
are concerned only about users with non-null probabilities of originating a message, but we
make no other assumptions about these probabilities.

148

second. Since Definition 4 considers all possible distributions of the users, the inverse
implication also holds. The proof of all propositions can be found in [10].

Proposition 2. Definitions 4 and 5 are equivalent.

Examples: Recall now the two examples of figure 2. If we apply Definition 5 to
the first one we see that it doesn’t hold since (n − 1)p(o1 | a(2)) = 0 � c

n−pf
=

p(o1 | a(1)). This agree with our intuition of probable innocence being violated when
user 1 is observed. In the second example the definition holds since ∀i, j : p(oi | a(i)) =
p(oj | a(j)). Thus, we see that in these two examples our definition reflects correctly the
notion of probable innocence.

4.1 Relation to other definitions

Definition by Reiter and Rubin Reiter and Rubin’s definition can be expressed by
the condition (3). It considers the probabilities of the observables (not the users) and it
requires that for each user, a special observable meaning that the user is observed by
a corrupted member has probability less than p(h)/2. As we saw at the examples of
figure 2 what is important is not the actual probability of an observable under a specific
user, but its relation with the corresponding probabilities under the other users.

However in Crowds there are some important symmetries. First of all the number
of the observables is the same as the number of users. For each user i there is an ob-
servable oi meaning that the user i is observed. When i is the initiator, oi has clearly a
higher probability than the other observables. However, since forwarders are randomly
selected, the probability of oj is the same for all j 6= i. The same holds for the observ-
ables. oi is more likely to have been performed by i. However all other users j 6= i have
the same probability of producing it. These symmetries can be expressed as:

∀i ∈ I, ∀k, l 6= i : p(ok | a(i)) = p(ol | a(i)) (8)

p(oi | a(k)) = p(oi | a(l)) (9)

Because of these symmetries, we cannot have a situation similar to the ones of Figure
2. On the left-hand side, for example, the probability p(o1 | a(2)) = 0 should be the
same as p(o3 | a(2)). To keep the value 0 (which is the reason why probable innocence
is not satisfied) we should have 0 everywhere in the row (except p(o2 | a(2))) which is
impossible since the sum of the row should be p(h) and p(o2 | a(2)) ≤ p(h)/2.

So the reason why probable innocence is satisfied in Crowds is not the fact that
observing the initiator has low probability (what definition (2) ensures) by itself, but
the fact that definition (2), because of the symmetry, forces the probability of observing
any of the other users to be high enough.

Proposition 3. Under the symmetry requirements (8) and (9), Definition 5 is equivalent
to the one of Reiter and Rubin.

149

Strong anonymity (HO) Probabilistic anon. (Def. 3) Conditional anon. (HO)
p(a(i) | o) = p(a(j) | o) uniform⇐⇒ p(o | a(i)) = p(o | a(j)) ⇐⇒ p(a(i) | o) = p(a(i) | a)

⇓ ⇓
Probable Inn. (HO) Probable Inn. (Def. 5) Probable Inn. (Def. 4)
1/2 ≥ p(a(i) | o) uniform⇐⇒ (n− 1)p(o | a(j)) ≥ p(o | a(i)) ⇐⇒ (n−1)p(a(i))

p(
W

a(j))
≥ p(a(i) | o)

p(
W

a(j) | o)

m if symmetric

Probable Inn. (RR)
1/2 ≥ p(oi | a(i))

| {z } | {z } | {z }

Probabilities of users Probabilities of observables Probabilities before and
after the observation

Fig. 3. Relation between the various anonymity definitions

Definition of Halpern and O’Neill One of the motivations behind the new definition
of probable innocence is that it should make no assumptions about the probabilities of
the users. If we assume a uniform distribution of users then it can be shown that our
definition is equivalent to the one of Halpern and O’Neill.

Proposition 4. Definition 4 is equivalent to the one of Halpern and O’Neill if for all
users i, j ∈ I : p(a(i)) = p(a(j)).

Probabilistic anonymity It is easy to see that strong anonymity (equation (1)) implies
Halpern and O’Neill’s definition of probable innocence. Definition 5 preserves the same
implication in the case of probabilistic anonymity.

Proposition 5. Probabilistic anonymity implies probable innocence (Definition 5).

The relation between the various definitions of anonymity is summarized in Figure
3. The classification in columns is based on the type of probabilities that are considered.
The first column considers the probability of different users, the second the probability
of the observables and the third the probability of the same user before and after an ob-
servation. The second column generalizes the first by abstracting from the probabilities
of the users while equivalence holds in the case of uniform distribution. Concerning the
lines, the first corresponds to the strong case and the second to probable innocence. It
is clear from the table that the new definition is to probable innocence as conditional
anonymity is to strong anonymity.

5 Conclusion

In this paper we consider probable innocence, a weak notion of anonymity provided by
real-world systems such as Crowds. We analyze the definitions of probable innocence

150

existing in literature, in particular: the one by Reiter and Rubin which is suitable for
systems which, like Crowds, satisfy certain symmetries, and the one given by Halpern
and O’Neill, which expresses a condition on the probability of the users.

Our contribution is a definition of probable innocence which is (intuitively) ade-
quate for a general class of protocols, abstracts from the probabilities of the users and
involves only the probabilities that depend solely on the system. The new definition
is shown to be equivalent to the existing ones under symmetry conditions (Reiter and
Rubin) or uniform distribution of the users (Halpern and O’Neill).

References

1. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for Web transactions. ACM Transactions on
Information and System Security 1 (1998) 66–92

2. Syverson, P., Goldschlag, D., Reed, M.: Anonymous connections and onion routing. In:
IEEE Symposium on Security and Privacy, Oakland, California (1997) 44–54

3. Dingledine, R., Freedman, M.J., Molnar, D.: The free haven project: Distributed anonymous
storage service. In: Designing Privacy Enhancing Technologies, International Workshop on
Design Issues in Anonymity and Unobservability. Volume 2009 of LNCS., Springer (2000)
67–95

4. Berthold, O., Federrath, H., Köpsell, S.: Web mixes: A system for anonymous and un-
observable internet access. In: Designing Privacy Enhancing Technologies, International
Workshop on Design Issues in Anonymity and Unobservability. Volume 2009 of LNCS.,
Springer (2000) 115–129

5. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous infor-
mation storage and retrieval system. In: Designing Privacy Enhancing Technologies, Inter-
national Workshop on Design Issues in Anonymity and Unobservability. Volume 2009 of
LNCS., Springer (2000) 44–66

6. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology 1 (1988) 65–75

7. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. In:
Proc. of the 16th IEEE Computer Security Foundations Workshop. (2003) 75–88

8. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems.
Journal of Computer Security (2005) To appear.

9. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Proceedings of CONCUR 2005.
LNCS, Springer-Verlag (2005) To appear. Report version available at
http://www.lix.polytechnique.fr/ catuscia/papers/Anonymity/report.ps.

10. Chatzikokolakis, K., Palamidessi, C.: Probable innocence revisited. Technical report,
INRIA Futurs and LIX (2005) Available at
http://www.lix.polytechnique.fr/˜catuscia/papers/Anonymity/reportPI.pdf.

11. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal
of Computing 2 (1995) 250–273 An extended abstract appeared in Proceedings of CONCUR
’94, LNCS 836: 481-496.

12. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Proc. of the European Symposium
on Research in Computer Security (ESORICS). Volume 1146 of LNCS., Springer-Verlag
(1996) 198–218

13. Ryan, P.Y., Schneider, S.: Modelling and Analysis of Security Protocols. Addison-Wesley
(2001)

14. Shmatikov, V.: Probabilistic analysis of anonymity. In: IEEE Computer Security Foundations
Workshop (CSFW). (2002) 119–128

151

15. Wright, M., Adler, M., Levine, B., Shields, C.: An analysis of the degradation of anonymous
protocols. In: ISOC Network and Distributed System Security Symposium (NDSS). (2002)

152

Relative trustworthiness

Johan W. Klüwer1 and Arild Waaler2

1 Dep. of Philosophy, University of Oslojohanw@filosofi.uio.no
2 Finnmark College and Dep. of Informatics, University of Oslo,arild@ifi.uio.no.

Abstract. We present a general theory of trustworthiness in cases where there is
more than one trustee. This supplements the analysis of trust given by Andrew
Jones (2002). We show how a priority structure implicit in a trust relation can be
made fully explicit by means of a lattice and how a system of default expectations
arises from a systematic interpretation. The default structure lends itself to formal
interpretation, but is independent of a particular logical language.

1 Introduction

In this paper, we present a method for representing and reasoning about attitudes of
trust with regard to a base set of trustees.

We have two primary aims. First, we want to clarify issues ofrelative trust: of a
subject that trusts a variety of entities, but with different degrees of confidence.

Second, we present an approach to the distinction between trustby defaultand un-
conditional, full trust, one that provides a structured way from the former to the latter.
An outcome of the analysis is that the trusting subject’s expectations about relative
trustworthiness may need to be corrected once the consequences of his default attitudes
have been worked out.

What we present is an application of a relative-trust perspective to the analysis of
trust given by Andrew Jones [2]. Jones’ characterization is designed to be valid for ev-
ery kind of trust, from trust in mere regularities to trust in the operations of complex
normative structures. This paper provides a method for applying that analysis to sce-
narios in which there is a set of different entities to be trusted. The issue is one that
Jones, quite appropriately for his fundamental analysis, does not discuss. In scenarios
involving multiple trustees, distinctions between different degrees of trust are however
quite essential, and a proper way of handling the structures involved is important for
the theory to have practical application. We attempt here to demonstrate that general
relevance.

2 The notion of trust

2.1 Trust as rule- and conformity-belief

Our point of departure is to adopt the analysis of trust given by Jones [2]. According to
that analysis, a trusting attitude essentially consists in having a pair ofbeliefs: a rule-

153

belief andconformity-belief.3 Jones’ exposition employs five different scenarios, which
involve different types of trust but nevertheless are seen to satisfy the same pattern; we
quote three of them [2, p. 226]:

S1 (the regularity scenario). x believes that there exists a regularity iny’s behavior, so that un-
der particular kinds of circumstancesy exhibits a particular kind of behavior . . . In addition,x
believes that this regularity will also be instantiated on some future occasion(s); that is to say,x
believes that the future occasion(s) will not prove to be an exception.

S2 (the obligation scenario). x believes that there is a rule requiringy to do Z, and thaty’s
behavior will in fact comply with this rule.

S4 (the informing scenario). x believes thaty is transmitting some information to him, and that
the content ofy’s message, or signal, is reliable.

A trusting subject believes a pair of propositions about a trusted entity: that a rule or
regularity applies to the trustee (rule-belief), and that the rule or regularity is in fact
followed or instantiated. For brevity, we will use the letterR to denote the general trust
rule of a given scenario, and the expressionR(a) to express the statement that the rule
applies to an entitya. We will use the letterC to denote the according predicate for
conformity, withC(a) meaning thata does in fact conform. I.e.,

x is trusted iff R(x) andC(x) are both believed.

As examples matching the mentioned scenarios, consider the following pairs (note
that these are not intended to strictly match the presentation in [2]).

S1 R(a): a usually goes to the movies on Sunday;C(a): a will go the movies this
Sunday.

S2 R(a): a ought to repay the€10 he borrowed;C(a): a will pay the€10.

S4 R(a): a ought to deliver only true information;C(a): the informationa delivers is
true.

Section 4 provides three examples which will serve to illustrate the range of relevance
for the presented theory: The case of a legal jury, in which the majority vote is decisive;
an authentication scenario in which input from three different entities is considered;
and a debtors scenario. Examples in section 3.3 illustrate simple applications to trust in
information sources.

2.2 Relative trustworthiness

Given a situation in which more than one agent is trusted according to the same criterion
R, questions ofdegreesof trust immediately appear: is it more likely thata will conform
than thatb will conform, or that only one of the two (a andb) will conform than that
both will? We often need to consider trusting attitudes directed toward not single agents,
but setsof agents. One may believe that some members of a set of agents will conform

3 We will assume throughout that having such a pair of beliefs is not only necessary but also
sufficient for trust, which is natural for present purposes. Note that Jones doesn’t commit to
this strong thesis.

154

without believing that every member of the set will. In general, when the same ruleR
applies to a set of agentsX, we may need to consider a range of trusting attitudes, one
for each subset ofX.

We will say that a ruleRestablishes adimensionof trust according to which agents,
or sets of agents, are trusted to greater or lesser degrees. This implicitly establishes
a relation between trusted entities: Thedegrees of confidencewith which conformity-
beliefs are held imply a structure ofrelative trustworthiness. In the following, talk about
“what is believed” is assumed to apply to an implicit doxastic subject that has beliefs
at different degrees of confidence. We will use the notion of a degree of confidence,
abbreviateddoc, informally; for a formal approach and discussion, see [5].

We want to supplement Jones’ theory of trust with a theory ofrelativetrust in sets of
agents, heavily inspired by [1]. Our point of departure is the observation that we often
have different degrees of trust in different (sets of) agents. We will introduce a formal
apparatus for representing the set of trustees, and thetrustworthiness relationbetween
subsets of the set of trustees.

We consider the following to be guiding principles for what follows.

Given a set of trustees, that some member(s) will conform to the rule is at least
as plausible as that every member will conform.

(1)

If some entityx is trusted, andy is at least as trustworthy asx, then rationality
demands thaty should be trusted too.

(2)

Accept that a trustee will in fact conform, unless this is inconsistent with what
you have already accepted.

(3)

2.3 The basic pre-order on trustees

Given a trust scenario as defined by a general ruleR and conformity criterionC, let
S be a (possibly empty) finite set oftrustees. The members ofS are precisely those
single trustees that the implicit subject believes the ruleR to apply to. For instance, in
a “debtors” scenario,S may consist of the agentsa, b, andc that owe money, and the
subject believes each of them to be under obligation to make appropriate repayments.4

The members ofSmay be of a variety of kinds, according to the underlying notion
of trust. Sources of information are one prominent type, and could include sensors tak-
ing measurements, newspapers, or witnesses; for these, trust will typically be of the S1
“regularity” or S4 “information” kinds. Agents, artificial and human, are another major
class, and typically subject to rules in the sense of obligations S2. The framework we
present is not sensitive to the type of members ofS.

Thetrustworthiness relationE is a relation between subsets ofS; we will often refer
to these subsets astrustee units. A trustee unitx is an entity that is capable of being the
subject of a conformity-belief thatC(x), as follows: A singleton unit{a} represents a
single trustee, andC({a}) is the proposition thata will conform. With a non-singleton

4 We assume that the rule-beliefs of the subject are believed at adocof full conviction, although
nothing will turn on this. In particular, we make no attempt at providing a formalism for the
rules involved.

155

unit x, conformityC(x) is taken to mean thatsomemember ofx will conform to the
rule.

Notation: Small Latin lettersa,b, c denote trustees, small variable lettersx, y, z
range over trustee units, capital Latin lettersA, B,C denote particular sets of trustee
units, and capital variable lettersX,Y,Z range over arbitrary sets of trustee units. We
will sometimes have to collect sets of trustee units, for which we shall use capital Greek
lettersΓ, ∆.

We assume that the trustworthiness relation is reflexive and transitive (apre-order).
Two trustee unitsx andy may betrustworthiness-equivalent, written x ∼ y.

x ∼ y =def xE y andy E x (4)

We writexC y to express thaty is strictly more trustworthy thanx.

xC y =def xE y and notx ∼ y (5)

Trustee units that are unrelated byE will be calledindependent, denotedx o y. If no two
trustee units are independent, we sayE is connected.

Intuitively, we interpret the trustworthiness relation in terms ofexpected conformity
of trustee units at different degrees of confidence. Ifx C y, the subject has a stronger
expectation thaty will conform than thatx will. x ∼ y means thatx andy are expected
to conform with precisely the same degree of confidence. Independencex o y obtains
when the degree of conviction with whichx is expected to conform is not comparable
to that which whichy is expected to conform (neither stronger than, weaker than, or
the same). We may say that independence is a consequence of lack of belief; neither of
xB y, xC y, andx ∼ y is believed to obtain.

Principle (1) implies that enlargement of a trustee unit with new members may never
yield a unit that is less likely to conform. Hence, a unit will be at least as trustworthy
as every unit that it contains as a subset. This motivates taking the following principle,
which we will occasionally refer to asmonotonicity, to be valid.

xE x∪ y . (6)

It follows that for each source unitx, the following hold.

xES , (7)

∅ E x . (8)

To see why (7) is valid, note that conformity byS is secured as long as just one trustee
conforms. At the other extreme, we stipulate that the empty set is a limit case that never
conforms, motivating (8).

In referring to particular trustee units in examples we will consistently simplify
notation by omitting brackets:aCbc is, e.g., shorthand for{a}C {b, c}. Likewise, the set
{{a}, {a,b}} will be denoteda,ab. Observe that the symbola should, depending on the
context, either be taken as a reference to the trusteea or to the singleton trustee set{a}
or to the singleton trustee set collection{{a}}.

156

2.4 The poset of trust-equivalent trustee units

To have anattitudeof trust, given someS, is to trust a (possibly empty) set of trustee
units. In the following, we will allow ourselves to talk about attitudes as being the sets
of trustee units themselves, and to say that a trustee unit is “included” in an attitude of
trust, meaning that that trustee unit is among those trusted. The empty set represents the
attitude of placing trust in none of the trustees.

Given a trust relationC, we can distinguish those trust attitudes that respect the
relation. The relevant principle is expressed in rule (2), thatx may only be trusted if
every y D x is trusted as well. We will in this section identify thepermissibletrust
attitudes according to this principle.

We use the following standard terminology. In aposet(S,≤) the≤-relation is re-
flexive, transitive and anti-symmetric. The poset has a unique cover relation�, defined
asx�y iff x < y andx ≤ z< y impliesz= x. C ⊆ S is anantichainif every two distinct
elements inC are incomparable by≤. Note in particular that∅ is an antichain. Every
subset ofS has≤-minimal elements, and the set of these elements is an antichain.↑C
denotes anup-set, defined as{x | (∃y ∈ C)(y ≤ x)}. The set of antichains in a poset is
isomorphic to the set of up-sets under set inclusion.

If an attitude of trust includes a trustee unitx, but not an equivalently trustworthy
trustee unity, then the attitude is not permissible. This motivates a focus on the equiva-
lence classes ofS modulo∼. Wherex ⊆ S,

[x] =def {y : x ∼ y} (9)

Let Ṡ be the set of all equivalence classes ofS modulo∼. We will say a set of trustees
x is vacuouswith regard to trustworthiness ifx ∈ [∅]. In the extreme case that every
trustee unit is a member of [∅], the trustworthiness relation itself is said to be vacuous.

WhereX andY are inṠ, define a relationĊ of relative strength between them as
follows.

X Ċ Y =def (∃x ∈ X)(∃y ∈ Y)(xC y) (10)

Let X Ė Y designateX Ċ Y or X= Y. X ȯY designates independence.

Lemma 1. (Ṡ, Ė) is a poset in which[∅] is the unique minimum and[S] the unique
maximum.(Ṡ, Ė) is a linear order iff (℘S,E) is connected.

Proof. Monotonicity entails the unique minimum and maximum. The other properties
follow easily from the construction of (Ṡ, Ė).

2.5 A lattice of trust levels

We know from Lemma 1 that (̇S, Ė) is a poset. Given the poset it is straightforward to
identify the permissible trust attitudes: a trust attitude is permissible if it is an up-set in
(Ṡ, Ė). Technically, we will represent an attitude by its set of minima, or equivalently,
by an antichain in the partial order (Ṡ, Ė). We define the setT of permissible trust
attitudes as follows,

T = {∪Γ | Γ is an antichain in (̇S, Ė)}

157

We will use the symbolf to denote the attitude that no trustee unit is trusted,∪∅. Given
a trust level composed of several trustee units, e.g.x, y, z, a trusting attitude – the beliefs
in conformityC(x),C(y),C(z) – means that for each setx, y, andz, somemember of the
set is expected to conform to the relevant trust rule.

There is a natural relation of strength between permissible trust attitudes. Having
a weak trust attitude means trusting only that few trustees will conform, or perhaps
none; a strong attitude means trusting many trustees, or perhaps all, will conform to the
relevant trust rule. LetΓ and∆ be antichains in (̇S, Ė). Then

∪Γ ≤ ∪∆ iff ↑∆ ⊆ ↑Γ.

By definition,f is ≤-maximal inT. This is natural, as the corresponding attitude of
trusting no trustee unit will always have a maximal degree of reliability. Ordered by≤,
the members ofT form a lattice in which lesser nodes represent stronger trust attitudes.
It is natural to talk about the permissible trust attitudes as corresponding to a hierarchy
of degrees of trust. We shall hence occasionally refer toT as the set oftrust levels.

In the lattice (T,≤) A < B intuitively means thatB is a level of trustworthiness
that is genuinely greater thanA. Let u denote meet andt denote join. ThenAu B is
the weakest trust level that is at least as strong as bothA and B; if A and B are not
comparable by≤, then it is stronger.At B is the strongest trust level that is at least as
weak as bothA andB.

The lattice of trust levels makes explicit what the permissible trust attitudes are and
how they are related with regard to strength. This can form the basis for choosing, in
a given scenario, athresholdof trust: a level that is deemed sufficiently trustworthy.
Setting a threshold may also be described in terms ofrisk. If A < B, then to choose
A as the threshold of trust is to take a greater risk with regard to trusting than ifB is
chosen. Determining a threshold of trustworthiness amounts to fixing a “limit” of risk,
to draw a line between what is trusted, and not trusted, in the non-relative sense of the
word. For example, with a threshold atAt B, if A andB are comparable, risk is limited
to what follows from trusting the more trustworthy of the two; if incomparable, then to
the greatest degree of risk that represents comparably less risk than bothA andB. To
say thatAu B lies within the risk limit means thatA andB are both considered reliable
(i.e., that all trustee units in bothA andB are trustworthy).

A threshold of trust can be conveniently specified by reference to trustee units.
Observe that each member ofṠ is a member ofT. Therefore, any expression using
members ofṠ (i.e., equivalence classes of source units),u andt denotes a unique
level of trust.

3 Default, expected trust vs. actual trust

3.1 A tree of fallbacksfor broken trust

The core of adefaultconception of relative trust is the default rule (3) to assume trustees
to conform, unless this is in conflict with what you already know. We presently interpret
this rule with respect to relative trust. Let us consider a trusting subject that has only

158

permissible trust attitudes. In the non-relative sense of “trust”,f is always trusted, and
a levelX is trusted, on condition that everyY ≥ X is also trusted, by default.

Now, if trusting at a levelX is inconsistent with trusting at a superior levelY, trust at
X is broken;X is not trustable. This will obtain whenever conformity atX is inconsistent
with antecedent knowledge, or with conformity-beliefs accepted at a superior level.
The significance of trusting atX should then be identified with trusting some superior,
trustable level; call this thefallbackof X. The fallback, as the value of a blocked default,
is the key notion that allows us to view relative trust as a default attitude.

Let X be an element ofT different fromf, and letΓ be the≤-cover ofX. Given
thatΓ is singleton, we straightforwardly identify

⋃
Γ as the appropriate fallback ofX.

Where not, note that by construction of the lattice,X is a level composed of a set of
simpler levels, the members ofΓ. That trust is broken atX means some of these levels
are not trustable. In this case, the fallback ofX should be identified as a level with
greater trustworthiness than everyY immediately superior toX. Let the fallbackf(X) of
X be defined as

f(X) = lub(Γ) in (T,≤) .

The fallback function is undefined forf; otherwise every node has a unique fallback.f,
representing the trust level of antecedent knowledge, is always the fallback of [S]. Note
that every path from the lattice maximumf to a trust levelX must go throughf(X), and
thatf(X) is the≤-minimal node with this property.

The fallback tree(T,≺) is defined as the weakest relation such that for allX ∈ T,
f(X) ≺ X. It is easy to show that the fallback tree is indeed a tree with rootf.

3.2 Formal representation of fallback structures

The fallback tree of a given trust scenario has been described in terms of default in-
ference. For the representation of a fallback tree in the language of a default logic, we
require a target language with sufficient expressive power. For certain simple kinds of
scenarios, a translation has been provided in [4], namely, for the case of trusted sources
of information whose conformity propositions can be expressed as formulae of propo-
sitional logic, or in a restricted multi-modal doxastic language. In these cases, various
default logics can be chosen for expression of the default structure.

There are however prominent cases of trust that would require a more complex for-
malism. One case in point is where conformity consists inaction, as might be expressed
in a modal language with praxeological operators. (For instance, conformity for “a is
trusted to dop” could be expressed asEap.) In such scenarios, agents are typically
trusted to bring about or secure that states of affairs obtain. For a formal representa-
tion of such scenarios, we would need a language capable of expressing both default
attitudes and action statements.

In the following, we will assume that aknowledge baseconsisting of the subject’s
unquestioned beliefs is believed at the trust levelf. We represent the knowledge base
by the symbolκ. Different applications of the theory might require different implemen-
tations with regard to the content ofκ. In particular, if it is desired that rule-beliefs are
made formally explicit, then it may be expected thatκ will contain formulae of a greater
complexity than those expressing conformity-beliefs (see [3] for a range of cases ex-
pressed in a multi-modal language).

159

3.3 After the default evaluation: A new trust relation

Intuitively, a trustworthiness relation as described above reflects the subject’s antecedent
expectationas to which trustees will be conforming to the general trust ruleR. The as-
pect of expectation is represented by the assumption that belief in conformity is by
default only, as opposed to full belief.

After evaluation of a set of defaults, as given by a fallback tree, we do however have
a situation in which conformity-propositions are believed not by default, but uncondi-
tionally (although typically at a variety of degrees of confidence). That is, evaluation of
the default structure provides us with a (prioritized) belief state in which unconditional
conformity-beliefs are held for every non-blocked default. For each trustee unitx s.t.
C(x) is believed (at whateverdoc), there is trust; where not, the lack of conformity-belief
implies thatx is not trusted. Anew trustworthiness relation arises from this resulting
belief state, as can be determined from the fallback tree in the following way.

1. Wherex is not trusted, sayx is vacuous:x ∼ ∅.
2. Wherex is trusted, the greatestdoc at whichC(x) is believed gives the relative

trustworthiness ofx.
3. Relations of independence, equivalence, and difference in trustworthiness are given

by the tree structure, where applicable.
4. Apply monotonicityto get a proper trustworthiness relation.

Such a “consequent”, post-evaluation relation may be seen as expressing explicitly the
subject’s trust attitudes, as a result of a reasoned working out of the consequences of
initial expectations of trustworthiness. It is natural to see this in a dynamic perspective:
the initial, “antecedent” trust relation expresses the subject’s expectation of trustwor-
thiness. Evaluation of the default structure amounts to working out the consequences
of this expected order, and the result is a possible modification of the trustworthiness
relation. Where trust is broken, trustee units will be demoted as vacuous, while some
units may also be promoted to greater trustworthiness.

We intend to address the dynamics of evolving trust relations in future work. For
now, we simply give some examples to illustrate how a new trustworthiness relation is
determined from the outcome of the defaults evaluation. In these examples,a andb are
assumed to be information sources delivering propositional formulae. We display the
fallback trees, decorated with post-evaluation formulae at each node. (The nodesf and
∅ have been omitted from the graphs to save space.) Where a level has obtained its value
ϕ from a fallback, we indicate this as “⊥/ϕ”.

Example 1 (No relation change).Let κ be empty, and assign information asκ : >,
a : p∧ q, b : q∧ r. We assume a linear relation whereabB a B b B ∅. The decorated
fallback tree shows that no trust is broken – all trust expectations are met. In this case,
there is no reason to revise the trust relation post-evaluation; the consequent relation is
the same as the expected relation.

ab : q∧ (p∨ r)

a : p∧ q

b : p∧ q∧ r

160

Example 2 (Modification of trust relation).Here is a case in which the compositeab is
trusted (intuitively, whata andb agree on is acceptable), whilea andb both turn out to
be untrustable. This will typically arise in cases wherea andb are equivalently trust-
worthy, but provide incompatible information, so letabB a∼bB ∅. Assign information
asκ : >, a : p∧ q, b : p∧ ¬q. Note thatC(ab) is p, C(a) is p∧ q, C(b) is p∧ ¬q.

ab : p

a,b : ⊥/p

Here, the beliefp at levelab meansab is trusted. Neithera nor b is trusted, because
the requisite conformity-beliefs are missing: this means botha andb should be con-
sidered vacuous post-evaluation. The antecedent and consequent trust relations are the
following.

antecedent ab

a,b

∅

consequent ab

a,b, ∅

Example 3 (Independent levels, no change).Another example in which no revision of
the trustworthiness relation is called for. Leta andb be independent, non-vacuous, and
less trustworthy thanab. Assign information asκ : >, a : p∧ q, b : p∧ ¬q.

ab : p

a : p∧ qooooooooo

b : p∧ ¬q
OOOOOOOOO

a,b : ⊥/p

4 Examples

Example 4 (Jury).In this example, we consider a simplified characterization of trust at-
titudes toward a legal jury. Each juror is required to deliver a statement that a defendant
is guilty (p) or not guilty (¬p). The jurors are subject to various norms about exercising
their best judgment, honesty, and so forth. Our aim is only to characterize the notion of
“the” statement made by the jury, as typically given by amajorityvote (in the case of a
tie, no statement is made). Trust in the jury’s judgment is therefore trust that what the
majority agrees on is correct.

The jurors are most naturally considered to be equally trustworthy: The judgment of
one is as good as that of any other, and furthermore, every set ofn jurors is equivalently
trustworthy to any other set with the same number of members. Majority rule means
each set of jurors that has less than half of the jury’s members is considered vacuous.
(Where, e.g., agreement of five out of seven members is required for a valid decision,
four-member trustee units also need to be considered vacuous.)

161

Posets of the trust relations for two-, three-, and four-member juries according
to these requirements, will be as follows; letS be, respectively,{a,b}, {a,b, c}, and
{a,b, c,d}.

ab

a,b, ∅

abc

ab,ac,bc

a,b, c, ∅

abcd

abc,abc,acd,bcd

ab,ac,ad,bc,bd

a,b, c,d, ∅

Because conformity by each juror requires only a “yes” or “no” statement, we can
simplify these relations to having only two levels: Any statement agreed to by at least
the majority of trustees will be sufficient for a majority vote, and any statement by
smaller trustee units will then be overruled. The simplified relations are the following.

ab

a,b, ∅

abc,ab,ac,bc

a,b, c, ∅

abcd,abc,abc,acd,bcd

ab,ac,ad,bc,bd,a,b, c,d, ∅

Example 5 (Authentication).For this example, we wish to represent an authentication
or admission test, in which three trusteesa, b, andc each deliver a statementp for
“admit” or ¬p for “don’t admit”. Concrete scenarios matching this may be admissions
procedures for entering an education, or a security clearance system.

For the trust relation, we assume thatabcB abB ac andabcB bc, and thatbc is
incomparable toab andac (bc o ab andbc o ac). Because conformity consists only in
a simple “yes” or “no” reply, the singleton trustee units are all vacuous (as in example
4). The following drawings illustrate the trust relation, the lattice of trust levels, and the
fallback tree.

abc

ab
��

��

ac

a,b, c, ∅
??

??

bc
??

??

��
��
��
��
�

f

abc

ab
��

��

ac

ac,bc
??

??

a,b, c, ∅

ab,bc
OOOOOOO

���
�

bc
??

??

f

abc

bc
JJJJJ

ab,bcab
ttttt

ac

ac,bc
77

77
77

77
77

a,b, c, ∅

Example 6 (Debtors).Assume the trusting subject has lent money to three agents:€20
to agenta,€30 tob, and€10 toc. The agents are under obligation to repay their debts,
but the subject is not convinced that they will all in fact conform: his knowledge of
background circumstances inform him that at most€50 will be returned to him.

162

For the trust relation, assume it is rather certain that eithera or b will be paying and
less so thatc will. c on his own is however more trustworthy than each ofa andb; fur-
thermore,a andb are equivalent with regard to trustworthiness (so must be considered
in tandem). Making no further assumptions, this yields the following trust relation.

abc,ab

ac
��

��

c
??

??
?

a,b

∅

bc
??

??

��
��

The conformity propositions of this scenario are always logically independent, so any
contradiction leading to broken trust will be with the prior knowledgeκ. If we let the
subject’s expected return be given as a minimal possible outcome at a given trust level,
we can decorate the fallback tree with numerical values. (Note that the nodeac,bc,
corresponding to conformity by eitherc, or botha andb, is introduced as a “new” level
of trust in lattice generation.) Considerabc,abas an example of how minimal expected
value at a trust level can be computed: conformity bya is sufficient for conformity of
this node, implying a yield of€20.

f : max. 50

abc,ab : 20

ac : 20
ooooooo

bc : 30
OOOOOOO

ac,bc : 30

c : 30

a,b : ⊥/30

∅ : ⊥/30

Assume the subject’s threshold of trustworthiness is the levelc. The minimal expected
return will then be€30: The minimum yield of conformity atabc,ab is given if a
conforms and pays€20. Add to this minimal yield atac,bc, which meansa (already
secured fromabc,ab) andc conform, giving€30. The levelc requires conformity byc,
which is already secured.

With a threshold of trust set toa,b, matching an expectation thata andb will both
pay their debts, the expected yield would also be€30. Prior knowledgeκ is not consis-

163

tent with of all three debtors conforming, and the post-evaluation yield is then given by
the fallback levelc of a,b.

5 Conclusion and future work

In this paper we have presented a theory about trust in cases where there is more than
one trustee, assuming that a relation, according to a dimension given by a rule or reg-
ularity, between trustee units is given. In particular we show how the priority structure
which is implicit in a trust relation can be made fully explicit by means of a lattice
and how a system of default expectations arises as an interpretation of the fallback tree
corresponding to the lattice.

As the examples illustrate, the theory is adaptable to a wide range of situations and is
not tied to a particular logical language. In future work we want to study more closely
the dynamics of trust revisions, i.e. rational attitudes towards trust that agents should
form in response to observations of the trustees’ actual conformity to expectations.
We also want to study representations of the default structure that arises from fallback
trees within a large variety of logical languages, in particular with respect to different
language constructs for modalities.

164

References

[1] John Cantwell. Resolving conflicting information.Journal of Logic, Language, and Infor-
mation, 7:191–220, 1998.

[2] Andrew J. I. Jones. On the concept of trust.Decision Support Systems, 33:225–232, 2002.
[3] Andrew J. I. Jones. A logical framework. In Jeremy Pitt, editor,The Open Agent Society.

John Wiley & Sons, Chichester, UK, 2005. To be published.
[4] Johan W. Klüwer and Arild Waaler. Trustworthiness by default. InComputational Logic in

Multi-Agent Systems (CLIMA) VI, 2005.
[5] Arild Waaler, Johan W. Klüwer, Tore Langholm, and Espen H. Lian. Only knowing with

degrees of confidence.Journal of Applied Logic, 2005. To appear.

165

166

���������	��
��������������������������������� !��"$#%��&('*),+

-/.10�243(56.1387�2/2:9<;>= ?A@43B9�CD@E3/FHGJI�CLKBMAKONQPB@4R8S>@UTV@ESXWZYB;
[]\�^`_badcfeZgh_jilknmporqQcfsut4mpv`iZw�x(ypz{c>g

t4|}w8mVmpz<mJo�~	md���8v4iZcfeQt4|f_bcf^8|>c�����^8�p_b^`c>cfeZ_{^8�
tEk`�`^`cfkV�4�Qv`g�ihe}ypz{_by

��q�yJiZ_{md^8ypz<�h~��L�Qv`g�ihe}ypz{_by4�:��������t
�V�p�J���Z�*�E�J�`�d�E�d�p�r���U�`�����l�d J���l�J�

¡n¢¤£>¥>¦�§/¨p¥d© �(g�i}yJ^/�`yJe}�ª��cfiZw`mE�Qo«mJe¤ghc>|>v4eZ_{^8��v8^ViheZv8g�iZc>�Q|>mE�4c�_{gB|>mE�`c�¬ZX®�¬}¯«°�±
¯«²V³p´¤s�w8cXeZc>µVk¶md�:cfe}y�iZ_bmp^8g�iZw/y�i$��_{�dwVi�|>mp���`eZmd��_{ghc�yngZyJo1cfilk��:mdz{_{|fk�yJeZc�ghcf·
|>v4eZc*��µVk�yp�8�`_jiZ_{md^8ypz��4k4^8yp��_{|%|}w8c>|}¸Eg>¹B�l^¶iZw8_{g��/yJ�:cfe*�Hs�cA�4eZmd�:mdghcºyn^8m�aUc>z
yJ�8�`eZmdyp|}w%iZmªgZyJ^/�`µ:m*»4_{^8��iZw8yJi�_{g�µ8ypghc*�¼md^�y�|fmd�%µ`_{^/yJiZ_{mp^%mpoH|fmE�`c�eZcfs½eZ_jiZ_{^8�
yJ^/�$w/yJe}�Es½y�eZcf·¾µ/ypghc>�¿��c>��mJehk��4eZmpiZc>|XiZ_bmp^<¹J�l^$|>mp^Vihe}ypg�i¤iZm��`eZcfa4_{mpv8gOs	mpeZ¸:�*s�c
�:cfeho1mpeZ��eZcfs½eZ_jiZ_b^`�ºmd^Àe}y>sÁµ8_{^8yJehk�|fmE�`c¼yp^/���4eZm�a4_b�4c%yA�ºyJ|Xw`_b^`cf·¾|Xw`c>|}¸dyJµ8z{c
�4eZmVmpo<mpoBgZyJo1cfilk¼iZw/yJi�_{^8|>z{v8�`c>g�iZw8c�_{^EiZcXe}yp|fiZ_{md^ºmJoBiZw`c�v8^ViheZv8g�iZc*�¼µ8_{^/y�ehk¼s�_jiZw
iZw`c¼mp�:cfe}yJiZ_{^8�ng�k4g�iZc>��¹H��w`_bg��`eZmVmpo�|>mp^8g�iZ_jiZv`iZc>g�yn|XeZv8|>_bypzrg�iZcf�¶iZm*s�yJe}�`gQiZw8c
v`ghc�mpo¤eZcfs½eZ_jihiZc>^]µ8_{^/y�eZ_bcfgÂs�_jiZw��4eZmVmpo1·¾|*y�ehehk4_b^`�A|>mE�4cd¹

Ã Ä8ÅÂÆ:ÇHÈ�É¼Ê¿ËOÆHÌZÈÂÅ

NQ243BÍX.19HGJS$WfPHGºÎ�2`IÏI12V7�.13HÐ�Ñ�2`0�0]2`3DÍfÑ�GJ3<@ESf.Ï2<ÒBÓ�ÑJ240�ÔHF:WfGJS%FBÍ}GpS¿PB@`Í¿2`Õ:Wf@4.Ï3BGp9Ö@ÀÔBSX24×
Ð4S>@E0Ø2`S�ÔHSf24Ð4S>@E0ÙÑ�240�ÔO243HGp38Wº.Ï3ÚÕH.13B@4SXYDÎ�24Sf0Û@43B9,7�.1ÍXPHGpÍ�WX2ÖGJÜ/GdÑ�F:WfG¶.ÏWn7�.bWfPH24FHW
WXPHG�SX.«Í}R�2EÎ�Ñ�2`0�ÔHSX2`0�.1ÍX.Ï3BÐ¶@ÀÐ4.1T4Gp3(ÍXGpÑJFHSf.bWZY�Ô<2`IÏ.«Ñ�Y¤Ý<Î�24S$GJÜ:@40�ÔHIÏG`Þ<ÑJGJSXWf@E.13(ßBI1GpÍ¿0�@UY
3H2EW�ÕOG]@4IbWfGJSfGp9rKrMQY8ÔB.1Ñp@EI1IÏY`Þ<WfPHG�FBÍXGJSA7�.ÏI1I�3H2EW�PB@UT`G�@`ÑJÑ�GdÍXÍ¿WX2�WfPHGÀÍ}2`FHSfÑJG�ÑJ2/9HG]@43B9
2EÎàWXGp3Ö7�.1IÏI	3H2EW¿WXSfFBÍZW¼WXPHG]Ñ�2:9:GºÔBSX2:9:FBÑJGJSdÞBGp.bWfPHGJS%9:FHGºWf2ÀÎ�Gp@4S¿24Î�0À@4IÏ.«Ñ�.124FBÍ¿.Ï38WfGJ38W¼2`S
Õ<GdÑJ@EF<Í}G�24Î¤ÍX2EÎàWZ7ª@ESfGQÕBFHÐ`ÍpK4á$Gp3BÑ�G`ÞEWfPHG�FBÍXGJS�3HGpGp9HÍ½WX2�âJãVä¤å4æ>çJè¶WXPHG�ÕB.Ï3B@4SXY`Þ4ÍXFBÑ>P]WXPB@EW
WXPHG%SXGdÍZWª2EÎ�WXPHGAÍ}Y:Í}WXGp0é.1ÍªÍXPH.ÏGpI19HGp9ÀÎ�Sf240éÍXGpÑJFHSX.ÏWZY�T/.Ï2`I1@EWX.1243BÍQ2EÎ�WfPHG%FH38WXSfFBÍZWfGp9�Ñ�2:9:G4K

-:@E3B9HÕ<2UÜ:.13HÐ¿ÑJ@43�GJ.ÏWXPHGpS�ÕOGª@4Ñ>PH.1GJT`Gp9AÕ/YA24ÔOGJS>@VWX.13HÐ¿ÍXY:ÍZWfGJ0!@EÕBÍ}WXS>@4Ñ�WX.1243BÍ�ÕB@4ÍXGp9A2`3
ê�ëJê çEì*íºî¤ìXçVï ë>ð ïlñ¾çVäóòBãVìXåEôÂãVì ë 24S%Õ8Y,âJçZõ>ïlôÂãVì ë�ö æ>ãUâ ë å�õ�ãE÷:ø{ï�ñ«âJçVøÏãEïùñ¾çEä�úlû:ü	ý�þ�ÿ����lK�-����
.1Í]ÕB@`Í}Gd9Ú243 ð çdå ë ì ë ô½ì*ñàïlñàä	�4Þ�7�PHGJSfGJÕ/YÚ@EI1IQÔO2EWfGJ38WX.«@EI1I1Y 9B@E3HÐ`GJSf24FBÍn.Ï3BÍ}WXSfFBÑ�WX.1243BÍ]@ESfG
Í}GdÑ�FHSfGp9�Õ8Y�9:Y/3B@E0�.«Ñ¼Ñ>PHGdÑ>R:ÍJK:MªPH.«Í�SXGp7�SX.ÏWX.13HÐ]ÔHSX2:ÑJGpÍfÍQ.«ÍQWZY/ÔH.1Ñp@EI1IÏYÀÔOGJSXÎ�24Sf0�Gp9�.Ï3�WXPBG
Ñ�240�ÔH.1I1GJSªÕB@4Ñ>R`GJ3B9Öÿ��
��2`SQ2`3�@43�@4ÍfÍXGJ0nÕBIÏY�SfGJÔHSfGpÍXGJ38Wf@EWX.1243À24Î�WXPHG�ÑJ2/9HG�ÿ��/Þ HÞ �BÞ�����7�.bWfP
Í}2`0]G$@`9H9:.ÏWX.1243B@4I<ÑJ243BÍ}WXS>@E.138WfÍpÞV.Ï3BÑJIÏF<9:.Ï3BÐnSfGpÍXGJSfT4Gp9��¾ÍX240�GJWX.10]GdÍ½Ð4I124Õ<@EI1IÏY]Í}2���SXGpÐ4.«ÍZWfGJS>Í
Î�24S$Íf@E3B9:ÕO2UÜ:.Ï3BÐBK

�h36WXPH.«Í�ÔB@EÔOGJSdÞÂ7�GÖÔHSf24ÔO2`ÍXGD@Ú3H2VT`GJI�ò/í4æJì*ñ¾å�@EÔBÔHSX28@4Ñ>PuWXP<@VW�ÑJ240�ÕH.Ï3BGpÍ¶ÕB.Ï3B@4SXY
SXGp7�SX.ÏWX.13HÐº7�.ÏWXP�PB@ES>9:7ª@ESfG�×�ÕB@4ÍXGp9]0�GJ0�24SfY]ÔHSX24WXGdÑ*WX.1243�K��¼FHS�@EÔHÔBSX28@4Ñ>PÀ7�24SfR/Í½Î�24S�Sf@U7
ÕH.Ï3<@ESfY�Ñ�2:9:G`ÞB7�PHGpSXG�3B2¶Í}Y/0nÕO24I1.«Ñ�.Ï3HÎ�24Sf0�@EWX.1243(2EÎ	WXPBGnÍ}2`FHS>Ñ�G�ÔHSf24Ð`Sf@40 .1Í¿@UTU@4.ÏI«@EÕBIÏG`K
�h3�ÑJ2438WXS>@4Í}W�WX2AWfSf@`9:.bWf.Ï2`3B@EI<ÍX@43B9:ÕO2UÜ/.13HÐAÕ/Yn2`Ô<GpSf@EWX.13HÐ�Í}Y:Í}WXGJ0ÀÍpÞV7QG$Ñp@E3ÀÍXFHÔHÔO24SXW½ßB3HG�×
Ð4S>@E.13HGp9�Í}GdÑ�FHSf.bWZYnÔ<2`IÏ.«Ñ�.1GpÍ�7�.ÏWXPÀÍ}Wf@E3<9H@ES>9ºR`GJSf3HGJI«ÍJKVC 2`SXGp2VT4GpSpÞd7QGªÔHSf2VT/.19HG�@%0À@4Ñ>PH.13HGJ×
Ñ>PHGpÑ>RV@EÕBIÏG�ÔHSf2/2EÎQ24ÎªÍf@VÎ�GJWZYÖWfPB@VWº.13BÑ�I1FB9:GdÍAWXPBG¶.Ï38WfGJS>@4Ñ*Wf.Ï2`3ó24ÎQWfPHGÀFH38WXSfFBÍ}WXGd9óÕB.Ï3B@4SXY
7�.bWfPÀWXPHG¿24ÔOGJS>@VWX.13HÐnÍXY:ÍZWfGJ0(ÞEÎ�2`SX0À@4IÏ.«Í}Gd9]FBÍ}.13HÐ��ZÍf@EÕOGJI1I1G��Vá�����K4MªPBG$.Ï38WfGJS>@4Ñ*Wf.Ï2`3À7�.bWfP
WXPHG�24ÔOGJS>@VWf.Ï3HÐ%Í}Y:Í}WXGp0 .13BÑJIÏFB9HGpÍ	0�GJ0�24SfYAÔHSX24WXGdÑ*WX.1243�9:240À@E.13BÍ	@4Í�7QGpIÏI/@4Í�ßB3HGJ×lÐ`Sf@4.Ï3BGp9

167

Ñ�243<ÍZWfSf@4.Ï38WfÍ¿243ÖÔOGJSf0�.1ÍfÍX.ÏÕHI1G�ÍXY:ÍZWfGJ0 ÑJ@4IÏI«ÍpK<MªPHG]243HI1Y�2EWXPBGJS%7Q2`SXR�R/3H2V7�3(WX2�FBÍ¿WXPB@EW
.Ï3BÑJIÏF<9:GpÍ	@�0À@4Ñ>PH.13HGJ×�Ñ>PHGdÑ>RV@EÕHI1G½ÔHSf2824ÎH2EÎBÍf@VÎ�GJWZY¿Î�2`S�Íf@E3B9:ÕO2UÜ:Gp9AÕH.13B@4SX.1GpÍ�.1Í	CÖÑdN�@40À@E38W
� C 24SfSX.«ÍXG�W}W�� ÍÖÿ � �%SfGpÑJGJ38W�SfGpÍXFHIbWdKQMªPHGp.ÏS�7�24SfR G�Ü/WfGJ3B9HÍ�WXPBGD24Sf.1Ð4.13B@EI¼- � ��7Q2`SXR 2EÎ
5,@4P8ÕOG�G�W¿@4IùK/Wf2�N �}-BN6ÔBSX2:Ñ�GdÍXÍX24S>ÍpK

� SX2/24Î�Ñp@ESfSXY/.13HÐ Ñ�2:9:G � � N�N �¶ÿ � �ª@`9H9:SfGpÍfÍ}GdÍAWXPHG�ÍX@40�G�ÍXÑJGJ3B@4SX.12(Õ/Y,ÔBI1@`Ñ�.13HÐ WXPBG
243/FBÍ�24Î	ÔHSf2/2EÎ	243�WXPHG�Ñ�2:9:G�ÔHSf2:9:FBÑ�GpSpÒ��Q@4Ñ>P(ÕH.13B@ESfY4ÞH7�PBGJ3(Õ<Gp.Ï3BÐ¶9:.1Í}WXSf.1ÕHF:WXGd9rÞB0�FBÍ}W
Õ<Gº@`ÑJÑ�2`0�ÔB@E3H.1Gp9�Õ/Y�@]0À@4Ñ>PH.13HGJ×�Ñ>PHGdÑ>RV@EÕHI1G¼ÔBSX2/2EÎ	2EÎ½ÍX@EÎ�G�WZY`KHMªPHG�ÕH.13B@ESfY¶.«Í�G�Ü:GpÑJF:WXGd9
243HI1Y¶.ÏÎ�WfPH.1Í$ÔHSX2/24Î�.«ÍªÎ�24FH3<9¶Wf2ÀÕ<G�TV@EI1.«9rK

�h3�ÔHS>@4Ñ�WX.«Ñ�G`ÞUÎ�GJ7ÁÑ�2:9:GªÔHSf2/9HFBÑ�GpSfÍ�ÍXFHÔHÔHI1YºWfPHGªSXG��`FB.ÏSfGp9�ÔHSf2824Î¾ÍJK �¼FHS�@4ÔHÔHSf2`@`Ñ>P�@49:×
9:SXGdÍXÍXGpÍ�WfPH.«Í$ÔHSf24ÕHI1GJ0 Õ/Y�@4IÏI12V7�.Ï3BÐ]FB3BÑ�GpS}Wf.bßBGd9 Ñ�2`0]ÔO243BGJ38WfÍpÞH7�.ÏWXPH2`F:W¿SfG��8FH.1SX.13HÐ�WXPBG
SXGp7�SX.ÏWX.13HÐ¶Wf2/24I	.Ï3DWXPHG�WXSfFBÍ}WXGp9óÑ�2`0]ÔBF:WX.13HÐ�Õ<@4ÍXG4K
	¿ÍX.Ï3HÐ�24FBS¼ÔHSf2/2EÎ�24ÎÂÍX@EÎ�G�WZY�Î�24S%WXPBG
SXGp7�SX.ÏW}WfGJ3(ÕH.13B@ESfY4Þ:WfPHGnÕB.Ï3B@4SX.1GpÍ��BÑJ243:Î�2`SX0À@E3<Ñ�G�ÑJ@43�ÕOGnÑ>PHGdÑ>R4Gd9�7�.ÏWXPB24F:W¼@43/Y�R/3H2V7�IÏ×
Gp9:Ð`G¿2EÎ�WXPHG%SXGp7�SX.ÏWX.13HÐ�ÔHSX2:ÑJGpÍfÍJK/Ó$IÏWXGpSX3B@EWX.1T4GpIÏY`Þ`2`FHSQ0�GJWXPH2:9HÍ�GJ3<@EÕHI1G%ÑJ2:9:G¿ÔHSf2:9:FBÑJGJS>Í
WX2�Ð4Gp3HGJS>@VWfG%ÔBSX2/2EÎ¾Í�24Î�Íf@VÎ�GJWZY¶7�.bWfPH24FHW¿Í}ÔOGpÑJ.1@4I�Ñ�240�ÔH.1I1GJS$ÍXFHÔHÔO24SXWpK

�¼FHS�Î�2`SX0À@4IÏ.«ÍX@EWX.1243�.«Í�Õ<@4ÍXGp9º2`3n@¼IÏ2V7ª×�IÏGpT4GpI40À@4Ñ>PH.13HGQ0]2:9:GpI:Ñ>PB@ES>@4Ñ�WXGJSf.«Í}.13HÐ$@¿ÍXFHÕ:×
Í}GJW�2EÎ¤WXPHG¼Ó$I1ÔHPB@�@ES>Ñ>PH.ÏWXGdÑ*WXFBSXGAÿ�����Þ4Ñ�2`0]ÔBIÏGJWXG$7�.ÏWXP�0�GJ0�24SfYnÔBSX24WXGpÑ�WX.1243À@E3<9]@43�24ÔOGJSX×
@VWX.13HÐ%Í}Y:Í}WXGJ0 @4ÕBÍZWfSf@`Ñ*Wf.Ï2`3�K �¼3ºWXPHG�ÕB@4ÍX.«Í�2EÎBWXPH.«Í	0�@`Ñ>PH.13HGÂ0�2:9:GJIlÞU7QGQPB@UT4G�Î�24Sf0�@4IÏ.«ÍXGp9
WXPHG]G�¤GpÑ�W%24ÎÂ@¶ÕH.13B@ESfY(SXGp7�SX.ÏWX.13HÐ�Í}WXS>@VWfGJÐ`Y�WfPB@VWA.Ï38WfSX2:9:FBÑJGpÍ¿SXGJÎ�GJSfGJ3BÑJGn0�243H.ÏWX2`SfÍ¿GJ3:×
Î�24S>Ñ�.13HÐ�Ñ�2438WfSX2`I��B2V7 @43B9].Ï38WXGpSfÑJGJÔ:Wf.Ï3BÐº@EI1IBÍ}Y:Í}WXGp0�ÑJ@4IÏI«ÍJK �h3]Ô<@ESXWX.«Ñ�FHI«@ESdÞV7QG$ÍXPH2V7 WXPB@EW
WXPHG�SXGJÎ�GJSfGJ3BÑJG¶0�243H.ÏWX2`SfÍn.Ï3 SXGp7�SX.ÏW}WfGJ3LÕH.13B@4SX.1GpÍ�ÑJ@E3B3H2EWnÕOG(Ñ�240�ÔHSf240�.«Í}Gd9Ú@E3B9ÚWXPB@EW
WXPHGpY]9:GJWXGdÑ*WQ@4IÏIBÍXGpÑJFHSf.bWZYºT/.124I«@VWf.Ï2`3BÍJÝ4.ùK G4K1ÞVWXP<@VW�WfPHG$SfGJ7�Sf.bWXWXGJ3�ÕH.13B@4SXY]Ñ�243HÎ�24Sf0�Í	Wf2�WXPBG
Í}GdÑ�FHSf.bWZY�Ô<2`IÏ.«Ñ�Y¶Gp3:Î�24S>Ñ�Gd9�Õ/YÀWfPHG�0�243H.ÏWX2`SpK

MªPHG½ÔHSf2824Î/@43B9%SXGpI1@EWXGd9¼I1GJ0�0À@4Í�@ESfG�@4IÏI40�@`Ñ>PH.13HG�×hÑ>PHGpÑ>R`Gp9¿FBÍ}.13HÐªWfPHG �ZÍf@EÕOGJI1IÏG �Vá����
ÔHSX2/24Î�@`ÍXÍX.1Í}Wf@438WpKHÓ$I1IrÎ�2`SX0À@EI�9:G�ßB3B.bWf.Ï2`3BÍ$@E3<9�I1GJ0�0À@4Í$.Ï3(WfPH.1Í$ÔB@EÔOGJS$7�GJSfGAÐ4Gp3HGJS>@VWfGp9
Õ8Y��ZÍf@EÕOGJI1IÏG`ÒH7�PB@VW¼Y424FÖÍXGJG�.«Í$7�P<@VW¿7�GºÔHSf2VT4Gd9rKHMªPHGºÔHSf2/2EÎ¾Í¼@ESfGº@UTU@4.ÏI«@EÕBIÏGA243BIÏ.13HGn@EW
P`WXWXÔ�Ò � �V7�7�7�K ÑpÍ}G`K FB3BÍ}7�K Gp9HF�K @4F ���¤Í��Z7 �UÔBSX2/2EÎ¾Í
�USfGJ7�Sf.ÏWXG4K P8WX0�IlK

�h3�ÍXFH0�0À@ESfY4Þ:7�GAÑJI1@4.Ï0 WXPHGAÎ�2`IÏI12V7�.13HÐ]ÑJ2438WXSf.1ÕHF:WX.1243<ÍJÒ

� Ó SfGJ7�Sf.ÏWX.13HÐ WXGdÑ>PH3H.��8FHG¶Wf2DGJ3HÎ�24S>Ñ�G�ÍXGpÑJFHSX.ÏWZY,Ô<2`IÏ.«Ñ�.1GpÍ�.Ï3/T`24I1T8.13HÐDÑJ243BÍ}WXS>@E.138WfÍ�2`3
Í}Y:Í}WXGp0 ÑJ@4IÏI«Íª.Ï3(S>@U7 ÕH.13B@4SXY8×�243HI1YÀÑ�2:9:G �ù-:GpÑ*WdK � ��K

� ÓLÎ�2`SX0À@4I`0À@4Ñ>PB.Ï3HGJ×l0�2:9:GpI42EÎO@¿ÍXFHÕBÍXG�W�24ÎHWXPBGQÓ$I1ÔHPB@%@ES>Ñ>PH.ÏWXGdÑ*WXFBSXG`ÞpÑ�2`0�ÔHIÏGJWXG�7�.bWfP
0�GJ0�24SfY¶ÔHSf2EWfGpÑ*Wf.Ï2`3�@43B9�@E3�24ÔOGJS>@VWX.13HÐÀÍXY/Í}WXGp0 @EÕ<ÍZWfSf@`Ñ*WX.1243 �ù-/GdÑ*WdK 	�*K

� Ó!0À@4Ñ>PH.13HG�×hÑ>PHGdÑ>RU@4ÕHI1G¼ÔHSf2/2EÎ	2EÎ	Íf@VÎ�GJWZY¶2EÎ�SfGJ7�Sf.bWXWXGJ3�ÕH.13B@ESf.1GpÍ �ù-:GpÑ*WdK ���*K
�h3�Ô<@ESXWX.«Ñ�FHI«@ESdÞ:7QG�9:2À3B2EW$R/3H2V7 24Î�@43/Y¶2EWfPHGJS$P/Y/ÕHSf.19�@EÔBÔHSX28@4Ñ>P�WXPB@EW¿Ñ�240�ÕH.13HGpÍ �A-/×
0]Gd9:.«@VWXGd9uPB@ES>9:7ª@ESfG�ÔHSf2EWfGpÑ*Wf.Ï2`3 7�.ÏWXPÁÕH.13B@4SXYÚSfGJ7�Sf.bWf.Ï3BÐBÞ½3H2`S�9H2Ú7QG(R/3H2V7 24ÎA@438Y
ÔHSX2/24Î¿2EÎAÍX@EÎ�G�WZY WXP<@VW¶.13BÑ�I1FB9:GdÍ�SXGd@4ÍX243H.13HÐD@4Õ<2`F:WÀÔHSX24WXGdÑ*WX.1243u9:240À@4.Ï3BÍÀ@43B9 ÍXY:ÍZWfGJ0
ÑJ@EI1I«ÍJK<5óGºÕOGJI1.1GJT4GnWXPB@EW¿24FBS¼@EÔBÔHSX28@4Ñ>P�.1Í¿ÔHS>@4Ñ*Wf.1Ñp@EIlÞ<@`Í�0�2`Í}W¿FH38WXSfFBÍ}WXGp9ÖÕH.Ï3<@ESf.ÏGdÍ$@ESfG
9:.1Í}WXSf.1ÕHF:WXGd9 @4Í�ÔBI1@4.Ï3(0À@4Ñ>PH.13HGnÑJ2:9:Gº@E3B9�ÕOGpÑp@EFBÍXGn@EI1I�0�2:9:GJSf3(24ÔOGJS>@VWf.Ï3HÐ¶ÍXY:ÍZWfGJ0ÀÍ��
7�.bWfP�WfPHG$GJÜ:ÑJGJÔ:Wf.Ï2`3�24Î¤ÍX240�GªGJ0�Õ<Gd9H9:Gd9]ÍXY:ÍZWfGJ0ÀÍ��6ÍXFHÔHÔO24SXW½0]Gp0�24SfYºÔHSf2EWXGdÑ*Wf.Ï2`3�KE5,G
9:.1ÍfÑ�F<ÍXÍªSfGJI«@VWfGp9�7Q2`SXRÀ.13 9:G�W>@E.1I�.Ï3 -/GdÑ*WpK �:K

� ����� Ç<ÌhÆHÌ}Å �"!"���$#%��Ç&��Å¼Ë
�(' ÈÂÅ¿ÌZÆ:È�Ç*),+½Å¿É.-óÇHÈªÈ/#0)

NQ2438WX.13/FH.Ï3BÐºWXPBG%ÍfÑ�Gp3B@ESf.Ï2nÎ�SX2`0�WXPHG%ÔHSfGJT/.Ï2`FBÍ�Í}GdÑ*WX.1243�Þ8I1G�WªFBÍªÍXFHÔHÔO2`ÍXG$WXP<@VW�WXPHG�ÍXGpÑ�FH×
SX.ÏWZYÖÔO24I1.1ÑJYÖ2EÎ�24FHSºÑJ240�ÔHF:WfGJS�FBÍXGJSº@`ÍXÍXGJSXWfÍ¿WXPB@EWºFH38WXSfFBÍ}WXGp9óÕH.13B@ESf.1GpÍ�ÑJ@43ó2`3HI1YD@EIÏWXGpS

168

Monitor
Jump

Security
Monitor

bsr ra, bms0

bsr ro, sm

Rewrite

jsr ra, (s0)

syscall

����� ©��/© �Âo1iZcXeªeZcfs½eZ_jiZ_{^8�`����v`���8gÂµ:c>|>mp��c%µ`e}yJ^8|}w8c>gQ_{^EiZmºiZw8c���v`���¶��md^8_jiZmJe*�Hg�k`g�iZcf� |*yJz{zbg
µ:cf|>md��cªµ4e}yp^`|Xw`c>g�_b^ViZm¿iZw8c�ghc>|>v4eZ_jilkn��md^`_{iZmJe

ßBIÏGdÍ�.13�WfPHGº9:.1SXGdÑ*Wf24SfY
	������@43B9rÞH.13 @49H9H.bWf.Ï2`3�Þ:7�SX.ÏWXGAWf2�WXPHGºÍXÔOGpÑ�.«@EI�Í}WXSfGp@40������������¤K
Ó¿ÍÀ@EI1I$@4ÑpÑ�GdÍXÍ�WX2,ßBI1GpÍÀ@43B9uÍZWfSXGd@E0ÀÍ].1Í]T/.1@ ÍXY:ÍZWfGJ0 Ñp@EI1I1ÍpÞ�7QG(3HGpGp9 WX2 0�243H.ÏWX2`S�@4IÏI
Í}Y:Í}WXGJ0 ÑJ@EI1I«Íª.1ÍfÍ}FBGp9�Õ/YÀWXPHG�FB3`WfSXF<ÍZWfGp9�Ñ�2:9:G4K

MªPHG�2`Ô<GpSf@EWX.13HÐDÍXY:ÍZWfGJ0 � �A- �ºR`GJSf3HGJIª.ÏWfÍXGJIÏÎ¼@EI1SXGd@49:Y Ñ>PHGdÑ>R/ÍnWXP<@VW¶@ESfÐ4FH0�Gp3`W>Í�Wf2
Í}Y:Í}WXGJ0 ÑJ@EI1I«Í]@4SXG�7�.ÏWXPH.136Ñ�GJSXWf@4.Ï3 IÏ.10�.bW>ÍJKQá$2V7�GJT4GpSpÞ�Í}Wf@E3<9H@ES>9 �A-LR4GJSf3HGpI1Í�ÍXFHÔHÔO24SXW
243HI1Y ÑJ2`@ES>ÍXG�×�Ð4S>@E.13 Ñ>PHGdÑ>R/ÍpÝ�Î�24S�G�ÜH@E0�ÔHI1G4ÞÂßBIÏGó@4ÑJÑJGpÍfÍÀ9:GJÔOGJ3<9HÍ¶2`36FBÍ}GpS�@E3<9 Ð`SX2`FHÔ
Ô<GpSX0�.«ÍXÍX.Ï2`3BÍ�@E3<9(.1Í�3B2EW$Gp@`Í}.1I1Y�Ñ>PB@43HÐ4Gd9�2`3(@�ÔBSX2:Ñ�GdÍXÍ$Õ8Y�ÔHSf2/ÑJGpÍfÍªÕB@4ÍX.«ÍªÎ�24S¿@ÀÍX.13HÐ4I1G
FBÍ}GpSpKVMªPHG�@4SXÐ`FH0�GJ38WfÍ�2EÎO2EWXPBGJS½Í}Y:Í}WXGp0�ÑJ@4IÏI«ÍJÞdÎ�2`S	GJÜH@E0�ÔHI1G�ÔBSX2:Ñ�GdÍXÍ	Ñ�SfGp@EWX.1243�ÞV@4SXG�GJT`GJ3
0]2`SXG�9:.��¶Ñ�FHIÏW¿Wf2À0�243H.ÏWX2`SpKHá¿GJ3BÑJG4ÞHß<3HG�×�Ð4S>@E.13HGp9�ÍXGpÑ�FBSX.ÏWZY¶ÔO24I1.1ÑJ.ÏGdÍ�SXG��8FH.ÏSfGASXGJÎ�GJSfGJ3BÑJG
0]2`3H.ÏWX24S>ÍAÿ ����24FHWfÍX.19:GA24Î�WfPHG�24ÔOGJS>@VWf.Ï3HÐ�ÍXY/Í}WXGp0(K

MªPHG�24Õ/T/.Ï2`FBÍ�ÔHI«@4ÑJGAÎ�24S¿ÍXFBÑ>P 0�243B.bWf24S>Íª.1Í¿7�.bWfPH.Ï3ÖWXPHGºÔBSX2:Ñ�GdÍXÍ�WfPB@VW¼G�Ü:GpÑJF:WXGdÍ�WXPBG
FH38WXSfFBÍZWfGp9AÑ�2:9:G`KpMªPHG½ÔBSX2`ÕHIÏGp0 .«Í¤WXPBGJ3AWX2¿GJ3BÍXFHSfG�WXPB@EW�GJT4Gp3A0�@4IÏ.«Ñ�.124F<ÍrFH38WXSfFBÍ}WXGp9AÑJ2/9HG
ÑJ@E3B3H2EW¿ÑJ.ÏS>Ñ�FH0�T4Gp3`W�WXPBGº0�243H.ÏWX2`SpKHÓ¼Í�FBÍXFB@EIlÞH7�G�GJ3BÍXFHSfG¼WfPH.«Í�Õ/Y¶WXS>@4Ñ>R/.13HÐ�@4ÍXÔ<GdÑ*WfÍ$2EÎ
WXPHG�FH38WfSXFBÍ}WXGd9�ÑJ2:9:G � Í$Ñ�2`38WXSf24I �B2V7 .13 @49H9H.bWf.Ï2`3�Wf2].ÏWfÍ¿Í}Y:Í}WXGJ0 ÑJ@EI1I«ÍJK

����� "!$#&%"'�(�)+*-,/.+!102(3)54�'76
5óGA@49H9¶WZ7Q2�24F:WX×l24Îà×lI1.13HG¼SfG�Î�GpSXGp3BÑ�G¼0�243H.ÏWX2`SfÍpÞ`7�PB.1Ñ>P�7QG%ÑJ@EI1IOWXPHG�8*÷ ê î ê çEäBñàïhçVìº@43B9
â ë>ð ÷:ì*ñàïùí ê çVä<ñàï�çEì:9OSfGpÍXÔ<GdÑ*Wf.ÏT`GJI1Y4KHÓ$I1I��ZFH0�Ô(.Ï3<ÍZWfSXFBÑ�WX.1243BÍª7�.ÏWXPB.Ï3�WXPBG%FB3`WfSXF<ÍZWfGp9�Ñ�2:9:G4Þ
7�PH2`ÍXG¼9:GdÍZWf.Ï3<@VWX.1243�7QGAÑJ@43H3H2EWªÍZW>@VWf.1Ñp@EI1IÏYÀ9:GJWXGJSf0�.Ï3BG4Þ:@ESfG$SfGJÔHI«@4ÑJGp9ÀÕ/YÀ@nÕBSf@43BÑ>PÀ.Ï38Wf2
WXPHG �ZFB0]Ô 0�2`3H.bWf24SdKBMªPHG �ZFH0�ÔÖ0�2`3H.bWf24S�Gp3BÍ}FBSXGdÍªWXPB@EW¿Ñ�2`3`WfSX2`Ir.1Í¿3H2EW�WfSf@43BÍ}Î�GJSfSXGd9¶Wf2
@E3 .1IÏI1.1ÑJ.bW¼Wf@4SXÐ`G�W¿@49B9:SXGdÍXÍ¿@E3B9�WfPHGJ3(WfSf@43BÍZÎ�GpSfÍ¿Ñ�2438WfSX2`IrWX2ÀWfPB@VW¼Wf@4SXÐ`G�WpK<C 24SfGJ2VT`GJSdÞ/@4IÏI
Í}Y:Í}WXGJ0 Ñp@EI1I1Í�@ESfG¿SfGJÔBI1@`Ñ�Gp9¶Õ8Y�ÕHS>@E3<Ñ>PHGpÍQ.Ï38Wf2nWfPHG%ÍXGpÑJFHSf.bWZY�0�243H.ÏWX2`SpÞ87�PH.«Ñ>P�ÔOGJSXÎ�24Sf0ÀÍ
WXPHG�ÍXY/Í}WXGp0�ÑJ@4IÏI/.ÏÎ<.ÏW�.1Í�@`9:0�.1ÍfÍ}.1ÕHI1G4KEMªPHG�G�¤GpÑ�W�2EÎHWfPHGªSXGp7�SX.ÏWX.13HÐ%ÔHSf2/ÑJGpÍfÍ	.1Í	.1IÏI1FBÍ}WXS>@VWXGd9
.Ï3 �	.ÏÐ<K �4K

169

���f_b� �E¹ ����� s�v8�Vs�_{ghc �E¹ �	�
� g�s�_{� �p¹ ����� ���JeZ_Ï� �p¹ ���� yp�`�8z{v �E¹ �����
aE�`e �p¹ ����� ��c>gZy �E¹ �	�
� y�ehi ·��4¹������ ��|fo �E¹������ c��Vv/yJ¸Uc �4¹ �����
|fe}y�o1ilk ���E¹ ��	� yp����� ·��p¹ ����� �8yJeZghcfe �E¹ ����� gh_j»Eihe}yp|}¸ �E¹ ���	� c>mp^ ��E¹ ���
�
�UyJ� �
�V¹ ���� ils	mdzjo �V¹ ���� yJ�8gh_ �E¹ ���
�

� §/¢���� �/© �l^`|feZc*yJghcªmpo<eZv8^ViZ_{��cQ_{^ºeZcfs½eZ_jihiZc>^]µ`_b^8yJeZ_{c>g�o1mpeÂy¼ghv`µ8ghcfi�mpoOiZw`c�t�����~Ú~ ��\!������
µ:cf^8|}w8�ºyJeZ¸Âghv8_jiZc�md^¿y"������#%$&�½�Âz{�8w/y"	�
����`¹�#]_{ghgh_{^8�ªy�eZc�iZw`mdghc�µ:c>^8|}w8�ºy�eZ¸4g:s�w`_b|}w$s�mdv`zb�
^`mpir|fmd���8_{z{c	mp^¼mpv`e¤iZcfg�irg�k4g�iZc>��¹J��w8c�µ:c>^8|}w8�ºy�eZ¸4gBs�cfeZc�eZv8^¿v8gh_{^8��iZw8c(' �U�8�*)4�E� |>mp���ºyp^8�,+
iZw`c�eZc>ghv`z{iZgÂy�eZc¿µ8ypghc*�nmd^]iZw`c�y*aUcfe}yJ�dc$mpo¤iZw`c-�¼iZ_{��c>g�eZc>�:mJehiZc*�B¹

MªPHGóSfGJ7�Sf.ÏWX.13HÐ ÔBSX2:Ñ�GdÍXÍ�ÍX.Ï0�ÔHI1Y�.13BÍ}ÔOGpÑ�WfÍ @4IÏIA.13BÍZWfSXF<Ñ*WX.1243<Í�@43B9 @4IbWfGJS>Í�.Ï3B9H.ÏSfGpÑ�W
�ZFH0�ÔBÍ���. �	/¶.13BÍ}WXSfFBÑ*Wf.Ï2`3BÍª243�WXPHGºÓ¿IÏÔBPB@ �ª@43B9(Í}Y:Í}WXGJ0ÀÍ�Ñp@EI1I1Íª@4Í�Î�2`IÏI12V7$ÍpÒ
0 ��/214325�687�9 ���:/$��5���7���9<;87�9>=?7�9,3�/4@

5�3 ��1<;A7�9
�	@ �45�3CB4B D�EF= �	/ �2GIH � � ��9
. �	/>JKHLJ	MND�EF= �	/ JKHO./� ��9QPRJ�MTS

U
D�E>;

.7� ��9VPRJ:SXW
��B4B JKHZY?[�\C]IHZJ
�	/,B JKHZY?[�\C]IHZJ
. �	/ PRJ:S

á$GJSfG^.7� ��9QPRJ4S$.«Í�WXPHG¿Ô<2`S}Wf.Ï2`3�24ÎOWfPHG �ZFH0�ÔÀ0�243B.bWf24S�9:Gd@EI1.Ï3HÐ�7�.ÏWXP �ZFB0]Ô<Í�T/.1@ASfGJÐ`.1Í}WXGpS
J8K��HFBS}WfPHGJSf0�24SfG4ÞESfGJÐ`.1Í}WXGpS��2G�.«ÍÂÑ>PH28Í}Gp3�Wf2ºÕOG¿@�SfGJÐ4.«Í}WXGJS½7�PB.1Ñ>PÀ0À@UY]Õ<G¿ÑJ24SfSXFBÔ:WXGd9�Õ/Y
WXPHG �A-�FH3B9:GpS�WXPBGºÑJ@EI1I1.Ï3HÐÀÑJ243/T4Gp3`Wf.Ï2`3�.13�G OGdÑ*WdK

ý*äBï ë �Eì*ñàïlí�çZõ ê çVäBñàïhçVì>â�_½MªPBG�@`Ñ*WXF<@EI/GJ3:Î�2`SfÑJGJ0�GJ38W	2EÎHWfPHG�Í}GdÑ�FHSf.bWZYAÔO24I1.1ÑJY�.1Í	ÔOGJSXÎ�24Sf0�Gp9
Õ8Y�WXPBG¿Í}GdÑ�FHSf.ÏWZYn0�243H.ÏWX2`SpK`MªPHG �ZFH0�ÔÀ0�243H.ÏWX2`S�.«Í�SfG��8FH.1SXGd9]ÍX2�FH38WXSfFBÍ}WXGd9ÀÑ�2:9:G¿Ñp@E3H3H24W
Ñ�.1SfÑJFH0nT`GJ38W�WfPHG$Ñ>PHGdÑ>R/Í	24ÎBWXPBGªÍXGpÑJFHSf.bWZYº0�2`3H.bWf24S�Õ/YnÍX.Ï0�ÔHI1Y �ZFH0�ÔH.13HÐ�.13`Wf2%WXPHG�0�.«9H9:I1G
2EÎH.ÏWpK��h3n24WXPHGpS�7�24S>9HÍpÞ�WXPBG$�ZFH0�Ô]0]2`3H.ÏWX24S�GJ3BÍXFHSfGpÍ�WXPB@EW�Gp3`WfSXY%Wf2¿WfPHGQÍXGpÑJFHSX.ÏWZYA0�243H.ÏWX2`S
.1Í�2`3HI1Y¶Ô<28ÍXÍX.1ÕHIÏG%WfPHSX2`FHÐ4P�7�GJI1Ib×h9:G�ß<3HGp9�GJ38WXSfY¶ÔO24.138WfÍpK

5óG�FBÍXG�PB@4Sf9H7�@4SXGJ×lÕB@`Í}Gd9,0]Gp0�24SfYÚÔHSX24WXGdÑ*WX.1243LWX2,ÔHSXGpT4Gp3`W�WXPHG(FH38WfSXFBÍ}WXGd9 ÑJ2/9HG
Î�SX2`0Û9:Y/3B@40�.1Ñp@EI1IÏY @EIÏWXGpSX.13HÐÖ.ÏWfÍ�2V7�3Ú24S]@Ö0�243H.ÏWX2`SfÍ�Ñ�2:9:G`Ý�.lK G`KÏÞ�@EI1I�ÑJ2:9:G¶ÔB@4Ð4GpÍ�@ESfG
7�SX.ÏWXGJ×lÔHSf2EWfGpÑ�WXGp9�K/CÖ24SfGJ2VT4GpSpÞ`7QG%ÔHSfGJT`GJ38WQWfPHGAFH38WXSfFBÍ}WXGp9�Ñ�2:9:G%Î�Sf240éÐ`GJ3HGpSf@EWX.13HÐ�ÑJ2/9HG
243¶WfPHG �BYÀ.Ï3�2EWfPHGJSª@ESfGp@`ÍJÞ8Õ/Y]F<Í}.13HÐ]PB@ES>9:7ª@ESfG�×�ÕB@4ÍXGp9]0�GJ0�24SfY�ÔHSf2EWXGdÑ*Wf.Ï2`3ÀWX2]GJ3BÍXFHSfG
WXPB@EWÂ243HI1YºWfPHG$FH38WfSXFBÍ}WXGd9ÀÑ�2:9:G¿@43B9�WXPHG¿0]2`3H.ÏWX24S>Í�@4SXG�2`3]GJÜ:GpÑ�FHWf@EÕBIÏG�0�GJ0�2`SXY�ÔB@EÐ`GpÍpK

` ë ì�õ�çEì ê ãEä ð>ë _^a�Gp7�SX.ÏWX.13HÐ]24Õ/T/.Ï2`FBÍXIÏYÀ9:2/GpÍ�3H24W$Ñ�240�G¼Î�24S�Î�SfGJG4Þ/ÕHFHW$FBÍ}F<@EI1IÏYÀ.13BÑ�SfGp@`Í}GdÍ
WXPHGÀSfFH38WX.10�GÀ2EÎ�WXPHGÀFH38WfSXFBÍ}WXGd9 Ñ�2:9:G4K�á¿2V7QGpT4GpSpÞOWXPBGÀÕ<Gp3BÑ>PH0À@ESfR:Í�9:.1ÍXÔHI«@UY4Gd9D.13ÚM�@E×
ÕHIÏG �`Þ	2`3 WfPHG(ÕB@4ÍX.«Í�24Î$WXPBG - � ��N N � 	 ��b�b�bóÕOGJ3BÑ>PH0À@4SXRÚÍXFH.bWfG4Þ�ÍXPH2V7éWfPB@VW�WXPBGpÍXG
.Ï3BÑJSXGd@4ÍXGpÍª@ESfG4Þ:2`3�@UT`GJS>@EÐ`G4Þ`Î¾@E.1SXI1Y�ÍX0�@4IÏI¤Î�2`S�24FHS$ÍXY:ÍZWfGJ0(K

Ó SfGpÍ}WXSf.1Ñ�WX.1243 2EÎ½2`FHS¿SfGJ7�Sf.bWf.Ï3BÐ¶0�G�WXPB2/9Ö243 WfPHG�Ó¿IÏÔHP<@�@ES>Ñ>PH.ÏWXGdÑ*WXFBSXGº.«Í¿WXPB@EW¿WXPBG
0�@EÜ:.Ï0�FH0 ÕHSf@43BÑ>P 9:.«ÍXÔHI1@`Ñ�Gp0]Gp38W�.«Í��4Cdc .Ï3�Gp.bWfPHGJS 9:.1SfGpÑ*Wf.Ï2`3�Þ�WfP/FBÍ�IÏ.10�.bWf.Ï3HÐ WXPBG
0�@EÜ:.Ï0�FH0 Ñ�2:9:GºÍX.�eJG4K

��� � f '	g ,/!�#, (�g)<hZgji 4�(3)Xk

MªPHG�.Ï38WfGJÐ4Sf.ÏWZY¶2EÎ�24FHS�0�GJWXPH2:9(24Õ/T/.124FBÍXIÏY¶9HGJÔOGJ3B9HÍ¿243�WXPHG�@UTU@4.ÏI«@EÕB.ÏI1.bWZY�2EÎ�P<@ES>9:7�@4SXGJ×
ÕB@4ÍXGp9,0�GJ0�24SfYDÔBSX24WXGpÑ�WX.1243�K	C 24SfGJ2VT`GJSdÞ¤.Ï3LÑJ2438WXS>@4Í}WAWX2Ö24WXPHGpSn@EÔHÔBSX28@4Ñ>PHGdÍ%WX2DÍf@E3B9:×
Õ<2UÜ:.13HÐBÞH7�Gº9:2À3H24W¼@VWXWXGp0]ÔHW$WX2ÀSfGpÍ}WXSf.1Ñ�W�WXPHGºWf@ESfÐ4GJWfÍª24Î�I12`@`9(@E3B9(Í}WX24SfG�.13BÍZWfSXF<Ñ*WX.1243<Í

170

2EÎ¿FH38WfSXFBÍ}WXGd9LÕH.13B@4SX.1GpÍpK	á¿GJ3BÑJG4Þ½@E3 FH38WXSfFBÍ}WXGp9 ÕH.13B@ESfY 7�.bWfP .ÏWfÍ �ZFH0�ÔÁ@E3B9 Í}GdÑ�FHSf.bWZY
0]2`3H.ÏWX24S�3BGJGp9BÍ�WX2ÀÕOG�ÔHI1@`Ñ�Gd9�.138WX2�.bW>Í�2V7�3�ÔHSX24WXGdÑ*WX.1243(9:2`0�@4.Ï3�K

MªPH.1Í�.«Í�ÑJ2438WXS>@ESfYÖWf2ÖWXPBG�ÔHFHSfGJI1YÚÍ}24ÎàWZ7�@4SXGJ×lÕ<@4ÍXGp9DÎ¾@EFHIÏW].«ÍX24I«@VWX.1243L@`Í�ßBS>Í}W�ÔO24ÔHF:×
I1@4SX.«Í}Gd9¶Õ/Y¶5 @EP/ÕOG�G�W$@EIlKrÿ����lKHá¿2V7QGpT4GpSpÞ`WXPHSfGJGAÔHS>@4Ñ�WX.«ÑJ@4I¤ÑJ243BÍX.«9:GJS>@VWf.Ï2`3BÍªÍ}FHÔBÔ<2`S}W�24FBS
P8Y/ÕHSf.«9�@4ÔHÔHSf2`@4Ñ>P�Ò
�4K �h3ÚÑ�FHSfSXGp38W�ÑJ240�ÔHF:Wf.Ï3BÐ�Gp3/T8.1Sf243H0�GJ38W>ÍJÞ¤FBÍXGJS>ÍA2EÎàWfGJ3 3HGJGd9ÖWf2 G�Ü:GpÑJF:WXG�FH38WfSXFBÍ}WXGd9
ÕH.13B@ESf.ÏGdÍ�WfPB@VWª@ESfG$I«@ESfÐ4GJI1Y�ÍZW>@E3B9H@4IÏ2`3HG$ÔHSf24Ð`Sf@40ÀÍJÝE.lK G4K1Þ`WfPHGJYÀ9:2�3H2EWªÑ�Sf2`ÍfÍ�ÔHSf2EWfGpÑ�×
WX.1243 9:2`0�@4.Ï3<Í�Î�SXG��`FBGJ38WXI1Y4K

�:K-a�GpÑJGJ38WÀ@49:TV@E3<Ñ�GpÍn.Ï3uÍ}Y:Í}WXGp0�Í�SfGpÍXGp@ES>Ñ>PÚPB@`Í�9:Gp0�243BÍ}WXS>@VWfGp9LÑJSX28ÍXÍ}×�9H240À@E.13ÚÑJ@EI1I«Í
7�.bWfP(T4GJSfY¶I1.bWXWXI1G�2VT4GpSXPHGd@49 ÿ � ��K

HK � FHSfGÂÍX2EÎàWZ7ª@ESfG�×�ÕB@4ÍXGp9$@4ÔHÔHSf2`@`Ñ>PHGpÍ¤24ÎàWXGJ3A3HGpGp9%Wf2�SXGp7�SX.ÏWXG�@`ÍXÍXGJ0�ÕHIÏY¼Ñ�2:9:G4ÞJ7�PHGJSfGp@`Í
ÕH.13B@ESf.ÏGdÍº@ESfG]WZY/ÔH.1Ñp@EI1IÏY,9:.«ÍZWfSX.1ÕHF:WfGp9Ú@4ÍºSf@U7�ÕH.13B@ESf.ÏGdÍ%WXPB@EWn.13BÑ�I1FB9:G¶3B2DÍ}Y/0�Õ<2`IÏ.«Ñ
.Ï3HÎ�24Sf0�@EWX.1243 ��3H24W$GJT`GJ3(9:GJÕHFBÐ4Ð4.13HÐ�Í}Y/0�Õ<2`I1Í �*K

NQ243BÍXG��8FHGp3`WfIÏY`Þ:7QGAÕOGJI1.ÏGpT4G%WXP<@VW$24FBS$@EÔHÔHSf2`@`Ñ>P�.«ÍªÔHS>@4Ñ*Wf.1Ñp@EIlK

����� � !$'7(��5!$'

cQ.13B@4SXYuÑ�2:9:GDSfGJ7�Sf.ÏWX.13HÐ WX2/24I«Í�@4SXGÖÑJ240�ÔHI1G�ÜrKQá¿GJ3BÑJG4ÞQWXPHGpYuÍXPH2`FHI19ÁSfGJ0À@4.Ï362`F:WfÍX.19HG
2EÎÂWfPHG]WXSfFBÍ}WXGp9,Ñ�2`0�ÔHF:WX.13HÐ(ÕB@`Í}G`K¤á¿2V7QGpT4GpSpÞ<WXPH.«ÍASfG��8FH.1SXGdÍ¼@�T4GpSX.ÏßBGpS¿WfPB@VWºÑ>PHGdÑ>R/ÍA@EW
IÏ28@49,WX.10�G¶WfPB@VW�@ÖÕH.13B@ESfY,PB@4ÍnÕ<GpGJ3 @4ÔHÔHSf24ÔHSf.1@EWXGpIÏYóSXGp7�SX.ÏW}WfGJ3�K �h3L24FHS]ÑJ@`Í}G`Þ�WXPB.1Í�.1Í
Í}.10�ÔHIÏG`K	MªPBG�T4GpSX.ÏßBGpS�Ñ>PHGdÑ>R/ÍºWXPB@EWnWfPHG�FH38WfSXFBÍ}WXGd9LÑ�2:9:G�9:2/GpÍ�3H2EW�Ñ�2`3`W>@E.13L@E3/Y . ��/
@E3B91��@ �45�3CB:Bº.13BÍZWfSXF<Ñ*WX.1243<ÍJK��HFBS}WfPHGJSf0�24SfG4Þ:@EI1I¤ÕHSf@43BÑ>PÀW>@ESfÐ4G�W>Í���2EÎ&= �	/].13BÍ}WXSfFBÑ*Wf.Ï2`3BÍ �
0nFBÍ}W�Õ<G�7�.ÏWXPH.13DWfPHG�FH38WXSfFBÍ}WXGp9,Ñ�2:9:G]24S�@EWA@4ÔHÔHSf24ÔHSf.1@EWXG�GJ38WXSfY Ô<2`.Ï38W>ÍA2EÎ�WfPHG �ZFH0�Ô
24S¼ÍXGpÑJFHSf.bWZY�0�243H.ÏWX2`SpK¤MªPHGpÍXG�Ñ>PBGpÑ>R:Í�Wf24Ð4GJWXPHGpS¼@4SXGnÍXF��¶Ñ�.1GJ38W¼Î�24S¼WXPHG�ÔHSX2/24Î�2EÎÂÍf@VÎ�G�WZY
�¾ÑEK ÎZK1Þ<-/GpÑ�WpK �<K ���*K

� �	�"�(' +½Ë
�¼Ì}Å � ' È�É ���

M�2�9:G�ßB3BG�@¶3B2EWX.1243 24ÎÂÍ}GdÑ�FHSfGºÔHSf24Ð`Sf@40 GJÜ/GdÑ�F:Wf.Ï2`3�ÞO7QG�3HGJGd9Ö@ÀÎ�2`SX0À@EI	Í}Gp0À@E38WX.«ÑJÍ¿2EÎ
WXPHG�ñàäBâ>ïlì*÷ ð ïùñ¾çEä¶â ë ï½ãVì ð ò:ñàï ë>ð ïù÷:ì ë ú�ý>û��þ�2EÎOWXPHG�ÔBSX2:Ñ�GdÍXÍX24S	G�Ü:GdÑ�F:Wf.Ï3HÐAWfPHGpÍXGªÔHSf24Ð4S>@E0ÀÍpK
5óG$@`Ñ>PH.ÏGpT4GQWXPH.«Í�Õ/Y�Î�24Sf0À@EI1.1ÍX.13HÐ¿WfPHG�SfGJI1GJTV@E38W�ÔB@ESXWfÍ	2EÎOWXPBG�.13:Î�2`SX0À@EIH9HG�ßB3H.ÏWX.1243]2EÎOWXPBG
Ó$I1ÔHPB@�@ES>Ñ>PH.ÏWXGpÑ�WXFHSfG]ÿ ���lK �¼FHSªÎ�2`SX0À@4I¤ÍXGJ0À@43`Wf.1ÑpÍª.1Íª2`SXÐ8@E3H.«ÍXGp9À.13�WZ7Q2�ÍZW>@EÐ`GpÍpÒ��	.1SfÍ}WXI1Y4Þ
7QG�9:G�ßB3BG�WfPHG Í}Gp0�@438WX.«ÑJÍ�2EÎ$Gp@`Ñ>PL.13BÍZWfSXF<Ñ*WX.1243 7�.bWfP SfGpÍXÔ<GdÑ*W]WX2,@óÍX.Ï0�ÔHI1G�0�@`Ñ>PH.13HG
ÍZW>@VWXG`Ý	ÍXGpÑJ243B9HIÏY`Þ�7�G¶IÏ.ÏÎàWnWfPHGpÍXG�ÍXGJ0À@43`Wf.1ÑpÍ�Wf2D@Ö0�24SfG¶SfGp@4IÏ.«ÍZWf.1ÑÀÍXY:ÍZWfGJ0 Í}Wf@VWfG¶7�PH.«Ñ>P
.Ï3BÑJIÏF<9:GpÍÂ0]Gp0�24SfY�ÔHSf2EWfGpÑ�WX.1243�Þ`G�ÜHÑ�GpÔ:WX.1243BÍpÞ4@43B9À@E3¶@4ÕBÍZWfSf@`Ñ*WÂ0�2:9:GpIB2EÎ¤WfPHG¿2`Ô<GpSf@EWX.13HÐ
Í}Y:Í}WXGJ0(KHMªPHGAÎ�2`IÏI12V7�.13HÐnWZ7�2ÀÍ}FBÕBÍ}GdÑ*Wf.Ï2`3�ÑJ2VT4GJSªGd@4Ñ>P�2EÎ�WfPHGpÍXGºÍ}Wf@EÐ`GpÍpÞ/SXGdÍ}ÔOGpÑ�WX.1T4GJI1Y4K

� ��� � .5!10242k !�� 4�#7.+(�)+!

MªPHGóæ>ãUâ*ñ ð�ê ã ð ò:ñàä ë â*ï�ãEï ë Ñ�2`0�ÔHSX.«ÍXGpÍ�@(PHGd@EÔ���Þ	@(SXGpÐ4.«ÍZWfGJSAßBI1GÖì�õ>Þ	@E3B9 @(ÔHSf24Ð`Sf@40
Ñ�24FB3`WfGJS��
�EKBMªPBGA9B@VWf@�WZY/ÔOG%F<Í}Gd9¶Wf2]SfGJÔBSXGdÍ}Gp3`Wª.13BÍZWfSXF<Ñ*WX.1243<Íª.1Í�ÍXPH2V7�3�.13 �	.ÏÐ<K �:Ý/WXPBG
� ë>ð çpå ë Î�FH3BÑ�WX.1243(9:GpÑJ2:9:GpÍ �EÕH.ÏWQ7�24S>9HÍÂ.138WX2].Ï3<ÍZWfSXFBÑ�WX.1243BÍpK:MªPH.«ÍÂÎ�FB3BÑ*Wf.Ï2`3�.«Í�IÏ.ÏÎàWXGd9¶Wf2
0�@`Ñ>PH.13HG�ÍZW>@VWXGdÍªÕ/YÀWXPHG�û � ë>ð çdå ë ; @E3B9� � ë>ð çpå ë ; Î�FB3BÑ*Wf.Ï2`3BÍ��� � ë>ð çdå ë ; 9:GpÑJ2:9:GpÍ�@EW@E3(@ESfÕH.bWfSf@4SXY¶@`9H9:SfGpÍfÍ�Sf@EWXPHGpSªWXPB@43�WfPHG�ÔOÑ��*K

171

�<§8¥>§`¥����?� tE�:c>|>_bypz{�l^`g�iheZv8|fiZ_{mp^��u�lz{z{c>�UyJz<x�mpe}���`tEk4g�iZc>�n~�yJz{z
�<§8¥>§`¥����?� �Â���	�Á�Q�ªyp�8���
�`�Â��ghv8µ2�
�4�Â��ghz{z��4�Â��g�eZz��4�Â��|>���:c��
�E�Â��|>���8zji
�<§8¥>§`¥����?�	 ����� ��zji�� ��c*�

�<§8¥>§`¥����?� �ù^8g�iheZv8|XiZ_bmp^�Á�Q���]�Â�����Âc>�A�Âc>�p·ù�Qeh·��B_{iÂ�Âc>���Â¬X¯1°����ºX°à¯����p¬����Z³p¯���� �H¯«²"!Z°à¬$#%�f°à¯��p²
� ��� �����Âc>�¼x�mpe}� &'�p²)(J¯«°à¯��p²*� �,+f¬-�p²)�$�
� e �Âc>�¼x�mpe}� .�¬/�J²)�$�]°0�	�1(1(J¬Z�!�!
�%�<�8y%�Âc>�%�Âc>�%x�mpe}� 2,�3�1(4�1(1(p¬h�!�!45��1((º¯6���º/(p¯��J°ù87
�%�<�:���Qcf�%�Âc>�%x(mJe}� 2,�3�1(�®��p¬/(
�8tVi��º�Âc>�¼�Qc>�¼x(mpe}� 98°0�p¬h¿®��p¬/(
�%:dg�eÂ�Âc>�A�Âc>� ;1#��=<�°0�>�1((p¬Z�!�!�¯«²À¬h¾³p¯�!}°ùX¬
�8tE�:c>|>_bypzOt4�:c>|f_ÏyJz{�l^8g�iheZv`|fiZ_{md^ 9"?@!Z°ù��A��� ���B�p¬�¯C���b¾³1�D�H¯1²"!Z°à¬�#%�f°à¯��J²

����� ©�EB© ��w8c��ù^8g�iheZv8|XiZ_bmp^��`yJi}yJiùk4�:c�yp^8�]ypv4»4_bz{_byJehknilk4�:c>g>¹

MªPHGnGpTU@4IÏF<@VWX.1243 SfGJI«@VWf.Ï2`3 .1Í%ÍXPH2V7�3 .Ï3 �	.ÏÐ<K BK ��TV@4IÏFB@EWX.1243Ö.«Í%@ÀÔB@ESXWX.«@EI�Î�FH3BÑ�WX.1243�Ò
�H24S�@EI1IÂÍZW>@VWfGpÍÀâ*Þ�GJÜHÑ�GJÔHWºWXPH28Í}GÀ7�PBGJSfG�WXPHG�ÑJFHSfSXGp3`Wº.13BÍ}WXSfFBÑ*Wf.Ï2`3 .1Í¶ûEî ëfð ñ¾ãVøbÞ�WfPHGJSfGÀ.1Í
243HG�@E3<9�2`3HI1Y¶243HGA3HGJÜ/W¿ÍZW>@VWXG�ïªÍ}F<Ñ>P�WfPB@VW�â�FG�Hu;�ïlK
I !4i i 4 �KJ (�iML�N�! !"O�4PN�%+4�, (Tg) (Tk	L 4�'7, (34QN8R7�
S _ ��Î !�T U)V [$° @E3B9 !�T U*V [¼°@W WXPBGJ3 °X�!°@W Y
Z _ ��Î\[=] YB9�^¼/���3(V [!
_�`9 <`/�f¯�� �] WXPBGJ3ba °$YB!�TU*VÚ[¿°$Y
5óG�@4I1ÍX2Ö9:GJßB3HG�@ÖÍXG�W�2EÎ�7QGpIÏIÏ×lÎ�24Sf0]Gd9 ÍZW>@VWXGdÍMcAõfû<ïhãVï ë ; Þ�ÑJ2438Wf@4.Ï3B.Ï3HÐ 2`3HI1YÖWXPB2`ÍXGÍZW>@VWXGdÍn7�PB.1Ñ>P SXG �BGpÑ�W�ÔO2`ÍfÍ}.1ÕHI1G�Ó$I1ÔHPB@ó0À@4Ñ>PH.13HG�ÍZW>@VWXGdÍJK ��TV@4IÏFB@EWX.1243LÔBSXGdÍ}GpSXT`GpÍº7�GJI1IÏ×

Î�24Sf0]Gd9:3HGdÍXÍpK

� � � f '	g ,/!�#, (�g)Xdfe �8ghg5!*NTk%d+4�)�gji�k #�!"L+,/(Tg)(k
MªPHG�Õ<@4ÍXG]ÍXY:ÍZWfGJ09:GJßB3HGpÍA@43D.«9:Gp@4IÏ.«Í}Gd9 ÔHSf2:Ñ�GpÍfÍX24SdÒ<Ó$Ô<@ESXW¼Î�Sf240 .1IÏI1GJÐ8@EI�.13BÍZWfSXF<Ñ*WX.1243<Í
@E3B9ÚÍXY:ÍZWfGJ0�ÑJ@EI1I«ÍJÞrWfPHG¶ÕB@`Í}G�Í}Y:Í}WXGJ0ÛÑJ@43L@EI17�@UY:Í%WXS>@E3<Í}.ÏWX.1243 � ��GJ0�0À@ ����K�Ó SXGd@EI1.1Í}×
WX.«Ñ�Í}Y:Í}WXGJ0 .Ï0�ÔO2`ÍXGpÍ�@`9H9:.ÏWX.1243B@4I�Ñ�243<ÍZWfSf@4.Ï38WfÍpÝ8Î�24S$GJÜH@E0�ÔHI1G4Þ:TV@EI1.19�0�GJ0�2`SXY�@`9H9:SfGpÍfÍ}GdÍ
0nFBÍ}W�ÕOG�@4IÏ.1Ð43BGp9rK	5óG�0�2:9:GJIQWXPH.«Í]0�24SfG¶SXGd@EI1.1Í}WX.«Ñ�ÍXY:ÍZWfGJ0 Í}Wf@VWfG4Þ�Í}PB2V7�3L.Ï3 ��.1ÐBK��BÞ
Õ8YDIÏ.ÏÎàWX.13HÐ(WXPBG]Õ<@4ÍXG]0À@`Ñ>PH.Ï3BG�Í}Wf@EWXG]WX2(.13BÑ�I1FB9:G�ÔHSf2EWfGpÑ�WX.1243 9:240À@E.13BÍA@E3<9D2`Ô<GpSf@EWX.13HÐ
Í}Y:Í}WXGJ0 ÍZW>@VWfG4KH5,Gn@EI«ÍX2]I1.ÏÎàW$WXPHGlc%õfûOï�ãEï ë ; SfGJI«@VWf.Ï2`3�Wf2À.Ï3BÑJIÏF<9:G�WXPBGº@49H9:.ÏWX.1243<@EI�Í}Wf@EWXG4ÝWX2ÚÎ¾@UT`24FHS¶ÑJ243BÑJ.1ÍXGJ3HGdÍXÍpÞ½7�G 240�.bW�WXPHGD9HG�ßB3H.ÏWX.1243�@43B9ÁSfG�Î�GJSfGJ3<Ñ�GpÍ]Wf2ÚWXPBGÖ3H2EWf.Ï2`3Á2EÎ
7QGpIÏIÏ×ùÎ�2`SX0�Gd9�Í}Wf@EWXGpÍpK

m 2EWfG�WXP<@VWÂWfPHG$ÔHSfGpÍXGJ38WfGp9ÀÍXY/Í}WXGp0 .«Í�0�2`SXG$Ð`GJ3HGpSf@4I:WXP<@E3ÀSfG��8FH.1SXGd9nÎ�2`S�WfPHG¿SfGp@`Í}2`3:×
.Ï3HÐ].13¶WXPB.1Í�ÔB@4Ô<GpSpÞ/@4ÍQ.bWª.13BÑ�I1FB9:GdÍQ0�FHIÏWX.1ÔHIÏGAÔHSf2EWfGpÑ�WX.1243�9:2`0À@E.13BÍJK85,G¼ÔHI«@E3�WX2�G�Ü:ÔHI124.ÏW
WXPH.«Í�Ð4Gp3HGJS>@EI1.ÏWZY].13�Î�F:WXFBSXG�7�24SfR¤Þ87�PBGJSfG%7�G�ÍZWfFB9:YÀWfPHG�.13`WfGJS>@4Ñ�WX.1243�ÕOG�WZ7�GJGp3(0nFHIÏWX.1ÔHI1G
ÔHSX24WXGdÑ*WX.1243(9:2`0�@4.Ï3<ÍJK

�8ghg5!"N�N3(�)+*ne
L !$'74�, (3)5* �6 k , !4i f '	gQL !&'7,/(3!4k�� M�2LÎ�24Sf0�@4IÏ.«ÍXGÖÍ}GdÑ�FHSf.bWZY Ô<2`IÏ.«Ñ�.1GpÍ
.Ï3BÑJIÏF<9:.Ï3BÐuÑJ243BÍ}WXS>@E.138WfÍ¶2`3�ÔOGJSf0].«ÍfÍ}.1ÕHI1GóÍXY/Í}WXGp0 ÑJ@EI1I«ÍJÞªÍ}F<Ñ>P @4Í�ßBI1G,ÍXY:ÍZWfGJ0 @4ÑpÑ�GpÍfÍpÞ
7QG�3HGJGd9(WX2�GJ3BÑJ2/9HGnÔHSf24ÔOGJSXWX.1GpÍ¿2EÎ½WXPBGnFH3B9HGJSfIÏY/.13HÐ�2`Ô<GpSf@EWX.13HÐ¶Í}Y:Í}WXGp0�K¤á$2V7�GJT`GJSdÞH7�G
7Q2`FHI19ºIÏ.1R4GÂWX2¼9H2¿WfPH.1Í	ÍXFBÑ>PºWfPB@VW	24FHS�Î�24Sf0À@EI80]2:9:GpI`.«Í	3H2EW�WX.1Gp9ºWX2¼@%ÍXÔ<GdÑ�.Ïß<Ñ�2`Ô<GpSf@EWX.13HÐ
Í}Y:Í}WXGJ0(K

172

9 � � ���O¬����%< ���
9 ^¿/�$�3(U [9 � �
	,<�� ��<�¬ [¬X¯�¬��

 �K� ¯ �X°à¯6���%±C# � + ±-��<����8±8#�# � �1�$<:±�!f�� �J²8°à¯�� ! �1�$<�� � ¬���¬ [����¬��ª¬X¯
9 T U)V [� ���,#@< (�p°ùf±l¬���¬��ª¬ � �,#@< (�p°ùf±�< �f< ���

9�^¼/���3(V [9 � 2,(1��¬ � ¬��\���
9 T U)V [� ���,#@< (�p°ùf±l¬���¬��ª¬ � � ¬���¬ ��� �������B# < (1�J°ùf±�< �f< ���

9 ^¿/�$�3(U [9 � 2�(��¿¬ � ¬ � ��� �K����A±�°0�d±ù®��p¬-(� � ¬��ª¬ �
� ����� �
9 T U)V [� ���,#@< (�p°ùf±l¬���¬��ª¬ � �,#@< (�p°ùf±�< �f< ���

9 ^¿/�$�3(U [9 �b9`°!�¼¬��A¬ � ��� � W �!®��J¬/(d±¾°0�d±�����b� � ¬���¬ � � ���"� � ¬��ª¬����
9 T U*V [� � W �¤¬����B# < (1�p°ùf±�< � < ���
9�^¼/���3(V [9 � .#	B< +���<�¬�(J¯6!�<

< � W � ��$&% +���</±8!f�� �p²`°à¯�� !�+���< � ¬��ª¬'�
(!)+*�,4�
- +f¬/�J²)�$� < �X< ��(p¯6!�<.*�/ 0�*�# < (1�p°ùf±�< � < ���
9 T U*V [� ���¤¬��1�*< � W �

9 ^¿����3(V [9 � .½¬�¬�2	(p¯6!�< �`# < (1�p°ùf±�< � < � < � W �`�
- +f¬/�J²)�$� < �=< ��(p¯6!�<
9 T U)V [� ���,#@< (�p°ùf±l¬���¬��ª¬ 2 �*< � W �

9 ^¼/���3(V [9 �b;1!Z¬�¬ 2 ¬ � �`#@< (�p°ùf±�< �f< �
9 T U)V [� ����# < (1�p°ùf±l¬��$¬��ª¬�2 �h+ ±-�D� ¯b³p² � ¬���¬��'� 3��

����� ©54B© ��w8cAihe}yJ^8gh_jiZ_{md^�eZc>zby�iZ_bmp^(eZc>�`eZcfghc>^ViZ_b^`�]iZw8c%ghc>�ºyp^ViZ_{|>g�mpo½iZw`cAµ/yJghc��ºyp|}w8_{^8cp¹O��w`c
iZcXeZ� ® � ® W eZc>�4eZc>ghc>^ViZg�v8^`gh_{�d^8c>�ºs	mpe}�nyd�8�4_jiZ_bmp^���mE�4v8z{m�6'7�8�+P� ¯ �X°à¯����A±6#9��¬��Q¬X¯�z{_jo1iZg:�niZm
iZw`c$adyJzbv`c�mpo�¬}¯«�8s�w`_b|}wÀ�ºy>knµ:c¼yJ^À_{����c*�`_byJiZc�mpe�y%eZcf�d_{g�iZcfe�+HyJ^/� + ±-�$<����8±0# #]eZcfiZv`eZ^`g�iZw`ceZcfghv8zjiÂmpo¤iZw`c��d_{aUc>^no«v8^`|fiZ_{md^���mE�4v8z{m;6 7�8 ¹

�<§8¥>§`¥����?� ~�yJ�/ypµ`_{zb_jiùk
�u�Âc*yd���Ex�eZ_{iZc �`�r»4c>|
¥$��� �4£
�:< �=<ªmd�ºyJ_{^?>�Â�`�4e5>Ø~�yp�8ypµ8_{z{_jilk�>Øµ:mVmpz
�r»4|>c>�`iZ_{mp^��=<ªmd�ºyJ_{^?>�Â�`�4e

¦
�4¨A@/¦@� W y�tEi}y�iZc �ghw8c*yJ�CBDB:$Qc*yp� E��� �J¬�?��8/��<
gh�H�.BDBC�:< F�¬-�p°ù/�f°à¯��p² (1�D� �J¯«² 5�<`X¬�(�D� �p¯1²17
g�ehoGBDBH<ªmp�ºyp_{^?> �Qcf�'I/z{cKJÂ�³p¯6!Z°ùX¬ML��b 5�<`X¬�(�D� �p¯1²17
gh�:|NBOBP<ªmp�ºyp_{^?>���8�4eQF�¬-�Z³p¬/�D�A���D#E²8°ùX¬45�<`X¬ (1�D� �J¯«²17
ghmdg#BOBhW y 	B<`X¬/�J°à¯«²E³4!�?@!Z°ù�� !Z°0�p°ù

����� ©#RO© ��w8c]zb_joÏiZc*�ó�ºyJ|Xw`_b^`c]g�i}y�iZcd¹�q�mpiZc�iZw/yJiA_{iº_{g��8yJe}yp��cXiZcfeZ_{ghc*�DµVk iZw`c�ilk4�:c�mpo�iZw`c
mp�:cfe}yJiZ_{^`��g�k`g�iZcf�!g�i}yJiZcd¹

5óG�@`Ñ>PH.1GJT4G]WfPH.1ÍnFBÍX.Ï3HÐ �ZÍX@4Õ<GpIÏI1G � Í�ãJè`ñ¾ç ê ãEïùñ ð ïlífî ë�ð øÏãUâ>â ë â*Þ	7�PH.«Ñ>PLÍ}FHÔBÔ<2`S}WºSfGp@E×
Í}2`3H.Ï3BÐ�@EÕO24F:W¿WXPHG�0]Gp0nÕOGJS>Í$24Î½@�Ñ�24I1I1GpÑ*Wf.Ï2`3 2EÎÂ@4ÕBÍZWfSf@`Ñ*W�WZY/ÔOGpÍpKOÓ¿3D@VÜ:.1240À@VWf.1Ñ%WZY/ÔOG
Ñ�I«@4ÍfÍnÍXÔ<GdÑ�.ÏßBGpÍ�ÔHSf24ÔOGJSXWX.1GpÍnWXPB@EW�PH2`I19 Î�2`S]@4IÏI�.13BÍZW>@E3BÑJG¶WZY/ÔOGpÍ�2EÎ�WXP<@VWÀÑ�I«@4ÍfÍJK	á$GJ3<Ñ�G4Þ
WXPHGdÍ}G$ÔBSX2`Ô<GpS}Wf.ÏGdÍ½0À@UYnÕOG$FBÍXGp9].Ï3ÀÔBSX2/2EÎ¾ÍÂ@EÕO24F:WQ@43/YºWZY/Ô<G¿2EÎOWXPHG%Ñ�24I1I1GpÑ*Wf.Ï2`3�K �h3À24WXPHGpS
7Q2`Sf9HÍpÞ8WXPHGdÍ}G�ÔBSX2/2EÎ¾Í�@4SXG%ÔB@4Sf@40]GJWXSf.1Ñ¼7�.ÏWXP(SXGdÍ}ÔOGpÑ�W�WX2]WXPBG�.Ï3BÍ}Wf@43BÑ�G%WZY/ÔOG4K

173

� !�< (9l� �`!0< � 9 (��A�����V/�
� 9M�B(��+��1(

9 ^¿/�$�3(U�(\9 �K9 <`/�f¯��D� ��� �6�b�³1� �:® �
� 9 � (P� +��1(

9�^¼/���3(V�(9 � 2,(��¼¬ [¬ � � �
� !�< (49 � �K!Z¬�� 9 (�¬ � � ���	�A� JÂ/�1(

� 9M�B(��+��1(

9 ^¿/�$�3(U�(\9 � 2,(A�¿¬ [¬ � ���
� + ±-� � ¯b³p²:/(� !Z¬�� 9 (º¬ � � ������

� 9 � (P� +��1(
9 ^¿����3(V�(9 �`98°!�$¬ [¬ � ���

� !�< (9 � �b!Z¬�� 9 (º¬ � � ���	� �� ¬}¯«°ù
� 9M�B(��+��1(

9�^¼/���3(V�(9 �`98°!�¿¬ [¬ � � �
� + ±-� � ¯b³p²:/(� !Z¬�� 9 (º¬ � � ������

� 9 � (P� +��1(

����� ©��B© �Qv`z{c>gro«mpe	�`cXiZcfeZ��_{^8_{^8�Âs�w8cfiZw`cfe�y�g�i}yJiZc½s�_{z{z8e}yp_{ghcÂyp^AcX»`|fc>�`iZ_{md^B¹U��w`cfeZcÂyJeZc"�ª�ºyJ_b^
|>ypv8ghcfg��`_{z{z{c>�UyJzH_b^`g�iheZv8|fiZ_{mp^8g>�E_{^8ghv���|>_{c>^Vi��:cfeZ��_{ghgh_{md^`g>�`yp^/����_{gZypz{_{�d^`c*����c>��mpehkAyd�`�4eZc>ghghc>g>¹

-/Y:ÍZWfGJ0 ÑJ@EI1I«Í$@ESfG�0�2/9HGJI1IÏGd9(7�.bWfP(WXPHG�çVâ>â>ï ë îóÎ�FH3BÑ�WX.1243Ö@43B9(G�ÜHÑ�GpÔ:WX.1243<Í�7�.bWfP WXPBG
çUâ ë è ð>ë îOïlñ¾çVäÚÎ�FH3<Ñ*WX.1243��EÝ¤WXPBG]2`Ô<GpSf@EWX.13HÐ(Í}Y:Í}WXGJ0 WZY/ÔOGÀÑ�I«@4ÍfÍ¼@`ÍXÍXFH0�GpÍ%ÕO2EWXPóÎ�FH3BÑ�WX.1243BÍ
ÔHSXGdÍ}GpSXT`G¼7�GJI1IÏ×ùÎ�2`SX0�Gp9H3HGpÍfÍJK

�8ghg5!"N�N3(�)+* f '	g , !�#,/(Tg) 4�)�g i�k #�!"L5, (�g)Xk�� � SX24WXGdÑ*WX.1243]@E3B9nG�ÜHÑ�GpÔ:WX.1243<Í	@4SXGQ.Ï38WfGJSX×
9:GJÔOGJ3B9HGJ38WpÝ<PHGJ3BÑJG4Þ<7QG�3HGpGp9�WX2�PB@E3B9HIÏGAWfPHGJ0 WX2`Ð4G�WfPHGJSdKH5,Gn9:GJßB3HGº@ �ZFB9HÐ4GJ0�Gp3`W$2`3
ÍZW>@VWXGdÍ��Zû���å��Aæ>ã4åVÞ:ÍXPH2V7�3�.Ï3 ��.1ÐBK��:Þ`7�PH.1Ñ>PÀPB24I«9HÍ�7�PHGp3ÀG�Ü:GpÑJF:WX.1243À24Î�ÍZW>@VWXGºûóÍ}PB24FHI«9
Sf@4.1ÍXGÀ@E3,G�ÜHÑ�GpÔ:WX.1243�K�MªPH.1ÍA0À@UYÖÕOG�9:FBG�WX2(ÔHSf2EWXGdÑ*Wf.Ï2`3óGpSXSf24S>ÍJÞr@4IÏ.1Ð43H0�Gp3`W�GpSXSf24S>ÍJÞ¤2`S
.ÏI1IÏGpÐ`@4Ir.Ï3BÍ}WXSfFBÑ�WX.1243BÍpK

5óG�0�2/9HGJIª0�GJ0�24SfYÚÔHSf2EWXGdÑ*Wf.Ï2`3LÕ/YL@ÖÎ�FH3<Ñ*WX.1243 Î�Sf240�ÔHSf2EWXGdÑ*Wf.Ï2`3 9:2`0�@4.Ï3<Í�@43B9
@49H9:SfGpÍfÍXGpÍQ2438WX2�@�ÍXG�Wª2EÎ�ÑJ@4ÔB@EÕH.1I1.bWf.ÏGdÍJK/5,G%F<Í}G¼WXPHG �ZFB9HÐ4GJ0�Gp3`W�îBå��� ã`å4åVì��! ð ãfîÖWf2
9:GJ3H24WXGÂ9H240À@E.13�åAPB@`Í�ÔOGJSf0].«ÍfÍ}.1243 ð ãfî]WX2%@49H9:SfGpÍfÍÂã`å4åVì�.13�WfPHG�ÔHSf2EWfGpÑ*Wf.Ï2`3º9:240À@4.Ï3%îBåVK
MªPHG$G�¤GpÑ�WfÍQ2EÎr0�GJ0�24SfY]ÔHSX24WXGdÑ*WX.1243À@4SXG¿ÍXPH2V7�3�.13 �	.ÏÐ<K	�:Ò8Ó$3/Y�@VW}WfGJ0�Ô:Wª@VWÂGJÜ/GdÑ�F:Wf.Ï3BÐ
@E3Ú.13BÍZWfSXF<Ñ*WX.1243 @VW�@ 3B243:×�G�Ü:GpÑJF:Wf@4ÕHI1G�@49H9HSXGdÍXÍ�7�.1I1IQSfGpÍXFHIÏWn.Ï3 @E3LGJÜ:ÑJGJÔ:Wf.Ï2`3�Þ�@`Íº7�.1IÏI
SXGd@49:.13HÐ]24S�7�Sf.bWf.Ï3HÐ�0�GJ0�2`SXY¶7�.ÏWXPB24F:W�WfPHG�SXG��8FH.ÏSfGp9�Ô<GpSX0�.«ÍXÍX.1243BÍpK

� .+! i O�4PN�%+4�, (Tg)#" !*N34�, (Tg) � �	.1Ð4FHSfG"��Í}PB2V7$Í	WXPHG�I1.bÎàWfGp9�GpTU@4IÏF<@VWX.1243�SfGJI«@VWf.Ï2`3�ÝEÑJ@`Í}GdÍ
Î�24SºGJÜ:ÑJGJÔ:Wf.Ï2`3BÍn@43B9 Í}Y:Í}WXGp0ÛÑp@EI1I1Íº@4SXG¶@`9H9:Gd9rÞ�.13L@49H9H.bWf.Ï2`3óWf2 WXPBG¶ÕB@4ÍX.«ÑÀGJTV@EI1FB@EWX.1243
SXGpI1@EWX.1243�K���TV@4IÏFB@EWX.1243�.1Í�WX2EW>@EIlK
I !4i i 4 �AJ$i O�4PN�%+4�, (Tg) ,�g , 4PN-R7�
S _�a 9 W YB9 T U)V � 9 W!$ 9 W&%'� ��9`°0�p°ù
Z _ ��Î 9 T U*V � 9 W @43B9 9 T U*V � 9 W�W WXPHGp3 9fW%�b9fW W Y
C GJ0�24SfY�ÔBSX24WXGpÑ�WX.1243Ö@4IÏI12V7$Í�FBÍ¿WX2�Í}PH2V7 WXP<@VW¼TV@4IÏFHGdÍ¼@EW¿3H2`3:×l7�Sf.ÏWf@EÕBIÏGn@`9H9:SfGpÍfÍ}GdÍ

7�.ÏI1I�3H24W�Ñ>P<@E3HÐ`GA@`Ñ�Sf2`ÍfÍÂGpTV@EI1FB@VWf.Ï2`3�K
I !4i i 4�� J)(!$4PLjO�4PN3%5! L+'�!4k/!&'1O�4�,/(Tg) R��
��Î 9 T U*V � 9 W @43B9 � � 9M� (P�>+��1(@E3B9 � !�< (9 � � �*� �+� ¬X¯1°ù @E3B9 9 ^¼/���3(V	(
9b_�
9D<`/�f¯�� ��9%?D!Z°ù��>&'� �6� WfPHGJ3 !-�8/��< 9 W,�>�b!-�8/��< 9 �"Y
, k���mE�`c>z{z{_{^8�Àg�k4g�iZc>�é|*yJzbz{g%yp^/��cf»4|>c>�`iZ_{mp^8g�s�_jiZw(o«v8^`|fiZ_{md^`g¿e}y�iZw8cfe$iZw/yJ^�eZc>zbyJiZ_{mp^8g$s�c
yJeZc$yJghghv8��_{^8��y%�`cfiZcfeZ��_{^`_bg�iZ_{|ªg�k4g�iZc>��¹

174

� 9 � (P��+��1(
9 T U*V � �D!f �1�}�</°à¯��J² (9 � ����� �

� � 9M� (��+��1(!Z°0�p°ùf±l°0�d±0!Z°0�p°ù [(9 T U*V [°
9 T U*V � � ¯ �X° [(º°�9 ���	�
� � �

� � 9 �h(P� +��1(9�^¼/���3(V�(9 �`9 <`/�f¯�� �Q9"?@!}°ù��>&'� �6�
9 T U*V � �@!$!Z°ù�< 9 (����	��� ����� �

����� ©��B© ��w8c¿ghc>�ºyp^ViZ_{|>gQmpo�iZw8c$z{_{oÏiZc*�¶�ºyp|}w8_{^8cd¹/��w8c>� ¯ �X° [o«v`^8|fiZ_{md^¶z{_jo1iZgªoÏeZmd��µ/ypghc¼g�i}yJiZc>g>�
yJ^/��!}°0�J°ùf±¾°0�d±�!Z°0�p°ù [�`mVc>g½iZw`cª_{^4adcfeZghcd¹

� � -DÇHÈªÈ/#¶È #�� ��ËrÊ$ÇBÌZÆ��

�¼3¶WXPBG¼ÕB@`Í}.«ÍQ2EÎrWXPBG¼Î�2`SX0À@4IB0À@4Ñ>PH.13HG%0�2/9HGJIlÞ87�G¿3B2V7624F:WfIÏ.13HG¼WXPHG%ÔHSf2824Î�2EÎ�Íf@VÎ�GJWZY�2EÎ
SXGp7�SX.ÏW}WfGJ3]ÕH.Ï3<@ESf.ÏGdÍJKEC 2`SXGªÔHSfGpÑJ.1ÍXGJI1Y4ÞV7�G$ÍXPH2V7LWfPB@VWÂ@4IÏIHGJÜ:GpÑ�FHWX.1243BÍ�24Î¤@%ÔHSf24Ð`Sf@40!WXPB@EW
PB@4Í�ÕOGJGp3(SXGJ×l7�Sf.bWXWXGp3�ÞB@4Í�9HGpÍfÑ�Sf.ÏÕOGp9�.13D-/GpÑ�WpK �HÞBÍX@EWX.«ÍZÎ�Y�WXPHGºÍXGpÑJFHSf.bWZY�Ô<2`IÏ.«Ñ�Y�GJ3:Î�2`SfÑJGp9
Õ8Y¶WXPHGºÍXGpÑJFHSX.ÏWZY¶0�243B.bWf24SdK

�"��� ��� g iML g k/(,/(Tg)+4PN � .+!4g '/6Fg
� �8ghg5%�N�!:k

Ó�ÎàWXGpSnSfGJ7�Sf.bWf.Ï3BÐBÞ�@ ÔBSX2`Ð4S>@E0PB@`ÍAWXPBSXGpG�Ñ�2`0]ÔO243BGJ38WfÍpÒ � ���%WfPHG¶FH38WXSfFBÍ}WXGd9ÚÑ�2:9:G4Þ � � �
WXPHG �ZFH0�Ô 0�243B.bWf24SdÞB@E3B9 � �QWXPBGºÍ}GdÑ�FHSf.bWZY�0]2`3H.ÏWX24SdKH5,G�7�.1ÍXP�WX2¶ÍXPH2V7 ÔBSX2`Ô<GpS}Wf.ÏGdÍª2EÎ
Gp@4Ñ>P�Ñ�2`0�Ô<2`3HGJ38W½.Ï3�.«Í}2`I1@EWX.1243�ÝU.13B9:GpGp9rÞVÎ�2`S�WXPH.«Í½ÔHSf2/2EÎZÞV7�G�9:2A3H2EW½R/3H2V7LWfPHG$9:GJWf@E.1I«Í�2EÎ
WXPHGºÍXGpÑJFHSX.ÏWZY¶@E3<9 �ZFH0�Ô(0�243H.ÏWX2`SfÍpÞ:243BIÏYÀWfPB@VWªWfPHGJY�GJ3:Î�2`SfÑJG%ÍX240�G�Í}GdÑ�FHSf.ÏWZY¶Ô<2`IÏ.«Ñ�Y`K��h3
@49H9:.ÏWX.1243�ÞVWXPHG$ÍXGpÑJFHSf.bWZYº0�2`3H.bWf24S�Ñp@E3�GJ3:Î�2`SfÑJG�WXPH.«Í�ÍXGpÑ�FBSX.ÏWZYºÔO24I1.1ÑJYn243BIÏYº7�PBGJ3ÀGJ38WfGJSfGp9
@VW�R/3H2V7�3º@`9H9:SfGpÍfÍ}GdÍJÞp@E3B9�2`3HI1Y¿Î�2`S�Í}Wf@VWfGpÍ�2VT4GpS�7�PH.«Ñ>P�.bW�PB@4Í�Ñ�2`3`WfSX2`IùÝJ.ùK G4K1ÞdWXPH28Í}G�.13BÍX.19HG
WXPHG�0�243B.bWf24SdK

5óGnWXP/FBÍ%.Ï38WfSX2:9:FBÑJGºWfPHG]ÑJ243BÑJGJÔ:W%2EÎÂ@ ê çdåV÷:ø ë Þr@�9H@EWf@EWZY8ÔOGn7�.ÏWXP,@¶0�GJ0�Õ<GpSfÍXPH.1Ô
ÔHSXGd9:.«ÑJ@VWfGA243(ÍZW>@VWXGdÍ�@E3B9�@�Í}GJW�2EÎ�Gp38WXSfY¶Ô<2`.Ï38W>ÍJKHMªPHG�.138WXFH.ÏWX.1243�.«Í�WXPB@EW¿@�ÔBSX2`Ð4S>@E0 .1Í
Ñ�240�ÔO2`ÍXGp9�24Î<@$3/FH0�Õ<GpS�24ÎB0�2:9:FHI1GpÍpÞd@43B9�WfPHGQ0�2:9:FHI1G�ÔHSXGd9:.«ÑJ@VWfGQ9:GJWXGpSX0�.13HGpÍ�7�PHG�WfPHGJS
@¼Í}Wf@EWXGÂ.«Í	7�.bWfPH.13nWfPB@VW�ÔB@ESXWX.«Ñ�FBI1@4S�0�2:9:FHI1G4K��h3n2`FHS�ÔHSf2824Î¾Í�Gd@4Ñ>PnÑJ240�ÔO243HGp3`W �àWfPHG �ZFH0�Ô
0]2`3H.ÏWX24SdÞdWXPHG�ÍXGpÑJFHSX.ÏWZY�0�243H.ÏWX2`SpÞV@43B9ºWfPHGªFH38WXSfFBÍ}WXGp9]Ñ�2:9:G��	Ñ�24SfSfGpÍXÔ<2`3B9HÍ�WX2A@¼0�2:9:FHI1G4K

�½Ü:GpÑ�FHWX.1243ÚWfSf@`Ñ�GpÍ�@ESfGÀWXSfGp@EWXGd9L@4Í�Í}G��`FBGJ3BÑJGpÍº24Î�â*÷dî ë ì ö â*ï�ãEï ë â*Þ�Gd@4Ñ>PLÍXFHÔ<GpS}×hÍ}Wf@VWfG
Ñ�24SfSfGpÍXÔ<2`3B9:.13HÐ�WX2�G�Ü:GpÑJF:WX.1243Ö7�.ÏWXPB.Ï3D@�Í}.13HÐ`IÏGº0�2:9:FHI1G4KrMªPHGnÎ�24Sf0À@EI1.1Íf@VWf.Ï2`3�.«Í%@4Í�Î�2`Ib×
IÏ2V7$ÍpÒ�5óG ÍXÔHIÏ.ÏW�WXPHG(GJÜ/GdÑ�F:Wf.Ï2`3LWfSf@`Ñ�G�.Ï38WX2 ` ö â ë � ÷ ë ä ð>ë â*Þ	7�PBGJSfG�Gd@4Ñ>P GpIÏGp0�GJ38WÀ.Ï3u@
� ×�ÍXG��8FHGp3BÑ�G¶Íf@VWf.1Í}ßBGdÍ�Í}2`0]G�0�GJ0�Õ<GpSfÍXPH.1Ô ÔHSXGd9:.«ÑJ@VWfG4K�MªPHG �ZF<9:Ð4Gp0]Gp38W"! � � F$# H
# MQ@`ÍXÍXGJSXWfÍ�WXPB@EW	Gd@4Ñ>PºÍ}Wf@VWfGQ.13�WfPHG � ×�ÍXG��8FHGp3BÑ�G%! �àWfPHGQWXS>@4Ñ�GÂÎ�SX2`0 # WX2 # M>.Ï3n9H240À@E.13
å �ªÍX@EWX.«ÍZß<GpÍ�WXPBG�ÔHSXGd9:.«ÑJ@VWfG ` KBÓ � ×hÍ}G��8FHGJ3BÑJGASXGpÔHSXGdÍ}Gp38WfÍª@�Í}FHÔOGJSX×hÍZW>@VWXG`K
� ×�ÍXG��8FHGp3BÑ�GdÍ¿ÑJ240�Ô<28Í}G�.Ï38Wf2Öâ*÷dî ë ì ö â ë � ÷ ë ä ð>ë ân@4Í¿ÍXPH2V7�3Ö.13 �	.1Ð4FHSfG �:ÝBWfPHG"�ZFB9HÐ4G�×

0]Gp38W'&	��)(#+* # M4Í}Wf@EWXGdÍªWXPB@EW�WXPHGºÍXFHÔOGJSX×�ÍXG��8FHGp3BÑ�G,& ��Î�SX2`0 Í}Wf@VWfG # Wf2¶ÍZW>@VWfG
MJ.13¶9:240À@4.Ï3Öå �½ÑJ243BÍX.«ÍZW>Í½2EÎ � ×hÍ}G��8FHGJ3BÑJGpÍ½Gd@4Ñ>P�2EÎr7�PH.«Ñ>P¶Íf@VWX.«Í}ßBGpÍ�@AÔBSXGd9:.1Ñp@VWfG�.Ï3.-ÚK
C 24SfGJ2VT`GJSdÞ`@EI1IrÕHF:W�WfPHGAI1@`ÍZW � ×hÍXG��8FHGJ3<Ñ�G%0nFBÍ}W�Õ<G ê ãJè`ñ ê ãVø{KBÓ 0À@VÜ:.10À@EI � ×hÍ}G��`FBGJ3BÑJG
.1Í�243BG¼.13�7�PH.«Ñ>P¶WfPHG¼Î�24I1IÏ2V7�.13HÐ�Í}Wf@EWXGA9:2/GpÍ%äOçEïQÍf@VWf.1Í}Î�Y]WXPHGAÔHSfGp9:.«ÑJ@EWXG`K	�BSX2`0 @�ÍXFHÔOGJSX×
Í}G��`FBGJ3BÑJG%2`3HGA0À@UY�9:GJSf.1T4G%WXPHG�SfG��<G�Ü:.ÏT`G�×lWXS>@E3BÍX.ÏWX.1T4G¼ÑJIÏ28Í}FBSXG`Þ/@43B9�T8.«Íf@V×�T4GJS>Íf@HK

175

9 %'� ��9`°0�p°ù F 9
� 9�� � � F 9 V � 9 ����� ���
	 � ��� �

9 % � ��9`°0�p°ù Fl9 9 T U"V � 9 W � � F 9 W V � 9 W W
9�� � � F 9 V � 9 W W ����� ��� � � �

F % (� � F 9 V �>9 W
� � � � (9 > � 9 W ����� ����	�� ��� �

F % (� � F 9	V��� 9 W 9 W T U*V ��� � � � (� > ��� W
 � � � � (9 > ��� W ����� ��� � � �

� ��� ©��H© :dv8�`�dcf��c>^ViZg�eZc>zbyJiZ_{^8� �r·¾ghc��Vv8c>^`|>c>gÂyp^8��ghv`�:cfeh·¾ghc��Vv8c>^`|>c>g>¹
� �3(D# �bf± <*!f��>± <8¬/��< E F � (��
[9
9 W Y

!�< ��9 (% X²`°à¬�?p±�< �p¯1²8°C!5E $ � 9 $ � � ¯1²/±�� �3(D# �bf± <8¬Z/(;E 9 V � 9 W U*V Fl9 W
� �3(D# �bf± <*!f��>±ù¯1² E � (��
[9
9fW Y

!�< ��9 (% X²`°à¬�?p±�< �p¯1²8°C!5E $ � 9 $ � � ¯1²/±�� �3(D# �bf± <8¬Z/(;E 9	V �� 9fW U*V
�.� � �j±¾²H �p°�9 W (P�

� �3(D# �bf±�!fX°�±-��- F � � �3(D# �b�!�(��
[9 %�� ��9`°0�p°ù Y
� a! E Y�E % � �3(D# �b�! $ ¯«²8±0� �3(D# �bf± </¬h�(E 9 � $
� [E % � �3(D# �b�!DY
��� 9 $ ¯«²/±�� �3(D# �bf± </¬Z/(;E 9 U*V !�< ��9 (% X²8°à¬$?d±�< �J¯«²8°C!9E � $
� �3(D# �bf± <"!>��>±�<8¬/��<?E F � ($ � �3(D# �bf±�<*!f �>±ù¯«² E � (P�

����� ©#"B© �reZmVmpo�mpµ8z{_{�Uy�iZ_bmp^8gÂo«mpeQy%ghcXiQmJo���mE�`v`zbcfg>¹

I !4i i 4 � J$i%$�%5(�O�4PN�!�)+#&!�& !$,�' !$!�)<k/%'L !&')(*k !*$�%5!$)5#�!4k24�)�g F G�H,+ R��
S _ ��Î � � � (9 > � 9 W WfPHGJ3 9	TU*V.-� 9 W Y
Z _ ��Î [9 %�� ��9`°0�p°ù Y a! F Y�F % ($ F 9 @E3B9 9	TU)V/-� 9 W WfPHGJ3 a � Y � � � (9 > � 9 W Y
��.13B@4IÏI1Y4Þ/7�G%9:GJßB3HG¼WXPHG�ÑJ243BÑJGJÔ:Wª2EÎ�@�TV@EI1.19�0�2/9HFHIÏGAÍXG�W�� ê çpåE÷:ø ëJö â ë ï ö ç)0 ` ý ê çdå ö

÷:ø ë â¶å ��Þ�Í}PH2V7�3,.13 �	.1ÐBK �HÞrSfGJI«@VWf.ÏT`GºWf2(ÍX240�G�.138TV@4SX.«@E38W ; @E3B9óÔHSf24ÔOGJSXWZY21�K�Ó TV@4IÏ.«9
0]2:9:FBIÏG�ÍXG�W�0nFBÍ}W�Ñ�2VT`GJS�@EI1IÂÔO2`ÍfÍX.ÏÕHI1G¶Í}Wf@VWfGpÍ�7�.ÏWXP 243HG¶@43B9,243HI1Yó2`3HGÀ0�2:9:FHI1G4K�MªPBG
.Ï3/TV@ESf.1@438W^;¶0nF<ÍZWA@VW¿I1Gp@`ÍZW¿.10�ÔHI1Y�WfPB@VW%0]2:9:FBIÏGdÍ�WXS>@E3<ÍZÎ�GpS¿Ñ�2`3`WfSX2`IrWX2�2EWXPBGJS¿0�2:9:FHI1GpÍ
T8.«@ WfPHG(GJ38WXSfY Ô<2`.Ï38W>ÍJÝ�.13 Ð4Gp3HGJS>@EIlÞ�WfPH.«Í�.13/TV@ESf.1@43`W]7�.ÏI1I�@EI«Í}2óSXGpI1@EWXG�WXPHG�Ð4.1T4Gp3 ÍZW>@VWfG
WX2�WXPBGº.Ï3B.bWf.1@4I�Í}Wf@VWfG4K ��Î½Gd@4Ñ>P�0]2:9:FBIÏGºÔBSXGdÍ}GpSXT`GpÍQWXPHGn.Ï3/TV@ESf.1@438W�@43B9�PB@4Í�WXPHGºSfG��8FH.1SfGp9
ÔHSX2`Ô<GpS}WZY`ÞUWXPHGp3]WXPHG$ÑJ240�Ô<28Í}.ÏWX.1243]2EÎOWXPBG�0]2:9:FBIÏGdÍ½.Ï38Wf2A@%ÔHSf24Ð`Sf@40 PB@4Í	WfPB@VW�ÔBSX2`Ô<GpS}WZY`K

" %�N3!-�KJ � gjiMLQgjk (3, (Tg)54PN '�%�N�!�� g ' i g'g+%�N3!4k R7�
��Î � � � ¯«²/±�� �3(D# �bf± </¬Z/(43 � �3(D# �b�! 9 > � 9 W @E3B9 � �3(D# �bf±�!fX°�±/��- F � � �3(D# �b�!�(@43B9 � 9
WXPHGp3 F 9 W Y

176

9�� � 9 W*�
®	/��-p±� � ±��8/��<*! � !�< (49 � (� !/�`��$<�9 � � !-�8/��< 9 W � $
!�< (9 (
�b!�< (\9 W ($ �1�}�</°0�D!}±}X²8°à¬$? � !��D! 9 ��(�� �1�}�</°0�D!}±}X²`°à¬�? � !��D! 9 W ��(
®	/��-p±� � ±��8/��<*! < (4(����� 3��
[�1((p¬ Y

���1(1(p¬ �P� ��� $
� < (� �n�1((p¬ � � � ¬}¯«°ù $ � < (� �n�1(1(p¬ � � J�/�1(�� < (� � �1((p¬ � � � �V/����U)V
���\�1(1(p¬\� � 3	�1(1(J¬

����� ©��H© <ªc�I/^`_jiZ_bmp^�mpoOs�c*yJ¸�g�i}y�iZc�c��Vv8_{adyJz{c>^8|>cp¹

�"� � i�k #�!"L+,/(Tg)(k
m G�Ü/WdÞO7�G�9H.1ÍfÑ�FBÍfÍ¿WXPHG]SX.«Ñ>PHGpS¼GJÜ:ÑJGJÔ:Wf.Ï2`3Ö0�2:9:GJI�SfG��8FH.1SXGd9�WX2�SXGd@4ÍX243Ö@EÕO24FHW¼ÔHSf24Ð`Sf@40
Õ<GpPB@UT/.Ï2`FHSpKr5,GÀPB@UT`G�ÍXG�WXWXI1Gp9 2`3,0�2:9:GpIÏI1.Ï3BÐ G�ÜHÑ�GpÔ:WX.1243BÍ�@`Íº@(Ñ�2`3`WfSX2`I �B2V7 WX2ÖÍX240�G
@49H9:SfGpÍfÍº.13ÚWfPHG�ÔBSX2`Ð4S>@E0
	VK½MªPH.1Í]@49B9:SXGdÍXÍn.1Í�24ÕHWf@E.13HGd9 Î�SX2`0ÛWXPHG�24ÔOGJS>@VWX.13HÐDÍXY:ÍZWfGJ0
ÍZW>@VWXG�ÑJ240�Ô<2`3HGJ38W$Õ/YÀWfPHG ë è ð>ë îOïhçUâ ö}ë ä<ïùì*í]Î�FH3<Ñ*WX.1243�K

Ó$3D@4IbWfGJSf3B@VWf.ÏT`Gn0�2:9:GJI�Ñ�2`FHI19D9:G�ßB3BG�GJÜ:ÑJGJÔ:Wf.Ï2`3BÍ¿WX2¶WfGJSf0�.Ï3B@EWXGnWXPHG]ÔHSf24Ð4S>@E0(ÞHGp.b×
WXPHGpS�FBÍ}.13HÐÀ@E3(@49B9:.bWf.Ï2`3B@EI�9H.1Í}WX.13HÐ4FB.1ÍXPHGp9�0À@4Ñ>PH.13HG�Í}Wf@VWfG4Þ:2`S�Õ8Y�IÏ2/24ÔB.Ï3HÐ].13�WfPHGºÍf@E0�G
ÍZW>@VWXG�@43B9nÍX2%ÑJ243BÍ}Wf@438WXI1Y�Ð4GJ3BGJS>@VWX.13HÐ¼G�ÜHÑ�GpÔ:WX.1243BÍpKVMªPHG�@EÔHÔBSX28@4Ñ>P�W>@ER4Gp3�ÞUPH2V7�GJT4GpSpÞdPB@`Í
WXPHG]@49:TV@E38W>@EÐ4Gn2EÎ�ÕOGJ.13HÐ�ÑJIÏ28Í}GpS�WX2�WXPB@EW¼.«Í$WZY/ÔH.«ÑJ@4IÏI1Y�.10�ÔHI1GJ0�GJ38WXGd9ÖÕ/Y @E3 2`Ô<GpSf@EWX.13HÐ
Í}Y:Í}WXGJ0(K

�"��� � !�4� �,/4�, ! i%$�%5(�O�4PN�!�)+#&!
5óG(9:G�ß<3HG�@43LG��8FH.1TV@EI1GJ3BÑJG�SfGJI«@VWX.1243<Íº243 ÍZW>@VWXGdÍJÞ�ÍXPH2V7�3L.13 �	.ÏÐ<K �BK	MªPH.«Í�9:G�ß<3H.bWf.Ï2`3
SXG �BGpÑ�WfÍ�WXPBGºÑ�243<Í}G��`FBGJ3BÑJGpÍ�2EÎ�0�GJ0�24SfYÀÔHSf2EWXGdÑ*Wf.Ï2`3�K

M�7�2LÍZW>@VWfGpÍ�@4SXGÚô ë ã)0Vø{í ë� ÷:ñ��VãVø ë äBï �Zû�� û M �*ÞQ7�.bWfP�SfGpÍXÔ<GdÑ*W¶Wf2 @ ÔB@ESXWX.«Ñ�FBI1@4S
9:240À@E.13�Þ�.bÎ�WfPHGJY,PB@UT4GÀ7�Gp@4R/IÏYóG��8FH.1TU@4IÏGp38W�ò ë ãfîOâ*Þ�WfPHG¶ÔHSf2EWfGpÑ�WX.1243L9:2`0�@4.Ï3<Íº@ESfGÀWXPBG
ÍX@40]G ��.lK G`KÏÞ½0�Gp0]2`SXY ÔOGJSf0�.1ÍfÍ}.1243<Í�@4SXGÀWfPHG ÍX@40�G��*Þ�@E3<9ÚWXPBG�GJÜ:ÑJGJÔ:Wf.Ï2`3 Gp3`WfSXY ÔO24.138W
.1Í%WfPHGÀÍX@40]G`K�M�7�2Öò ë ãfîOâÀ@4SXG�ô ë ã 0Eø{í ë � ÷:ñ��VãVø ë ä<ï �}ô ë ã 0 ö}ë� � ö ò ë ãfîOâ¼îBåDå�òÖò"M ��Þ�7�.bWfP
SXGdÍ}ÔOGpÑ�W�Wf2¶@]ÔB@ESXWX.«Ñ�FHI«@ES�9:2`0À@E.13(@43B9�ÔHSX24WXGdÑ*WX.1243(9:2`0�@4.Ï3�Þ:.bÎ�Gp@`Ñ>P�0�GJ0�2`SXY¶I12:ÑJ@EWX.1243
7�.bWfPH24F:W$7�Sf.ÏWXGAÔ<GpSX0�.«ÍXÍX.1243BÍªÕHFHW$7�.bWfP�SfGp@`9�2`S�G�Ü:GpÑJF:WXGAÔOGJSf0�.1ÍfÍ}.1243�.«Íª.19:Gp38WX.«ÑJ@EIlK

	$3B9:GpS¿3H2`SX0À@4I�G�Ü:GpÑJF:WX.1243�ÞBGp@`Ñ>P ÍZW>@VWXGn7�.ÏI1I�ÕOGn7�Gp@4R8I1Y�G��8FH.ÏTV@4IÏGp3`W¿WX2ÀWfPHG�Î�24I1I12V7ª×
.Ï3HÐÖÍ}Wf@EWXG`Ò�NQPB@43HÐ4GdÍ%WX2ÖÔHSf2EWfGpÑ�WX.1243Ú9:240À@4.Ï3BÍn@E3B9,G�ÜHÑJGJÔ:Wf.Ï2`3,Gp38WXSfYDÔO24.13`W>Ín@4SXG�243BIÏY
Ô<28ÍXÍX.ÏÕBIÏG�T/.«@�Í}Y:Í}WXGJ0�ÑJ@4IÏI«ÍJÞ`@E3B9]0�GJ0�24SfYnÔBSX24WXGpÑ�WX.1243]GJ3BÍXFHSfGpÍ�WfPB@VW�0�Gp0]2`SXY�IÏ2:Ñp@VWX.1243<Í
7�.bWfPH24F:W$7�Sf.ÏWXGAÔ<GpSX0�.«ÍXÍX.1243BÍ�@4SXG%ÔHSfGpÍXGJSfT4Gp9�K
I !4i i 4��AJ$i%$�%5(�O�4PN�!�)+#&! L+'�!4k !$'1O�4�,/(Tg) R��
��Î 9���� � 9 @43B9 9 T U)V � 9 W @E3<9 � � 9M�B(��+��1(@E3B9 9 ^¿����3(V�(\9 _�`9 <`/�f¯��D��9"?@!Z°ù��	&'� ���
WXPHGp3 9 � � � 9 W Y

MªPHG$Î�2`IÏI12V7�.Ï3BÐºIÏGp0�0�@n.1ÍÂWXPBG¼0À@E.13¶FBÍXG¿24Î�0�GJ0�24SfY�ÔHSX24WXGdÑ*WX.1243�K ��Î�WZ7�2nÍ}Wf@VWfGpÍ�@ESfG
7QGd@ER/IÏY�G��8FH.1TV@EI1GJ38WpÞB@43B9 @E3 @`9H9:SfGpÍfÍ�.1Í$G�Ü:GpÑJF:Wf@4ÕHIÏG`ÞHWfPHGJ3(WfPHGnÍf@E0�G�.Ï3<ÍZWfSXFBÑ�WX.1243 7�.1IÏI
Õ<G�GJÜ/GdÑ�F:WfGp9�.13�ÕO2EWfP(Í}Wf@EWXGdÍJK
����w8_{g���mE�`c>z{g½iZw8c�µ:c>w/y*aE_{mdv`e�mJo�ghmd��cª\Qq���� g�k4g�iZc>��g½mp^Ày%gh_{�d^8ypzà�8o1mpeQcf»`yp���8z{cd¹

177

I !4i i 4�� J�h !�#�g'g+! !*$�%54PN3(3, 6�R��
��Î 9 � � 9 W @43B9 + ±-� � ¯b³p²:/(>�;3 @43B9 � !�< (9 � �n��� �� ¬X¯1°ù @E3<9 !�< (9l� �K� � � � �V/�
WXPHGp3 �X^¿/�$�3(U�(9��>� �X^¿����3(V�(\9 W �"Y

�"� � � .5!df '	g g
��i)BO (3'	g)Xi !�) ,

MªPHGÀ.Ï3B.bWf.1@4I�ÍZW>@VWXGÀ24ÎÂWfPHGÀÔHSf24Ð4S>@E0 .«Íº@4ÍfÍXFH0�Gp9 Wf2ÖÑ�2`3`W>@E.13ÖWfPHSXGpGÀ0�2/9HFHIÏGdÍJÒ¤WfPHGÀFH3:×
WXSfFBÍZWfGp9�Ñ�2:9:G�7�PB.1Ñ>P�PB@`Í½Õ<GpGJ3�SfGJ7�Sf.bWXWXGJ3�ÞVWXPHG �ZFB0]ÔÀ0�2`3H.bWf24SdÞ4@E3<9nWfPHG$ÍXGpÑ�FBSX.ÏWZYº0�243:×
.bWf24SdK`MªPHG$ÔBSXGd9:.1Ñp@VWfGpÍ½Î�2`SÂGd@4Ñ>P�0�243H.ÏWX2`SQ@ESfG�ÕB@`Í}Gd9�243�WXPBG¿ÔHSf24Ð`Sf@40�Ñ�2`FH38WXGJSQ@49H9:SfGpÍfÍpÒ
5óGn@`ÍXÍXFH0�GºÍX240�G�7�@EWXGpSX0À@ESfR �1÷:ï ö ïhçfî �BÕOG�WZ7�GJGJ3(WfPHGºFH38WfSXFBÍ}WXGd9 Ñ�2:9:Gº@43B9�WXPHG"�ZFH0�Ô
0]2`3H.ÏWX24SdÞV@E3B9�Í}2`0�G �àæ ê]ö ïhçfî �VÕOG�WZ7�GJGp3nWfPHG �ZFH0�Ô�0�2`3H.bWf24S½@E3<9�WXPBGªÍXGpÑJFHSf.bWZY�0�243B.bWf24SdK

MªPHG�GJ38WXSfY�ÔO24.138WfÍ¼Í}GJW$Î�24S�WfPHGºFH38WfSXFBÍ}WXGd9�0]2:9:FBIÏGº.«Í¿9HG�ßB3HGd9�WX2ÀÕOGn@EI1I�@`9H9:SfGpÍfÍ}GdÍ
Õ<GpIÏ2V7 ÷:ï ö ïhçfîOK<MªPHG�GJ38WXSfY¶ÔO24.138WfÍ�Î�24SªWfPHG�2EWfPHGJS�0�2:9:FHI1GpÍ¿@ESfG¿ßHÜ:Gd9�ÕBF:W$3H2EW¿9HG�ßB3HGd9rK

5óGº9:GJßB3HG�@E3(.13/TU@4SX.«@E38W$ý�@`Í
� � ��� 9'Y,9 � ���j9 $!�< � 9�^ %�� X²8°à¬$?d±�< �J¯«²8°C! 3�� �3(D# �b�!��

MªPH.1Í¼.«Í$WfPHG�Í}WXSf243HÐ`GpÍ}W¼Í}Wf@VWfGJ0�GJ38W%7QG]ÑJ@E3D0�@4R4Gn@4Õ<2`F:W¿WfPHG]0�@`Ñ>PH.13HGnÍ}Wf@VWfG�@EÎàWXGJS
G�Ü:GpÑJF:WX.13HÐ�FH38WXSfFBÍ}WXGp9�Ñ�2:9:G`ÒHC GJ0�2`SXY¶ÔBSX24WXGpÑ�WX.1243�@EI1IÏ2V7$Í�FBÍª7�Gp@4R¶ÍZW>@VWXGAG��`FB.ÏTV@EI1GJ3<Ñ�G4Þ
@E3B9�Ñ�2`3`WfSX2`Ib× �B2V7�SfGJ7�Sf.ÏWX.13HÐ�Ð`.ÏT`GpÍ�FBÍ�R/3H2V7�3�GJ38WfSXY¶ÔO24.138WfÍpK

5óGª@EI«Í}2¿ßHÜnÍX240�GQÔO24I1.«Ñ�Y�â*íUâ ð ãEøàø ö îBçVø{ñ ð í�7�PH.«Ñ>Pn.«Í½@$ÔHSfGp9H.1Ñp@VWXG�243]ÍZW>@VWfGpÍ�WXPB@EW�0�FBÍ}W
PH24I«9,.Ï0�0�Gp9:.«@VWfGJI1YDÕOG�Î�2`SXGÀ@ ÍXY/Í}WXGp0ÙÑp@EI1IùK�MªPHGÀÔBSX2`Ô<GpS}WZYÖ7�PB.1Ñ>P 0nF<ÍZWºÕOG¶Í}PB2V7�3DWf2
PH24I«9¶Î�2`S$Gp@`Ñ>P�0�2:9:FHI1G�.1Í�WXPHGAÎ�2`IÏI12V7�.Ï3BÐBK

F	¬Z/(��
��� 9'Y ���p²8±Z �V/� 9�^ � !0< ��9�^N� $ 9�^¼/���3(V ^ 9 �`9 <`/�f¯��D��9"?@!Z°ù��	&'� ��� U*V

!�?@!��$�D�6�j± < � � ¯C� ? 9 �

MªPB@VW�.«ÍJÞ�.ÏÎªG�Ü:GpÑJF:WX.13HÐ(WXPBGÀ.Ï3BÍ}WXSfFBÑ�WX.1243Ú@VWAWXP<@VWn@49B9:SXGdÍXÍ��]7�.ÏI1I�3H24WnÑJ@4FBÍ}GÀ@43,GJÜ/×
Ñ�GJÔHWX.1243�Þ:WfPHGJ3�WfPHGºÍ}GdÑ�FHSf.ÏWZYÀÔ<2`IÏ.«Ñ�Y�0nFBÍ}W�PH24I«9�Î�24SªWXP<@VW¿Í}Wf@VWfG4K

5óG¿@`ÍXÍXFH0�GªWXP<@VWÂWfPHG$.13H.ÏWX.«@EIBÔBSX24WXGpÑ�WX.1243À9:2`0�@4.Ï3¶9H28GdÍ�3H24WQ@EI1I12V7 ÕO2EWfPjcnì*ñàï ë @43B9
	 è ëfð ÔOGJSf0�.1ÍfÍX.Ï2`3BÍ¼Î�24Sº@E3 @49B9:SXGdÍXÍpÞr@E3B9DWXP<@VW�Õ<24WXP,WXPBG]GJÜHÑ�GJÔHWX.1243,GJ38WXSfYÖÔO24.13`Wº@43B9
.Ï3H.ÏWX.«@EIªGp3`WfSXYÚÔO24.138W�@4SXG�7�.bWfPH.13 WfPHG Í}GdÑ�FHSf.bWZY 0�243B.bWf24SdK�MªPBG�Î�2`SX0�GJS].«Í�SfG��8FH.1SfGp9 Wf2
PB@E3B9HIÏG�G�ÜHÑ�GpÔ:WX.1243<Í�.13 @ó0À@E3H3BGJS�7�PH.«Ñ>P ÑJ@43 ÕOG(SXGd@4ÍX243HGd9Ú@EÕO24F:WdÞ�WfPHG(I1@EW}WfGJS�.1Í�Wf2
@EI1IÏ2V76WfPHGºÍXGpÑ�FBSX.ÏWZYÀWX2ÀÍXG�W$FHÔ @438Y�ÔHSX.1TV@VWfGAÍ}Wf@EWXG`K

MªPHG�Î�24I1I12V7�.Ï3HÐº@`ÍXÍXFH0�Ô:Wf.Ï2`3BÍÂ@4Õ<2`F:W�WXPBG¿FH38WXSfFBÍ}WXGd9ÀÑ�2:9:G$0�2:9:GJI<WXPBG¿G�¤GpÑ�WfÍÂ2EÎrWXPBG
ÕH.Ï3<@ESfY¶SXGp7�SX.ÏWX.13HÐ<Ò

� m 2À.13B9:.1SXGdÑ*W �ZFH0�ÔBÍpK
[�1(1(J¬�¬ 2 ¬ � Y

�1(1(p¬�
� #4°�±¾°0��< $ ���p²/±h �V���9���^`�1(1(p¬>U)V �X^¿����3(V ^ 9��4�1(1(p¬�_�K;1!Z¬�¬�2n¬��

� ���p²/±� �V��À�4eZc*�`_{|*y�iZc�w8mpzÏ�4g�s�w8c>^,y��/y�ehiZ_{|>v8zbyJe�yp�8�4eZcfghg��«iZw`c��`eZmp�pe}yJ� |>mdv`^EiZcXeº_b^DiZw8_{g
|*ypghc��½_{gÂcf»4c>|>v4i}ypµ8z{cd¹

178

� m 2¶ÍXY:ÍZWfGJ0 Ñp@EI1I1ÍpK
[�1(1(J¬ Y

�1(1(p¬�
� #4°�±¾°0��< $ ���p²/±h �V���9���^`�1(1(p¬>U)V
�X^¿/�$�3(U ^ 9 � �1(1(p¬ _�b9D<`/�f¯�� ��9%?D!Z°ù��>&'� �6�

� Ó$I1I�ÕHS>@E3BÑ>PBGpÍª@ESfGA7�.bWfPH.Ï3�WfPHG�FH38WXSfFBÍ}WXGp9�Ñ�2:9:G�2`S�@ESfG¼Wf2À@�0�2`3H.bWf24S�Gp3`WfSXY�Ô<2`.Ï38WpK
[�1(1(J¬ (p¯6!�<BY

�1(1(p¬�
 � #4°�±¾°0��< $
���p²/±Z �V/��9 � ^`�1(1(p¬ $
��� a +$�$<�¬ Y��f^¼/���3(V ^ 9 � �1(1(p¬4� .#	B< +���<�¬ (p¯6!�<�� �
� a ¬ Y��X^¿/�$�3(U ^ 9��4�1(1(J¬\� .�¬�¬ (p¯6!�<���� U)V
�
- +f¬-�p²)�$� < � � (1(p¬ (p¯6!�< % � X²8°à¬$?d± < �p¯«²8°C! 3 � �3(D# �b�!

5óG�@EI«Í}2(@4ÍfÍXFH0�GºWXP<@VWAWXPHG]ßB3<@EI�.Ï3<ÍZWfSXFBÑ�WX.1243ó.Ï3DWXPHG�ÔHSf24Ð`Sf@40 .«Í�@�ÕBSf@43BÑ>P�K¤MªPH.1Í
.1Í%SfG��8FH.1SXGd9(243HI1Y(7�PHGJ3DWXPHG]3HG�Ü/W�@49H9HSXGdÍXÍ%@VÎàWfGJS¼WXPHG]ÔHSf24Ð4S>@E0 .1ÍX3$� WA@�0�2:9:FHI1G�Gp3`WfSXY
Ô<2`.Ï38W ��2`S�.1ÍX3$� W$G�Ü:GpÑJF:Wf@4ÕHI1G��*K

��.13B@4IÏI1Y4Þª7�Gó@4ÍfÍXFH0�GÖWXP<@VW(Õ<24WXP 0]2`3H.ÏWX24S>Í�ÍX@EWX.«ÍZÎ�YuWXPBGó.13/TU@4SX.«@E38W(@E3B9 Í}GdÑ�FHSf.bWZY
ÔHSX2`Ô<GpS}Wf.ÏGdÍJK

�"��� � .5!df '	g g
� g	� !�#�%+'�(,:6

MªPHG�Î�24I1IÏ2V7�.13HÐ%IÏGp0]0À@%.«Í½@%ÑJ243BÍXG��8FHGp3BÑ�G�2EÎ<WXPHG � GpÑJ2/9HG�G��8FB@EI1.ÏWZY�IÏGp0]0À@ � ��GJ0�0À@ � �*Þ
@E3B9,243BGÀ2EÎªWXPHGÀÔBSX.13BÑ�.1ÔB@4I�SXGd@4ÍX243BÍ%Î�2`S�24FHSnFBÍ}GÀ24Î�ÔBSX24WXGpÑ�WX.1243Ú9:2`0�@4.Ï3<ÍJÒ�MªPBGÀTU@4IÏFBG
2EÎÂ@E3D.Ï3BÍ}WXSfFBÑ�WX.1243D.13D@�ÍZW>@VWXG�SXGd@4Ñ>PHGd9�Î�SX2`0 WXPHG].Ï3B.bWf.1@4I�Í}Wf@EWXG�.1Í¿WXPHG�Íf@E0�G�@`Í¿@VW%WXPBG
.Ï3H.ÏWX.«@EIrÍ}Wf@EWXG4K/MªPH.«Í�.Ï0�ÔHI1.ÏGdÍ�WfPB@VWªÔHSf24ÔOGJSXWX.1GpÍ�@EÕO24F:WQWXPHG%FH38WXSfFBÍ}WXGd9ÀÔHSf24Ð4S>@E0 @4ÍfÍXFH0�Gp9
.Ï3Ö-/GdÑ*WpK �BK ��PH2`I19�.13 Í}FHÕ<Í}G��`FBGJ38W$ÍZW>@VWXGdÍJK
I !4i i 4��AJ�h !�#�g'g+! L5'�!:k/!$'1O�4�, (�g) R7�
��Î � � 9M�P^N��+��1(@E3B9 9 ��� � 9 @43B9 9 %'� ��98°0�J°ù WfPHGJ3 �X^¿����3(V�^K9 � � !�< � 9 ^N���
9�^¼/���3(V ^ 9'Y

MªPHG]ÑJ240�ÔO2`ÍX.bWf.Ï2`3B@EI	SXFBIÏG�Î�24SA0�2:9:FHI1GpÍASfG��8FH.1SXGdÍ¿FBÍ¼Wf2�ÍXPH2V7 WfPB@VW%WXPHG�FH38WfSXFBÍ}WXGd9
Ñ�240�ÔO243HGp38WªÔBSXGdÍ}GpSXT`GpÍQWXPHG�.13/TV@ESf.1@43`W�@E3<9�PB@`Í�WXPHG ` ì ë å�ÔBSX2`Ô<GpS}WZY`K
I !4i i 4�� J��)BO�4�'�(34�) ,
L5'�!4k !$'1O�4�, (�g) R7�
��Î � � ¯«²8±0� �3(D# �bf± </¬h/(\#E°�±�� �3(D# �b 9	V �� 9 W @E3B9 !�< � 9�^ % X²8°à¬$?d±�< �J¯«²8°C! #E°�±0� �3(D# �b @E3B9
� 9 WXPHGp3 �.� � �j±ù²: �p°�9 W ^N��Y

MªPHG¶ÔHSf2/2EÎ�.1Í�Õ/Y .Ï3B9HFBÑ*Wf.Ï2`3L2VT4GpSAWXPHG(ÍZWfSXF<Ñ*WXFBSXG¶24ÎªWXPHG � ×�ÍXG��8FHGp3BÑ�G`K	MªPBGJSfG�@ESfG
WZ7Q2ÀÑJ@`Í}GdÍJÒ
f (��
	�� I i 5,G�@4SXG�WXPHGp3 I12/24R/.Ï3BÐó@VW]WXPBG�I«@4Í}W�Í}Wf@EWXG�.Ï3uÑ�FHSfSXGp38W�0�2:9:FHI1G4Ò�Õ/YL@4Í}×

Í}FB0]ÔHWX.1243�ÞOWXPBGn3HGJÜ8W�Í}Wf@VWfGn.«Í¿.13D@43H2EWfPHGJS¼0]2:9:FBIÏG`KO5,GºWfPHGJ3ó3HGJGd9(WX2�Í}PB2V7!WXPB@EW
WXPHG�3HGJÜ8W½Í}Wf@VWfGÂ.«Í�7�Gp@4R/IÏY%G��8FH.1TV@EI1GJ38W�Wf2¿WfPHG�ÑJFHSfSXGp3`W	ÍZW>@VWXG`Þd@43B9�WfPB@VW�WXPHG�ÔHSf24Ð`Sf@40
Ñ�2`FH38WXGJS%.13DWfPHG�3HG�Ü/W�ÍZW>@VWXG].«Í¼.13ÖWfPHGÀÍ}GJW%24ÎÂGJ38WfSXY ÔO24.138WfÍ¼Î�24S%WXPBG�3HGJÜ/WA0�2:9:FHI1G4K
MªPHGpÍXGn2`ÕHI1.ÏÐ8@VWX.1243<Í¿@ESfG�ÍXPH2V7�3ÖÕ/Y ÑJ@`Í}G]@E3B@4IÏY:ÍX.1Í¿2VT4GpS�WXPHG]3HGJÜ8WAGJTV@4IÏFB@EWX.1243DÍ}WXGpÔ
��GpTU@4IÏF<@VWX.1243�.«ÍªWX24Wf@EIlÞHÍX2�WfPHG�3HGJÜ8W¿Í}Wf@EWXGA.«Í$@EI17�@UY:Í�9:G�ß<3HGp9 ��K

179

0 � h MªPHG%3HG�Ü/W�ÍZW>@VWXG%.«Í�@43�GJÜ:ÑJGJÔ:Wf.Ï2`3�Þ/7�PH.«Ñ>P�ÑJ@4FBÍXGpÍ�Ñ�2438WfSX2`IBWf2�ÕOG¿WfSf@43BÍ}Î�GJSfGp9
WX2¶@43�Gp38WXSfY¶Ô<2`.Ï38W$.13�WXPHGºÍXGpÑJFHSX.ÏWZYÀ0�243H.ÏWX2`SpK

� e e h �BSX2`0 ��Gp0�0�@ �7QG�PB@UT`G�7�Gp@4R G��8FH.1TV@EI1GJ3BÑJG4Ý¤Î�Sf240 WXPBGÀÔHSX2`Ô<GpS}Wf.ÏGdÍ%2EÎ
SfGJ7�Sf.bWXWXGJ3�ÕH.Ï3<@ESf.ÏGdÍ�.13�-/GdÑ*WpK	�BK �º7�G¿PB@UT`G�WXP<@VWÂWfPHGAÑ�FHSfSXGp38WÂ.Ï3<ÍZWfSXFBÑ�WX.1243¶0�FBÍ}W
ÕOGº@�ÕBSf@43BÑ>P�ÞH@E3<9�WfP/FBÍª.1Í�WX2ÀÍ}2`0�G%0�2:9:FHI1G�GJ38WfSXY¶ÔO24.138WpK

 �� � � IfI ��W¼.«Í%3H2EW%Ô<28ÍXÍX.1ÕHIÏGnÎ�24S¼FH38WXSfFBÍZWfGp9óÑ�2:9:GºWf2�ÔOGJSXÎ�24Sf0 @¶Í}Y:Í}WXGp0 Ñp@EI1IùÞ
ÍX2�WfPH.«Í$ÑJ@`Í}GA.«Í�WXSf.ÏT/.«@EI1IÏYÀWfSXFBG4K

f (��\i f �h3AWXPHGQÍZWfGJÔºÑJ@`Í}G`Þ�7�G�PB@UT4G½@`Í¤WXPHGQ.Ï3<9:FBÑ*Wf.Ï2`3�P/Y8ÔO2EWfPHGpÍX.«Í¤WXPB@EW�WXPBG�.Ï3/TV@ESf.«@E38W
PH24I«9HÍ]@VW]WXPHG�I«@4Í}W]Í}Wf@VWfG4K	5óG�WXPBGJ3 3BGJGp9 243HI1YÚÍ}PB2V7 WfPB@VW]WXPBG�ÑJFHSXSfGJ38W�ÍZW>@VWXG�.1Í
7QGd@ER/I1Y¶G��8FH.1TV@EI1GJ38WªWX2]WXPHG�3BG�Ü/W¿ÍZW>@VWfG4KHMªPH.«Í�.«Í�WXSfFHG�Õ/Y ��Gp0]0À@ HK
MªPHGA3HG�Ü/W¿Í}Wf@VWfGJ0�GJ38W$@4ÍfÍXGJSXWfÍ�WXP<@VWªWXPHGºÍXGpÑJFHSf.bWZY¶ÔO24I1.«Ñ�Y¶.«Í�SfGpÍXÔ<GdÑ*WXGd9rK

I !4i i 4�� J !�#�%+'�(,:6 LQg�N�(3#�6�R7�
��Î � � ¯«²/±�� �3(D# �bf± </¬Z/(#4°�±0� �3(D# �b 9 V � 9 W @E3B9 � 9 WXPBGJ3 F�¬h�(\9 W Y

MªPH.1ÍAÔBSX2/2EÎQ.1Í�ÍX.Ï0�.1I1@4SAWX2�WXPBGÀÔHSXGpT/.Ï2`FBÍ%ÔHSX2/24ÎZÞ¤@43B9,@EI«Í}2�ÔHSf2/ÑJGJGd9HÍAÕ/YÖ.Ï3<9:FBÑ*Wf.Ï2`3
2VT4GJS�WfPHG � ×�ÍXG��8FHGp3BÑ�G`KE56.bWfP ��Gp0�0�@ �¼.bW�.1ÍÂGpÍfÍ}Gp3`Wf.1@4IÏI1YºWfSX.1T/.1@4IB@4Í�3H2nÍXY/Í}WXGp0�Ñp@EI1IBÑJ@43
2/ÑpÑ�FHSdK

á¿@UT/.Ï3BÐ(ÍXPH2V7�3óWXPB@EW�WXPHGÀFB3`WfSXF<ÍZWfGp9 Ñ�2:9:GÀÔHSfGpÍXGJSfT4GdÍ¼WXPHGÀ.13/TU@4SX.«@E38Wº@E3<9DPB@`ÍAWXPBG
Í}GdÑ�FHSf.bWZY�ÔHSX2`Ô<GpS}WZY`Þ/7QG�ÑJ@43(3H2V7 ÍXPH2V7�WfPB@VW�WfPHGºÍ}Y:Í}WXGp0 .1Í¿Í}GdÑ�FHSfG4K
I !4i i 4 ���AJ "4 � !&,:6<g
� '7! ' '�(, , !�) &5(�)+4�'7(�!4k1R��
��Î 9 � T U*V -� 9 W WfPHGJ3 F	¬Z/(9 W Y

MªPHGnÔHSf2/2EÎ�.«Í¿Õ/YLa�FHI1G��nFBÍX.Ï3BÐ¶WXPBG]@`ÍXÍXFH0�Ô:WX.1243<Í¿@EÕO24FHW¼WfPHG"�ZFH0�Ô @E3B9DÍ}GdÑ�FHSf.bWZY
0]2`3H.ÏWX24S>Í�Î�Sf240 -/GdÑ*WdK �BK �]@43B9 ��Gp0]0À@`Í �]@43B9 �HK

� ����� +�Æ���É�� È�Ç
	

Ó 3/FH0�Õ<GpS�24Î¿@EÔHÔHSf2`@`Ñ>PHGpÍnSXGp7�SX.ÏWXG�@VW]WXPHG(@4ÍfÍ}Gp0nÕHI1Y,IÏGpT4GJIlÞ�Î�24S]G�ÜH@E0�ÔHI1G�-/24ÎàWZ7�@4SXGJ×
ÕB@4ÍXGp9��B@4FHIÏW �ZÍ}2`I1@EWX.1243 �ù-���� ��ÿ �
�/@E3B9 � .ÏW}W*-����hGJI«9Àÿ � �lKpMªPHG m @`ÑJÑJ.Ï2�ÍXY/Í}WXGp0�ÿ ��b��8SXGp7�SX.ÏWXGdÍ
ÕH.Ï3<@ESf.ÏGdÍDÍX26WXPB@EWóPH.1Ð4P I1GJT`GJI�SXGdÍ}2`FHSfÑJGÚÔ<2`IÏ.«Ñ�.1GpÍD0À@UY ÕOG Gp3:Î�24S>Ñ�Gd9rK¼MªPHG��%IÏGp.ÏÔB3H.ÏS
ÔHSX2 �ZGpÑ�W(ÿ � �4Þ������¿FBÍXGpÍ�ÕH.13B@4SXYÚSfGJ7�Sf.bWf.Ï3BÐóWf2 GJ3BÍXFHSfG(ÑJ2438WXSf24I�Íf@VÎ�GJWZY4K �	.13B@EI1IÏY`Þ � S>@4Íf@49
@E3B9(NQPH.ÏFBGJPDÿ � �rÔHSfGpÍXGJ38W�@�Í}Y:Í}WXGp0éÕB@4ÍXGp9À2`3�ÕH.13B@4SXY�SfGJ7�Sf.bWf.Ï3HÐºÎ�24S�ÔHSXGpT4Gp3`Wf.Ï3BÐnÕHF�¤GJS
2VT4GJS �B2V7�@EW}Wf@`Ñ>R:ÍJK

�h3�WfPHGº-����Q@EÔBÔHSX28@4Ñ>P�Þ/@4ÍfÍXGJ0nÕBIÏY�ÔHSf24Ð`Sf@40�Í�@ESfG¿0�2:9:.ÏßBGp9�ÍX2nWfPB@VWªWXPBGº@49H9:SfGpÍfÍQ2EÎ
SXGpÐ4.«ÍZWfGJSX×l.13B9:.1SXGdÑ*W �ZFH0�ÔBÍ$@43B9�0�Gp0]2`SXY�24ÔOGJS>@VWX.1243<Í�@4SXG¼Î�24S>Ñ�Gd9¶Wf2�Õ<G�7�.ÏWXPH.13 @]SXGpÐ4.1243
2EÎ	WXPHGn@`9H9:SfGpÍfÍ$ÍXÔB@4ÑJG4KHMªPH.«Í$.«Í$9:2`3HG�Õ/Y�ÍXG�WXWX.13HÐ¶@E3B9(ÑJIÏGd@ESf.Ï3HÐ�ÕH.ÏWfÍ¿.Ï3(WfPHG�Wf24Ô(2EÎ�WXPBG
@49H9:SfGpÍfÍpK

Ó$3n.10�Ô<2`S}W>@E38W	@`Í}ÔOGpÑ�W	24ÎHWXPBGª-�����@4ÔHÔHSf2`@`Ñ>P�.1Í�WXP<@VW�T4GJSf.ÏÎ�Y8.13HÐ¿WXPB@EW�@¼ÔHSf24Ð4S>@E0 PB@`Í
Õ<GpGJ3�SfGJ7�Sf.ÏW}WXGp3À.1Í�ÍXGJÔB@4Sf@EWXG�Î�Sf240�WXPBG$WXS>@E3<ÍZÎ�2`SX0À@VWf.Ï2`3ÀÔHSf2/ÑJGpÍfÍ½.ÏWfÍXGJIÏÎZK/MªPB.1ÍQSXGdÍ}FBIbW>ÍÂ.13
@]ÍX0À@EI1IÏGpSªWXSfFBÍ}WXGp9�Ñ�2`0�ÔHF:WX.13HÐÀÕB@`Í}G`K

Ó$IÏWXPH2`FHÐ4P�- � �QÑ�I«@E.10�ÍÂWX2]7�24SfR�2`3¶ÕH.13B@ESf.ÏGdÍJÞ8.13�ÔHS>@4Ñ�WX.«Ñ�G¿.ÏWª.Ï3BÍXGJSXWfÍQG�Ü/WfSf@n.Ï3BÍ}WXSfFBÑ�×
WX.1243BÍ	.13`Wf2¿WfPHG�ÔHSX2`Ð4S>@E0 ÕH.13B@ESfY4ÞV@E3<9ºPHGp3BÑ�G�SXG��8FH.ÏSfGpÍ	ÍXY80�Õ<2`I`.13:Î�2`SX0À@VWf.Ï2`3�ÍX2$WfPB@VW�WXPBG

180

ÕH.Ï3<@ESfY¶ÑJ@E3�ÕOG�SXGJ×lI1.Ï3BR4Gp9�K/MªPBG%.10�ÔHI1GJ0�GJ38Wf@EWX.1243(9:.«ÍXÑJFBÍXÍXGp9�.13�5 @EP/ÕOG%GJWpKB@4IùKrÿ �
��FBÍXGpÍ
@n0�2:9:.ÏßBGp9�T4GpSfÍX.Ï2`3¶2EÎ�WXPHGAÐ8ÑJÑ%Ñ�240�ÔH.1I1GJSdK	�h3(@49B9:.bWf.Ï2`3�ÞH-����ÂSfGpÍ}WXSf.1Ñ�WfÍªÑ�2`0�Ô<2`3HGJ38WfÍQWf2
@]ÍX.13HÐ4I1GASXGpÐ4.1243�ÞH@43B9¶WfP/FBÍ$9:.«ÍX@4IÏI12V7$Í��¾Íf@VÎ�G��QÍXPB@4SX.13HÐBK

�¿Î�WfPHG¶SfGJI«@VWfGp9 7�24SfRDI1.1Í}WXGd9Ú@EÕO2VT4G4Þ�WXPHG � .bWXW>-����hGpI19L@43B9 �%I1GJ.1ÔH3H.1SnÔHSf2��ZGdÑ*W>Íº@ESfG
2EÎªÔB@ESXWX.«Ñ�FHI«@ESASfGJI1GJTV@E3<Ñ�G]WX2(WfPHGÀ7Q2`SXR ÔBSXGdÍ}Gp3`WfGp9,.13óWfPH.«Í�ÔB@EÔOGJSdÞ�@4ÍAÕO2EWfPÚT4GpSX.ÏÎ�Y WXPBG
Í}2`FH3B9:3HGdÍXÍA24ÎQWfPHGJ.1Sn@4ÔHÔHSf2`@4Ñ>PBGpÍpKjc�2EWfP ÔHSX2 �ZGpÑ�WfÍAG�ÜH@40].13HG¶-�����×�IÏ.1R4G¶ÍXY:ÍZWfGJ0ÀÍA243,WXPBG
�ZÓ�× ��ÔHI«@VWXÎ�24Sf0�Þ	@ ÔB@4S}Wf.1ÑJFHI1@4SXI1YÖWfSX.«Ñ>R/YóGp3B9:Gd@UT424FBSº9:FHGÀWf2ÖWXPBG¶TV@ESf.1@4ÕHIÏG�IÏGp3HÐEWfPÚ.Ï3:×
ÍZWfSXFBÑ�WX.1243 Î�2`SX0À@VWdÝ�FB3HIÏ.1R4G a �}-BN�ÍXY/Í}WXGp0ÀÍJÞ	.bW].1Í�ÔO2`ÍfÍ}.1ÕHI1GÀWX2 �ZFH0�Ô .13`Wf2 WXPBG�0�.«9H9:I1G
2EÎQ@43D.13BÍZWfSXF<Ñ*WX.1243�Þ¤@43B9ÖPBGJ3BÑJG�GJÜ/GdÑ�F:WfG]@�9:. OGpSXGp3`W�.13BÍ}WXSfFBÑ*Wf.Ï2`3 WXPB@43ó7ª@4Í%Í}Wf@VWf.1Ñp@EI1IÏY
Ñ>PHGpÑ>R`Gp9rK

MªPHG �%I1GJ.1ÔH3H.1SAÔHSf2��ZGpÑ�W%@4.Ï0ÀÍ¿WX2�GJ3:Î�2`SfÑJG�NQ2438WfSX2`Ib× �	IÏ2V7 �h38WXGpÐ4Sf.bWZY �lN ��� ��Þ¤WXPB@EW%.«ÍJÞ
GJ3BÍXFHSf.Ï3HÐºWXPB@EWÂWXPBG%ÑJ2438WXSf24I��<2V7u24Î�@ºÔHSf24Ð`Sf@40�.«Í�3H24WÂW>@E0�Ô<GpSXGd9À7�.ÏWXP�Õ/Y�@E3¶GJÜ/WXGJSf3B@4I
@VW}W>@4Ñ>R`GJSdK �h3�WXPBGJ.1S	@4ÔHÔHSf2`@4Ñ>P�ÞJ@$ÕH.13B@4SXY
� Í�Ñ�2`3`WfSX2`I��B2V7 Ð`Sf@4ÔHP�G�Ü/WXS>@4Ñ�WXGd9AÕ8Y%WfPHG � FHI«ÑJ@43
WX2/24I	ÿ�����¤.1ÍÂFBÍ}Gd9�WX2�Ð4Gp3HGJS>@VWfG$@ºÍ}GJWQ24Î�G��8FH.1TU@4IÏGp3BÑ�G¼Ñ�I«@4ÍfÍ}GdÍ�ÕB@`Í}Gd9�243ÀÕHS>@E3BÑ>P�W>@ESfÐ4GJWfÍpK
MªPHGpÍXGªG��8FH.1TU@4IÏGp3BÑ�G�ÑJI1@`ÍXÍXGpÍ�@ESfGQWXPHGp3�@`ÍXÍX.1Ð43HGd9ºFH3H.��8FHGª.19HGJ38WX.ÏßBGJS>ÍpÞV7�PH.1Ñ>P�@ESfG�.Ï3BÍXGJSXWXGd9
Õ<GJÎ�24SfG$WXPBG$Wf@4SXÐ`G�WQÑJ2:9:G4K856PHGJ3BGJT4GpSQ@"�ZFH0�Ô¶.1ÍÂWX2�Õ<G¿Wf@4R4GJ3�Þ4WfPHG¿ÔHSf24Ð`Sf@40 Ñ>PHGdÑ>R:Í½WXPBG
.19:Gp38WX.ÏßBGJS$@EW�WfPHG%Wf@4SXÐ`G�W�@49H9:SfGpÍfÍªÑ�2`3`W>@E.13BÍQWXPHGºÑJ24SfSXGdÑ*W�.19:Gp38WX.ÏßBGJSdK���Î�WfPH.«Í�Ñ>PHGpÑ>R�Î¾@4.ÏI«ÍJÞ
WXPHGp3�WXPHGªÑ�2`38WXGJ38W>Í�2EÎ:WfPB@VW	SXGpÐ4.«ÍZWfGJS�P<@UT4G�ÕOGJGp3ºWf@40�Ô<GpSXGd9A7�.bWfP�ÞV@E3B9AWfP/FBÍ�WfPHGQ@EW}W>@4Ñ>R4GpS
ÑJ@E3óÕ<GÀ9:Gp3H.1Gp9rK �¼3HG]ÔO24.13`W%WX2�3H24WXG�.1Í¼WfPB@VWAWXPBG � FHI«ÑJ@43DWf2/24I�SXG��8FH.ÏSfGpÍ%@�Í}.1Ð43H.Ïß<Ñp@E38W
@E0�24FH38W�2EÎ�.13:Î�24Sf0À@VWX.1243�@EÕO24F:W�WfPHG�ÕH.13B@ESfY¶.13�2`Sf9HGJSªWX2ÀÑJ243BÍ}WXSfFBÑ*WªWfPHG�N � �]K

MªPHG$Î�2`SX0À@EI¤@E3<@EI1Y/ÍX.«Í$ÿ �����r2EÎrWfPH.«Í�@4ÔHÔHSf2`@`Ñ>PÀ.1Í�@nP/FH0À@43:×�Ñ>PBGpÑ>R4Gd9]ÔHSX2/24Î�ÕB@4ÍXGp9À2`3
@�Í}.10�ÔHIÏ.ÏßBGd9 a �}-BNÂ×�IÏ.1R4GªÔHSf2:Ñ�GpÍfÍX24SdKEMªPHG�ÔHSf2824Î¤@`ÍXÍXFH0�GpÍ	WfPB@VW�Ñ�2:9:G�0�GJ0�24SfYn@43B9À9H@VW>@
0]Gp0�24SfYÖ@ESfG]9:.«Í��Z24.13`WdÞ�@E3B9DWXP<@VW�ÕHS>@E3BÑ>PHGdÍ%.Ï38WX2(.13BÍ}WXSfFBÑ*Wf.Ï2`3BÍA@ESfG�.10�Ô<28ÍXÍX.ÏÕBIÏG`K�MªPHGJY
0�@4R4G¿WXPHG%.Ï38WfGJSfGpÍ}WX.13HÐ�@`ÍXÍXFH0�Ô:WX.1243¶WXPB@EWª@43�@VWXWf@`Ñ>R4GJSQPB@4Í�Ñ�2`38WXSf24IO2VT4GJSÂWXPHG%PHGd@EÔ�@43B9
WXPHGp3(ÍXPH2V7 WXPB@EW%N � �QPH24I«9HÍpK

MªPHG � .ÏW}W>- � �hGpI19�ÔBSX2 �ZGpÑ*W�@4.Ï0ÀÍ�Wf2�GJ3:Î�2`SfÑJG�0�Gp0]2`SXY�@E3B9�Ñ�2`38WXSf24I:ÍX@EÎ�G�WZY`K4MªPHG�ÕB@`Í}.«Ñ
@EÔHÔHSf2`@`Ñ>P�.«Í¿ÍX.10].1I«@ES�Wf2�-����*Þ<PB2V7QGpT4GJSªWfPHGºÔHSf24ÕBIÏGp0 2EÎ½TV@ESf.«@EÕHI1G�IÏGp3HÐEWfPÖ.13BÍZWfSXF<Ñ*WX.1243<Í
.1Í%@49H9HSXGdÍXÍXGp9�Õ/Y�Î�2`SX0�.13HÐ¶.13BÍ}WXSfFBÑ*Wf.Ï2`3 Ð4Sf24FHÔBÍpÞHGd@4Ñ>PÖ@EI1.1Ð43HGd9�WX2�@��8×lÕ/Y8WXGnÕ<2`FH3B9H@4SXY`K
cQY�GJ3<Í}FHSf.13HÐÀWXP<@VW¿WfPHG]Õ<24W}WX2`0�� ÕH.bW>Í¿24ÎÂ@ �ZFH0�ÔDTV@4IÏFHG�@ESfGnÑ�I1Gp@4SXGd9 ��FBÍX.Ï3BÐ¶WXPBG]-����
WXGpÑ>PB3H. �8FHG��*ÞOWXPB.1ÍA@EÔBÔHSX28@4Ñ>P SfGJ0�2VT4GdÍ�WfPHGnWfPHSfGp@VWA2EÎ �ZFH0�ÔH.Ï3BÐ�.138WX2�WXPHG]0�.19H9HIÏG]2EÎQ@43
.Ï3BÍ}WXSfFBÑ�WX.1243ó@EW¼WfPHGÀÑ�28ÍZWA2EÎÂ.13BÍXGJSXWX.13HÐZ9 �� .13BÍ}WXSfFBÑ*Wf.Ï2`3BÍ%.Ï38WX2�WXPBG�ÕH.13B@4SXY`Þ¤@43B9ÖPBGJ3BÑJG
SXG��`FB.ÏSf.Ï3BÐ�I1.Ï3BR8.13HÐÀ.13:Î�24Sf0À@VWf.Ï2`3�K

MªPHG(Î�24Sf0À@EI¼@43B@EI1Y:Í}.«Í�FBÍXGpÍ�WfPHGóÓ¿N ���óWXPHGp24SfGJ0 ÔHSX2VT`GJS�Wf2L0�2/9HGJI¼@ÚÍXFHÕBÍXG�W�2EÎ
WXPHG �ZÓ�× ��@ES>Ñ>PH.bWfGpÑ�WXFHSfG4K¤Ó�ÔBSX2/2EÎ�24ÎQÍf@VÎ�G�WZY .«Í¿WXPHGp3,ÍXPH2V7�3�K¤MªPHGJ.1SAÍ}.10�ÔHIÏGpS�Í}GdÑ�FHSf.bWZY
ÔHSX2`Ô<GpS}WZY ��.lK G4K	0]Gp0�24SfY,@43B9LÑ�2`38WXSf24IQÍf@VÎ�GJWZY ��.«ÍºSfG��BGdÑ*WXGd9Ú.13ÚWXPHGp.ÏS]ÔHSf2/2EÎ¾ÍpÒ�ÕOGpÑJ@4FBÍXG
WXPHGpYÁ9H2L3H2EW�0�2/9HGJIA@LÍ}GdÑ�FHSf.ÏWZY 0�243B.bWf24SdÞ�WXPBGJY6@ESfGÖ@EÕHI1GÖWf2 9:.1SXGdÑ*WfIÏYÁ.13B9:FBÑ�W�2VT4GpS
GJTV@EI1FB@VWf.Ï2`3�K

� �óÈQÅ¿Ë �}Ê¼É¿ÌXÅ"� � ��� +�Ç
)

5óG�.Ï38WXSf2:9:FBÑJGp9L@D3H2VT4GpIÂP/Y/ÕHSX.«9ÚÍf@E3B9:ÕO2UÜ:.Ï3BÐ WXGdÑ>PH3H.��`FBG¶WXP<@VW]ÑJ240�ÕH.Ï3BGpÍºP<@ES>9:7�@4SXGJ×
ÕB@4ÍXGp9 0]Gp0�24SfY,ÔBSX24WXGpÑ�WX.1243 7�.bWfP ÕH.13B@ESfYÚSfGJ7�Sf.bWf.Ï3HÐ<K�5,G ÑJ@43 Í}FBÔHÔ<2`S}W]ßB3HGJ×lÐ`Sf@4.Ï3BGp9
Í}GdÑ�FHSf.bWZY]ÔO24I1.1ÑJ.ÏGdÍ�7�.ÏWXP�Í}Wf@43B9H@ES>9]24ÔOGJS>@VWf.Ï3HÐºÍXY:ÍZWfGJ0�R4GpSX3HGpI1ÍÂ@E3B9ÀÔBSX2VT/.«9:G$@�0À@4Ñ>PH.13HGJ×
Ñ>PHGpÑ>RV@EÕBIÏG�ÔHSf2/2EÎQ24ÎªÍf@VÎ�GJWZYÖWfPB@VWº.13BÑ�I1FB9:GdÍAWXPBG¶.Ï38WfGJS>@4Ñ*Wf.Ï2`3ó24ÎQWfPHGÀFH38WXSfFBÍ}WXGd9óÕB.Ï3B@4SXY

181

7�.bWfP�WfPHGA24ÔOGJS>@VWX.13HÐ]Í}Y:Í}WXGJ0(K:MªPHG¼Î�24Sf0À@EI1.1Íf@VWf.Ï2`3¶.1ÍªÕ<@4ÍXGp9À2`3�@�0�@`Ñ>PH.13HG¼0�2:9:GpI¤WXPB@EW
.Ï3BÑJIÏF<9:GpÍªÔHSf2EWfGpÑ�WX.1243�9:2`0À@E.13BÍª@E3B9�Í}Y:Í}WXGJ0 Ñp@EI1I1ÍpÞ/7�PH.«Ñ>P�Wf2�2`FHSªR83B2V7�IÏGd9:Ð4G¼.1Íª@nßBSfÍ}WpK

MªPHG�0À@E.13�IÏ.10�.bW>@VWf.Ï2`3º2EÎ/WXPBGÂÔHSfGpÍXGJ38WXGd9A7Q2`SXR¿.1Í�WXPB@EW�7�GÂÍ}2$Î¾@ES�2`3HI1Y%9:Gp0�243BÍ}WXS>@VWfGp9
.bW>Í¿Î�Gd@4ÍX.ÏÕB.ÏI1.bWZY�Î�2`S a �}-BN @ES>Ñ>PH.bWfGpÑ�WXFHSfGpÍpK¤N �}-BN @4SfÑ>PB.bWfGpÑ*WfFHSfGpÍpÞ<@E3<9 .Ï3óÔB@ESXWX.«Ñ�FBI1@4S$WXPBG
�ZÓ � �}-:ÓnÞHÔ<28Í}GdÍ�3HGJ7!Ñ>PB@EI1I1GJ3HÐ`GpÍ�9:FHG%WX2�.ÏWfÍ�TV@ESf.«@EÕHI1G�×�IÏGp3HÐEWfP¶.13BÍZWfSXF<Ñ*WX.1243<ÍJK:5,GAÔHI1@43
WX2À@49H9HSXGdÍXÍ�WfPHGpÍXG�Ñ>PB@EI1IÏGp3HÐ4GdÍ�.Ï3�Î�F:WfFHSXG�7�24SfR¤K

� Ë
	�Å¿È � � ��É"� � � ��ÅQÆ�)

5óG%7�.1ÍXPÀWf2ºWXP<@E3HR �%GJSf7�.13 � IÏGp.Ï3¶Î�24S�PH.1ÍQPHGpIÏÔ�243¶FBÍX.13HÐºWfPHG �ZÍf@EÕOGJI1IÏG �Vá���� WXPBGJ24SfGJ0
ÔHSX2VT`GJSdK

� � # ��Ç&��Å¿Ë
�)

�d¹ªx(ypwEµ:cd���$¹{�1�Bv8|>|>m4�dtH¹{�p�Q^/�4cfeZghmd^B�p��¹ �½¹{���Qe}yJw/yp���dt:¹ ��¹ �/� ��|>_{c>^Vi�ghmpoÏils�yJeZcf·¾µ/yJghc*�¼o«ypv8zji
{ghmpzÏy�iZ{md^<¹	�Â~I# t4�����!��t]���:cXe}yJiZ_{^8�ºtVk4g�iZc>��g��Âc>aE_bcXs E � � �*����� �"�������	���

E¹¿tE�ºypz{zà�	~Q¹b�½t4c>zji �>cXe*�"#�¹ �X¹ � #]_Ït��¤��� ��~	md^`g�iheZv8|fiZ_{^`� gZyJo«c¶cf»EiZc>^`gh_{µ8z{cÀg�k4g�iZc>��g>¹Ú�������
~	mp^8|>v4eheZc>^8|Xk � � �*����� �Q���	�����

�4¹�
QzjoàyJe��reZzb_{^`�dghghmd^B�<t4|}w8^`c>_b�`cfe*���	¹ ¹ �ªt4�ªtE�	c>^4o«mpeZ|fc>��c>^ViÂmpo�ghc>|>v4eZ_{iùk��:mpzb_{|>_{c>g��:�ueZcfiheZmp·
gh�:cf|fiZ_{aUcd¹¤�ù^��4q�cXs t4c>|fv`eZ_jilk �ry�e}yd�`_{�p��g�x(mpeZ¸Eghw`md�<�`~�yJz{c*�`mp^ $�_{z{z{g>�:��^Vi}yJeZ_{m4�/~�yJ^/yp�8y4�
�Â~I#étE����t`�Â~Q�8�Â~I# ��eZc>ghg � ������� �Q��������

�`¹ �re}ypgZyp�B��#�¹{�V|}¸Ucfe�~	w8_{v`c>w<�U��¹ �<� µ`_b^8yJehk¼eZcfs½eZ_jiZ_b^`�¿�`cfo1c>^8ghcQyp�dyp_{^8g�i	g�i}yp|}¸%µ/yJghc*��µ8v��Hcfe
m�aUcXe��/m*sDyJihi}yJ|X¸Eg>¹`�l^��J\ªt`��q�� �D�Â^8^Ev/yJzE�Oc>|}w8^8_{|*yJz/~	mp^`o1cfeZc>^8|fcd����c>^`cfe}ypz`�<e}yJ|X¸:¹ �T������ �
	�������
�

�E¹^#]|*~�yp�ºyp^Vi*�OtH¹{��#]mpeheZ_{ghcfihi*���¼¹ �n� ��|>_{c>^Vi*�BaUcfeZ_&I/ypµ8z{c�µ`_b^8yJehk�gZyp^8�`µ:m*»4_{^8��o1mpe¼yÀ~	��t8~
y�eZ|Xw`_jiZc>|fiZv`eZcp¹��Oc>|}w8^8_{|*yJzBeZcf�:mpehi*�2#]�l� �¤~½t��T������ �

�4¹�qQc>|>v`zÏyE���¼¹ ~Q¹b�"�<cfcd���¤¹ �rt`y�o«cd�4v8^ViheZv`g�iZc*�ºyp�dcf^EiZg	v8gh_{^8�¼�`eZmVmpoÏ·¾|*yJehehk4_{^8�¼|>mE�`cd¹O�l^���_{�p^/y4�
�¼¹{�Hc*�H¹ �,#]mdµ`_bz{c��Â�dc>^ViZg�yp^/�¶tEc>|>v4eZ_{iùkV¹���mdz{v8��c � �����nmpo��<c>|XiZv`eZc¿q�mpiZcfgª_{^�~	mp���8v4iZcfe
tE|>_{c>^8|fcd¹{�:tE�`eZ_{^8�pcfeh·���cfeZzbyJ�`� cfeZz{_{^���cfeZ�ºyp^Vk�� ������� �Q���������

�E¹¿tE_jiZc>g>�d�$¹ ��¹{�JxÚ_jiZc>¸:�p�$¹ ��¹ �8�Qz{�8w8y�yJeZ|}w8_jiZc>|XiZv`eZc�eZcfo1cfeZc>^8|fc½�ºyp^Ev/yJz�¹ <ª_{�p_{i}yJz4�reZc>ghg>¹V��w`_je}�
c>�`^<¹ � �*����� �

�4¹¿tE|Xw`^8c>_b�4cfe*���	¹ ¹ ����^`o«mJeZ|>c*yJµ8z{c�ghc>|>v4eZ_{iùk��:mdz{_{|>_{c>g>¹��ù^`o«mJeZ�ºyJiZ_{md^nyJ^/��tEk4g�iZc>� tEc>|>v4eZ_{iùk 4
�T������ �"���������

�4¹��B_{c*�4iZ¸Ucp�3:`¹{�J��zb�`w8_{^8g�iZmp^8cd���A¹b��t4|}w��d^Eµ:cfeZ�4��t:¹b�*$��JehiZ_{�4��$¼¹{��$Qc>_{ghcfe*�	�¼¹{���lghzbyp���fq¼¹{� :UyJc>�dcXe*�
��¹ ����|}w8_{c>adc*��� �	~Á�:cfeho1mpeZ�ºyp^`|>c �àg�iZ_{zbz�iZw8cAo1mdv8^8�8y�iZ_bmp^(o«mJe%cf»EiZc>^`gh_{µ8_{z{_{iùk �X¹]�ù^��j��eZmV|d¹
��iZw%$QmpiX��tH�8~�yJ�:c%~	mE�H�C#��$�8\ªt`� � ������� �Q�������

�*�4¹$��apyp^8g>��<%¹{�<�<s½k4�ºyp^B�B�¿¹ ���¤z{cf»4_{µ8z{c��:mpzb_{|fkE·ù�`_jeZc>|XiZc*��|fmE�`c�gZyJo1cfilkV¹%�l^��j�reZmV|>c>c>�`_{^8�pg¿mJo
iZw`c%�l�����ÁtVk`���:mpgh_{v8��mp^��Âc>ghc*y�eZ|Xw�_b^(t4c>|fv`eZ_jilk�yJ^/�Z�reZ_{adyJ|fkV�O�ªyp¸Ezbyp^8�B�O~��¿�B�������
~	mp���8v4iZcfe�t4mV|>_{cfiùkV�V�Ocf|Xw`^8_{|*ypz/~	md����_jihiZc>c½mp^nt4c>|>v4eZ_jilk%yp^/� ��eZ_{apyp|fkV�d������� ~	mp���8v4iZcfe
tEmV|>_{cfilk �reZc>ghg � ������� �"����	�	�

���d¹$�Âµ/yp�`_à�2#�¹{� v8�`_{v<�C#�¹b��
QzjoàyJeª��eZz{_{^8�pghghmd^B�,�B_{�UyJihiZ_à�Q:`¹ �ª~	md^ViheZmdzj· �/m*s6_{^ViZc>�JeZ_{iùkV¹Â�Oc>|}w`·
^`_{|*ypzB�Qcf�:mpehi #Àt4��·ù���Â·�����· ���E�C#]_{|feZmpghmpo1i��Qcfghc*yJeZ|}w �T������ �

��E¹$�Âµ/yp�`_à�K#�¹{� v/�4_{v<�(#�¹{�!
�zjoày�eº�reZzb_{^`�dghghmd^B���<_{�Uy�ihiZ_���:`¹ �Ö�!iZw`c>mpehk mJoªghc>|fv`eZcn|>md^ViheZmdz
�8m*s�¹��Oc>|}w8^8_{|*yJzO�Âc>�:mpehi #ÀtE�Â·ù����·�����· ���E�4#]_b|XeZmdghmpoÏiª�Âc>ghc*y�eZ|Xw �T������ �

�*�4¹¿tVeZ_{adyJg�i}y�apy4�J�$¹{�J���Es½yJe}�4g>�p�¿¹{����m4�
$¼¹ �"��v8z{|*yJ^�� _{^8yJehk$ihe}yp^`g�o«mpeZ�ºy�iZ_{md^¿_b^¼yÂ�`_{g�iheZ_{µ8v`iZc>�
cf^4aE_jeZmd^`��c>^Vi*¹r�Ocf|Xw`^8_{|*ypzB�Âc>�:mpehi&#Àt4��·ù���Â· ������X· ���4�4#]_{|feZmdghmJo1i��Qc>ghc>yJeZ|}w �T������ �

182

���������
	���������������������
	���������� 	��!�#"%$&���'	���()�*	+�,�)-
�.�/��()���0	21

3547698#:�8<;0=?>@;BA

C�C�D�C�EBFHGJI
KHL<MONQPSRUTVMXWZY,[B\.]�M^L<_9[Ia` [BRVWUb9cQdBe
f0gihkjmlinporq�gsn�tQuifporhkv

w,xzy0{0|�}a~@{m�]�dBL&Y�TV[@\�W���d�RUP�T�Y<T�WUPS��T���dBL#�sP�NiMOPS��P���d@T�[BRUcQd@L<MO��dBWUMO[mL9d@e�T�Y<T��
WUP0��T I ��_<PSRUP�WU_9P
�<MX�?PSRUP0LkW��0[@���s[mL9PSL&WUT�dBRUP�TVP0P0L�d@T/d@biWU[mL<[m��[mb<T�P0LkWUMXWUM^PST I
MOLkWUPSR�d@�JWUM^L<c���MOWU_�P0d@��_�[@WU_9PJR I �0[@e^e^dB�s[@R�dBWUMOL<c�WU[���d�R���T�YiT�WUP0��� THdBM^��T0� G L�TVb9��_
T�YiT�WUP0��T���P��,d�Y�L<[@W�_ad�NQP5\�b9eOe.�0[mLkWVRU[me�[�NQPSR�WU_<P��sP0_ad�N&MO[@R�[@\�dBeOe�MXWUT��0[m���
�s[@L9P0LkWUT0�k��[@RU�,dBWUMONQP�TV�sPS�0MX�a��d�WUM^[@L#[B\�d@L,[@RUcmd@L9MO��d�WUMO[mLadBe?T�Y<T�WUPS� I �<RU[�N&M^�<P0T.d
��d�Y#[@\��iP0TV�SRUMO�9MOL<c
WU_9P�L<[@RU��T�WU_ad�W�RUP0cmb<e7d�WUP�WU_9P��sP0_9d�NiMO[BR�[B\�d
T�YiT�WUP0��d@L9�
[B\�MOWUT/�0[@���s[mL9PSL&WUT I T�W�d�WUM^L<c�_9[���WU_9PSY�dBRUP�PJ <�sPS�SWUP��¡WU[��sPS_ad�NQP I d@TVTVb<��M^L<c
_<[���P0NQPSR I WU_adBW�WU_9PJY��,d0Y��iP0N&M^dBWUP�\�RU[m��WU_ad�W�M^�<P0d@ea�sP0_9d�NiMO[BR I d@L9���sP0MOL9c��<RUPS�
�9dBRUP���WU[�RUP�d@�JW�WU[�WU_adBW�� G L�WU_9MOT.�ad@�sPJR���P�b9TVP�d@L�dB�SWUMO[mL�d@L9���iP0[mLkWUMO����[&�9d@e
eO[mc@MO��\�[@R�WU_<PHL<[@RU�,dBWUMONQP�TV�sP0�0MX�a�0dBWUMO[mL#[@\2[BRUcQdBL9MO��dBWUMO[@Lad@e�T�YiT�WUP0��T0� D _9MOT�eO[mcB�
MO��dBe¢\7R�d@��PS��[@RU£�d@eOeO[���T�b<T�WU[��iP0TV�SRUMO�sP�PS i�sP0�JWUP����sPS_ad�N&M^[BR�[@\zd@cmPSL&WUT I �iPSWUP0�SW
L<[mL<�rM^�<P0d@e¢�sP0_ad�N&MO[@RHd@La��M^�<P0LkWUMX\�Y�WU_9P�dBcmP0LkWUT�WU_ad�W I �<MXRUP0�JW�[BR�M^L9�<MXRUP0�SWUeXY I dBRUP
RUP0TV�s[@L9TVMO�9eOP�\�[BRHMXW��<¤)P�dBRUc@b9P�WU_9dBW�L9[BRU�,dBWUMONQP�TV�sP0�SMO�9��dBWUMO[@L��0d@L��sP�dBL�b9TVPS�
\�b9eaWU[k[meaWU[�MOL9�JRUP�d@TVP�WVRUb9T�W�dBLa��TVP0�0biRUMXWZY�MOL,�0[m���<eOPS ��0[@���9biW�dBWUMO[mL9d@eaT�YiT�WUP0��T
dBLa���iRU[m�s[mTVP�d/RUP0TV�s[mL<TVM^�<MOe^MXW�Y��9d@TVP��#WVRUb<T�W��0[mL<�0P0�<W��

¥ ¦9§�¨s©?ª�«5¬/p¨?®Uª�§

¯�Ai°�±?²s³S>B´�µ�¶sµ�³J>B°�µ.·7¸9³S>B´08i;�³�¹�·^³S=,=a²?°�8&¸¢µ.ºa¶�´J>@¸¢»s·�¸?65µJ>B´S¼a·�;B>@µ*A<´.µJAi4�¼a·7¸?65±?´SAiº?4�>B°�µ@½
:�>BAi±¢47>�³J´S²¢µ�³�³J=?>@°¾·7¿�³S=?>B¶�»?Ai¸*À ³�¿r8&·�4�ÁiAi´mÁm·7¿p³J=?>@¶#»sA�Ákº9¶�º�>@47·�>B¼a·�¸?6�³J=¢8&³�µ�A<°�>@Ai¸?>�¹�·�474
º�>�´J>mµ�±pAi¸�µ�·�º?4�>�ºa¶Â8&¸a¶Â»?8&°�8&6<>�;B8i²¢µJ>@»z½2ÃH²s³
¹H>#;@8&¸?¸¢A&³
8&³�³S´J·�º?²s³S>#´S>@µJ±�A<¸¢µJ·7º?·�4�·^³S·7>mµ
³JA#8#;�A<°�±¢²s³J>@´HµJ¶sµU³S>B°ÅÄr;BAi°�±?²s³S>B´0µ�»sA<¸*À ³H6<A�³JA�±?´S·�µJAi¸*Ái³J=?>@¶!»sAi¸�À ³HAk¹�¸!6iAaAs»?µ@Á¢½�½7½XÆ�½
Ç ¸�³J=?>�>@¸¢»zÁ<³J=?>@´J>�°#²¢µ�³�8&4�¹H8Q¶sµ�ºp>5µJAi°�>�±p>B´0µ�A<¸)Är=a²?°�8&¸�Ai´�8&´J³J·7È�;�·�8&4ÊÉ�Æ�´S>@µJ±pAi¸¢µJ·7º¢47><½
Ë ¼i>@¸Â·7¸Ìµ�A<°�>�¸?>�³U¹HAi´SÍ2Á¢¹�=?>@´J>,¶<Ai²Â·�¸9³J>B´08i;�³/¹�·7³J=ÏÎ�¿r8i;B>B4�>@µSµJÐ�µJA&¿Ñ³U¹�8&´S>,8&6<>B¸9³Sµ@Á¢¶<Ai²
Í9¸¢Ak¹Ò³J=¢8&³@Ák·�¸¢»s·�´J>m;�³J4�¶iÁQ¶<Ai²#8i´J>�·7¸9³S>B´08i;�³S·7¸¢65¹�·7³J=�µ�A<°�>H±p>B´0µ�A<¸*Ák;�Ai°�±¢8i¸a¶iÁm²?¸?·�¼i>B´0µJ·^³U¶<Á
Ai´.µJAi°�>�Ai³J=?>@´*·�¸¢µU³S·^³S²s³J·�Ai¸�Ám¹�·7³J=#µ�A<°�>�47>@6<8&4<µU³08k³J²?³J>i½QÓ�¸�»�·^¿s³S=?·�µ�4�·7¸¢Í/³SA/±p>B´0µ�A<¸¢µ*»sAa>@µ
¸?A&³�>�Ôs·�µU³mÁsAi´�·7³�·�µ�¸?Ai³�±�A9µJµJ·�º?47>
³SA#³S´S8<;�>
·^³mÁs³J=¢>B´S>�8i´J>5³J´S²¢µ�³�8&¸¢»�µ�>m;�²?´S·7³U¶!±?´SAiº?4�>B°�µ@½
¯H8iµJ>@µ�8&ºpAi²¢¸¢»�·�¸�³J=?> Ç ¸9³S>B´S¸?>�³�;�A<¸9³J>�Ôa³m½
ÕaA¢Á�=?Ak¹ÖµJ=?A<²?4�»)¹H>,>mµU³08&º?4�·�µJ=)³J=¢·�µ/47·�¸?Í)º�>B³U¹�>@>B¸�µJA&¿Ñ³U¹�8&´S>,8&6<>B¸9³Sµ�8i¸¢»)±p>B´0µ�A<¸¢µS×

Ã�>B¿ÊAi´S>
³J´S¶9·�¸?6�³JA�8i¸¢µ�¹H>B´H³S=?·�µ/Ø<²¢>@µ�³J·�Ai¸*Á?4�>�³0µ�¸?A&³S·�;B>�³J=¢8&³/8�µ�Ai¿Ñ³U¹H8i´J>�µ�¶sµ�³J>@°Ù·�µ�±�8&´J³
A&¿H³J=?>�A<´J698&¸?·�Ú@8&³J·�Ai¸�¹�=¢>B´S>�·7³�·�µ�²¢µJ>@»z½.ÛÂAi´S>BAk¼<>B´mÁ�°�8&¸a¶�µJA&¿Ñ³U¹�8&´S>�µ�¶sµ�³J>@°�µ�;@8&¸Òºp>
¼9·�>B¹H>@»*Á2³J=?>@°�µJ>B4�¼i>mµBÁz8<µ5A<´J698&¸?·�Ú@8&³J·�Ai¸¢8i4.µJ¶sµU³S>B°�µBÁz¹�=¢>B´S>�³S=?>!»s·7Üp>@´J>@¸<³,;BAi°�±�A<¸?>B¸9³0µ
8&´S>�µJ>B>@¸�8<µ�8&²s³SAi¸?A<°�A<²¢µ
>B¸9³J·7³J·�>@µ@Á*·�¸9³J>B´08i;�³J·�¸?6�¹�·^³S=�>m8i;0=ÌA&³J=¢>B´mÁ*;�Ai4�4�8&ºpAi´08k³J·�¸?6�³JA&Ý
¹H8i´S»ÞµJ¶sµU³S>B°)À µ�8&·�°�µB½Hß�=?·�µ¡¼a·�>B¹ÅµJ²?6i6<>@µ�³Sµ�³S=¢8k³�³J=¢>Ì;�A<°�±�A<¸?>B¸9³Sµ¡A&¿�8à;�Ai°�±?²?³J>B´
á�â RVWUMX�a�SM7dBe��sPJRUTV[mL�MOL�WU_<P�eOP0cQdBepTVP0L<TVPm�

183

�

µ�¶sµ�³J>B°'°�²�µU³mÁpµJAi°�>B=¢Ak¹�Á?º�>�·7¸9³J>@6i´08k³S>@»)·�¸)³J=?>#Ai´S6<8&¸¢·7Úm8k³J·�Ai¸)µ�³J´S²¢;�³S²?´J><½ Ç ¸)³S=?·�µ5±¢8&Ý
±�>@´�¹H>Âµ�²¢6i6i>mµU³�8&¸%²?¸?·7¿Ê¶9·�¸?6�8&¸�» ·�¸<³S>B6<´S8&³J·�¸?6�°�As»s>B4ZÁ�¹�=?>@´J>)µ�Ai¿Ñ³U¹H8i´J>�8&6<>B¸9³Sµ�8&´S>
µ�±p>@;B·^È¢>m» 8k³�³J=?>�µJ8i°�>�47>@¼i>B4�8iµ,=a²?°�8i¸ 8&6i>@¸9³Sµ��*³J=¢>B¶Ò8&´S>��U²¢µ�³#>B¸9³S·^³S·7>mµ�8i;�³J·�¸?6�8i¸¢»
·7¸9³J>@´S8<;�³S·7¸?6�·�¸Âµ�A<°�>�µJAs;�·�>�³U¶�Ai´�A<´J698&¸?·�Ú@8&³J·�Ai¸*½
Ç ¸ ;BAi°�±?4�>�Ô%;BAi°�±?²s³08k³S·7A<¸¢8&4�µJ¶sµU³S>B°�µ�¹�>Â°�8Q¶ ¸¢A&³!=¢8Q¼<>¡¿Ê²¢474/;BAi¸9³J´SAi4�Ak¼<>B´�³J=¢>

º�>@=¢8Q¼a·7A<´.Ai¿p8&4�4a·^³0µ�;�A<°�±pAi¸¢>B¸9³Sµ@Ákº�>m;B8i²¢µ�>H¹H>�°�·�6i=9³�¸?A&³�=¢8Q¼i>�;�A<°�±?47>B³J>�·�¸s¿ÊAi´S°�8k³J·�Ai¸�Á
º�>m;B8&²�µ�>Â·7³�°�·76<=9³�º�>�³JAaA ;�A<°�±¢47>BÔ%Ai´�>�Ôs±�>@¸¢µJ·7¼<>iÁ�ºp>@;@8&²¢µJ>�=a²?°�8&¸¢µ�8&´S>�·�¸a¼iA<47¼<>@»
ÄÊ¹�·7³J=Ò³J=¢>B·�´�·�¸<³S´J·�¸¢µJ·�;�²¢¸?±?´S>@»s·�;�³08&º?·�47·7³U¶?Æ�Á.Ai´�¿ÊA<´�µ�A<°�>�A&³J=¢>B´,´S>@8<µ�A<¸*½*ÃH²s³@Á�8k³,4�>@8iµ�³@Á
¹�>�°�²¢µ�³�Ía¸?Ak¹�=¢Ak¹ >@8<;0=,;�Ai°�±pAi¸?>@¸9³�·�µ�>�Ôs±�>m;�³S>@»�³SA/ºp>B=¢8Q¼<>iÁmA&³S=?>B´S¹�·�µJ>�³S=?>�´J>mµ�²¢4^³�A&¿
;�Ai°#º?·�¸?·7¸¢6�³J=?>@° ³SA�¿ÊAi´S°¾³S=?>/µJ¶sµU³S>B° ¹�A<²?4�»�ºp>/²¢µJ>B4�>@µSµ@½���A<´J°�8k³S·7¼<>�µ�±p>@;B·^Èp;B8k³S·7A<¸�A&¿
8&¸)Ai´S6<8i¸?·7Úm8k³S·7A<¸¢8&4zµJ¶aµ�³J>@°)Á¢±?´SAk¼a·�»s>mµ�8�¹H8Q¶¡A&¿�»s>@µS;�´S·�º?·7¸¢6�³J=?>,¸¢Ai´S°�µ�³J=¢8&³/´J>@6i²?4�8k³S>
³J=?>�ºp>B=¢8Q¼a·�Ai´�A&¿�8
µ�¶sµ�³J>@°�8&¸¢»#A&¿¢·7³Sµ�;BAi°�±pAi¸?>@¸<³0µBÁkµ�³S8&³J·�¸?65=¢Ak¹Ò³J=?>@¶�8&´S>�>BÔa±p>@;�³J>m»,³SA
º�>@=¢8Q¼i><Á98<µJµJ²?°�·7¸¢6,=?Ak¹H>B¼i>@´@Á&³J=¢8&³�³S=?>B¶�°�8Q¶�»s>B¼a·�8k³J>/¿Ê´JA<° ³J=¢8&³�·�»s>@8i4�ºp>B=¢8Q¼a·�Ai´mÁ<8i¸¢»
º�>@·7¸?6#±?´S>B±¢8i´J>m»�³JA#´J>m8i;�³�³JA,³S=¢8k³m½ Ç ¸�³J=?·�µH±¢8&±p>B´mÁ<¿ÊAi´�µ�·�°�±?47·�;�·7³U¶�´J>m8iµJAi¸¢µ@Ái¹H>/´S>�¿Ê>@´�³SA
¸?Ai´S°�µ��U²¢µU³
8iµH³J=¢>�µ�>B³�A&¿�Aiº?4�·�6<8k³S·7A<¸¢µ�8&¸�»¡±p>B´S°�·�µSµJ·7A<¸¢µH³J=¢8&³�´J>mµ�²¢4^³�¿Ê´SAi° ³J=?>@°�½	�?A<´
8#°�A<´J>�»s>B³S8&·�4�>@»)8&¸¢»¡´S>@8&4�·�µU³S·�;
¼a·7>@¹ÏAi¿�¸?A<´J°�µ�µJ>B><Áa¿ÊAi´�>�Ô?8i°�±¢47><Á�
 �����Á�
�������½

� >�³0µ�µU³08k³J>�µJAi°�>�4�8i¸?6i²¢8i6i>�;�Ai¸a¼<>B¸9³J·�Ai¸¢µ/³J=�8k³�¹�·74�4�ºp>�²�µ�>m»�³S=?´JA<²?6i=�³J=?>�±¢8i±�>@´@½
� >�¹�·74�4�8i»sA<±s³�³S=?>)»s>@µJ·76<¸¢8k³S·7A<¸ ÎJ8i6i>B¸9³0Ð)¿ÊAi´�8&¸a¶Ò>B¸9³J·7³U¶�;B8i±¢8&º?4�>!³SA�8<;�³)ÄÊ=a²?°�8&¸*Á
µ�Ai¿Ñ³U¹H8i´J>��Q=¢8i´S»s¹�8&´S>!;�A<°�±�A<¸?>B¸9³�Ai´�>B¼<>B¸ µ�A<°�>¡A<´J698&¸?·�Ú@8&³J·�Ai¸�Æ�½��¢Ai4�47Ak¹�·�¸?6Ì³J=?·�µ!8&¸?Ý
³J=?´SAi±pAi°�Ai´S±?=?·�;�;�A<¸9¼<>B¸9³J·�Ai¸�Ám¹H>�¹�·74�4¢µS8Q¶�³J=�8k³�8�µ�Ai¿Ñ³U¹H8i´J>��Q=¢8i´S»?¹H8i´J>�;BAi°�±�A<¸?>B¸9³�;B8i¸
Î�As;B;B²?±a¶aÐ!±�A9µ�·7³J·�Ai¸¢µ5·�¸Ì8&¸�Ai´S6<8&¸¢·7Úm8k³J·�Ai¸Â8i¸¢»�µS8Q¶�³S=¢8k³�·^³�;B8i¸�8i;�³
8i¸¢»Âº?´S·7¸¢6¡8&ºpAi²?³
µ�A<°�>�µ�³S8&³J>�A&¿�8kÜz8&·�´Sµ@½
Ç ¸�³J=?·�µ#±¢8&±p>B´�¹�>¡²¢µJ>¡8&¸%8i;�³S·7A<¸à8&¸�» »s>BA<¸9³J·�;!°�As»?8&4H47A<6i·�;�¿ÊAi´#³J=¢>�¸?A<´J°�8k³S·7¼<>

µ�±p>@;B·^È�;@8k³S·7A<¸�A&¿�Ai´S6<8&¸¢·7Úm8k³J·�Ai¸�8&4�µJ¶sµU³S>B°�µ58i¸¢»�Ai¿�·�¸<³S>B´08i;�³J·�Ai¸�ºp>�³U¹H>B>@¸Ì8&6<>B¸9³Sµ@½2ß�=?·�µ
47A<6i·�;B8&4?¿Ê´S8i°�>@¹�A<´JÍ�8&4�47Ak¹�µ�²¢µ�³SA#»s>mµJ;B´J·�ºp>�>�Ôs±p>@;�³S>@»�ºp>B=�8Q¼9·�Ai´�A&¿�8i6i>B¸9³0µBÁi»?>�³J>m;�³H¸?Ai¸sÝ
·�»s>m8&4.º�>@=¢8Q¼a·7A<´�8&¸¢»)·�»s>B¸9³S·^¿Ê¶�³J=¢>�8&6<>B¸9³Sµ�³S=¢8k³mÁ�»s·�´S>@;�³5Ai´�·�¸¢»s·�´J>m;�³S47¶<Á�8&´S>�´S>@µJ±�A<¸¢µ�·�º?4�>
¿ÊAi´�·7³@½iÃ�8iµJ>@»�Ai¸#³J=?>�±pA<µSµJ·7º?·�4�·^³U¶�³SA
³J´08i;�>H´S>@µJ±�A<¸¢µ�·�º?·�47·7³U¶iÁ&85³S´J²¢µ�³�¸?A&³S·7A<¸#·�µ�µJ²?6i6<>@µ�³J>@»*½
� >�8&´S6i²¢>�³S=¢8k³�¸?A<´J°�8k³S·7¼<>HµJ±p>@;�·7È�;@8k³J·�Ai¸�;B8i¸�ºp>�8&¸#²¢µ�>B¿Ê²?4s³SA9A<4a³JA
·7¸�;�´S>@8iµJ>�³J´S²¢µU³�8i¸¢»
µ�>m;�²?´S·^³U¶�·7¸Â;�A<°�±?47>BÔ¡;�A<°�±?²s³S8&³J·�Ai¸¢8i4*µ�¶sµ�³J>@°�µ@½

���������������� "!	#$��%� '&)(*&+ ,� � >¡µ�³S8&´J³�ºa¶�±?´J>mµ�>@¸9³J·�¸?6Â³J=¢>�°�²¢4^³S·^Ý�°�Aa»¢8&4�4�Ai6<·�;�³J=¢8&³
¹�·74�4�ºp>�²�µ�>m»Ì·�¸Ì³J=?·�µ�±¢8i±�>@´�³JA�¿ÊAi´S°�8&4�47¶�µJ±�>m;�·7¿Ê¶Ì8i¸¢»�´S>@8<µ�A<¸�8&ºpAi²?³,Ai´S6<8&¸¢·7Úm8k³J·�Ai¸�8&4
µ�¶sµ�³J>B°�µ!8i¸¢» ·7¸9³S>B´08i;�³S·7A<¸*½ Ç ¸Þµ�>m;�³S·7A<¸-�·7³�·�µ�±?´S>@µJ>B¸9³J>m» ³S=?>�°�As»s>B4�¹H>�8i»?Ai±s³�¿ÊA<´
Ai´S6<8&¸¢·7Úm8k³J·�Ai¸�8&4�µJ¶sµU³S>B°�µ�8&¸¢» ¿ÊAi´�·�¸<³S>B´08i;�³J·�Ai¸ ºp>�³U¹H>B>@¸ 8i6i>B¸9³0µBÁ�¹�=?·�;0=à·�µ#º�8iµJ>@» A<¸
³J=?>!4�>B698&4�;BAi¸¢;B>B±s³0µ�A&¿�8&´J³J·7È�;�·�8&4�±p>B´0µJAi¸�8&¸¢»Ò;BAi¸9³J´08i;�³@½*Ó ;�A<¸¢;�>@±s³,A&¿H³J´S²¢µ�³,·�µ�³J=?>@¸
µ�²?6<6i>mµU³S>@»z½ Ç ¸¡µJ>@;�³J·�Ai¸/.#¹�>�µ�±p>@;B·^¿Ê¶!8i¸!>�Ô?8i°�±¢47>�8&¸¢»!´J>m8iµJAi¸!8&ºpAi²?³H·7³@½ � >
;BAi¸¢;B47²¢»?>
¹�·^³S= µJ>@;�³J·�Ai¸10?Á�¹�=?>B´S>¡¹H>Âµ�¶a¸9³J=¢>@µJ·7Ú@>�³S=?>¡°�8i·7¸ ;�A<¸<³S´J·�º?²s³S·7A<¸¢µ�A&¿�³S=?>)±¢8&±p>B´�8i¸¢»
°�>@¸9³J·�Ai¸Âµ�A<°�>
´S>@µJ>@8i´S;0=¡»s·7´S>@;�³J·�Ai¸¢µ@½

2 3Þ§54�p¨?®Uª�§54�§/«Å«76*ª�§�¨?®�98�ª;:�®J)<>=@?BA

Ç ¸�³J=¢·�µ
±¢8i±�>@´5¹H>�¹�·�474�²¢µJ>�4�Ai6<·�;#8iµ
8�³SA9A<4�³SA�¿ÊA<´J°�8i474�¶�µJ±p>@;�·7¿Ê¶�;�A<¸¢;�>@±s³Sµ�ÄÊ><½ 6�½2´JA<47><Á
8i;�³S·7A<¸Ì·�¸�8�´JA<47><Áz´J>@±?´J>mµ�>@¸9³S8k³S·7A<¸�Æ/´J>@47>@¼Q8i¸9³
³SA)³J=?>�±¢´JA<º?47>@° ¹H>�8i´J>�8<»?»s´S>@µSµ�·�¸?6¢Áp³SA
>�Ôs±?´S>@µSµ�´J>@4�8&³J·�Ai¸¢µ�º�>B³U¹�>@>B¸�³S=?>B° 8&¸�»�³JA�;0=¢8i´S8<;�³S>B´S·7Ú@>�³S=?>B·�´H±?´JA<±�>@´�³S·7>mµB½<ß�=?·�µ�47A<6i·�;B8i4

184

�

¿Ê´S8i°�>@¹�A<´JÍ�¹�·�4�4�ºp>,²¢µJ>@»¡³JA!µJ±�>m;�·7¿Ê¶�³S=?>�>B¸9³S·^³S·7>mµ�²?¸¢»?>B´/;BAi¸¢µJ·�»?>B´08k³J·�Ai¸ÒÄÊ><½ 6�½?=a²?°�8&¸*Á
µ�Ai¿Ñ³U¹H8i´J>�8&¸¢»¡·�¸¢µU³S·^³S²s³J·�Ai¸�8&4�8i6i>B¸9³0µBÁ?;BAi¸9³J´08i;�³Sµ0Æ�8i¸¢»�´J>m8iµJAi¸¡8iº�A<²s³�³J=?>@°)½

����� � !��
	$(���"(����� !������-(��!��

Õ2½���8&¸?6<>B´mÁ Ç ½s:��Ai´S¸!8&¸�» � ½ � ·�¸¢»?8i=?4ZÁ<=¢8Q¼<>5;BAi°�º¢·7¸?>m»!»s>@Ai¸9³J·�;/8i¸¢»!8i;�³J·�Ai¸!4�Ai6<·�;@µ�8i¸¢»
²¢µ�>m»Ì³J=?>@° ³SA�»s>@µS;�´S·7ºp>!µJAa;B·�8i4�·7¸9³S>B´08i;�³S·7A<¸�8&¸¢»Ò;�A<°�±?47>BÔ�¸?A<´J°�8k³S·7¼<>�;�Ai¸�;�>B±?³Sµ!Ä�µ�>@>
>i½ 6¢½
�� � ��Á
 ������Á
�������Á
 ������Á
�����ÊÆ�½@ß�=¢>B¶�·7¸9³S´JAs»s²¢;B>�8/´J>@4�8&³J·�¼9·�ÚB>m»�°�Aa»¢8&4a8i;�³S·7A<¸,Ai±p>B´08k³SAi´mÁ
��� Á¢º�>@·7¸?6�>�Ôs±?´S>@µSµ�·�Ai¸¢µH4�·7Í<> ����� ´J>m8i»�� �"!$#&%('*),+&-.)/%
!�01�2+4365�'*'87���' � ½�ß�=?·�µ�8&±¢±?´JA98i;0=
=¢8iµ�ºp>B>@¸¡¿ÊA<474�Ak¹H>@»¡º9¶�°�8i¸a¶!´J>mµ�>m8&´0;0=?>B´0µ
ÄÊ>i½ 6¢½�
 � ��Á
:9���Á�
�������Á�
 � � ��Á�
 � ���ÊÆ�½

�?Ai4�4�Ak¹�·7¸?6�³S=?·�µ�³J´08i»s·7³J·�Ai¸*Á.·7¸"
 .���·7³�¹�8iµ�±?´SAi±pA<µJ>@»Ò8)¸?>@¹ 8<;�³S·7A<¸�A<±�>@´S8&³JA<´�³J=¢8&³
³J´S·7>mµ�³JA¡;B8&±?³J²?´S>�³J=¢>�¸?Ai³J·�Ai¸ÂA&¿��$;<'=)�36%>3@?A�6%>�&!
#&%('*)/%B�C-D3�EF#B½ Ç ¸s¿ÊA<´J°�8i474�¶iÁ�´JA<47>mµ�8&´S>
±?´JA<±�>@´�³S·7>mµ�A<´5Ø9²¢8&4�·7È�;B8&³J·�Ai¸¢µ/A&¿�8&6<>B¸9³Sµ@Á¢¹�=¢·�;0=�8i´J>�´J>@47>@¼Q8i¸9³�¿ÊAi´
8i;�³S·7A<¸�8&¸�»)²¢µ�²�8&4�47¶
;�Ai´S´S>@µJ±�A<¸¢»!³SA�±�A9µ�·7³J·�Ai¸�µ�·�¸)8i¸ÂAi´S6<8i¸?·7Úm8k³S·7A<¸�Ai´/·7¸Â;�A<¸9³J´08i;�³0µ,ÄÊ><½ 6�½?±?´S>@µJ·�»?>B¸9³�A&¿�³J=¢>
º�A98&´0»zÁ2´J>@±?´J>mµ�>@¸9³S8k³S·7¼<>mÆ�½�Û�8i¸9¶ÂAi³J=?>@´�´J>mµ�>m8&´0;0=?>B´0µ�²¢µJ>�³S=?>�;�A<¸¢;�>@±s³
Ai¿�´SAi4�>#8i¸¢»Â³S´J¶
³JA�¿ÊAi´S°�8&4�·7Ú@>5·7³@Á?¿ÊAi´�±?²?´S±pA<µJ>@µ�µJ·7°�·�4�8i´�³JA�Ai²?´0µ�ÄÊ><½ 6�½�
 ���ZÁ
 ���ZÁ�
 � .��ZÁ�
 ��.��ÑÆ�½
ß�A%Í9¸¢Ak¹ ³S=?>�´JA<47>�8&¸Ï8i6i>B¸9³�·�µ¡±?4�8Q¶a·�¸?6à¹�=¢>B¸�=?>Ò8i;�³Sµ¡·�µ�;�´S²¢;B·�8i4/³SA%8&¸�8&4�¶9Ú@>

³J=?>�»?>BAi¸9³S·�;�;B4�8<µJµJ·^Èp;B8k³S·7A<¸ÌAi¿�³S=?>�8<;�³J·�Ai¸ÞÄr>i½ 6¢½�·�µ�·7³#8)±p>B´S°�·7³�³S>@»�8<;�³J·�Ai¸p×mÆ�8i¸¢»�³J=¢>
>�Ü2>@;�³0µ�A&¿*³S=?>�8i;�³J·�Ai¸ÌÄr>i½ 6�Ai¸¡8<;�³S·7A<¸¢µ�Ai¿.Ai³J=?>@´�8i6i>@¸<³0µBÁ9Ai´�4�>B698&42>�Ü2>@;�³SµHG�A<º?4�·7698k³J·�Ai¸�µ
´J>mµ�²?47³S8i¸9³
¿Ê´SAi° ³J=?>!8<;�³J·�Ai¸pÆ�½��?A<´�>�Ô?8&°�±?4�>iÁz¹�=¢>B¸�8&¸Ò8&6<>B¸9³JI 8<;�³0µ�8iµ�±?´S>@µJ·�»?>B¸9³�A&¿
8¡;BAi°�±¢8&¸a¶LKÂº?´S·7¸?6<·7¸¢6¡8&ºpAi²?³�8�µU³08k³S>�A&¿H8kÜz8&·�´Sµ � Á2=?>�8&4�µ�A�8i;�³Sµ�8iµ5´J>@±?´S>@µJ>B¸9³S8&³J·�¼i>
A&¿�³J=¢8&³/;�Ai°�±¢8i¸a¶iÁ?8&¸�»�8<µ�8�´J>mµ�²¢4^³mÁ?=?·�µ�8i;�³J·�Ai¸)¹�·74�4�;BAi²?¸9³/8iµ�8i¸Â8i;�³S·7A<¸¡Ai¿�;BAi°�±¢8i¸9¶
Kp½�Ó�¸¢» ·^¿�=?>�»sAa>@µ#µ�A<°�>B³J=?·�¸?6�¹�´SAi¸¢6Â¹�=?>B¸à8<;�³S·7¸?6�·7¸�³S=?>�´SAi4�>�A&¿�±¢´J>mµ�·�»s>B¸9³�Ai¿MKpÁ
³J=?>�;BAi°�±¢8i¸9¶Ì¹�·74�4ZÁ�°�A<µ�³�±?´SAiº¢8iº?4�¶iÁ*ºp>�8&4�µJAÂ´J>mµ�±pAi¸¢µJ·�º?47>�¿ÊA<´NI�À µ�8i;�³S·7A<¸¢µ@½�ÃH²s³�·7¿*I
»sAa>@µ
³J=¢>�µS8&°�>�8i;�³J·�Ai¸�·�¸Ò8&¸?Ai³J=?>@´
´SAi4�>iÁ2=?·�µ�8i;�³J·�Ai¸�¹�·74�4�¸?Ai³�;BAi²?¸9³,8iµ�8&¸Ò8i;�³J·�Ai¸ÌA&¿
;�Ai°�±¢8i¸a¶OK2½
Ç ¸@
 .��p·7³�¹H8<µ�±?´SAi±pA<µJ>@»�8�¸?>B¹�8<;�³J·�Ai¸�Ai±p>B´08k³JA<´�A&¿z³S=?>5¿ÊAi´S° �QP&R S ÄÑ¿ÊA<´UT�8i¸�8&6<>B¸9³

8&¸¢»LV�8�´JA<47>QÆ�Á?ºp>B·�¸?6�>BÔa±¢´J>mµJµJ·7A<¸¢µ�A&¿�³J=¢>�¿ÊAi´S° ��P"R S&� ´S>@8i»�8iµ��W�"!$#&%('XT�Y�Z�E[�6\6)/%
!L'87�#
-D36EF#,V
Y]+&-.)/%
!�0M)/'^�2+4365�'�'/7(�6' � ½<ß�=?>�°�Aa»¢8&4sAi±p>B´08k³SAi´ ��P"R S<� ´J>@4�8&³J>@µ�8i¸�8&6i>@¸9³�±¢4�8Q¶a·�¸?6
8/´SAi4�>�¹�·7³J=#³J=?>�µ�³S8&³J>HA&¿�8&Ü28i·7´0µ�=¢>�º?´S·�¸?6<µ�8&ºpAi²?³@ÁQAi°�·7³�³J·�¸?6�»s>�³08&·�4�µ�8iº�A<²s³.³S=?>�µ�±p>@;B·^Èp;
8i;�³S·7A<¸¢µ
³J=�8k³�=¢8Q¼i>�ºp>B>@¸�±p>B´J¿ÊAi´S°�>@» Är8i¸¢»ÌµJ>�³J³J·�¸?6�8iµJ·�»s>�³S>B°�±pAi´08&4�8iµJ±p>@;�³0µSÆ�½ Ç ³,=¢8<µ
8&¸ 8i»?>@Ø9²¢8k³S>�8&º�µU³S´S8<;�³J·�Ai¸�4�>B¼i>@4�³SA�º�>¡²¢µJ>@»Ò·�¸ =?·�6i=sÝ�47>@¼i>@4�°�Aa»?>B4�µ,A&¿�µJ±�>m;�·7È�;B8&³J·�Ai¸*Á
¹�=?>B´S>�¹�>�¹�8&¸9³�³JA¡»s>@µS;�´S·7ºp>,8&6<>B¸9³@À µ�ºp>B=¢8Q¼a·�Ai´�¹�·7³J=?A<²s³�¹H8i¸9³J·�¸?6�³JA�>@¸<³S>B´�·�¸Â»s>�³08&·�4�µ
8&ºpAi²s³�³S=?>,µ�±p>@;B·^Èp;
8<;�³S·7A<¸¢µ�8&¸¢»¡³08iµJÍaµ@½
ß�=?>@µJ>Â8i;�³S·7A<¸ Ai±p>B´08k³JA<´Sµ#¹H>B´S>);BAi°#º?·7¸¢>@» ¹�·^³S= ±�>@´SµJAi¸¢8i4�»s>BA<¸9³J·�;)Ai±p>B´08k³JA<´Sµ�·�¸

Ai´0»s>B´�³SA�>BÔs±?´J>mµJµ�A<º?4�·7698k³J·�Ai¸�µH8i¸¢»�±�>@´J°�·�µJµJ·�Ai¸¢µ�Ai¿�8i6i>B¸9³0µ�·�¸)´JA<47>mµ�Ä�_ P&R S � G�´S>@8<»¡8<µ
�&!
#<%�']T`)a0b3$+<Ec)d!
#4eC'f3C+<-.)/%g!L�$+4365�' � +&\C�2;&'=)/%
!C)/%h-D3�EF#QVgihj P"R S � G�´J>m8i»)8iµb�&!
#<%�'�T
)a0,Z(#&-.kb)/'='f#4eO'f3C+<-.)/%g!C�$+l3�5�' �nm 7�#&%B�$;<'=)/%
!o)/%h-D3�EF#�VkÆ�½

��>�Ôa³mÁ9¹H>/¹�·�4�4p±¢´J>mµ�>@¸<³�³J=?>
°�8&·�¸!¿Ê>m8k³J²¢´J>mµ�Ai¿*³J=?>
4�Ai6i·�;�p,qXrà±?´SAi±pA<µJ>@»!·7¸
 .��28i¸¢»

���s���Áp·�¸Ò8�µJ·�°�±¢47·7È¢>@»�8&¸�»�¼<>B´S¶Âº?´J·�>�¿H¹H8Q¶<½�t/²?>�³SA)µJ±¢8<;�>�47·�°�·^³08k³J·�Ai¸�µBÁz¹H>�¹�·74�4�Ai°�·7³
»s>�³08&·�4�µ�8iº�A<²s³/µ�>@°�8&¸9³J·�;Bµ@½

185

�

���/� � %� # ! ���'(��H� (����	��(�� @! #��
	��

p qXr ·�µ�8Ò°�²?47³J·7ÝZ°�As»?8i4�Är»s>@Ai¸9³J·�;Â8&¸�» 8<;�³S·7A<¸�Æ�È¢´Sµ�³�Ý�Ai´0»s>@´�°�8i¸9¶9ÝVµ�A<´�³S>@»%4�8i¸?6i²�8&6i><½
ß�=?>�¸?A<¸sÝ�°�As»?8i4�;BAi°�±pAi¸?>@¸<³
A&¿Hp qXr ·�µ/²¢µJ>@»�³JA¡>�Ôs±?´S>@µSµ�¿r8i;�³J²¢8i4�»s>@µS;�´S·7±?³J·�Ai¸¢µ@Á�8i¸¢»
±?´JA<±�>@´�³S·7>mµ�8&¸�»#´S>B4�8k³S·7A<¸¢µJ=?·7±�µ�º�>B³U¹�>@>B¸!8&6<>B¸9³Sµ@½ Ç ³�;BAi¸9³S8i·7¸¢µ�8
È¢¸?·7³J>�¸a²?°#º�>@´�A&¿zµJAi´J³Sµ@Á
¸?A&³�´S>B4�8k³S>@»�¹�·^³S=�8&6<>B¸9³Sµ�A<´�´JA<47>mµBÁ?8i¸¢»¡³J=?´S>B>,µJ±�>m;�·�8&4�µJAi´J³Sµ������ÄÑ³J=¢>�8&6<>B¸9³/µ�A<´�³�Æ�Á��
ÄÑ³J=¢>�´SAi4�>�µ�A<´�³�Æz8&¸�»����� ÄÊ³J=?>�8&6<>B¸9³*·7¸#8�´JA<47>�µ�A<´�³�Æ�½ Ç ¸,³J=?·�µ�±�8&±p>B´�¹H>�¹�·�474a»s>m;�Ai°�±pA<µJ>
³J=?>�8&6<>B¸9³�µJAi´J³���,·7¸�³J=?´S>B>�»s·�µU³S·7¸�;�³�8&6<>B¸9³Sµ�µ�A<´�³0µ �������Ý2³J=?>�·�¸¢µ�³J·7³J²s³S·7A<¸¢8&4s8&6<>B¸9³�µ�A<´�³mÁ
� ��/Ý�³J=?>�µJA&¿Ñ³U¹�8&´S>�8&6<>B¸9³�µJAi´J³@Á�����5Ý¢³J=¢>�=a²?°�8&¸,8&6<>B¸9³�µJAi´J³@½ � =¢>B¸�·7³.·�µ*¸?Ai³�´J>@47>@¼k8&¸9³
³JA!»s·�µU³S·7¸¢6i²?·�µ�=¡³J=¢>�Í9·�¸¢»�A&¿�8&6<>B¸9³�¹�>�¹�·�474*�U²�µU³�²¢µJ>���2½
Ó/µ5²¢µ�²�8&4ZÁ?¿ÊAi´
>@8<;0=ÂA&¿�³S=?>@µJ>#µJAi´J³Sµ/¹�>�8iµSµ�²?°�>�8i¸�·�¸sÈ¢¸?·7³J>#¸9²¢°�ºp>B´
A&¿�¼k8&´S·�8iº?4�>@µ@Á

8&¸¢»#±�A9µJµJ·�º?47¶#µ�A<°�>�;�A<¸¢µ�³S8&¸9³0µB½sÄ � >�8&´S>H¸?A&³�;BAi¸¢µJ·�»?>B´S·7¸?65¼k8&´S·�8iº?47>mµ�A&¿¢³S=?>�µJAi´J³������Æ�½
ß�=?>B´S>�°�8Q¶�ºp>H¿Ê²?¸¢;�³S·7A<¸¢µ�º�>B³U¹�>@>B¸#³J=?>mµ�>�µJAi´J³Sµ@Ámº¢²s³�¹�>�»sA
¸?A&³�;�A<¸¢µ�·�»s>@´�8i¸a¶5¿Ê²¢¸¢;�³S·7A<¸
¹�·^³S=���¡8<µ/;BA&ÝV»sAi°�8&·�¸ÒÄÑ³J=¢>,³J>@´J°�µ/A&¿�µ�A<´�³����8i´J>�>@·^³S=?>B´5¼Q8i´J·�8&º¢47>mµ�Ai´5;BAi¸¢µ�³S8i¸9³Sµ@½ Æ�½
ß�=?>�³J>@´J°�µ�A&¿�>@8<;0=�Ai¿.³S=?>@µJ>,µ�A<´�³0µ�8&´S>�»?>�È¢¸?>m»)8iµ�²¢µJ²¢8&4Z½

p qXr 8&4�µ�A�;�Ai¸9³08&·�¸¢µ�8,È¢¸¢·^³S>
¸a²?°#º�>@´�A&¿�´SAi4�>
6i>B¸¢>B´08k³JA<´Sµ@Ái6<>B¸?>@´J·�;B8i474�¶!»s>@¸?A&³S>@»!ºa¶
V�2Á?Ai¿�µJAi´J³�Ä �!��Æ�½

ß�=?>�³J>@´J°�µ�A&¿�³J=¢>,µ�A<´�³0µ"�¾8&¸¢»#�����8i´J>�º?²?·�47³/8iµH¿ÊAi4�4�Ak¹�µ �
ÄÊ·ÑÆ Ç ¿MV�Ò·�µ�A&¿�µJAi´J³�Ä$�%��Æ�Á*³J=¢>B¸ V�2ÄZÆ�·�µ�8�³S>B´S° Ai¿�µJAi´J³&� Är¹�>�¹�·74�4�¹�´S·^³S>OV�pÁ

·7¸¢µ�³J>m8i»¡A&¿]V�2ÄZÆ�Æ.i
ÄÊ·�·�Æ Ç ¿�'�·�µ�8�³S>B´S°ÙA&¿�µ�A<´�³����8i¸¢»CV�·�µ�8�³S>B´S°ÙA&¿�µ�A<´�³���Áa³J=?>@¸ ' ��V ·�µ�8#³J>@´J°

A&¿�µ�A<´�³������½

�?Ai´�>m8i;0=)´SAi4�>
6<>B¸?>@´S8&³JA<´J-=!&Á¢³J=?>@´J>�>BÔa·�µ�³Sµ�8�±?´S>@»?·�;@8k³J>�Ä�Ø<²�8&4�·^È�;@8k³S·7A<¸�±¢´J>m»s·�;@8k³S>mÆ�Á
»s>B¸?Ai³J>m»�ºa¶)a0)(-�!�A&¿/µJAi´J³¡Ä*��?Æ�½,+�-�T�.JÄ�T ��V�?Æ�·�µ#8i¸à8&º¢º?´J>@¼a·�8&³J·�Ai¸�A&¿N)a0)(-�!<Ä�TsÆ�Á�8i¸¢»
·7¸9³J²¢·^³S·7¼<>B4�¶�°�>@8i¸¢µH³J=¢8&³/8&6<>B¸9³*T�·�µ�Ø9²¢8i47·7È¢>m»�³SA�±?4�8Q¶!³J=?>�´SAi4�> V�2½

ß�=?>�¿ÊAi´S°�²?4�8iµHAi¿�p,q]rÞ8i´J>
·�¸¢»s²¢;�³J·�¼i>B4�¶¡»?>�È¢¸?>m»)8iµH¿ÊAi4�4�Ak¹�µ �
ÄÊ·ÑÆ�·7¿�/�·�µ�8�±?´J>m»s·�;B8k³S>�µJ¶a°�ºpAi4�A&¿Hµ�A<´�³�Ä � É�0�12121�0 ��3 Æ58&¸¢»�' É�021�121�0 ' 3 8i´J>�³J>B´S°�µ
A&¿µ�A<´�³ � É�0�12121�0 ��3 Áa³J=¢>B¸4/.Ä5' É60�1212120 ' 3 ÆH·�µ�8#¿ÊAi´S°�²?4�8)Är8&¸)8k³SAi°�·�;/¿ÊA<´J°#²?4�8<Æ.iÄÊ·�·�ÆH·7¿,7�·�µ/8�¿ÊA<´J°#²?4�8?Áa³J=¢>B¸98,7Â·�µ�8#¿ÊAi´S°�²?4�8�i
ÄÊ·�·7·ÑÆH·^¿:7 É 8&¸¢»;7=<�8&´S>
¿ÊAi´S°�²?4�8iµ@Á9³J=?>@¸�Ä*7 É:> 7=<@ÆH·�µ�8#¿ÊAi´S°�²?4�8�i
ÄÊ·�¼sÆH·7¿�7�·�µ/8�¿ÊA<´J°#²?4�8#8i¸¢»LI=?/·�µ�8�¼k8&´S·�8iº?4�>
Ai¿�µJAi´J³ � Áa³S=?>B¸�ÄA@CB�D�ÆE7�·�µ�8#¿ÊAi´S°�²¢4�8(i
ÄÊ¼?Æ�·7¿F7�·�µ/8�¿ÊAi´S°�²?4�8�8&¸¢» T �
V�·�µ58�³J>@´J°'A&¿�µJAi´J³/Ó�6HG�Á?³S=?>B¸ ��P&R S 7.Á�_ P&R S 7�8i¸¢»

j P&R S 7�8&´S>
¿ÊAi´S°�²?4�8iµ@½

ß�=?>¡Ai³J=?>@´�µU³08&¸¢»?8i´S»à47A<6i·�;B8i4H;BAi¸?¸?>m;�³S·7¼<>@µ)Ä*IHÁF� 8i¸¢»KJ%Æ�8&¸¢»à³J=?>�>�Ôs·�µU³S>B¸9³J·�8&4
Ø<²�8&¸9³J·7È¢>B´0µ�8&´S>
·7¸9³J´SAs»s²¢;B>@»¡³J=?´SAi²¢6i=!³S=?>�²¢µJ²¢8&4.8&º?º?´S>B¼a·�8k³S·7A<¸�´S²?47>mµB½

���ML ��!��' C� !���� � (��+&��6�����2� &��
	 !	#��
	��

ß�=?>!4�Ai6i·�;B8i4�±?´S·7¸¢;B·7±¢47>mµ,µJ8&³J·�µUÈ�>@»�ºa¶�³J=¢>!±?´SAi±pA<µJ>@»�Ai±p>B´08k³SAi´0µ5=�8Q¼i>�ºp>B>B¸�»s·�µS;�²¢µSµ�>m»
8&¸¢»�±?´J>mµ�>@¸9³J>@»�·7¸
 .��*8&¸¢»
���s���½�N�>B´S>iÁa¹H>+�U²�µU³�4�·�µ�³�µ�A<°�>
A&¿�³J=?A9µ�>
±?´S·7¸¢;B·7±¢47>mµBÁs´S>B4�8k³S>@»
¹�·^³S=�³J=?>�8<;�³J·�Ai¸�8&¸�»�»?>BAi¸9³S·�;�°�As»?8&4¢Ai±p>B´08k³JA<´Sµ@Ám³JA�6<·7¼<>�µJAi°�>�·�¸<³S²?·7³J·�Ai¸�8&ºpAi²s³�³S=?>B°)½
�/8k³S²?´08&4�47¶<Áp¹H>�8iµSµ�²¢°�>#³J=�8k³,8&4�4�³S8&²?³JAi4�Ai6<·7>mµ�8&´S>#8kÔs·�Ai°�µ
A&¿HAi²?´�4�Ai6i·�;&Áz8i¸¢»Â³S=¢8k³�¹H>

186

�

=¢8Q¼i>H³J=¢>�´J²¢47>�Ai¿2ÛÂAs»s²�µ�:�Ai¸¢>B¸¢µ�Är·7¸�³S=?>�µ�>@¸¢µJ>�³J=¢8&³�³J=?>5µ�>B³�A&¿p³J=?>@Ai´S>B°�µ�A&¿2Ai²¢´�47A<6i·�;
·�µ
;�4�A<µJ>@»Â²¢¸¢»s>B´�ÛÂAs»s²¢µ�:�A<¸?>B¸¢µ0Æ�½ � ·^³S=�´S>@µJ±�>m;�³
³JA�³J=?>#È¢´0µU³JÝZA<´S»s>@´/;�A<°�±�A<¸?>B¸9³@Áp¹H>
=¢8Q¼i>5³J=?>�6<>B¸?>@´S8i4z±?´SAi±p>B´J³J·�>@µHA&¿�Ø9²¢8&¸9³J·7È¢>@´Sµ@½
ß�=?>
¿ÊAi´S°�8i4z±?´SAi±p>B´J³J·�>@µ�A&¿.³J=?>,8<;�³S·7A<¸¡A<±�>@´S8&³JAi´ � P"R S 8i´J>�»s>mµJ;B´J·�º�>m»�º�>@474�Ak¹��

w���������y
	
������ ���
� ������� TVb9�0�0PSTVT�[@�sPSR�dBWU[BR
��� � � � �
� ��� � � �!� � ����� �
� � � �"� �#�
��$ badBe �%� �
� � ���'&)(+*-,.�/*�021
� d@cmPSL&WUT�WU_9dBW�d@�JW�MOL�RU[@eOP0THd�RUP43kbad@eOMX�aP0�
� G WUTVPSeO\ �5��6872�.&!(+*-,.�/9:0!;/<>=@?A,/B�� P0NQPSRVY#d@c@P0LkW�M^TC3kbadBeOMO�9P���WU[�d@�SW�d@T�MXWUTVP0eX\

D |A�8�+E�|)FHG�I�	
�KJL� � � G \NM �PO � WU_9P0LQM � �
� �R�PO � �
� � �

� ·^³S=�´J>mµ�±p>@;�³,³JAÂ³S=?>�¿ÊA<´J°�8&4�±?´JA<±�>@´�³S·7>mµ�A&¿�³S=?>�»s>@Ai¸9³J·�;�Ai±p>B´08k³SAi´0µBÁ*8i¸¢»ÒA&¿�³J=¢>
´J>@4�8&³J·�Ai¸¢µJ=?·�±¢µ�º�>B³U¹�>@>B¸Â>m8i;0=)A&³S=?>B´/8i¸¢»�¹�·^³S=)³J=?>#8i;�³S·7A<¸)Ai±p>B´08k³JA<´@Ás¹H>,;�A<¸¢µJ·�»s>@´�³J=¢>
¿ÊAi4�47Ak¹�·�¸?6�8kÔs·�Ai°�µ�8&¸¢»�±?´SAaA&¿ÑÝ�´J²?4�>@µ��

w���������y
	
���TSU� V �
� ���W� V �
� � ����V �
� � � �"� �X�
�KV5��Y4� VZ�
� ���[�'Y��
� �\�
�KV5�^]�Y4]U�_V �
� � �[��]UY �
� �]��
�KV � Y4� V �
� ���W� Y �!� � ����Y �
� � � �"� �#�
D |A�8�+E�|)FHG`I<y
	
�KJL� S � G \aM �PO � WU_<P0LQM VZ�
� � �bO VC�
� �\�
�KJdc e�� MO\UM � �^� WU_9P0LfM Y �
� �\� �'Y �
� � �
�KJdc � eH� G \aM � �)g\� �hg@� ��� �@iA� �ji � WU_<P0LQM Y �)g\� �>g�� �'Y �@i@� �ji �

ÛÂAi´S>
»?>�³S8i·74�µ�;@8&¸�º�>�¿ÊA<²?¸¢»�·7¸�³S=?>,8&ºpAk¼i>
´J>B¿Ê>B´S´J>m»!±¢8i±�>@´Sµ@½

k 3 ©?ª+8 6ml74Tn,6�«po ª�« 6�8rq0ª�© ª�© :;4�§5®>s�4�¨?®Uª�§#n 4�§/«Å®�§�¨*6*© 4�p¨?®Uª�§

L ��� t �����Ku)�2� (��+& �6	�!��ZvF	 �$� (�	�	"��u�� (*�"� !��Zw (B	�(# ,�\xK� ��% (�����	��
� =?>B¸Â8�µ�>B³�A&¿�±�>@´SµJAi¸¢µ�»?>@;�·�»s>
³JA!;B´J>m8k³S>
8�;�A<°�±¢8&¸a¶iÁs¹�·7³J=ÂµJAi°�>�±?²?´S±�A9µ�>�·�¸¡°�·�¸¢»zÁ
³J=?>�;BAi°�±¢8i¸9¶¡°�²¢µ�³/ºp>�;�4�8iµSµJ·^È¢>m»�·7¸Â4�>B698&4z³S>B´S°�µ/8iµ�8i¸�8&´J³J·7È�;�·�8&4*±p>B´0µJAi¸�ÄÊ><½ 6�½¢8iµ�8i¸
8iµSµ�As;�·�8k³S·7A<¸*Ás8iµ�8#¿ÊA<²?¸¢»?8&³J·�Ai¸*Á¢8<µ�8�47·�8&º¢·74�·^³U¶�µ�As;B·7>B³U¶iÁ�½7½�½ Æ�½¢ß�=?·�µ�;�4�8iµSµJ·^È�;@8k³S·7A<¸¡·�°�±?47·�>@µ
8�¿ÊAi´S°�8&4z»s>mµJ;B´J·�±s³J·�Ai¸�A&¿*³S=?>
µ�³J´S²¢;�³J²?´S>/Ai¿*³J=?>�;�A<°�±¢8&¸a¶ÂÄr8�µ�>B³�Ai¿�±�A9µ�·7³J·�Ai¸�µ�³S=¢8k³H³J=¢>
°�>@°�ºp>B´0µ,Ai¿H³S=?>¡;BAi°�±¢8i¸9¶�¹�·�474�Aa;@;�²?±a¶?Æ,8i¸¢»�8�µJ>�³�Ai¿�¸?Ai´S°�µ,»s>mµJ;B´J·�º?·�¸?6�=?Ak¹ ³J=¢>
=?Ai4�»s>B´0µ�A&¿�>@8<;0=Ò±�A9µ�·7³J·�Ai¸Ò8&´S>�>�Ôs±p>@;�³S>@»Ì³JAÂºp>B=�8Q¼i>ÂÄÊ¹�=¢8&³�³J=?>@¶�8i´J>�A<º?47·�6i>m»�³SA�»sA¢Á
Ai´�¸?Ai³�³JA!»sA�Á?¹�=¢8k³/8i´J>
³S=?>B·�´�±pAk¹�>@´Sµ@Á2½7½�½ Æ�½�ß�=?>,µ�³J´S²¢;�³J²?´S>�A&¿�³J=?>�;BAi°�±¢8i¸9¶¡8&¸¢»¡³J=¢>
¸?Ai´S°�µ�´J>@6i²?4�8k³S·7¸¢6�·7³@Áp8&´S>,»s>@µS;�´S·�º�>m»¡·�¸)³J=¢>�µU³08k³S²s³J>mµ�A&¿�³J=¢>�;�A<°�±�8&¸a¶i½?ß�=?>#µU³08k³J²?³J>@µ
8&´S>
±¢²?º?4�·�;,8i¸¢»)8&´S>,»s>�³S>B´S°�·7¸?>m»zÁ¢8&³/47>m8iµ�³�·7¸)6<>B¸?>@´S8i42³J>B´S°�µBÁ¢º9¶�³J=?>�47>@6<8&4.;�4�8iµSµ�·7È�;B8&Ý
³J·�Ai¸ÒA&¿H³J=?>!;BAi°�±¢8i¸9¶<½*ß�=?>!µ�³S8k³S²s³J>mµ,»s>mµJ;B´J·�º�>�³S=?>�;�A<°�±¢8&¸a¶2À µ�8i·7°�µ,8i¸¢»�=?Ak¹�³S=?>B¶
¹�·74�4*ºp>,8i;0=?·�>B¼<>@»z½
Ó�¸a¶�8&´J³J·7È�;B·�8i4�±p>B´0µ�A<¸�=¢8<µzy.5�-.)�e6)�;4�6E�Z�#&-40&36%���Ec)/'=\�Är·�½ >i½s·7³�°�8Q¶�º�>
³J=¢>�µJ²?º*�U>m;�³�A&¿.Aiº?4�·^Ý
6<8k³S·7A<¸¢µ@Á?´J·�6i=9³0µBÁ�½7½�½XÆ�8&¸¢»BEF#f!
�6Ez{<5(��Ec) |,;4�6'=)�36%�ÄÊ·Z½ ><½¢·7³
;@8&¸)>�Ôs>B´0;�·�µJ>�³J=?>@·7´�´S·�6i=9³Sµ�8i¸¢»)ºp>
´J>mµ�±pAi¸¢µJ·�º?47>#¿ÊAi´
³S=?>�²?¸s¿Ê²?47È¢4�47°�>@¸<³,Ai¿�A<º?47·�6<8&³J·�Ai¸¢µ0Æ < ½ � 8Q¹�·�°�±�A9µ�>mµ/³S=?>�47>@6<8i4�;B4�8<µJµJ·7Ý
} D _9MOT�\ÑdB�SW�dBeOe^[��%b9T�WU[�TUd0Y,WU_ad�WHd5�0[m���9d@LkY,�,d0Y,�sP�TVP0P0L�dBT�dBL�d@c@P0LkW��

187

�

È�;B8&³J·�Ai¸ÒA&¿�8Â;�A<°�±¢8&¸a¶Ì8<µ,8&¸ 8i´�³S·^Èp;�·�8&4�±p>B´0µ�A<¸*Áz¿ÊA<´�µ�>m;�²?´S·7³U¶�´S>@8iµJAi¸�µ �z±p>BA<±?47>!³J=¢8&³
¹�·74�4�·�¸9³J>@´S8<;�³�¹�·7³J=�³S=?>5;BAi°�±¢8&¸a¶#°�²¢µ�³�Ía¸?Ak¹ =?Ak¹ ³J=?>@¶�µ�=?A<²?4�»�>�Ôs±�>m;�³�³S=?>5;BAi°�±¢8i¸9¶
³JA�ºp>B=�8Q¼i>#8i¸¢»�¹�=¢A�·�µ/6<Ai·�¸?6!³SA�ºp>#´S>@µJ±�A<¸¢µJ·7º?4�>�¹�=¢>B¸Â³S=?·7¸¢6<µ
6iA¡¹�´JA<¸?6¢½	�?Ai´
°�Ai´S>
»s>�³08&·�4�µ�8iº�A<²s³�³J=?·�µ�·�µJµJ²?>�µJ>B>
��69���8i¸¢»
���s���½

� >�³S=?·7¸¢Í�³S=¢8k³58�µJ·�°�·�4�8&´/;0=¢8i´S8<;�³S>B´S·7Úm8k³J·�Ai¸�Á94�>B698&4*A<´�¸?A&³mÁ�µJ=?Ai²¢4�»�ºp>�³J´08&¸¢µJ±pA<µJ>@»
³JA�¼a·�´�³S²¢8&4�A<´J698&¸?·�Ú@8&³J·�Ai¸¢µ@Á2º�>m;B8i²¢µ�><Á�8&47³J=¢Ai²?6<=Ì³S=?>B¶�>�Ôs·�µU³�8&¸¢»Ò8i;�³�·�¸ 8)¼9·�´J³J²¢8i4�>B¸sÝ
¼9·�´SAi¸?°�>B¸9³mÁ*³J=¢>B¶iÁ�»s·�´J>m;�³S47¶�Ai´#·7¸¢»?·7´S>@;�³J4�¶iÁ�·7¸9³J>@´S8<;�³�¹�·7³J=à±�>@Ai±?4�>iÁ�8&¸¢»�µJA¢Á.³J=¢>¡µS8&°�>
µ�>m;�²?´S·^³U¶�·�µSµ�²¢>@µ�8&´S>
±?´J>mµ�>@¸9³@½

L �/� t ��!�� ����)(�	� gK� ! � g�
ÃH8<µ�>m»)Ai¸)³S=?>�4�>B698&4�;BAi¸¢;B>B±s³/Ai¿�8&´J³J·7È�;�·�8&4�±�>@´SµJAi¸Â±?´S>@µJ>B¸9³S>@»Â8&ºpAk¼i><Á?·�¸'
���s���¹H>,=¢8Q¼<>
±?´JA<±�A9µ�>m»�8�°�As»s>@4iAi¿9A<´J698&¸?·�Ú@8&³J·�Ai¸¢µ�ÄÊ=a²?°�8i¸�Ai´*¼a·�´�³S²¢8&4ÑÆ�Á�³S=¢8k³.¹�>�;@8&4�47>m»A)/%�0.'�)/'=5�'=)�36%���E
�&!
#<%�'�½¢Ó/¸)·7¸¢µ�³J·7³J²?³J·�Ai¸¢8i4�8&6<>B¸9³H·�µ�8i¸�8iº¢µU³S´S8<;�³�>B¸9³J·7³U¶iÁ¢=¢8Q¼a·7¸?6�8�µU³S´J²�;�³J²¢´J>�»s>mµJ;B´J·�º�>m»
º9¶�8�µJ>�³�A&¿�´SAi4�>@µ
8&¸¢»Ì8¡µJ>�³�A&¿�¸?Ai´S°�µ5»s>BÈ¢¸?·�¸?6)¹�=¢8k³�µJ=?Ai²?4�»�ºp>�»sAi¸?>�·�¸Ì>m8i;0=�´SAi4�>
Är8!µJ>�³/Ai¿�Aiº?4�·7698k³S·7A<¸¢µ�Ai´�±p>B´S°�·�µSµJ·7A<¸¢µ�� G!³J=?>�»?>BAi¸9³S·�;,;0=�8&´08i;�³S>B´S·7Úm8k³S·7A<¸�A&¿�³S=?>�´SAi4�>mÆ�½
Ç ¸�³J=?·�µH;�Ai¸9³S>�Ôa³�´SAi4�>@µ�8i´J>�±pA<µJ·7³J·�Ai¸¢µ�·7¸�8i¸�Ai´S6<8i¸?·7Úm8k³S·7A<¸)Är>i½ 6¢½<±?´J>mµ�·�»s>@¸<³�A&¿z³J=¢>/ºpA<8&´0»
A&¿#»s·�´S>@;�³SAi´0µBÁ�8iµSµJAa;B·�8&³J><Á�µJ>@;�´S>�³08&´S¶iÁ
½7½�½XÆ�½�ß�=?>�´JA<47>mµ�Ai¿#8&¸ ·7¸¢µ�³J·7³J²?³J·�Ai¸¢8i4�8i6i>@¸<³)8&´S>
´J>@±?´J>mµ�>@¸9³J>@»Ìºa¶�8ÂµJ>�³,A&¿�±?´S>@»s·�;B8&³J>mµ � ��� V	�6.�
aÄ8V 0 �VÆ
Ai¿�µJAi´J³!Ä5� 0 ��sÆ�Á*°�>@8i¸?·7¸¢6)³J=¢8&³
´JA<47> V�·�µ�±¢8i´�³�Ai¿�³J=¢>,µU³S´J²¢;�³J²?´S>�A&¿�·7¸�µU³S·^³S²s³J·�Ai¸¢8i4�8&6<>B¸9³��0½
ß�=?A<µJ>�´JA<47>mµ�8&´S>HAs;@;�²?±?·�>@»�ºa¶�8i6i>B¸9³0µ�ÄÊ=a²?°�8&¸�8&6<>B¸9³Sµ�Ä$� ��sÆ�ÁiµJA&¿Ñ³U¹�8&´S>��Q=�8&´0»s¹H8i´J>

8&6i>@¸9³Sµ�Ä � ��?Æ�Ai´
A&³S=?>B´5·7¸�µU³S·^³S²s³J·�Ai¸¢8i4�8i6i>@¸<³0µ�Ä5� ��sÆJÆ�½ ß�=?·�µ5·�¸s¿ÊA<´J°�8k³S·7A<¸Â·�µ5>�Ôs±?´S>@µSµJ>@»
·7¸¡Ai²?´�°�As»s>@42º9¶�8#µ�>B³HAi¿*±?´J>m»s·�;B8k³S>@µ�A&¿*³S=?>/¿ÊA<´J° +�- T�.�Ä�T/��V&Æ�Ai¿.µ�A<´�³"����#Áa°�>@8i¸?·�¸?6
³J=¢8&³H8&6<>B¸9³HT#·�µ�Ø<²�8&4�·^È¢>m»�³JA#8i;�³�·7¸�´SAi4�>�Va½9ß�=¢>@µJ>/8&6<>B¸9³Sµ�°�8Q¶�;0=¢8&¸¢6i>�³J=¢´JA<²?6i=�³J·�°�>iÁ
¹�·^³S=?Ai²s³�8&Üp>m;�³J·�¸?6#³J=?>�·�»s>B¸9³S·^³U¶!Ai¿*³J=¢>
·�¸¢µ�³J·7³J²s³S·7A<¸¢8&4*8i6i>@¸<³m½sß�=?>
»?>BAi¸9³S·�;
;0=¢8&´08i;�³J>@´J·7Ý
Ú@8k³S·7A<¸!A&¿�8�´JA<47>/·7¸�8&¸!A<´J698&¸?·�Ú@8&³J·�Ai¸�·�µ�±¢8i´�³HA&¿z³J=¢>5·�»s>B¸9³S·^³U¶�A&¿z³S=?>
Ai´S6<8&¸¢·7Úm8k³J·�Ai¸�8i¸¢»
»sAa>@µ�¸?Ai³#»s>@±�>@¸¢»ÒAi¸�³J=¢>�8&6<>B¸9³�³J=¢8&³�=?A<4�»Ì³J=�8k³�´SAi4�>�·7¸�8Â±�8&´J³J·�;�²?4�8&´�°�Ai°�>@¸<³m½�ß.A
;B8&±?³J²?´S>�³J=?·�µ�·�»s>m8?Ái»s>@Ai¸9³J·�;�¸?Ai³J·�Ai¸¢µ�¹�·74�4¢ºp>/8k³J³S8<;0=?>@»#³JA�´SAi4�>@µ@Á&º?²?³�³J=?>@¶�8i´J>�8<;�³S²¢8&4�47¶
·7¸9³J>@´J±¢´J>B³J>@»%8iµ�8&±¢±?47·�>@» ³JA�³J=¢>¡=?A<4�»?>B´0µ#Ai¿5µJ²¢;0=à´SAi4�>@µ@Á�¹�=?>B¸ 8i;�³S·7¸¢6Ì·�¸ µJ²¢;0=%´JA<47>mµ
Är»s>@Ai¸9³J·�;�¸?A&³S·7A<¸¢µ�8&´S>#A<¸?47¶Â°�>m8&¸?·�¸?6&¿Ê²¢4�¹�=?>B¸Ò8&±?±¢47·�>@»�³JA)8&6<>B¸9³Sµ0Æ�½zß.A);@8&±s³S²?´S>�³S=?·�µ
¹�>�·�¸<³S´JAs»s²�;�>
³J=?>�¿ÊA<474�Ak¹�·�¸?6�8&º?º?´S>B¼a·�8k³S·7A<¸¢µ �

V �� ����� ��6 7 �\�/&)(+*-,.�/9:0
12�U��V 7
� ��� �
Y �� ����� ��6 7 �\�/&)(+*-,.�/9:0!12�U��Y 7
� ��� �

� =?>B¸,¹H>�=¢8Q¼<>�°�²?47³J·�±?4�>�8i6i>B¸9³0µz=?Ai4�»s·�¸?6/8/´JA<47><ÁB8&4�4iAi¿s³J=?>@°'ÎJ·7¸¢=?>B´S·^³0ÐH³J=?>H»s>BA<¸9³J·�;
;0=¢8&´08i;�³J>B´S·�Ú@8k³S·7A<¸¡Ai¿�³J=?>#´JA<47><½ �?A<´/·�¸¢µ�³S8&¸�;�>iÁp·7¿�³J=?>@´J>,·�µ
µ�A<°�>�Aiº?4�·7698k³S·7A<¸)8<µJµJAs;�·�8k³S>@»
³JA#8�´JA<47>#ÄÊ>i½ 6¢½a8iµSµJAa;B·�8&³J>mµ�8&´S>�A<º?47·�6i>m»�³JA�±¢8Q¶�8�¿Ê>B>QÆ�Áa8&4�4�Ai¿�·7³Sµ�=?Ai4�»s>B´0µ�¹�·�4�4pºp>/²¢¸¢»s>B´
³J=¢8&³�Aiº?4�·7698k³S·7A<¸¡8&¸�»�8i474zAi¿.³S=?>B° ¹�·74�4*=¢8Q¼<>/³SA�¿Ê²?47È¢474�·^³��<½

��� WU_9PSR�L<[@RU�,dBWUMONQPH�0[mL<�0P0�<WUT���dBL��sP�b9TVP��#WU[
�J_9dBR�d@�JWUPSRUMO�0P/RU[@eOP0T0���9[BR�TVMO���<e^MO�0MXW�Y#RUP�dBTV[mL<T I
��P�[@L9eXY�b<TVPHWU_9P�W���[��Zb9T�W���P0LkWUMO[mL<P��¢�

� â T�dBRUc@b9P��#M^L���� "!*d/RU[meOP�M^T��<MX�?PSRUPSL&W�\7RU[m� WU_9P�TVPJWH[B*MOWUT�_<[me^�<PSRUT0�<¤)P���dBL9L<[@W�dBWVWVRUMO�9biWUP
d@L�[m�<e^MOcmdBWUMO[mL�WU[/WU_<P�TVPSW�[@\pWU_<P�_<[me^�<PJRUT � Pm� c<�<�<MXRUP0�JWU[@RUT�[B\zd��0[m���9d@LkY � I d@T�d���_<[meOP I d@L9�
d@TVTVb<��P
WU_ad�W5[@L9P�[B\�MXWUT���P0�
�sPSRUTH�,d�Y�\�b9eX�aeOe�WU_9P�[@�9eOMOcQdBWUMO[@LÂ[mL��sPS_ad@eX\�[B\�WU_9P�[BWU_9PSRUT I
��MXWU_9[mbiW�£iL<[���M^L<c
��_9[/WU_ad�WHdBcmP0LkW���dBT I �sPS��d@b<TVP�MOW���[mb9e^��L<[@W��sP��s[@TVTVM^�<eOP�WU[�dBWVWVRUMO�9biWUP
RUP0TV�s[mL<TVMO�9MOeOMOWUMOP0T�\�[@R�WU_ad�W,d@�JWUM^[@L�� G \���P�\�P0PSe�WU_<P#L<P0P��Â\�[BR�WU_ad�W I ��P��iRU[m�adB�9eXYÂL<P0P��ÂWU[

188

�

Ó�¸ ·7¸¢µ�³J·7³J²?³J·�Ai¸¢8i4/8&6<>B¸9³�·�µ�8&¸ 8&6<>B¸9³�³J=¢8&³�·�¸9³J>@´S8<;�³Sµ�·�¸ µ�As;�·�>�³U¶�4�·�Íi>Â8&¸a¶ Ai³J=?>@´
8&6i>@¸9³��&·7³�;B8i¸�>@µ�³S8iº?47·�µJ=!;�Ai¸9³S´S8<;�³Sµ�A<´�A&³S=?>B´�Í9·�¸¢»�Ai¿z´J>@4�8&³J·�Ai¸¢µJ=?·�±¢µ�¹�·^³S=!A&³S=?>B´�8&6i>@¸9³Sµ@Á
·^³,;B8i¸ÌAs;@;�²?±a¶�´SAi4�>@µ
8&¸¢»�8i;�³�Ai¸Ì³J=¢8&³�´SAi4�>@µ@Á2·^³�°�8Q¶�ºp>�³J=?>�µJ²?º*�U>@;�³�A&¿�A<º?4�·7698k³J·�Ai¸�µ
Ai´�A&³S=?>B´�¸?A<´J°�8k³S·7¼<>�;BAi¸¢;B>B±s³0µBÁ�8i¸¢» °�8Q¶ ºp>)´J>mµ�±pAi¸�µ�·�º?4�>�¿ÊA<´#³S=?>Â²?¸s¿Ê²¢4^È¢4�4�°�>@¸9³!A&¿
Aiº?4�·7698k³S·7A<¸¢µ�Ai´#A&³S=?>B´#¸?Ai¸sÝ�·�»s>@8i4�µJ·^³S²¢8k³S·7A<¸¢µB½�ÃH²s³�8i¸�·7¸�µU³S·^³S²s³J·�Ai¸¢8i4H8i6i>@¸<³mÁ�ºp>B·�¸?6Ì8i¸
8&º¢µ�³J´08i;�³�>B¸9³J·7³U¶iÁp·�µ/¸?A&³
;B8&±�8&º?4�>�³JA¡8i;�³
»s·7´S>@;�³J4�¶i½2ÕaA¢Áp=?Ak¹ ;B8&¸Â·7³/¿Ê²¢4^È¢4�4�Aiº?4�·7698k³S·7A<¸¢µS×
Ç ³�8i;�³Sµ�³J=?´SAi²¢6i=Ò³J=¢>�8i6i>B¸9³0µ�³J=�8k³#As;@;�²?±a¶�³J=?>¡´JA<47>mµ,Ai¿�·^³0µ#µ�³J´S²¢;�³S²?´S>i½�ß�=?>¡8<;�³J·�Ai¸�µ
A&¿�³J=?>,8i6i>B¸9³0µH³J=¢8&³�=?Ai4�»�´JA<47>mµ�·�¸�³J=?>,µ�³J´S²¢;�³J²?´S>�A&¿�8&¸)·7¸�µU³S·^³S²s³J·�Ai¸¢8i4�8&6<>B¸9³@Á?;BAi²?¸9³/8<µ
8i;�³S·7A<¸¢µ�A&¿�³J=¢>�·7¸¢µ�³J·7³J²?³J·�Ai¸¢8i4�8&6<>B¸9³@Áa³S=?´JA<²?6i=¡´J>@±?´S>@µJ>B¸9³S8&³J·�Ai¸�°�>m;0=¢8&¸?·�µJ°�µ@Áa³J=�8k³/;B8i¸
º�>,;@8&±s³S²?´J>m»¡8<µH¿ÊAi4�47Ak¹�µ��

1 � 0 JL�4Y �/* 0
1 ��� � � � ���� ��6872�\�K�C7
� � á � �����
� � } � �
V,� � � � j�Ä�T ��V�� 0 � Æ/°�>m8&¸¢µ�³J=¢8&³5³S=?>�´SAi4�>1V �#·�µ
8!´S>B±?´S>@µJ>B¸9³08k³J·�¼i>�´SAi4�>,Ai¿HT�Áp¿ÊA<´� ½*ß�=a²¢µ@Á28i¸a¶�8&6i>@¸9³/³J=�8k³�=?Ai4�»?µ
´SAi4�>bV ��8&¸¢»Ìº?´S·7¸?69µ/·7³,8&ºpAi²s³�³S=¢8k³ � ¹�=?>B¸Ò8i;�³J·�¸?6

·7¸%³J=¢8&³�´SAi4�>iÁ�±?´SAs»s²¢;B>@µ � A<¸àºp>B=¢8i4^¿
A&¿ TÞÄr8i;�³J·�¸?6�·7¸ ´JA<47>CV��iÆ�½ � ·�µ#³J=?>ÂµS;�Ai±p>�A&¿
´J>@±?´J>mµ�>@¸9³S8k³S·7A<¸*½
Ç ³�°�²�µU³Hº�>
;�4�>@8&´S4�¶�»s>BÈ¢¸?>m»�·7¸!³J=?>
µU³S´J²¢;�³J²?´S>�Ai¿�8&¸�·�¸¢µU³S·^³S²s³J·�Ai¸�8&428&6i>@¸9³�¹�=¢8k³�8&´S>�³J=¢>
´J>@±?´J>mµ�>@¸9³S8k³S·7¼<>�´JA<47>mµ/ÄrµJ>B>/º�>@47Ak¹/Æ�8i¸¢»�³J=¢>/´S>@µJ±�>m;�³J·�¼i>5µJ;BAi±p>�A&¿*´S>B±?´S>@µJ>B¸9³S8&³J·�Ai¸*½<35¸¢47¶
³J=?>,8i6i>B¸9³0µ�³S=¢8k³�=¢Ai4�»�³S=?A<µJ>�´JA<47>mµ�;B8&¸Â8<;�³�Ai¸�º�>@=¢8&47¿�A&¿�³J=?>�·�¸¢µ�³J·7³J²s³S·7A<¸¢8&4�8i6i>@¸<³m½
ÛÂAi´S>BAk¼<>B´mÁS·7³.°#²¢µ�³.ºp>�8&4�µJA�»s>�È¢¸¢>@»�=?Ak¹�³S=?>�Aiº¢47·�6<8&³J·�Ai¸¢µ�A&¿?8&¸�·�¸¢µ�³J·7³J²s³S·7A<¸¢8&4a8&6<>B¸9³

8&´S>�³J´08&¸¢µJ°�·^³J³J>@»¡³SA�³J=?>�´JA<47>mµ�A&¿�·^³0µ�µ�³J´S²¢;�³S²?´J><Á�µ�³S8&³J·�¸?6�¹�=?A�¹�·�474.º�>,´S>@µJ±pAi¸¢µJ·7º¢47>�¿ÊA<´
¿Ê²?4^È�474�·7¸¢6�>@8i;0=�A&¿.³J=?A9µ�>�A<º?47·�6<8&³J·�Ai¸¢µ@½sß�A�>BÔa±¢´J>mµJµ�³J=¢>�³J´08&¸¢µJ°�·�µSµ�·�Ai¸¡A&¿�Aiº?4�·7698k³S·7A<¸¢µHA&¿
8&¸�Ai´S6<8i¸?·�Ú@8k³S·7A<¸�³JA�µJ±�>m;�·7È�;�´SAi4�>@µ�A&¿*·7³SµHµU³S´J²¢;�³J²?´S>�Ä�8&¸¢»�·�¸¢»s·�´J>m;�³S47¶<Ái³SA�³J=?>5=?Ai4�»s>@´Sµ�A&¿
³J=?A9µ�>�´SAi4�>@µ0Æ�Ás¹H>�;@8&¸�²¢µJ>�¿ÊAi´S°�²?4�8iµH4�·7Í<>�³J=?>
¿ÊAi4�4�Ak¹�·7¸?6�A<¸?>@µ��

V 7
� �����	�	
�� � �'V � � � \�[@R 1 d/RU[meOP�[@\2WU_<P�T�WVRUb9�SWUbiRUP�[@\z[BRUcQdBL9MO��dBWUMO[@L 9�� �

L �ML !�� � ��(����	 (�	 (B	�(# ,��x �' ,��%�(�����	��

� =?>B¸�³U¹�A�8i6i>@¸<³0µ���>@µ�³S8iº?47·�µJ=�8!;�A<¸9³J´08i;�³5º�>B³U¹�>@>B¸�>m8i;0=ÂAi³J=?>@´/³S=?>B¶Â;�A<°�°�·7³
³J=?>@°#Ý
µ�>@47¼<>@µ
³JA�8<;�³,·�¸ 8i;@;�Ai´0»?8i¸¢;�>�¹�·^³S=�¹�=¢8k³,·�µ,µ�³S8&³J>@»Ò·�¸�³J=¢8&³#;�A<¸9³J´08i;�³m½��/µJ²¢8&4�4�¶iÁ*·�¸�8
;�Ai¸9³S´S8<;�³�³J=?>#8&6i>@¸9³Sµ�·�¸a¼iAi4�¼i>m»¡8&³�³S´J·�º?²s³S>,Aiº?4�·�6<8k³S·7A<¸¢µ@Ás±�>@´J°�·�µJµJ·7A<¸¢µ@Á?±�Ak¹H>B´0µ@Áa³JA!>m8i;0=
A&³J=¢>B´mÁ98i¸¢»�>@µ�³S8iº?4�·�µJ=�³J=¢>
µS8&¸¢;�³J·�Ai¸¢µ�³J=¢8&³�µJ=?A<²?4�»!º�>�8&±?±¢47·�>@»�¹�=¢>B¸�³S=?>5±�8&´J³Sµ�¼9·�Ai4�8k³S>
¹�=¢8k³�8iµ5º�>@>B¸�¿ÊA<´J°�8i474�¶Â8&6i´S>B>m»z½ Ç ¸�³J=?·�µ�µ�>@¸¢µ�><Áp;BAi¸9³J´08i;�³Sµ58&´S>#8�µS8k¿Ê>B³U¶¡°�>m;0=¢8&¸?·�µJ°�½
ß�=¢8k³�·�µ5¹�=a¶Â±p>BA<±?47>�²¢µJ>#³J=?>@°�½ � >�µJ²?6i6<>@µ�³/³JA)²¢µJ>#³J=?>@° 8&4�µ�A�·�¸�¼a·7´J³J²�8&4�>B¸a¼a·�´JA<¸sÝ
°�>@¸9³Sµ@½

� =?>B¸�³U¹�A
8&6i>@¸9³Sµ.>@µ�³S8&º¢47·�µ�=�85;BAi¸9³J´08i;�³�ºp>�³U¹H>B>B¸#>@8<;0=�A&³S=?>B´mÁ@³J=?>@¶,°�8Q¶�8&³�³S´J·�º?²s³S>
´JA<47>mµ�³JA�>m8i;0=ÒA&³S=?>B´�ÄÊ><½ 6�½�°�8&¸¢»¢8k³JA<´J¶�8&¸¢»Ò°�8i¸¢8&6<>B´�·�¸ 8Â°�8&¸¢»?8&³J>�;BAi¸9³J´08i;�³0Æ�8i¸¢»
»s>BA<¸<³S·�;@8&4�47¶¡;0=¢8&´08i;�³J>B´S·�ÚB>5³J=?A9µ�>�´SAi4�>@µ@½�35¸?>�A&¿�³J=¢>,8&6i>@¸9³Sµ�°�8Q¶!ºp>,´J>@±?´S>@µJ>B¸9³S8&³J·�¼i>
A&¿
³J=?>#A&³J=¢>B´�8&6i>@¸9³@½ Ç ¸�³J=¢8&³
;B8<µ�><Á¢·7³5°#²¢µU³
º�>�8&4�µ�A¡»s>�È¢¸¢>@»Â·�¸Â³J=¢>�;BAi¸9³J´08i;�³�³J=?>�µJ;BAi±p>

�0[mL<TVM^�<PSR�d@L9[BWU_9PSR.MOL9T�WUMXWUb<WUMO[@Lad@e?dBcmP0LkW � Pm� c<�QWU_<P��s[QdBR���[B\p�iMXRUP0�SWU[@RUT � d@L9���J_9dBR�d@�JWUPSRUMO�0P�MXWUT
MOL&WUPJRULad@e¢T�WVRUb9�JWUb<RUP I �<PJ�aL9MOL<c5_<[�� WU_<P�[m�<e^MOcmdBWUMO[mL�[B\2WU_9MOT�L9PJ� dBcmP0LkW��,d0Y,�sPH\�b9eX�aeOeOP����kY
MXWUT���P0�
�sPSRUT0� G L�d�\�[@RVWU_<�0[m��MOL9c��adB�sPSR���P
��MOe^e�d@�9�iRUPSTVTHWU_9P5M^TVTVb<P�[@\�_9[�� WU[�T�WVRUb9�SWUbiRUP
WU_9P�TV�sPS�0MX�a��d�WUM^[@L�[@*MOL9T�WUMXWUbiWUM^[@LadBepdBcmP0LkWUT�b9TVMOL9c�d@L9[BWU_9PSR�dBcmP0LkWUT0�

� �9[@R�TVMO���9eOMO�0MXWZY,RUP�dBTV[mL<T���P�[mL9eXY#�0[mL<TVM^�<PSR��0[@L&WVR�dB�SWUT��sPSWZ��P0P0L�W���[�dBcmP0LkWUT0�

189

A&¿�´J>@±?´S>@µJ>B¸9³S8&³J·�Ai¸¡¿ÊAi´�³S=¢8k³/´SAi4�>i½?ß.A!>BÔa±¢´J>mµJµH³S=?·�µ/´J>@±?´S>@µJ>B¸9³S8&³J·�Ai¸�¸?A&³S·7A<¸)8<µJµJAs;�·�8k³S>@»
³JA!8&¸)8&6<>B¸9³�·7¸)8�´SAi4�>iÁa¹�>�·�¸9³J´SAs»s²¢;�>�8�¸?>@¹Ö8iº?º?´S>B¼a·�8&³J·�Ai¸��

�/9:0
1 á � 0 JL�4Y ��� 021 ��� � �
� ���
� �K� 7
� � á � �^��� � � } � �

ÕaAi°�>�³S·7°�>mµ�¹�>�°�8Q¶!¹�8&¸9³�³SA!µJ8Q¶�³S=¢8k³
8&¸Â8&6<>B¸9³MI�·�µ�´J>@±?´J>mµ�>@¸9³S8k³S·7¼<>�A&¿�8&¸?Ai³J=?>@´
8&6i>@¸9³HK2Á<¿ÊA<´�>@¼i>B´S¶9³J=?·�¸?6�Á<·�¸�³J=¢>
µJ>B¸¢µJ>�³S=¢8k³mÁ<>@¼i>@´J¶9³J=¢·7¸?61I�»sAa>mµ�·�µ�»?Ai¸?>5Ai¸!ºp>B=¢8i4^¿.A&¿
Kp½?ß.A�>�Ôs±?´S>@µSµ�³J=?·�µ�µJ·^³S²¢8k³S·7A<¸¡¹H>�¹�·�474z²¢µJ>�³J=¢>�¿ÊAi4�47Ak¹�·�¸?6�8&º?º?´S>B¼a·�8k³S·7A<¸��

�/9:0
1 á � 0 JL�4Y ��� 021 ����� �
� ���
� �K� 7
� � á � ����� � � } � �

�/µJ·7¸?6���Ä8I 0 K?Æ�³JA�»s>@¸?A&³S>�ÄÑ³J=¢>�;BAi¸9³J>@¸9³�Ai¿SÆH8�;�Ai¸9³S´S8<;�³�ºp>�³U¹H>B>@¸�8i6i>@¸<³0µUI)8i¸¢»CKpÁ¹�>!°�8Q¶ÒµJ8Q¶�³J=¢8&³�8�;BAi¸9³J´08i;�³���Ä8I 0 K?Æ,;@8&¸�ºp>¡8)¿ÊA<´J°#²?4�8�µ�·�°�·74�8&´�³JAÂ³S=?>!¿ÊA<474�Ak¹�·�¸?6Ai¸?> �
&)(+*-,.�/9:021 � � � &)(+*-,.����0
1 � � � 	�
�
��������
��������������������
��! #"$��%
��
Y 7
� �>g�� á � V 7
� �>g@� } ��&'&'& ()�*���%
���+,+�-. ��� /+�
0�����1# �
��2���3��� 1 á
Y � � �jiA� á � V � � �.i@� } �4&'&#& ()�*���.
��2+,+�-. 5�* /+�
0�����1# �
��2���6��� 1 }9:0
1 á 0 JL�4Y ��� 0
1 ��� � á � ��&'&#&879+:�;.�,�����*�0;<�:�����.
� �
��2���3��� 1 á��021 } 02JL�4Y �/9r0
1 � ��= á � ��&'&'&>79+:�;.�,�����*�0;<�:�����.
� �
��2���3��� 1 }� 7
� �>g � á ��V?� � �ji5@ á A ���9B5�C
��2���< ��D�/�'� �E"/ �
��2���
�C7
� �>g�]GF á �'V 7
� �>g@c á 79 ��<+�
��2���>
��IH#�����E �
��2���.�J��� VZ7
� �>g'F á&'&�&
ß�=?>�¿ÊAi´S°�8&4�·7Úm8k³S·7A<¸�A&¿?;�A<¸¢»s·7³J·�Ai¸¢8i4iAiº¢47·�6<8&³J·�Ai¸¢µzA<´�Ai¿s³J=?>HµJ8i¸¢;�³S·7A<¸¢µz´S>@µJ²?4^³08&¸9³*¿Ê´SAi°

¼9·�Ai4�8k³S·7A<¸¢µ�A&¿�¸?A<´J°�µ�·�µ�8#;�A<°�±¢47>BÔ!·�µSµ�²¢>
8i¸¢»!¹�·�4742¸?Ai³Hºp>�8i»?»?´J>mµJµJ>@»�·7³�·7¸�³J=?·�µH±¢8&±p>B´
ÄrµJ>B>iÁ¢>i½ 6¢½�
 ���8&ºpAi²?³/»s¶<8<»s·�;
4�Ai6<·�;@µH8i¸¢»�;�Ai¸9³S´S8i´J¶9ÝZ³JA&ÝV»s²s³S·7>mµSÆ�½
Ó�¸)>�Ô?8&°�±?4�>�A&¿�8�;�Ai¸9³S´S8<;�³�º�>B³U¹�>@>B¸ T!8&¸�»LK��
�X�/* �*M � � N �. ��CO0 $P��'QR � N �% ��CO��SPE�T#R
Y �!� � á � � Y �
� � á � � V �h� � } = �
�/*�021 � � 0 J � Y � M 021 ��� �#� � �/*�0
1 � �z0
JL�4Y � M 0
1 ��� �d�

Ç ¸¡³S=?·�µ�;�A<¸<³S´S8<;�³mÁa³J=?>�Ø9²¢8i47·7È�;@8k³J·�Ai¸�µ�Ai¿�V ��8i¸¢»LV���8&´S>�8<µJµJ·�6i¸?>m»!³SA T¡8&¸¢»6KQÁ¢´J>mµ�±p>@;�Ý
³J·�¼i>B4�¶i½ Ç ³#·�µ,6<·7¼<>B¸Ò±�>@´J°�·�µJµJ·�Ai¸Ò³JA T�³SA�8i;�³�Ai¸�ºp>B=¢8i4^¿�Ai¿)K#¿ÊAi´!U 8&¸¢»V��½�Ó�6i>@¸9³�K
º�>m;�Ai°�>mµ�²?¸¢»s>@´�Aiº?4�·�6<8k³S·7A<¸XWÂ½
Ó�¸?Ai³J=?>@´
>BÔ?8&°�±?4�>#·�µ�8¡;BAi¸9³J´08i;�³@Áp¹�=?>B´S>�8i6i>@¸<³ TÂ8i;@;�>B±?³Sµ5³JA�=?Ai4�»Ì´JA<47>bV!·7¸Ì³J=¢>

Ai´S6<8&¸¢·7Úm8k³J·�Ai¸ �SÁ¢·�µ��
�X�/* � ; � � N �. ��CO0 $PE��R �
VC�
� ��� � Y��
� �@� � V �/� �����	�
�� =
���
� ��]U����VC�
� �'Y

Ç ¸�³S=?·�µ�;BAi¸9³J´08i;�³@ÁzµJ±�>m;�·7È�;�Aiº?4�·7698k³S·7A<¸¢µ58i¸¢»Ì±�>@´J°�·�µJµJ·7A<¸¢µ�8&´S>#8&³�³J´S·�º?²s³J>m»�³SAÂ8&6i>@¸9³ T
¹�=?>B¸�8<;�³S·7¸?6�·7¸�´SAi4�> Va½zß�=?>@µJ>�µJ±�>m;�·7È�;�Aiº¢47·�6<8&³J·�Ai¸¢µ58&¸¢»)±p>B´S°�·�µSµ�·�Ai¸�µ�¹�·74�4�º�>�8i»?»s>m»
³JA�³J=¢>,»s>BA<¸<³S·�;�;0=¢8i´S8<;�³S>B´S·7Úm8k³J·�Ai¸�A&¿�´JA<47>JV�Ä�»s>�È�¸?>@»�·�¸¡³S=?>�Ai´S6<8i¸?·�Ú@8k³S·7A<¸*À µHµ�³J´S²¢;�³J²?´S>
·7¸¢»?>B±p>B¸¢»s>@¸9³J4�¶�Ai¿�8&¸a¶�8i6i>@¸<³�ÆH¹�=?·�;0=�¹�·74�4�ºp>�·�¸?=?>@´J·7³J>m»)ºa¶�8i6i>B¸9³�T�ºp>@;B8i²¢µJ>�=?>�¹�·�474
º�>m;�Ai°�>�=?A<4�»?>B´�A&¿]Va½�Õs8&¸�;�³J·�Ai¸�µ�¿ÊAi´�²?¸?¿Ê²?4^È�474�>@»�Aiº¢47·�6<8&³J·�Ai¸¢µ�8i´J>�8&4�µ�A�µ�³S8&³J>@»*½

L �[Z !=� &�� �� ,� 	!x 	 �� H� 	 (���"! ���	(�����\ (*�"� !���	

Ó�µ�Ai¿Ñ³U¹H8i´J>�µJ¶aµ�³J>@° ·�µ�±¢8i´�³�Ai¿.³S=?>,Ai´S6<8i¸?·�Ú@8k³S·7A<¸�¹�=?>@´J>�·7³/·�µ�²¢µJ>@»z½�ÛÂAi´S>BAk¼<>B´mÁ9°�8i¸9¶
µ�Ai¿Ñ³U¹H8i´J>!µJ¶sµU³S>B°�µ�;@8&¸�ºp>�¼a·7>@¹�>m»zÁ*³S=?>B°�µJ>B4�¼i>mµBÁ�8iµ�A<´J698&¸?·�Ú@8&³J·�Ai¸¢8i4�µ�¶sµ�³J>@°�µ@Á�¹�=?>B´S>

190

�

³J=?>�»s·7Üp>@´J>@¸9³�;BAi°�±pAi¸?>@¸<³0µ�8&´S>5µJ>B>B¸�8iµ�8&²?³JAi¸¢Ai°�Ai²¢µ�>B¸9³S·^³S·7>mµBÁs·�¸9³J>B´08i;�³J·�¸?6�¹�·^³S=¡>m8i;0=
A&³J=¢>B´mÁ�;�A<474�8&ºpAi´08k³S·7¸¢6�³JAk¹�8&´0»�µJ¶sµU³S>B°)À µ58i·7°�µ@½�ß�=?·�µ/¼a·�>B¹�µJ²?6i6<>@µ�³Sµ�³S=¢8k³5³J=?>�;�A<°�±�AiÝ
¸?>B¸9³Sµ�Ai¿�8);BAi°�±?²s³S>B´,µJ¶aµ�³J>@° °�²�µU³mÁ�µ�A<°�>B=?Ak¹�Á2ºp>�·7¸9³J>@6i´08k³S>@»Ì·7¸Ì³J=?>�A<´J698&¸?·�Ú@8&³J·�Ai¸
µU³S´J²¢;�³J²?´S>i½
ÕaAi°�>�³08iµJÍaµ/°�8Q¶�ºp>#»?Ai¸?>#>B·7³J=?>@´5ºa¶)8!=a²?°�8&¸�8i6i>@¸<³5Ai´/ºa¶)8�µJA&¿Ñ³U¹�8&´S>,µ�¶sµ�³J>@°�½

Ó�¸¢»)·7³�°�8Q¶�ºp>�·7´S´J>@47>@¼k8&¸9³�¿ÊAi´�³S=?A<µJ>�¹�=?A�·7¸9³S>B´08i;�³�¹�·7³J=�³S=¢8k³5µJ¶sµU³S>B°Ù·7¿�³J=?A9µ�>�³08iµJÍsµ
8&´S>�»sAi¸?>Ìºa¶%=a²?°�8&¸ÞA<´�µJA&¿Ñ³U¹�8&´S>�8&6i>@¸9³Sµ�Är>i½ 6 ³JAàº?²?¶Þ8Ò³J·�;0Íi>B³!³JA%8�°�8i;0=?·�¸?>�A<´
³JA�8&¸�=a²?°�8&¸Ò>B°�±?4�Ak¶i>@>2i2³SA)µJ²?º?°�·7³#8);�A<¸s¿Ê>B´S>B¸¢;B>�±¢8&±p>B´�³SAÂ8Â;�¶aº�>@´,;0=¢8&·�´�Ai´�³SAÂ8
=9²¢°�8i¸#;0=¢8i·7´�Æ�½QÓ/;@;�A<´S»s·�¸?6�³SA/³S=?·�µBÁQ¹H>�°�8Q¶�;�A<¸¢µ�·�»s>@´*³J=�8k³�µ�Ai¿Ñ³U¹H8i´J>�;BAi°�±pAi¸?>@¸<³0µ�°�8Q¶
±?4�8Q¶�´SAi4�>@µ�·�¸Ì8i¸�Ai´S6<8i¸?·�Ú@8k³S·7A<¸Â8iµ/8i¸a¶¡=a²?°�8&¸Ì8&6i>@¸9³@Á28&¸¢»Âºp>,³S=?>B°�µJ>B4�¼i>mµ5;B4�8<µJµJ·^È�>@»
8iµ�8&6i>@¸9³Sµ��k½�Ã�¶�»sA<·7¸¢6�³J=�8k³�·^³�¹�·74�4�º�>);�4�8&´S·7È¢>@»Ò¹�=¢8&³#³S=?>)µ�Ai¿Ñ³U¹H8i´J>�;BAi°�±pAi¸?>@¸<³�·�µ
>�Ôs±�>m;�³S>@»%³JA »sA�ÄÊ³J=?´SAi²¢6i= ´JA<47>Â;0=¢8i´S8<;�³S>B´S·7Úm8k³J·�Ai¸��.·7¿,8�µJA&¿Ñ³U¹�8&´S>Â8&6<>B¸9³�Aa;@;�²?±¢·7>mµ�8
´JA<47><Á¢·7³�µJ=?Ai²¢4�»Âºp>B=�8Q¼i>#8<µ/»s>mµJ;B´J·�ºp>@»Â·�¸�³S=¢8k³
´JA<47>QÆ�½2ÛÂAi´S>BAk¼<>B´mÁ?¹�=?>B¸�·^³
¿r8&·�4�µ5·7³
¹�·�474
º�>�±pA<µSµ�·�º?4�>
³JA�·�»s>B¸9³J·7¿Ê¶�¹�=¢A�¹�·�4�4*º�>�´S>@µJ±pAi¸¢µJ·7º¢47>
¿ÊAi´�³S=¢8k³�¿r8i·74�²?´S>i½ � >�³Sµ/»s·�µS;�²�µJµH³S=?·�µ
´J>mµ�±pAi¸¢µJ·�º?·74�·7³U¶à·�µJµJ²?>iÁ�³J´S¶9·�¸?6Ò³SA ²?¸¢»s>@´Sµ�³S8i¸¢» ¹�=¢8k³�8&´S>¡³S=?>�»s·7Ü2>B´S>B¸¢;B>@µ!ºp>�³U¹H>B>@¸Þ8
µ�Ai¿Ñ³U¹H8i´J>�8&6<>B¸9³�8&¸¢»�8�=9²¢°�8i¸Â8&6i>@¸9³@½
Ó/µ�¹H>�µJ8i·�»#ºp>�¿ÊAi´S>iÁi¹�>�;@8&¸?¸?Ai³�8k³J³J´S·7º?²?³J>�´S>@µJ±�A<¸¢µ�·�º?·�47·7³J·�>@µ�³JA,8�;�A<°�±¢²s³J>@´�µ�¶sµ�³J>@°�½

ß�=?>B´S>�°�²¢µ�³�8&4�¹H8Q¶sµ.º�>�µJAi°�>�±p>B´0µ�A<¸�Är=9²¢°�8i¸�Ai´�8&´J³J·7È�;B·�8i4�Æ.´S>@µJ±�A<¸¢µ�·�º?4�>�¿ÊA<´�·^³m½ � =?>@¸
Ç ·7¸9³J>@´S8<;�³/¹�·7³J=Ì8&¸�Ó�ß�Û�°�8i;0=¢·7¸?>#8&¸¢»ÂµJAi°�>�³S=?·�¸?6�6<A9>mµ�¹�´SAi¸?6�Á Ç ;�A<°�±¢4�8i·7¸)³SA!³J=¢>
º¢8&¸?ÍÒ´S>@µJ±�A<¸¢µJ·7º?4�>!¿ÊA<´�·^³m½�Ó/¸?A&³S=?>B´�>BÔs8i°�±?47> �.¹�=¢>B¸ Ç ·7¸9³J>@´S8<;�³�¹�·^³S=%8�;�¶aº�>@´�;0=�8&·�´
³J´S¶9·�¸?6�³SA¡µJ²?º?°�·7³�8�±¢8&±p>B´/³JA¡8¡;�A<¸s¿Ê>B´S>B¸¢;B>iÁp8&¸¢» Ç »?Ai¸*À ³
µJ²¢;B;B>B>m»zÁ Ç ³S´J¶�³SA¡;�A<¸9³S8i;�³
³J=?>�°�>B°#º�>@´�A&¿.³J=?>�A<´J698&¸?·�ÚB·�¸?6�;�A<°�°�·7³�³S>B>�´J>mµ�±pAi¸�µ�·�º?4�>5¿ÊA<´�·^³m½

� >Â°�8Q¶ ·�»s>B¸9³S·^¿Ê¶ »s·^Ü2>B´S>B¸9³!±p>B´0µ�A<¸¢µ#³J=¢8&³!°�8Q¶ º�>Â´S>@µJ±pAi¸¢µJ·7º¢47>�¿ÊAi´!8�µJA&¿Ñ³U¹�8&´S>
¿r8&·�47²?´S>��
� '/7(# e2#�� #&EF3lZ(#&- 3 ?M'/7(#�0<3 ?4' m ��-D#�G�·7¿p³J=?>/µJA&¿Ñ³U¹�8&´S>�¿r8&·�4�µ�ºp>@;@8&²¢µJ>�·7³�·�µ�¸¢A&³�¹H>B4�4¢»sAi¸¢>
ÄrµJAi°�>
³J>m;0=?¸?·�;B8&4�Ai´�;�A<¸¢;�>@±s³J²¢8i4*±?´SAiº?4�>B°!Æ�½

� '/7(#O5g0&#&-o3@? '87�#O0&3@?4' m �6-D# G�·^¿�=?>�»?A9>mµ�¸?A&³�¿ÊAi4�47Ak¹¾³J=?>!²�µ�>�·�¸¢µ�³J´S²¢;�³S·7A<¸¢µ�A&¿�³J=¢>
µ�Ai¿Ñ³U¹H8i´J><½

� '/7(# ;l3�k�Z(�6%�\ m 7(#<-D#J'87�#�0&3@?4' m �6-l#J)a0�5g0<#4e,G�·7¿2³J=?>@´J>/·�µ�¸¢A�º¢8i»�²¢µJ>iÁ&³J=?>/;BAi°�±¢8i¸9¶
³J=¢8&³!Ak¹�¸¢µ�³S=?>�µ�Ai¿Ñ³U¹H8i´J>)8&¸�»%±¢´JAk¼a·�»s>@µ�³S=?>�µ�>@´J¼a·�;�><Á�°�²¢µ�³!º�>Â´S>@µJ±pAi¸¢µJ·7º¢47>)¿ÊA<´
8&¸a¶�»?8i°�8&6i>�;B8i²¢µJ>@»�i9³J=¢>,;�Ai°�±¢8i¸a¶�°�8Q¶!³J´08&¸¢µJ°�·^³�³J=�8k³�´J>mµ�±pAi¸�µ�·�º?·�47·7³U¶�³JA�Ai³J=?>@´
8&6<>B¸9³Sµ��B³S=?>�º?²?·�4�»?>B´�A&¿?³S=?>�µ�Ai¿Ñ³U¹H8i´J>�Ai´.³J=?>�8&6<>B¸9³.Ai¿?³J=¢>�;BAi°�±¢8i¸9¶
³S=¢8k³�°�8&·�¸<³08&·�¸
³J=?>,µJA&¿Ñ³U¹�8&´S>i½

N�Ak¹ ;@8&¸)¹H>
°�8iÍi>�µ�²¢´J>
³J=�8k³�·7³�·�µ�±pA<µSµ�·�º?4�>�³JA�³J´08i;B>�´J>mµ�±pAi¸¢µJ·�º?·74�·7³J·�>@µH¿Ê´SAi° µJA&¿Ñ³U¹�8&´S>
8&6i>@¸9³Sµ�³JA
±�>@´SµJAi¸¢µ0× ��·7´0µU³�A&¿p8&4�4�Ák8/µJA&¿Ñ³U¹�8&´S>�8i6i>@¸<³�°�²¢µ�³�8&4�¹H8Q¶sµ�8<;�³�8iµ.´J>@±?´S>@µJ>B¸9³S8&³J·�¼i>
A&¿�µJAi°�>
A&³S=?>B´�8&6<>B¸9³�ÄÑ³J=¢>�·7¸¢µ�³J·7³J²?³J·�Ai¸¢8i4*8&6i>@¸9³HA<´�µJAi°�>
A&³S=?>B´�8&6<>B¸9³�°�>@°�ºp>B´�Ai¿�³J=¢>
·7¸¢µ�³J·7³J²?³J·�Ai¸¢8i4.8&6<>B¸9³0Æ�½¢ß.A!;B8&±?³J²?´S>�³J=¢8&³@Á�¹�>,°#²¢µ�³/µU³08k³J><Á¢·�¸)³J=?>�ÎJ;�A<¸9³J´08i;�³0Ð�ºp>�³U¹H>B>@¸
³J=?>�Ai´S6<8i¸?·7Úm8k³S·7A<¸)8i¸¢»)³S=?>#µJA&¿Ñ³U¹�8&´S>�8&6<>B¸9³�³S=¢8k³�8k³�³S´J·�º?²s³S>@µ/³J=?>�´SAi4�>,·^³�±?4�8Q¶sµ�·�¸�³J=¢>
Ai´S6<8&¸¢·7Úm8k³J·�Ai¸�Á.³S=¢8k³¡·^³�8i47¹�8Q¶sµ�8i;�³�8<µ�´J>@±?´S>@µJ>B¸9³S8&³J·�¼i>i½�Õs>@;�A<¸¢»s4�¶iÁ�³S=?>B´S>Â°�²�µU³!>BÔa·�µ�³
ÄÑ¿ÊAi´S°�8&4�Ai´�·�¸s¿ÊA<´J°�8&4ÑÆ�;BAi¸9³J´08i;�³Sµ�ºp>�³U¹H>B>@¸�³J=?>5±�>@´SµJAi¸¢µ�·7¸a¼<Ai4�¼i>@»��i8,;�A<¸9³J´08i;�³�ºp>�³U¹H>B>@¸
³J=?>�;�A<°�±¢8&¸a¶�8&¸¢»,³J=?>�µJA&¿Ñ³U¹�8&´S>�»s>@¼i>B4�Ai±p>B´�ÄÑ³SA
8<µJµJ²?´S>�°�8&·�¸9³J>@¸¢8&¸¢;B>�Ai¿?³J=¢>HµJA&¿Ñ³U¹�8&´S>mÆ�Á
8�;BAi¸9³J´08i;�³
ºp>�³U¹H>B>@¸�³S=?>�µ�Ai¿Ñ³U¹H8i´J>�²¢µJ>B´�8&¸�»�³S=?>!;�A<°�±�8&¸a¶ ÄrµJ>@;B²?´J·�¸?6)²¢µJ>B´mÀ µ
´S·76<=9³Sµ@Á
·7¸)Ai¸¢>�µJ·�»s>2i¢µJ>@;B²?´S·7¸?6#³J=¢>,;�Ai°�±¢8i¸a¶�8&698&·�¸¢µU³�º¢8<»¡²�µ�><ÁsAi¸¡³J=?>�Ai³J=?>@´�µ�·�»s>mÆ�½
� � \��0[@b<RUTVP�L<[@W/d@eOe�TV[@\7WZ��d�RUP,�<RU[mcBR�d@��T�TV_<[mb9e^���sP��0e^d@TVTVMX�aP0�)d@T/d@c@P0LkW�� � L<eXY�WU_9[mTVP5RUP0L<�
�<PSRUMOL<c�TVPSRUN&MO�0P0T�WU_ad�W��S[@RVRUP0TV�s[@La�#WU[�TV[@��PHRU[meOPm�

191

���

L ��� t � ����	 � � !����� ,&��
� >�³0µ�´S>�³S²?´J¸�³SA,Ai²?´�·7¸?·7³J·�8&4pµU³08k³S>B°�>B¸9³��<±�>@Ai±?4�>�³S´J²¢µ�³�8�µJA&¿Ñ³U¹�8&´S>�µ�¶sµ�³J>B° ·7¿2·7³�»sAa>mµ�¸?Ai³
¿r8&·�4?Ai´mÁk¹�=?>B¸�·7³�»sAa>@µ@Á&·7¿z·^³�·�µ�±pA<µSµ�·�º?4�>�³JA,»s>B³J>B´S°�·7¸¢>�¹�=?A�·�µ�´J>mµ�±pAi¸¢µJ·�º?47>H¿ÊA<´�³J=¢8&³�¿r8&·�4^Ý
²?´J>#ÄÊ·�¸�Ai´0»s>@´�³JA,´S>B±�8&·�´�8&¸a¶�»?8&°�8i6i>�;B8i²¢µJ>@»¢Æ�½9Ã�8iµJ>@»�A<¸�³J=?·�µ�¼i>B´S¶�´S>@µ�³J´S·�;�³J>m»�¸?A&³S·7A<¸
A&¿�³J´S²¢µ�³@Á�¹�>¡±?´SAi±pA<µJ>�³J=?>�;�A<¸¢;�>@±s³#Ai¿N'�-.5g0.'=\)/%�0.'=)/'�5�'=)�36% �6EM�&!
#<%�' ��8&¸ ·�¸¢µ�³J·7³J²s³S·7A<¸¢8&4
8&6i>@¸9³H·�µ�³J´S²¢µU³U¶�¹�·^³S=¡´S>@µJ±�>m;�³H³JA�·7³Sµ�µJA&¿Ñ³U¹�8&´S>5;�A<°�±�A<¸?>B¸9³SµH·7¿.·7³�·�µ�±pA<µSµ�·�º?4�>/³SA�»s>�³S>B´JÝ
°�·�¸?>�³S=?>�±p>B´0µ�A<¸¢µ�Är=9²¢°�8i¸�Ai´�8i´�³S·^Èp;�·�8&4ÑÆ�´J>mµ�±pAi¸¢µJ·�º?47>�¿ÊA<´�³J=¢>/8i;�³J·�Ai¸¢µ�Ai¿2³J=?>/µJA&¿Ñ³U¹�8&´S>
;�Ai°�±pAi¸?>@¸9³Sµ�³S=¢8k³�±¢4�8Q¶Ì´JA<47>mµ�·7¸�·7³Sµ,µ�³J´S²¢;�³J²?´S>i½ � >!¹�·�474�¸?Ak¹ ³J´S¶�³JA)¿ÊA<´J°�8i47·�ÚB>�³S=?·�µ
;�Ai¸�;�>B±?³�·�¸�³J=?>�4�Ai6<·�;i½ �

� >�¹�·�474�µ�³S8i´�³�ºa¶�»s>�È¢¸¢·7¸?6)¹�=¢8&³
¹H>�°�>@8&¸Ìºa¶ -D#.0=Z(36%(04)�+&)/Ec)/'=\k½ � >�¹�·74�4�;�A<¸¢µ�·�»s>@´
ÄÊ·�¸!8�¼i>B´S¶�µJ·7°�±?4�·�µU³S·�;�¹�8Q¶?Æ.Ai¸?4�¶�´S>@µJ±�A<¸¢µJ·7º?·�4�·^³U¶�¿ÊA<´�8i;�³J·�Ai¸�·�¸�8�´SAi4�>,Ä5� ��� j�Ä8I ��V 0 7pÆ°�>m8&¸¢µ�ÎDI�8i;�³J·�¸?6�·7¸)´SAi4�>QV�·�µ�´S>@µJ±pAi¸¢µJ·7º¢47>
¿ÊAi´�7pÐ9Æ �

� ��� j�Ä8I ��V 0 72Æ	��
�� � B R S 7
Ç ¿
¹H>�;�A<°�º?·�¸?>)³S=?·�µ!´J>mµ�±pAi¸¢µJ·�º?·74�·7³U¶%;�A<¸¢;�>@±s³�¹�·7³J= ³S=?>Â´J>@±?´S>@µJ>B¸9³S8&³J·�Ai¸ ;�Ai¸�;�>B±?³

±?´J>mµ�>@¸9³J>@»¡ºp>�¿ÊAi´S>iÁs¹H>,;B8i¸�³S´S8<;�>�´S>@µJ±�A<¸¢µ�·�º?·�47·7³J·�>@µH¿ÊA<´�8i;�³J·�Ai¸)8&¸¢»¡·7¸?¿Ê>B´��
� B R S 7 > Ä�I ��V&Æ � � � j�Ä�K ��V � 0 72Æ � � ��� j�Ä�K/��V � 0 7pÆ

� >,;@8&¸�¸?Ak¹ »s>BÈ¢¸?>,»s·7Ü2>B´S>B¸9³�47>@¼i>@4�µ�Ai¿�³J´S²¢µ�³��
� � � to� w � 0<3 ?4' m ��-D# �&!
#<%�',)/%B� -D3�EF#1)a0 '=-.5g0.'�\M?<3�- 0<3�k # �$;<'=)�36%��

� � � � ��Ä � T �2V 0 72Æ���
�� � ? P&R S 7 ������� S É Ä*� ��� j�Ä8K ��V � 0 72Æ > 8�Ä5� ��� � ��2Ä�KsÆJÆ�Æ
¹�=?>B´S> � � � � ��zÄ8K?Æ�·�µ�8�±?´S>@»?·�;@8k³J>�°�>@8i¸?·�¸?6�³J=¢8&³�K!·�µ/8�µJA&¿Ñ³U¹�8&´S>�8&6i>@¸9³@½

� � � t w � 0&3 ?4' m ��-D#b�"!$#&%('U)a0 '�-.5g0.'=\M?<36- 0&36k #A�2;&'�)�3�%��
� � � �#Ä � T 0 72Æ���
�� @ S ÄJÄ5+�- TH.JÄ � T/�2VkÆ > j S 72Æ�� � ��� ��� Ä � T$��V 0 72Æ�Æ� ��� w ��%)/%�0.'=)/'�5�'=)�36% �6EW�"!$#&%('U)a0 '�-.5g0.'=*?<3�- 0&36k #b�$;<'=)�36%��
� ��� Ä � 0 72Æ���
�� @ ? P ÄJÄ � � � � ��zÄ � TsÆ >!
 K
�VsÄ � T 0 �UÆ�Æ�� � ��� ��� Ä � T 0 72Æ�Æ
¹�=?>B´S>
 K
�VsÄ�T 0 �VÆ"��
�� � S Ä � ��� V	�6.�
aÄ�V 0 �UÆ > +�-�T�.JÄ�T ��V&Æ�Æ
8&¸�»�� � � V	�6.�
aÄ8V 0 �UÆ°�>@8&¸�µH³J=¢8&³�V#·�µ�8�´JA<47>�A&¿�³J=¢>,µU³S´J²¢;�³J²?´S>�A&¿��S½

3Þ§56%$ 4To'&>8 6

� >�8i´J>�6iA<·7¸¢65³SA�µ�¶a¸9³J=?>mµ�·�ÚB>�³S=?>�·�¸s¿ÊAi´S°�8k³J·�Ai¸�±?´S>@µJ>B¸9³J>m»#8iº�Ak¼<>iÁ&µJ±�>m;�·7¿Ê¶a·7¸?6�³S=?>�·�¸¢µU³S·^Ý
³J²s³S·7A<¸¢8&4�8&6<>B¸9³�A&¿+��·�6¢½ �iÁs³S=?>#8i6i>B¸9³0µ�³J=�8k³5µJ²?±?±pAi´J³5·7³Sµ5µU³S´J²¢;�³J²?´S>�8i¸¢»)³J=¢>�;�A<¸<³S´S8<;�³0µ
(â �9RUT�W�dBLa��Lad�WUb<R�d@e*d�WVWUP0���<W���[@b9e^�!�sP5TVMO���9eXY�WU[�b9TVP�WU_9P/RUP0�<RUPSTVP0LkW�dBWUMO[mL�L9[BWUM^[@L!�<RUPS�
TVP0LkWUP����sPS\�[@RUP�d@T5d#��d�Y¡[@\�WVR�dBL9TV��MOTVTVMO[mLÂ[B\�RUP0TV�s[mL<TVM^�<MOe^MXWUMOP0T0�*).b<W�WU_9PSRUP�MOT5d��<RU[@�9eOP0� 0
RUP0�<RUPSTVP0LkW�dBWUMO[mL�MOT�L9[BW�WVR�d@L9TVMXWUMONQPm�i¤)P��0d@L9L<[@W�TUd0Y�WU_adBW 0
�/9:0!12� 02JL�4Y ����0
1 � �+ � � ��� 021 � �z02JL�4Y �-,#0
1 � �+ �U� �/9r0
12� 0 J � Y �-, 021 ���+ �

.�PS�<RUP0TVP0LkW�d�WUM^[@L�M^T�d�RUPSe7d�WUMO[mL9TV_<MO�Ì�sPSW���P0PSLÌdBcmP0LkWUT0� D _<PSRUP���MOcm_kW5PS iMOT�W�d�RUP0e^dBWUMO[mL<TV_9MO�
�sPSWZ��P0P0L 9 d@La� � ��_<PSRUPHMXW�MOT�T�W�d�WUP�� �/9r021
� 0 JL�4Y ��� 021 � �/+ �10 WU_<PSRUP���M^c@_kW�PS iMXW�dBL9[@WU_<PSR
RUP0e^dBWUMO[mL<TV_9MO���sPSWZ��P0P0L � dBLa� , ��_9PSRUP/MXW�MOTHT�W�d�WUP�� ���:0-1 � �C0 JL�4Y �-, 0-1 � �+ � �2)�biW�\7RU[m�
WU_9[@TVP�W���[�RUP0e^dBWUMO[mL<TV_9MO�9T���PH��dBL9L<[@W�MOLi\�PSR�WU_9dBW�WU_9PSRUP�MOT�d�RUP0e^dBWUMO[mL<TV_9MO���sPSWZ��P0P0L 9 dBLa� , �
�9[@R.PS <d@���<eOP I 9 �,d0Y5�sP�RUP0�<RUPSTVP0LkW�dBWUMONQP�[@\�d��0[@���ad@LkY435\�[@R + I d@L9�
WU_9P��0[@���ad@LkY43
�,d0Y
_9[@e7�!WU_9P
RU[@eOP�[@\�TVMOL<cmeOP,d@b9�<MXWU[@R/[@\��0[m���9d@LkY ; I �sPSM^L<c#RUP0�iRUP0TVP0LkW�dBWUMONQP
[@\ ; \�[BR + � �<RU[@�
WU_ad�W���P���d@L<L9[@W��0[@L9�0eOba�iP�WU_adBW 9 MOT�RUP0�<RUP0TVPSL&W�d�WUMONQP�[@\ ; \�[@R + � WU_<PSRUP�MOT�L<[�RUP0e^dBWUMO[mL<TV_9MO�
�sPSWZ��P0P0L�WU_<P0� � �

192

� �

>@µ�³S8&º¢47·�µ�=¢>@» ºp>�³U¹H>B>@¸à³S=?>B°)½;��·�6¢½ ��´S>B±¢´J>mµ�>@¸<³0µ�±�8&´J³�Ai¿/³J=¢>)µ�³J´S²¢;�³J²?´S>¡Ai¿
8Ì´S8i·74�¹�8Q¶
;�Ai°�±¢8i¸a¶ Ä5�UÆ�Á�=¢8Q¼a·7¸¢6Â³U¹�A�µ�Ai¿Ñ³U¹H8i´J>¡8&6i>@¸9³Sµ#±?4�8Q¶a·�¸?6�´SAi4�>@µ�·7¸%·^³���8Â³S·�;0Í<>�³#°�8<;0=?·7¸¢>
Ä � �iÆ
³S=¢8k³�±?4�8Q¶aµ�³J=?>¡´JA<47>�Ai¿�³J·�;0Íi>�³�µ�>@474�>B´�Ä�V��iÆ�Á�¹�=?·�;0= ·�µ�8&4�µJAÂ±?4�8Q¶<>@»�ºa¶�8�=9²¢°�8i¸
8&6i>@¸9³�Ä$� �9Æ.i98�´S8i·74�¹H8Q¶�³S·7°�>BÝ�³08&º?4�>�»?8k³08&º¢8<µ�>�Ä � �QÆ�³J=�8k³�=?>@47±¢µ5Ä*�	�iÆ.³S=?>�µJ;0=¢>@»s²?4�>�°�8&¸sÝ
8&6i>@´
Ä�V�<Æ�³JA�³S>B4�4z·7¸s¿ÊA<´J°�8&³J·�Ai¸)8&ºpAi²s³�³J=¢>
´08&·�4�¹H8Q¶�³J·�°�>�ÝZ³S8iº?47><½ � #·�µ�8�²¢µJ>B´�³S=¢8k³�¹�·�474
;�Ai¸�µ�²?47³�´08&·�47¹�8Q¶�³J·�°�>�ÝZ³S8iº?47><Á?²¢µJ·7¸¢6 � �<½��	0�·�µ�8�²�µ�>@´�³J=¢8&³�¹�·74�4�º¢²?¶�³S·�;0Í<>�³0µ�²¢µ�·�¸?6 � �s½
����·�µ.³J=¢>�´08&·�47¹�8Q¶
°�8i¸¢8&6<>B´HÄ8V �mÆ.8&¸¢» � .
µ�²¢±?±?4�·7>mµ�³S=?>�µ�Ai¿Ñ³U¹H8i´J> � ��¿ÊAi´.³J=?>�;�A<°�±¢8&¸a¶
�S½

� I��+I���� 	
��b9�,dBL�dBcmP0LkWUT 0	� á &E& � � 0

 [@\7WZ��d�RUP/d@cmPSL&WUT 0+= ��� �* ��C� � �
����I���2
� /�'���,B/ 5
� /�: ���� I = � �
��2+��/�
�� �+�- �C� � 0
.�[meOP0T 0 1 ��� �� ���� � ���� ��9 '"$�� I 1 � �
��2+��/�
 �'���[���� I 1 � � �+�-%�*B�������� ��9 '"$��

� �������a�
 [B\�WZ��dBRUP/d@c@P0LkWUT�M^L�d@L�MOL<T�WUMOWUbiWUMO[mLadBe2dBcmP0LkW

ß�=?>�µ�±p>@;B·^Èp;B8k³S·7A<¸#Ai¿28i¸�·7¸¢µ�³J·7³J²?³J·�Ai¸¢8i4¢8&6<>B¸9³�·7¸a¼<Ai4�¼i>@µ�8
¸¢8i°�><Á �0Ái8&¸�»�8�µ�³J´S²¢;�³J²?´S>
��� � � ��� � ��� � � 0 W>� � � 0 � _ � 0 � � � ��� ½

����� Áz³J=¢>C0.'=-.5(;<'=5�-D#5A&¿�³J=?>�A<´J698&¸?·�Ú@8&³J·�Ai¸9�0Áz·�µ
¿ÊAi´S°�>@»Ìº9¶�8)µJ>�³�A&¿�´SAi4�>@µ � � Áz³J=¢>
»s>BA<¸<³S·�;�;0=�8&´08i;�³S>B´S·7Úm8k³S·7A<¸�A&¿2>@8<;0=�´JA<47>�W>� � � Ái³J=?>�³J´08&¸¢µJ°�·�µSµ�·�Ai¸�A&¿2Aiº¢47·�6<8&³J·�Ai¸¢µ�¿Ê´SAi°
³J=?>�Ai´S6<8i¸?·�Ú@8k³S·7A<¸�³JA�µJ±�>m;�·7È�;H´JA<47>mµ�Ai¿�·7³Sµ�µ�³J´S²¢;�³S²?´J> � _ � 8&¸¢»,³J=?>�´S>B±?´S>@µJ>B¸9³S8&³J·�¼i>�´JA<47>mµ
� � � �� ½

! D _9P�TV�sP0�0MX�a�0dBWUMO[mL�[@\�d@L,[BRUcQd@L<MO��dBWUMO[mL#�,d0Y�dBe^TV[5MOL9�0eOba�iP�[@WU_9PJR��0[@���s[mL9PSL&WUT I L9[BW��0[@L9TVM^�i�
PSRUP���_<PSRUPm�

193

� �

� � � � � J � �:= �LJ � � �ZV � � JL�4J ���
J � ��� ; =�� 1	�!,? �/1 � � ; � � ; =�� 1	�!,? �/1 ��� ; � � ; =�� 1
�
,? �/1 � � ; � � &E&E& �
= �LJ � ��� V � á � � � YH� á � � �

V � } � ��� V � } � ���V � � � � � &E&E& ��ZV � ��� V �/� �����	�	
�� � � ��V � á � � � V �/� �����	�	
�� � � ��V � } � ��� V �K� � ��� �	
�� � � �'V � � � ��� &E&E&��JL�4J � ��� 1 � 0 JL�4Y �/;�02;/<>=@?A,/B � � � � � 1 � 0 J � Y �/;U0!;K<h=@?),B � � � � � 1 � 0
JL�4Y �/; 0
;/<>=@?A,/B � � � � � &E&�& �
��_<PSRUP 0
� ��� F PJ�aL9P�WVR�dBMOL9T0�sTV��_9P��ib9eOP 0 � ��� C _9d@L<cmP�WUM^��£QPSW��<RUMO�0PST 0 � � � C [meOeOP0�SW�WU_<P�d@�<�<RU[m�iRUM^dBWUP
WUMO��£QPSWH�<RUMO�0P0T 0 � � � G L<\�[@RU�¾b9TVPSRUTHWU[,b<TVP/WU_<P/PJ 9dB�SW�dB��[mb<L&W�[@\.��[mL<PSY I ��_<P0L�WU_9PSRUP�MOT�L<[
��_adBL9c@P 0 � � � G L<\�[@RU��dB�s[mb<W�WVR�dBMOL�TV�J_<P��<b<eOPm�

��A&³S·�;B>H³J=¢8&³]V ��·�µ�8/´S>B±¢´J>mµ�>@¸<³08k³S·7¼<>�´SAi4�>�Ai¿¢³S=?>�·7¸�µU³S·^³S²s³J·�Ai¸¢8i4?8&6<>B¸9³.¿ÊA<´:� ��ÄrµJA¢Ák·7³Sµ
=?Ai4�»s>B´mÁa8i;�³0µ�A<¸!º�>@=¢8&47¿�Ai¿z³J=?>
·7¸�µU³S·^³S²s³J·�Ai¸¢8i4z8&6i>@¸9³@Ái¹�=¢>B¸�º¢´J·�¸?6i·�¸?6�8iº�A<²s³"�B�/·�¸�´SAi4�>
V,�QÆ�Á�V���8�´S>B±?´S>@µJ>B¸9³08k³J·�¼i>�´JA<47>�Ai¿=�z¿ÊA<´:�>��8i¸¢»AV��·�µ�8
´J>@±?´S>@µJ>B¸9³S8&³J·�¼i>H´JA<47>�A&¿C�z¿ÊA<´:�7?½
Ó�¸?Ai³J=?>@´�´J>@°�8i´JÍ �a¹�=?>@¸¡³S=?>�·�¸¢µU³S·^³S²s³J·�Ai¸�8&4�8i6i>B¸9³ ��·�µ�²?¸¢»s>@´�³J=?>�A<º?4�·7698k³J·�Ai¸�³JA�º?´S·�¸?6
8&ºpAi²s³�� �<Áz³J=¢>�=?Ai4�»s>B´�Ai¿�³S=?>�´JA<47>AV ��¹�·74�4�ºp>�´J>mµ�±pAi¸�µ�·�º?4�>�¿ÊA<´�º?´J·�¸?6<·7¸?6Â8iº�A<²s³�� �iÁ
¿Ê²?4^È�474�·7¸¢6¡³S=¢8k³�A<º?47·�6<8&³J·�Ai¸�A<¸�ºp>B=¢8i4^¿HA&¿ �4i2¹�=?>@¸�³S=?>�·7¸¢µ�³J·7³J²?³J·�Ai¸¢8i4�8i6i>@¸<³ ��·�µ5²¢¸¢»s>B´
³J=?>,A<º?4�·7698k³J·�Ai¸�³SA!º?´S·7¸?6!8iº�A<²s³ � ��Ai´��>�³J=?>@¶)¹�·74�4�ºp>�³J´08&¸�µ�°�·7³�³J>m»�³JA�³S=?>,=?A<4�»?>B´0µ
A&¿]V���A<´*V�¢Á?´S>@µJ±�>m;�³J·�¼i>@47¶<½
ß�=?>/µJAa;B·7>B³U¶�Ai¿z8i6i>@¸<³0µ�A&¿���·�6¢½ �/°�8Q¶�ºp>/µ�±p>@;B·^È�>@»�ºa¶#8�³J²?±?4�>/¹�·7³J=!³J=?>�¿ÊA<474�Ak¹�·�¸?6

;�Ai°�±pAi¸?>@¸9³Sµ�� � � ��� ���� 0 � �� 0 � �� 0 � _� � �
¹�=?>B´S>��
� �� w µJ±�>m;�·7È�;B8&³J·�Ai¸�Ai¿�>@8<;0=Â·7¸¢µ�³J·7³J²?³J·�Ai¸¢8i4�8i6i>B¸9³/Ai¿�³J=?>�µJAa;B·7>B³U¶ i�µJA!·^³�·�µ�¿ÊA<´J°�>@»)ºa¶
8�µ�>B³�A&¿�±¢8&·�´Sµ � � 0 ��� ��� Á?8iµ�>BÔs±?4�8i·7¸¢>@»�8&ºpAk¼i>i½

� �� w ³S=?>�;�A<°�±pAi¸¢>B¸9³ � ���;�A<¸<³08&·�¸¢µ5³J=?>�·�»s>B¸9³S·^È�;@8k³S·7A<¸ÌAi¿�³J=¢>�µJA&¿Ñ³U¹�8&´S>#8i6i>@¸<³0µ
A&¿
³J=?>,µJAs;�·�>�³U¶<½

� �� w ³S=?>¡;BAi°�±�A<¸?>B¸9³ � ��Ò;BAi¸9³S8i·7¸¢µ�³J=¢>¡·�»s>B¸9³S·^È�;@8k³S·7A<¸ A&¿�³S=?>¡=a²?°�8i¸à8&6<>B¸9³Sµ�A&¿
³J=?>,µJAs;�·�>�³U¶<½

� _� � w ;�A<¸9³S8&·�¸¢µ�³J=¢>,;�Ai¸9³S´S8<;�³Sµ�³S=¢8k³/8i6i>B¸9³0µ�>@µ�³S8&º¢47·�µ�=¢>@»¡º�>B³U¹�>@>B¸)>@8<;0=�A&³S=?>B´m½
� � � � ; ��� � = ��� � � ��� � �LV�� � �
; ��� ��� ; =�� ; ��� �/; � �
= ��� ��� ; =�� = ��� ��= � � � ; =��"= ��� ��= � � �
� ��� ��� ; =�� � ��� � � � � � ; =�� � ��� � � � � � ; =�� � ��� � � � � � ;.=�� � ��� � � � � �

; =�� � ��� � � � � � ; =�� � ��� � � � � �
�LV�� � ��� ���	��< � � � � � ; � � ���
��< � � � ��� ; � � ���
�8< � � � ��� ; � �

���	��< � ��= ��� ; � � ���
�8< � ��= � � � � �
���	��< � � � � � ; � � ���
��< � � � � � ; � � ���
�8< � � � � ; � �

���
�8< � � � � � ; � � &!(* , � � � 021 � �
���
�8< � � � � � ; � � &!(* , � � � 021 � �
���
�8< � � � ��� ; � � &!(* , � � � 021 � �
���
�8< � ��= ��� ; � � &!(* , ��= � 0
1 � � � ��= � 021 � � 0 J � Y �/;U0!;K<h=@?),B ��� �
���
�8< � ��= � � � � � � &!(* , ��= � 0
12� � ��= � 0
12� 0
JL�4Y � � � 0
1 ���� �
���
�8< � � � � � ; � � &!(* , � � � 021 � � � &)(+*-,.�/; 0
1 � � � V �/� � � � � � V�� � � � � � �
���
�8< � � � ��� ; � � &!(* , � � � 021 � � � V�� � � � � � � � V �K� � � �	�	
�� � ����
�8< � � � � ; � � &!(* , � � � 021 � � V � � � � ! � � � V �K� � � �	�	
�� � �

194

� �

¯�Ai¸9³J´08i;�³Sµ � ��� ' �9Ä*��� 0 �UÆ 0 � ��� ' �?Ä$� � 0 �UÆ 0 � ��� ' ¢Ä$� � 0 �UÆ�¿ÊAi´S°�8&4�·7Ú@>�³J=?>�´S>B4�8k³J·�Ai¸�µ�=?·�±>@µ�³S8&º¢47·�µ�=¢>@»�ºp>�³U¹H>B>B¸ ��8&¸¢» ���iÁH� ��8i¸¢» � ,´J>mµ�±p>@;�³J·�¼i>B4�¶iÁ<8iµSµ�·�6i¸?·�¸?6
³JA ���<Á � �,8&¸¢» �
³J=?>�´SAi4�>@µUV �iÁ�V���8&¸¢»CV�?Ás´S>@µJ±�>m;�³S·7¼<>B4�¶i½ Ç ¸Â;�Ai¸9³S´S8<;�³ � ��� ' .pÄ � � 0 �UÆ�´SAi4�>JV��#·�µ�8iµSµ�·�6i¸¢>@»³JA�µJA&¿Ñ³U¹�8&´S>�8&6i>@¸9³ � �?½�ß�=?·�µ�8i6i>B¸9³,¹�·�474H8i;�³#8iµ�´S>B±¢´J>mµ�>@¸<³08k³S·7¼<>�Ai¿�³S=?>�·�¸¢µ�³J·7³J²s³S·7A<¸¢8&4
8&6i>@¸9³��S½ Ç ¸à;�A<¸9³J´08i;�³ � ��� ' 0¢Ä � � 0 � �<Æ
´JA<47> V)·�µ�8<µJµJ·76<¸?>@»Ì³SAÂ³J=?>�µ�Ai¿Ñ³U¹H8i´J>�8i6i>B¸9³ � �iÁ
³J=¢8&³�¹�·�4�4�´J>@±?´J>mµ�>@¸9³�8i6i>B¸9³ � �1�,V�?½�¯�Ai¸9³S´S8<;�³4� ��� ' �¢Ä*� . 0 �UÆ,´S>B±?´S>@µJ>B¸9³0µ�8Ì°�8&·�¸9³J>�Ý¸¢8&¸¢;B>
;BAi¸9³J´08i;�³���� .�·�µ�´S>@µJ±pAi¸¢µJ·7º¢47>5¿ÊAi´H³J=¢>�µJA&¿Ñ³U¹�8&´S> � �i½¢¯�A<¸<³S´S8<;�³�� ��� 'D9sÄ*� 0 �UÆ�8i¸¢»� ��� '@s¢Ä*�	0 0 �UÆ�´J>@±?´J>mµ�>@¸9³Sµ�²¢µJ>B´�;BAi¸9³J´08i;�³Sµ��&·7³�¿ÊAi´S°�8&4�·7Ú@>@µ�³J=¢>�¸?Ai´S°�µ�³J=�8k³�8i6i>B¸9³0µ�·7¸9³S>B´JÝ8i;�³S·7¸¢6�¹�·7³J=�³S=?>,µ�Ai¿Ñ³U¹H8i´J>�µJ=?Ai²?4�»¡´J>mµ�±p>@;�³@½

ß�=?>�µ�±p>@;B·^È�;@8k³S·7A<¸ÌAi¿�³J=¢·�µ,µJAs;�·�>�³U¶ÂAi¿�8i6i>B¸9³0µ
;@8&¸�¸?Ak¹¾ºp>�8&¸¢8i47¶aÚ@>@»Ì·7¸�Ai´0»s>B´
³SA
µ�>@>
·7¿�·^³�A<º�>@¶aµH³SA�³J=?>,µS8k¿Ê>B³U¶!´S>@Ø9²?·�´J>@°�>@¸9³Sµ�»s·�µJ;B²¢µJµJ>@»)8iº�Ak¼<>i½
Ç ³�·�µ�>@8iµJ¶Ò³JA�±?´SAk¼i>�³J=¢8&³#³S=?>)´S8i·74�¹H8Q¶Ò;�A<°�±¢8&¸a¶�·�µ�³S´J²�µU³U¶�¹�·7³J= ´J>mµ�±p>@;�³#³SAÌ·7³Sµ

µ�Ai¿Ñ³U¹H8i´J>,;BAi°�±�A<¸?>B¸9³0µBÁp·�½ >i½�Áz8&4�4*³S=?>�µJA&¿Ñ³U¹�8&´S>,8&6<>B¸9³Sµ/A&¿�³S=?>�;BAi°�±¢8i¸9¶�=¢8Q¼<>,±�>@´SµJAi¸�µ
´J>mµ�±pAi¸¢µJ·�º?47>/¿ÊAi´H³J=¢>B·�´�8<;�³S·7A<¸¢µ ���	��·�µ�´S>@µJ±pAi¸¢µJ·7º¢47>/¿ÊAi´ � �iÁa8&¸¢» ��·�µH´S>@µJ±�A<¸¢µ�·�º?4�>�¿ÊA<´ � �s½

� >�³0µ�¸?Ak¹ 8i¸¢8&4�¶aÚB>
³J=¢>,;0=¢8&·�¸¡Ai¿.´S>@µJ±�A<¸¢µJ·7º?·�4�·^³S·7>mµH¿ÊAi´�8i;�³J·�Ai¸*½

Z ��� %�(����-!	# ��
	�&+!��W	�� �]����� ��� g	

ß�=?>�4�Ai6i·�;UpHqXr ;@8&¸�º�>/²¢µ�>m»�³JA�³S´S8<;�>�´S>@µJ±�A<¸¢µ�·�º?·�47·7³J·�>@µ�¿ÊAi´�8<;�³J·�Ai¸�½iÓ/µSµ�²¢°�·�¸?6�³S=¢8k³�8i¸
8i;�³S·7A<¸�Ai¿�8&¸�8&6i>@¸9³5·�¸�8¡´JA<47>#As;B;�²¢´J´S>@»zÁp¹H>#¹�8&¸9³
³JA)8&¸¢8i47¶aÚB>#·^³0µ�»s>BA<¸<³S·�;#>�Ü2>@;�³Sµ�A<´
·^³0µ�>BÜp>m;�³0µ�Ai¸¡8<;�³S·7A<¸¢µ�Ai¿�A&³S=?>B´�8i6i>B¸9³0µB½?35²?´�8&·�° ·�µ�³JA�¼i>@´J·7¿Ê¶�·7¿�³J=¢>
8<;�³J·�Ai¸¡¹H8<µ�¼k8i47·�»
Ä ��P&R S&� > j P&R S&� Æ�Á&·7¿p³J=?>@´J>�¹�8iµ�85¿Ê²?4^È�474�°�>B¸9³�A&¿2µ�A<°�>HA<º?4�·7698k³J·�Ai¸�Ä ��P"R S"� > _ P&R S&� Æ�Ai´�·7¿³J=?>@´J>�¹�8iµ�8/¼a·�Ai4�8k³S·7A<¸�A&¿2µ�A<°�>H¸¢Ai´S°ÙÄ ��P&R S 8 � > _ P"R S"� Æ�½ Ç ¸#³J=?·�µ�4�8&³�³S>B´�;B8<µ�><ÁQ¹�>�¹�8&¸9³³JAÂºp>�8&º?4�>�³JA�·�»s>@¸9³J·7¿Ê¶�³S=?>�8&6<>B¸9³Sµ
³S=¢8k³�8&´S>)Ä�»s·�´J>m;�³J4�¶Ò8&¸¢»�·�¸¢»s·�´J>m;�³J4�¶?Æ�´S>@µJ±�A<¸¢µ�·�º?4�>
¿ÊAi´�³J=¢>�¼9·�Ai4�8k³S·7A<¸*½

Ó µJ±�>m;�·7È�;B8&³J·�Ai¸¡A&¿�8�µJAa;B·7>B³U¶�A&¿.8i6i>@¸<³0µ � �Ö»?>�È¢¸?>mµ�8�±¢8i´�³S·�;B²?4�8&´H4�8i¸?6i²¢8i6i>
8&¸¢»¡8
µ�>B³HAi¿�¿ÊAi´S°�²¢4�8<µ�Ai¿*³J=¢8&³�4�8i¸?6i²¢8i6i><½ Ç ¿�¹H>�8i»?»�³J=?·�µ�µ�>B³�A&¿*¿ÊA<´J°#²?4�8<µ�³SA�³S=?>�47A<6i·�;�p,qXr
8iµ�¸¢>B¹�8kÔs·�Ai°�µ@Ái¹H>�Aiºs³08&·�¸!8,¸?>@¹ 47A<6i·�;�³J=¢8&³�¹H>5;@8&4�4?³J=¢>�³J=¢>BAi´S¶�»s>�È¢¸¢>@»�ºa¶ � �,Áa»s>�Ý
¸?A&³S>@»�ºa¶���Ä�����ÆB½aß�=¢>B¸*Á9¹�>
;B8i¸!±?´SAk¼i>�·7¿.µJAi°�>�¿ÊA<´J°#²?4�8 � ;B8i¸!ºp>
»s>m»s²¢;B>@»�¿Ê´SAi°	�
·7¸
��Ä�����ÆBÁ?ºp>B·�¸?6�� µ�A<°�>�µJ>�³�Ai¿.¿ÊA<´J°#²?4�8iµ�ÄÑ³U¶a±?·�;B8i474�¶¡8<;�³S·7A<¸�A<´�»s>BA<¸9³J·�;
¿ÊAi´S°�²?4�8iµ0Æ���
������������� � ½

� >�³0µ
¸?Ak¹�±?´S>@µJ>B¸9³5>BÔ?8&°�±?4�>@µ
A&¿H·7¸s¿Ê>@´J>@¸¢;�>mµ5³J=¢8&³�;@8&¸�ºp>�»sAi¸¢>�¿Ê´SAi°+³S=?>�µ�±p>@;B·^È?Ý
;B8k³S·7A<¸!±?´S>@µJ>B¸9³J>m»!8&ºpAk¼i><½$t5²?>5³JA#µJ±¢8<;�>/4�·�°�·7³S8&³J·�Ai¸¢µ@Áa¹�>5¹�·74�42¸?A&³H±?´S>@µJ>B¸9³�³S=?>/¿ÊA<´J°�8i4
±?´JAaAi¿rµBÁsº?²?³ �U²¢µU³/µJÍi>B³S;0=¡³J=?>@°)½

 ((� � �� 7�# -D��)/E m �6\ '=)/k #2(' �2+&EF# e2��'f�$+l�60&# � � !2) � #<0b'87�#A5g0&#&- � `;436-.-l#l;&'M)/%"?<3�-.k � (
'�)�3�%`�2+43�5�','=-D�6)/%(0�� 0<;47�#4e�5�EF#��A�>�� Y m 7g)�;47h)a0N��%`3$+<Ec)d!
�6'=)�36% 3@?�� �
� �"! � ?�É R S �> 0 _ � R �$# ?
&% � �7('� � Ä �*) < R S � �7 > _) < R S � �79Æ > Ä ��� R �+# ?
&% � �> > _ � R �$# ?
&% � �7<Æ

, �H[BWUM^[@L9Tz[B\aWU_9P0[BRUP0� I d@L9�5�iP��<b<�SWUMO[mL�\�RU[m�Þ_kYi�s[@WU_<P0TVMOT*dBRUP��iPS�aL<P��/d@T*MOL � � ! I \�[@R*PJ 9dB���9eOPm�

195

� �

�?´SAi° � ?JÉ R S �>�8&¸¢»ÒÄ � ����V&Æ � � � j�Ä*�	�B�2V� 0�� ÆH¹�>�;B8i¸)·7¸s¿Ê>@´ �) < R S � �>?½Ó/µ�¹H>¡=¢8Q¼<>L_ S � �7 > +�- T�.�Ä$� � �^V�<Æ#¹H>¡°�8Q¶ ;BAi¸¢;B47²¢»?>�³S=¢8k³�= �Ì=¢8<µ�¿Ê²¢4^È¢4�4�>@»%=?·�µ
Aiº?4�·7698k³S·7A<¸ �) < R S � �> > _) < R S � �>?½Ã�²?³�¹H>�8i4�µJA�=¢8Q¼<>oV�� �:� � j�Ä � �,� ' �
�.�� 0 �><Æ�8i¸¢»�¿Ê´SAi° ³S=¢8k³�8&¸�» �*) < R S � �>�·�¸s¿Ê>B´��� R �$# ?
&% � �>?½ß�=9²�µ*¹H>�=¢8Q¼i>�Ä ��� R �$# ?
&% � �7 > _ � R �+# ?
&% � �><Æ2°�>@8i¸?·�¸?6�³J=¢8&³ �p=¢8iµ2¿Ê²¢4^È¢4�4�>@»�=?·�µ*A<º?4�·7698k³J·�Ai¸�½

 ((� � � ��7(#�-l�6)/E m ��\N'�)/k #2('f�$+<EF#Je2��'f�$+4� 0&# � �Q!2) �6#.0M'87�#M5g0&#&-:�)/% ;436-.-D#4;&')/%"?<3�-.k � (
'�)�3�%L�2+43�5�'W'=-D�6)/%(0�� 0&;l7(#le�5�EF# � 8��7�� ��� 7g)a0 ?<��)/Ec5�-D#J)a0�e65(#�' 31�1'f#4;47g%()�;4��E6Z�-l32+&EF#<k 8 UB.
3@? '87�#1-D#<0�Z(36%(0.)�+<)/Ec)/'=\C3 ?�� . � m # m)/E/E -l#fZ -D#.0&#&%(','/7�)a0N;4��5g0<��Ec)/'=\C+<\o��%h)/k�Z�Ec)�;4��'�)�3�% � �
� �"! �*) � R S � 8 UB. 0 �) � R S � 8 U . � � ?�É R S 8��7 0 _ � R �$# ?
&% � �>('� � Ä �*) � R S � 8 U . > _) � R S � U .9Æ > Ä �*) < R S � 8��> > _) < R S � �><Æ > Ä ��� R �$# ?
&% � 8��> > _ � R �$# ?
&% � �7<Æ

�?´SAi° �) � R S � 8 U . 8&¸�»�;�A<¸<³S´S8<;�³6� ��� ' � ¹H>�=¢8Q¼<>Â³J=?>�¼a·7A<4�8&³J·�Ai¸ �) � R S � 8 U . >_) � R S � UB.9Æ�½�?´SAi° �) � R S � 8 U .!8&¸�» �) � R S � 8 U . � � ?JÉ R S 8��7�¹�>,;@8&¸�·7¸?¿Ê>B´ � ?�É R S 8��>?½
Ó/µ�¹H>�=¢8Q¼i>)Ä � � ��VkÆ � � � j�Ä$� � ��V� 0�� Æ58i¸¢» � ?�É R S 8��7¢Á*¹H>�;@8&¸�·7¸?¿Ê>B´ �) < R S � 8��7?½
�?´SAi° _ S � �> > +�- TH.JÄ*�	� �gV�<Æ�¹H>�;@8&¸Â·�¸s¿Ê>B´ _) < R S � �7?Áp8&¸¢»)¹H>#»?>�³J>m;�³58i¸?A&³S=?>B´5¼a·7AiÝ4�8&³J·�Ai¸ �) < R S � 8��7 > _) < R S � �7¢½Ó/µ5¹�>#=¢8Q¼i>!½ V� � � � j�Ä �7���$' �
�.�� 0 �79Æ�8&¸¢» �) < R S � 8��7¢Á�¹H>#;@8&¸�·�¸s¿Ê>@´ � � R �+# ?
&% � 8��>
8&¸¢»�»s>�³S>@;�³/¶i>B³�8i¸?A&³S=?>B´�¼a·�Ai4�8k³S·7A<¸ÌÄ ��� R �$# ?
&% � 8��> > _ � R �+# ?
 % � �79Æ�½

 ((� L � � 7�# '�)�;��2#&'*k �$;l7�)/%�# � � ���b7��601%�3L;47��6%g!$# ��%�eC' #<E/E:0N'87�#b5g0&#&-40N'f3o5g0'87�#
#��g�2;&'J��k 3�5�%('Q3 ?Ak 3�%�#&\ ��U$��� ��� 0 m ��%('�0A' 3 +<5�\ � '=)�;��2#&'J+&5�'�5g0&#.0 �6% ��k 3�5�%('Q3 ?
k 3�%�#&\ 045�Z(#&-.)�36-N'87���%h'87�# '=)�;��2#&' Z -.)�;4# � 8��>��� Y^kb)a0.5g0.)/%
! � � � � 7g)a0b;4��5g0<#<0 � � %�3�'H' 3
;l3�E/EF#4;<'*'87�#b�lZ2Z -D3lZ -.)��6' # '=)�;��$#<' Z�-.)�;4# � 8��>��� YU+4#4;4�65g0&#)/'^7��60 %�3o;47���%
!
�
� �"! � ? < R S < U � 0 �*) � R S � 8��>� 0 Ä �*) � R S � 8��>� � � ? < R S < 8��>�<Æ 0 _ � R �$# ?
&% � �>�('� � Ä � ? < R S < U$� > _ ? < R S < U$�iÆ > Ä �*) � R S � 8��7� > _) � R S � �7�9Æ > Ä � ? < R S < 8��>� > _ ? < R S < �>�<Æ >Ä ��� R �+# ?
 % � 8��>� > _ � R �$# ?
&% � � �iÆ

�?´SAi° � ��� ' .�Ä � � 0 �UÆ�¹H>!=¢8Q¼<> +�-�T�.JÄ � � 0 V��<Æ,8i¸¢»ÞÄ � �'�WV��iÆ �,� � j�Ä � ��� ' �
�.�� 0�� Æ�½�?´SAi° +�-�T�.JÄ � � 0 V��<Æ�8i¸¢»h_ S <�U ��¹�>#·7¸s¿Ê>@´N_ ? < R S <�U �?Áp8i¸¢»�»s>B³J>m;�³�8�¿Ê²?47È¢4�47°�>B¸9³�A&¿�8i¸Aiº?4�·7698k³S·7A<¸ � ? < R S <�U � > _ ? < R S <5U$�s½�?´SAi° � ��� '@s�Ä*�	0 0 �UÆ/¹�>�=¢8Q¼<> _) � R S � �>�?½*ß�=a²¢µ�¹H>�»?>�³J>m;�³,8�¼a·7A<4�8&³J·�Ai¸ �) � R S � 8��7� >_) � R S � �>�?½�?´SAi° �) � R S � 8��7��8&¸�» �) � R S � 8��7�&� � ? < R S <�8�� ��¹�>�·�¸s¿Ê>B´ � ? < R S <�8�� �s½
�?´SAi°!+�-�T�.JÄ � � 0 V��<Æ,8i¸¢» _ S <��>��¹�>¡·7¸?¿Ê>B´O_ ? < R S <�� �sÁ�8&¸¢»%»s>�³S>@;�³�8Ì¼9·�Ai4�8k³S·7A<¸ A&¿/8i¸Aiº?4�·7698k³S·7A<¸ � ? < R S < 8��>� > _ ? < R S < �>�s½Ó/µ�¹H>#=¢8Q¼<> � ? < R S < 8�� �¡8i¸¢»àÄ � � �(V��<Æ �C� � j�Ä � ��� ' �
�.�� 0	� Æ�¹H>�·7¸s¿Ê>@´ ��� R �$# ?
&% � 8��>�sÁ
8&¸¢»¡¹�>,»?>�³J>m;�³/8i¸?A&³S=?>B´�¼a·7A<4�8&³J·�Ai¸ ��� R �$# ?
&% � 8��>� > _ � R �$# ?
&% � � �s½

 �Ìª�§/�8�¬#na®Uª�§#n 4�§/« q�¬�¨?¬�© 6�Òª�©��

Ç ¸à³S=?·�µ�±�8&±p>B´�¹�>�±?´SAi±pA<µJ>@» 8Ì°�As»s>B4�¿ÊA<´#³S=?>)¸?Ai´S°�8k³S·7¼<>¡µJ±�>m;�·7È�;B8&³J·�Ai¸ A&¿/A<´J698&¸?·7Ý
Ú@8k³S·7A<¸¢8&4�µJ¶aµ�³J>@°�µ¡Är=9²¢°�8i¸àA<´#¼a·�´�³S²¢8&4ÑÆ,º�8iµJ>@»�A<¸ ³J=¢>�;BAi¸¢;B>B±s³�A&¿�´SAi4�>¡8i¸¢» A<¸ ³J=¢>

196

� �

47>@6<8&4�;�A<¸¢;�>@±s³Sµ5A&¿�8i´�³S·^È�;B·�8i4�±p>B´0µ�A<¸�8&¸�»Â;�Ai¸9³S´S8<;�³@½ Ç ¸�³S=¢8k³
°�As»s>@4.¹H>�>BÔs±?47·�;�·7³J4�¶Â»s>�Ý
µJ;B´J·�º�>#³J=¢>#¸?A<´J°�µ5³J=�8k³�´J>@6i²?4�8k³S>,³J=¢>�µJ¶sµU³S>B°�µ
8&¸¢»�³J=?>@·7´�;�A<°�±�A<¸?>B¸9³Sµ@ÁzµU³08k³S·7¸?6�=?Ak¹
³J=?>@¶)µJ=?A<²?4�»)ºp>B=�8Q¼i>iÁp8iµSµ�²¢°�·�¸?6�=?Ak¹H>B¼<>B´�³S=¢8k³5³J=?>@¶�°�8Q¶)»s>B¼a·�8k³S>�¿Ê´JA<° ¹�=�8k³/·�µ/>BÔaÝ
±�>m;�³J>m»)A&¿�³J=?>@°)½¢ß�=?>�±?´SAi±pA<µJ>@»¡°�Aa»?>B4*·�µ�µJ²?±?±pAi´J³J>@»�ºa¶�8�°#²?4^³S·^Ý�°�As»?8&4�8<;�³S·7A<¸�8i¸¢»
»s>BA<¸<³S·�;�47A<6i·�;&Ái¹�=¢·�;0=!8i474�Ak¹ ²¢µ�³SA,¿ÊAi´S°�8&4�47¶�µ�±p>@;B·^¿Ê¶�A<´J698&¸?·�Ú@8&³J·�Ai¸¢8i4?µ�¶sµ�³J>B°�µ�8&¸¢»�´S>@8&Ý
µ�A<¸ 8&ºpAi²s³�·7³@½ � ·7³J= ³S=¢8k³#47A<6i·�;B8&4�¿Ê´S8i°�>B¹HAi´SÍ�¹�>¡;B8&¸ »?>@µS;�´S·7ºp>�>BÔa±p>@;�³J>m»Òº�>@=¢8Q¼a·7A<´
A&¿H8i6i>@¸<³0µBÁ2¼<>B´S·^¿Ê¶�·7¿�8&6i>@¸9³Sµ�8i;�³J·�Ai¸¢µ
·�¸Ò8�´SAi4�>�8i´J>�¼k8&4�·�»*Á*·^¿�³J=?>@¶Ì;BAi´S´J>mµ�±pAi¸¢»Â³JA)³J=¢>
¿Ê²?4^È�474�°�>B¸9³�A&¿*Aiº¢47·�6<8&³J·�Ai¸¢µ�Ai´mÁ<A<¸�³J=?>
;�A<¸<³S´S8i´J¶<Ái·7¿*³J=¢>B¶!;�A<´J´S>@µJ±pAi¸¢»#³JA�8,¼a·�Ai4�8k³S·7A<¸�A&¿
µ�A<°�>�Aiº?4�·7698k³S·7A<¸*½ � =?>@¸Â¸?Ai¸sÝ�·�»s>@8i4.µJ·^³S²¢8k³S·7A<¸¢µBÁ¢47·�Íi>�³S=?>,4�8k³J³J>B´mÁ¢As;@;�²?´mÁ¢·7³/·�µ�±pA<µSµ�·�º?4�>
³JA�·�»s>B¸9³J·7¿Ê¶!³S=?>,8&6<>B¸9³Sµ�³S=¢8k³mÁ¢»s·�´J>m;�³J4�¶!A<´�·7¸¢»?·7´S>@;�³J4�¶iÁ¢8i´J>
´J>mµ�±pAi¸�µ�·�º?4�>5¿ÊA<´�³J=?>@°)½

� >�8&´S6i²?>m»�³J=¢8&³�³S=?>
·7¸9³J>@6i´08k³S·7A<¸�A&¿.;BAi°�±?²s³S>B´�µ�¶sµ�³J>B°�µ�·7¸¡Ai´S6<8i¸?·7Úm8k³S·7A<¸¢8&4¢µ�³J´S²¢;�Ý
³J²?´S>)=?>B4�±¢µ#³JA�;�4�8&´S·7¿Ê¶�¹�=¢8k³�·�µ�>BÔs±�>m;�³J>m»àAi¿
µJA&¿Ñ³U¹�8&´S>��k=¢8&´0»s¹�8&´S>�;BAi°�±pAi¸?>@¸<³0µBÁ�8i¸¢»
=?>B4�±¢µ�³SA�·�»s>@¸<³S·^¿Ê¶¡¹�=?A�¹�·�474zºp>�´J>mµ�±pAi¸�µ�·�º?4�>5¿ÊA<´�¿r8&·�47²¢´J><½

� >!8i4�µJA�»s>�¿Ê>@¸¢»s>m»�³S=¢8k³�³J=?>!²�µ�>�Ai¿�³S=?>!°�As»s>B4�±¢´JA<±�A9µ�>m»�;@8&¸Òºp>�²¢µ�>B¿Ê²?4�·�¸Ò³J=¢>
¿ÊAi´S°�8i47·�Ú@8&³J·�Ai¸�Ai¿,¼a·7´J³J²¢8i4�Ai´S6<8&¸¢·7Úm8k³J·�Ai¸�µBÁ�A<´¡·�¸ÏAi³J=?>@´¡¼a·�´�³S²¢8&4
>B¸a¼a·�´JA<¸?°�>B¸9³Sµ@½Hß�=¢>
µ�>m;�²?´S·^³U¶5·�µSµJ²?>@µ2³S=¢8k³.47>m8i»
³JA�³S=?·�µ*Ía·7¸�»�A&¿s°�Aa»?>B4�µ�8&´S>�8&4�µJAH±¢´J>mµ�>@¸<³*·�¸�¼a·7´J³J²�8&4<;BAi¸9³J>BÔa³Sµ@½
Ó/»sA<±s³J·�¸?6#³J=?>@°Ù°�8Q¶!;�Ai¸9³S´J·�º?²s³S>/³SA�³S´J²¢µ�³�·7¸¡³J=?>
·�¸<³S>B´08i;�³J·�Ai¸¢µHºp>�³U¹H>B>B¸�8&6<>B¸9³Sµ@½9ß�=¢>
¸?A&³S·7A<¸¡Ai¿.³S´J²¢µ�³�±?´S>@µJ>B¸9³J>m»�·�µ�¼i>@´J¶!µJ±p>@;�·7È�;�8i¸¢»�¸?>B>m»?µH¿Ê²?´J³J=?>@´�´J>mµ�>m8&´0;0=*½
ß�=?>@µJ>�°�Aa»?>B4�µ,8&´S>!µ�²¢·^³S>@»Ì³JA�=¢·76<=sÝZ4�>B¼<>B4�µJ±�>m;�·7È�;B8&³J·�Ai¸�8&¸�»Ò°�8Q¶�º�>!²�µ�>B¿Ê²?4�³SA�8

È¢´Sµ�³�47>@¼i>@4zA&¿�µ�±p>@;B·^È�;@8k³S·7A<¸¡Ai¿�µJ¶sµU³S>B°�µBÁs6<·7¼a·�¸?6�8�¸?Ai´S°�8k³J·�¼i>
¼a·7>@¹ Ai¿�³S=?>B°)½
ß�=?>B´S>58i´J>5°�8i¸a¶�A<±�>@¸�±?´SAiº¢47>@° ·�¸!³S=?·�µH8i±?±?´SA<8<;0=*½<ß�=?>mµ�>
8&º¢µ�³J´08i;�³�°�As»s>B4�µH¸?>B>m»

³JA�ºp>�´J>BÈ¢¸?>@» ·7¸9³JA�°�Ai´S>�;�A<¸¢;�´S>�³S>�A<¸?>@µ@Á.·�¸9³J´SAs»s²¢;�·�¸?6Ì°�A<´J>¡»s>�³08&·�4�µ�8&ºpAi²s³�¸?A<´J°�µ@Á
;�Ai¸9³S´S8<;�³Sµ@Á�8i¸¢»�8i;�³J·�Ai¸¢µ@½�G�>m;�>@¸<³#¹�A<´JÍ�»sAi¸?>¡ºa¶Ì´S>@µJ>@8i´S;0=?>@´Sµ
4�·7Í<>�Û�8i´J>@ÍÒÕa>@´J6<A&³,A<´
�/8k¿Ñ³08&4�¶�Û�·7¸¢µJÍa¶iÁ28&°�Ai¸¢6�°�8i¸a¶¡Ai³J=?>@´Sµ@Á¢A<¸�µ�·�°�·74�8&´5·�µSµ�²¢>@µ�°#²¢µ�³5ºp>,³S8iÍi>@¸�·�¸9³JA�;�Ai¸?Ý
µ�·�»s>B´08k³S·7A<¸*½ � >�8i´J>�8&4�µJA
8<»?»s´S>@µSµ�·�¸?6/·�µSµ�²?>mµ�´J>@4�8&³J>m»,¹�·7³J=�³J=?>�»s¶a¸¢8i°�·�;@µ�A&¿¢³S=?·�µ�47A<6i·�;Bµ@Á
8&¸¢»�¹�·^³S=#³S=?>�8&²s³SAi°�8k³S·7A<¸,A&¿�³J=?>@°)½&ß�=?A<µJ>�·�µSµ�²?>mµ�8&´S>H;B´J²¢;B·�8i49³JA
°�8iÍi>�³J=?·�µ�8&±¢±?´JA98i;0=
·7¸9³J>@´J>mµU³S·7¸¢6#³SA�°�As»s>@4*´S>@8&4*;@8iµJ>@µ@½

� 6 q 6�© 6�§/ 6 n

�m�).P0eOLad@� I �5�&dBLa� ` PSRUeO[@� I]¡� 0��
 P0P0MOL9c D [G W D _adBW 0 â C dBL9[mL<MO��d@e �9[@RU��\�[BR â c@P0LkWUMONQP0T�� I
� -.�:�5��2 I��	��I � � � I � �!��
 � � � �

� �).PSRVWUMOL9[I� �/dBLa� �9PSRVR�d�RUM I�� ��dBLa� â WUeOb<RUM I� � 0�� â �2eOPS iMO�9eOPÒ]�[&�iP0e�\�[BR�WU_<P
 �sP0�S�
MX�9��dBWUMO[mL dBLa� � L<\�[@RU�0P0��PSL&W%[@\ â b<WU_9[BRUMO��dBWUMO[mL<T MOL ¤)[BRU£��a[��]�dBLadBcmP0��P0LkW
 YiT��
WUPS��T�� I � ���#+����*B��[� "��4��� T/�	 A���� ��� �5��-.�; ����� �������? ����*BL	 +:+��:� A �5�%
��*��� I � � � � I
�
 � � �

� � C d�RU��[I�� �<dBLa� � [mL<P0T I â � 0�� F P0[@LkWUM^� ��[mc@MO��d@L9� C [@L&WVR�d�RVY&�rWU[B� F b<WUMOP0T��i� F �	!�d@�<�ad0Y�d@L9�
���"!Hb9P0LkWU_9L<PSR � P��<T0� � # ��<B/�:�#� � ��� � - ���E����;.-$�2+: ��"$ �:"��2+ I Nm[meOb9��P I �"�2�%
�� � � I'& eOb&��PSR
â ��dm�iP0��MO� ` b9�9eOMOTV_9PJRUT I � La��P��iMXWUM^[@L I � � � � �

�<� C d�RU��[I(� dBLa� ` d@��_9PS�0[I � � 0)� F P0[mLkWUMO�¡d@La��dB�SWUMO[mL eO[mc@M^�ST�\�[BR�[@RUcmd@L<M^�SP��à�S[meOeOP0�SWUMONQP
dBcmP0L<�SY I ��[&�iP0eOP��¡WU_iRU[mb9c@_)MOL9T�WUMXWUb<WUMO[@Lad@eOMO�0P���dBcmP0LkWUT�dBLa�¡RU[@eOP0T�� I+* � �<B/ ��I��.
� -,��#�������
� �
��2+: $� I	� [@eÑ� � � �H[i� � I � � I �<����� ��� � � �"� IsG �
#` RUP0TVT I ��[BNmP0�
�sPSR I � � � � I �

� �)�� � � C _9PSe^e^dBT 0 � �#B/ ��.$ �:"��2+�� ��/,��%
����#B��.+�
��2��� I?C d@�
�iRUM^�<cmP�K�L9MONQPSRUTVMXW�Y ` RUP0TVT I � � �i�
� � C b<�9�sP0L<T I ��� 00� .�[@eOP0T d@L9� F P0[@LkWUM^�1�¢[mcmMO�%�i� â � � � G � � [@L9P0T d@La�]¡�
 PSRUc@[@W
� P0�<T0� � I � ���#+�:�*B��C�$"��>����7 �*+:���<B2,��.
0���< �
��2���< �� � ��� �5��-.�; ��� ()�*���.
��2+�$ �:"��2+4�[� A �����;%��
0��J7<+�����9+��IOC(435+6/7 8%9�R IaC [m���<eOPS � E � ��� . C�C � I � TVeO[I � � � � I �:
 ��� � �

197

� �

� � � eOcmP0TVPS� I<F � 0 	 +�
��2��� � -%�*�����! ��<B � �#B/ ��	$ �:"��2+ I<` _ F WU_<P0TVMOT IiF P0�ad�RVWU��P0LkW�[B\ ` _9MOeO[mTV[@��<_kY I KHL9MONQPJRUTVMOW�Y�[@\ � TVeO[I � � ��� �
 i��!5��!H[�NQPSRUL9dBWU[BRUM I'� � !HP0e^dBWUM I â �2.�[@WU[@e^[�d@La� !5�
 d�RVWU[@R 04� â �SWUMO[mL9T I�G L<T�WUMXWUb<WUMO[mL<T I¢` [����
PJRUT0� ` RUP0eOMO��MOLad�RVY#��[@WUP0T�� I ,��%
0����9 �
��2�5�9 �� � �5� �5��-.�;X��� ���2"����E �
0�*B 	 "$��%
 � �? ����*B!7<�#+��2 ��
7 ���:
0� �)�,O � 	 7 � 	 7 � T#R I �ad@��_&�sPSRUP0MO��_ G L<\�[@RU�,dBWUMO£ I K�L9MONQPSRUTVMXW��dBW ��dB�
�9biRUc I �<��� � � �J� � � � I
� � � � �

� � .�����M^eO�<M^L<P0L � P��¢� � I (�*���%
��2+4$ �:"���+SP",��%
��*�#B5�%+�
��5� �! ��<B,7%�C�:
0� � �
��2+ ���* /B5�C� "�� I F [@R��&RUP0��_&W 0
F � .�P0M^�<PSe I � � � �@�

���i� â � � � G � � [@L9P0T/d@L9��]¡� � �
 PJRUcm[@W 0 � â �9[BRU�,d@e C _ad�R�d@�SWUPSRUMO��d�WUMO[mLÂ[@\ G L<T�WUMOWUbiWUMO[mLadBeOM^�SP��
` [���PSR � I�� ��� ���9 �� ���!
[-%� ,�� � $ I��	��
��I �<��� � ��� �5��� � I � � � � � .�P0�iRUM^LkWUP��)MOL � � !�dBRU���[@L
� d@e^���P0T I ¤ � & R�d0��MOPSWU� I !5� �5��NQ[mL�¤�RUMOc@_&W�d@L9� .����sMO����PSRUeOM^L<c � P��<T0� � I 6���� � �
��CH��
7 ���:
0� �)���C��$D�2"/ �� ��<B � ���* �� � -%�*����� I � �9PST�WUTV�J_iRUMO\7W#\�[@R C dBRUeO[mT � � â e^��_9[@b<RVR��[@L�d@L9�
� b9c@P0L9MO[).b9eXYicmMOL � I)�PSRUeOMOL 0 F b9L<�J£QPJR�� �Hb9�5�9eO[@W I �<��� � � � � � � � I � � � � �

� �m�
 � & d@L9c@PSR 0 6 � � * ��� �9B� �
��2���.���'��� 3
[- �2+: �� � -%�*����� I
 WU[k��£&_9[meO� I � �2� � � � .�P0�<RUMOLkWUP��!MOL
� � !r� �

� � �
 � & d@L9c@PSR 0 � �pd0�%d@L9�/��[@cmMO�%� I � -%�*�����2 I�
��¢I � � ��� �
� � � �*� �¢MOLa�9dB_9e 0 � ���:�C
������ ��9B A -. ��$"$� �?	 7.
��%B�>�[� $ �� 5�9B�$ �:"��2+ I
 YiL&WU_<P0TVP)�¢M^�iR�dBRVY

� ��� I<F [@R��&RUP0�J_kW 0 F � .�P0M^�<P0e I � � � � �
� �<�/]�dBTVTUd@�0�SM I ��� 0 � .�P�dBTV[mL<M^L<c
dB�s[mbiW
 PS�0b<RUMXWZY 0 d��¢[mc@M^�Hd@L9��d F P0�0MOTVMO[mL�]�PSWU_9[&�
\�[@R�.�[meOPS�

)�d@TVP�� â �0�SP0TVT C [mLkWVRU[@e �i� F ��!�d@�<�ad0Y�PSW�d@eÑ� � P��<T0� � I�� �*�#+��D���?
[-%� ,��%
�� � ���[�%
 A ���'�#��:��<+��5��� �. �� �C
� �
��[H�� 5�9B�� �. ��.
��C
� �
��CH�� � �� /+�
��2+: �� ���* �����.�C� " I �¢� â GJI ��� � �pI�
 �iRUMOL9cmPJR � PSRUe^d@c I
� � � � I � � �
 � �
� �

� � �/]�PJYkPSR I�� � � � � C _¢�2dBLa��¤ÒM^PJRUM^L<cQd I ./� � � 0 � F PS[mLkWUMO� ��[mc@MO� 0 â C [@L9�0MOTVP � NQPSRUN&MOPS�(�i� � � �
� � C �/�p]�PSYkPSR/dBLa� ./� � �?¤�MOPSRUMOL9cmd � P��iT � I ()�*���%
���+ $ �:"���+I�C� A ��� ;%��
0��,79+�����<+�#P 6���� �
� �
��CH���7 �5��
0� � 7�;.�:+�� � +: �
��2��� I"� [@_9L�¤�MOeOPSY��
 [@L9T I � � �"� I �:
 � � �

� � �/]�MOL<TV£&Y I �5� I KHL9c@b<RUP�dBL&b I � � 0 � ��d0��� !H[�NQPJRUL9P�� G L&WUPJR�d@�SWUMO[mL 0 â C [k[BR��<MOLad�WUM^[@L�d@La� C [@L<�
WVRU[@es]�P0��_adBL9MOTV��\�[@R �HPSWUPJRU[mcmPSL9P0[@b9T F M^T�WVRUMO�<b<WUP��
 YiT�WUP0��T��<�mM^L 	 A�� � �� ��%� /+�
��2�5�%���5�
7<���
 � ��*� 3 �$"��C� �:����C� "> ��9B � �
[-.�#B/���E�:"�� O � 5 7�3 � R I � � [@e � I ��[� I �9d@c@P0T 0 � �"� � � � � �
� b9eXY � � � �i�

� � � � � ` dB�J_<P0�0[!d@L9� � � C dBRU��[0 � C [meOeOP0�SWUMONQP â cmPSL&WUT 0 \�RU[@� �pd0��WU[â G � Ip` RU[k�0PSP��<MOL9c@T5[B\
� La� �<RUP0L9��_<� â ��PSRUMO��d@L C [mLi\�PSRUP0L<�0P�[mL��pd0� dBLa� â RVWUMX�a�0M^dBe G L&WUPSe^eOMOcmPSL9�0P I �HMO�0P I � � � &�

� i� � � ` dB�J_<P0�0[�dBLa� � � C d�RU��[0+� â .�[meOP)�dBTVP���]�[&�iP0e�\�[@R�WU_9P���[@RU�,d�WUM^NmP
 �sPS�0MX�a��d�WUM^[@L
[B\ � RUcQdBL9MO�0P�� C [meOeOP0�SWUMONQP â c@P0L9�SY�d@L9� â c@P0LkWUT G LkWUPSR�d@�SWUMO[@L.� I � ��� ��< �� ��� 	���
��5�9��� ��� �
	 "$��%
�� ��9B � �.�
�����	 "$��%
 7 �5��
0� �)� I	� [meÑ� � I&G TVTVb<P � I �<����� � � � � 2� I�& eObk��PSR I]�d�RU�J_ � � � � �

� � � G � ` �[BRUL 0 � -.� $ �:"���+,��� � �� �� � � i\�[@R�� 0)�e^d@��£k��P0eOe I � � � �i�
� �i� G � ` �[BRUL 0 	�+�
��2��� � -%�*����� ��<BJ7<�#+��2 ��.7<+�����9+��#P<79��� � * ��� � �� � �#B$��� � I�
 Y<LkWU_<P0TVP �¢M^�iR�dBRVY I

�!��" I<F [@R��&RUP0�J_kW 0 F � .�P0M^�iP0e I � � � � �
� �m�
 d@LkWU[mT I ���9d@La� � [mL<P0T I â � � � G �adBLa� C d�RU��[I.� � 0 � .�P0TV�s[@L9TVMO�9MOeOMXWZY#\�[@R â �SWUMO[mL�MOL � RUcmd@L9MX�
�0dBWUMO[mL<T 0 d �9[BRU�,d@e�]�[&�<P0e �<��!5���H[@eO��T�WVRU[m��� �HMOLkWUMO£i£@d,d@L9� ./� D b<[m��P0e^d � P��iT0� � I A ��� �
0� �?;����* 5� ��	�+�
��2�5� � -.�:�5� � I$#%# �
 [k�0M^d@e â �SWUMO[mL � I�
 YiL&WU_<P0TVP �¢MO�<R�dBRVY I �'&(I & eObk��PSR I � � � � I
�"����
��2� �i�

��� �
 d@LkWU[mT I ����d@L9� C dBRU��[I � � 0)� G L9�<MXRUP0�SW â �JWUM^[@L I�G L	�9b9P0L<�0P!d@L9� .�PSTV�s[mL9TVMO�<M^eOMXWZY�� I MOL
]¡�).RU[���L�dBLa� � � C d�RU��[� P��<T0� � I ()�*���.
��2+�$ �:"��2+*) 	 "$��9+��6 ��9B 6���� � �
��CH���7 �5��
0� �)� I

 �<RUMOL9c@PSR I ¤)[@RU£&TV_<[m�9T�MOL C [@���9biWUM^L<c
 PSRUMOP0T I � � �B� � � � I � � � � �

�&� �
 PSRUcm[BW I]¡� 0 �k]�[&�iP0eOeOM^L<c b<L<RUP0eOM^d@�<eOP d@La� b9LkWVRUb9T�W���[@RVWU_kY�dBcmP0LkW �sP0_ad�N&MO[@R �i� G L
� �*�#+�� � ��� �5��-.�;4�5� � ���%�C
��5��C�$"+) 79�*+������C
 �, ��9B � ���+��%� � �*+�- �.� N �%�� �C� � ���
��2 #"$��.
D7 �5���
0� �)� O � 7�� 	 7 7 � 9�R Is` [me^dBLa� I â �iNmdBL9�0PST�M^L
 [B\�W C [m���<b<WUMOL9ci�
 �<RUMOL9c@PSRV� � PSRUe^dBc I � � �2�<�

� �<�
 £md�RU��P�d@T I �5� 0��]�[&�iP0eOMOL9c � RUcQdBL9MO��dBWUMO[@L9T�b<TVMOL9c .�[meOP0T.d@La� â cmPSL&WUT�� I � �*�#+��:�*B��C� "�� ���-,S-
���C����.�2+ A �5�#�#��*��9+��,����,��'�'����� �
��2+�� I â WU_<P0L9T I � � �2� �

198

Type-Based Distributed Access Control
vs. Untyped Attackers

Tom Chothia1 and Dominic Duggan2

1 Laboratoire d’Informatique (LIX),́Ecole Polytechnique (CNRS), 91128 Palaiseau Cedex
France,tomc@lix.polytechnique.fr

2 Department of Computer Science, Stevens Institute of Technology, Hoboken, NJ 07030,
USA, dduggan@cs.stevens-tech.edu

Abstract. This paper considers the effect of untyped attackers inside a distributed
system where security is enforced by the type system. In previous work we intro-
duced theKey-Based Decentralised Label Modelfor distributed access control. It
combines a weak form of information flow control with cryptographic type casts
to allow data to be sent over insecure channels. We present our model of untyped
attackers in a simplified version of this calculus, which we call mini-KDLM. We
use three sets of type rules. The first set is for honest principals. The second set is
for attackers; these rules require that only communication channels can be used to
communicate and express our correctness conditions. The third set of type rules
are used to type processes that have become corrupted by the attackers. We show
that the untyped attackers can leak their own data and disrupt the communication
of any principals that place direct trust in an attacker, but no matter what the at-
tackers try, they cannot obtain data that does not include an attacker in its access
control policy.

1 Introduction

Type systems can provide a lightweight method to ensure security properties of
a given piece of code. Once checked, the program can be run, with few restric-
tions, in the knowledge that the guarantees of the type system will still hold.
These guarantees can also be extended to distributed processes communicating
across an untrusted network, as long as each trusted process is well-typed. This
paper addresses the question of what happens when a number of these “trusted”
processes ignore the security types with the aim of acquiring sensitive data and
disrupting other principals.

In previous work [CDV03], we introduce theKey-Based Decentralised La-
bel Modelfor distributed access control. It combines a weak form of informa-
tion flow control with typed cryptographic operations. The motivation is to have
a type system that ensures access control while giving the application the re-
sponsibility to secure network communications, and to do this safely. Hence,
removing the need to force the user into a “one size fits all” security solution,
which would have to be implemented in the trusted computing base. We are

199

planning an implementation of this system as an extension of Java, which will
be called Jeddak. Ultimately, we would like a correctness result for untyped at-
tackers in our planned KDLM extension of Java. However, this would require
us to include in our model a number of implementational details, which would
obstruct the explanation of our method of dealing with untyped attackers. This
would also be difficult to present in the space of one paper, so we leave this as
further work. Instead we show how safety in the face of untyped attackers can be
proved for a cut-down version of our system, which we refer to as mini-KDLM.
This calculus is simple enough to illustrate the ideas of our system, while still
capturing the salient features of KDLM.

We show that the untyped attackers can leak their own data and disrupt
the communication of any other principals that place direct trust in an attacker.
However, no matter what the attackers try, they cannot obtain data that does not
include an attacker in its access control policy. We achieve this result by using
a type system with three sets of type rules. The first set allows principals to be
well-typed in the KDLM style. Attackers have their own type rules that allow
them to ignore the access control types. That attackers have type rules at all is
down to the need to maintain the separation between base types and channel
types (pretending that an integer has a channel type won’t make it into a com-
munication channel). The final set of type rules allow for names that have been
misplaced in honest principals; we refer to processes that have been interfered
with in this way as corrupt. These rules allow for one name to take the place of
another name, with a different type, as long as both names originally included
at least one attacker in their access control policy.

Our rules for attackers and corrupt processes require data not to be mis-
placed, unless it includes an attacker in its access control policy. So, we show the
correctness of our system by showing that well-typed systems always reduce to
well-typed systems. To assist us, we first prove a lemma: in a well-typed system,
we may substitute one type for another and the system will remain well-typed,
as long as both types originally included an attacker in their access control pol-
icy. We prove this lemma by showing that we can use the type rules for corrupt
processes to type any sub-processes affected by the type change.

The contributions of this work are:

– A model of untyped attackers and a correctness proof for systems under
attack in mini-KDLM. This is also a foundation stone for a much more
complicated model of untyped attackers in our planned implementation of
KDLM.

– Showing how distributed, untyped attackers can be dealt with using a differ-
ent set of type rules for honest principals, attackers and principals corrupted
by the attackers.

200

v ∈ Value ::= w, x, y, z Variable | a, b, c, n Channel name

| k+, k− Key names| {v}k Encrypted value

P ∈ Principals::= P, P1, P2...

LT ∈ Labelled Types::= LT, T L

R ∈ Process::= stop Stopped process

| receive v?x; R Message receive

| !R replication

| send v1!v2 Message send

| new(a : LT); R New channel

| newkey (k+ : Enc(~P)L1 ,

k− : Dec(~P)L2); R New Keys

| (R1 | R2) Parallel composition

| encrypt {v1}v2 as x; R Encryption

| decrypt v1 as {x}v2 ; R Decryption

N ∈ Network ::= empty Empty network

| P [R] Principal

| new(a : LT); N Channel binding

| (N1 | N2) Wire

Fig. 1.Syntax of mini-KDLM

In Section 2, we review the KDLM type system for distributed access con-
trol and introduce the simplified version, mini-KDLM. Next, in Section 3 we
introduce the model of untyped attackers. In Section 4, we show how type rules
can be used to characterize principals that have been corrupted by an attacker.
Section 5 proves the correctness of our system by way of a subject reduction
result. Section 6 discusses related work and finally, Section 7 concludes and
briefly discusses further work.

2 mini-KDLM

The Decentralized Label Model (DLM) [ML97] is a model of information flow
control that was introduced by Myers and Liskov. This model avoids one unde-
sirable aspect of classical information flow control - the need for some centrally
defined lattice of information levels - by implicitly defining a lattice based on
access control.

201

P1[send a!b] | P[receive a?x; R] → P[R[b/x]]

P [encrypt {v}k+ as x; R] → P [R[{v}k/x]]

P [decrypt {v}k as {x}k− ; R] → P [R[v/x]]

N1 → N ′
1

N1 | N2 → N ′
1 | N2

N → N ′

new (a : LT); N → new (a : LT); N ′

R ≡ R1 R1 → R′
1 R′

1 ≡ R′

R → R′

Fig. 2.The Semantics

More recently we combined ideas from DLM and cryptographic APIs [Dug03]
to make the Key-based Decentralized Label Model (KDLM). This system pro-
vides distributed access control and forms the basis for mini-KDLM. The argu-
ment for our approach is the usual end-to-end argument in system design: it is
ultimately unrealistic to expect there to be a single “one size fits all” solution to
network security in the runtime. The application must be able to build its own
network security stack for any approach to scale, so the type system prevents
the application from violating the information flow while establishing network
security.

The syntax of mini-KDLM is given in Figure 1. Most of this is similar to
the spi-calculus [AG99]. The new termP [R] is the processR running under
the control of the principalP . It should be noted that this does not represent a
location. It is possible to have two threads running for different principals on the
same computer, just as it is possible for processes running for the same principal
to run in two different places. We reduce and type each process running for a
principal on its own, using the structural equivalence rule:

P [R1 | R2] ≡ P [R1] | P [R2]

The calculus is monadic, meaning that channels only pass a single name
at a time. We could extend the calculus to pass multiple channels at a time by
repeating the type checks for each name passed, or by packaging up a number

202

!R ≡ R | !R stop | R ≡ R
R1 | R2 ≡ R2 | R1 R1 | (R2 | R3) ≡ (R1 | R2) | R3

new(a : LT); R ≡ R a /∈ fn(R) P [R1 | R2] ≡ P [R1] | P [R2]

(new(a : LT); R1) | R2 ≡ new(a : LT); (R1 | R2) a /∈ fn(R2)
new(a1 : LT1); new(a2 : LT2); R ≡ new(a2 : LT2); new(a1 : LT1); R

Plus the equivalent rules for Networks andnewkey.

Fig. 3.Equivalence Rules

T ∈ Types::= Chan(LT) Channel Type

| 〈〉 Null Type

| Enc(~P) | Dec(~P) Key Type

L ∈ Label ::= ~P | Public Access Control Policy

LT ∈ Labelled type::= TL Protected Data

Fig. 4.Syntax of Sensitivity Types

of names into a single object and placing a policy on the object that is at least as
restrictive as each of the names it contains.

The semantics of this calculus is given in Figure 2. This too, is similar to the
spi-calculus, in particular, encrypting a namea with a keyk results in the term
{a}k. This term cannot be identified asa, and cannot be used to communicate.
The decrypt operation pattern matches the key name, and will decrypt the data
if the correct key is provided, otherwise it will halt. Thenew construct generates
a new and unique name. The structural equivalence rules allow the scope of a
new name to be expanded as long as it does not capture any other names, using
the rule:

(new(a : LT);R) | R′ ≡ new(a : LT); (R | R′) if a /∈ fn(Q)

wherefn(R′) are the names inR′ that do not appear under a binder. The com-
munication rule cannot be applied across a new name construct hence new and
“old” names represented by the same symbol cannot communicate. The other
structural equivalence rules are given in Figure 3.

The access controls are enforced using the type system given in Figure 4
(syntax), Figure 5 (type rules) and Figure 6 (well-formed types). We do not
enumerate the base types here, but they could include types such asint for
integers, andstring for strings. The channel typeChan(LT) is the type of the
communication channel that carries a value of typeLT . A protected type adds

203

Γ ` N1 Γ ` N2

Γ ` (N1 | N2)

Γ ∪ {(a : LT)} ` N

Γ ` new(a : LT)N

Γ ` P [R1] Γ ` P [R2]

Γ ` P [(R1 | R2)]

Γ ∪ {(a : TL)} ` P [R] P ∈ L ` T L

Γ ` P [new(a : TL); R]

Γ ` v : Chan(TL)L0 P ∈ L0 Γ ∪ {(x : TL)} ` P [R]

Γ ` P [receive v?x; R]

Γ ` v0 : Chan(TL)L0 Γ ` v : TL P ∈ L0

Γ ` P [send v0!v]

` Enc(~P)L1 ` Dec(~P)L2 P ∈ L1 ∩ L2

Γ ∪ {k+ : Enc(~P)L1 , k− : Dec(~P)L2} ` P [R]

Γ ` P [newkey (k+ : Enc(~P)L1 , k− : Dec(~P)L2); R]

Γ ` v0 : T L Γ ` v : Enc(L)Lk Γ ∪ {x : T Public} ` P [R] P ∈ Lk

Γ ` P [encrypt {v0}v as x; R]

Γ ` v0 : T Public Γ ` v : Dec(Lp)Lk Γ ∪ {x : T Lp} ` P [R] P ∈ Lk

Γ ` P [decrypt v0 as {x}v; R]

Fig. 5.Types for Networks

a policy label to a channel or base type:TL, for instance,int{Alice,Bob} is an
integer that can only be used by the principals Alice and Bob. The aim of this
type system is to ensure that names only ever reach principals that are mentioned
in their policy, i.e., given a network with the termP [R] all names used by the
processR must name the principalP in their policy. In this section we direct
the reader’s attention to the basic calculus; we discuss encryption in the next
section.

We restrict the types given to names in Figure 6 and we restrict how a pro-
cess can use those names in Figure 5. Our type judgement on networks takes
the formΓ ` P [R] whereΓ is a set of type bindings. The judgement on names
Γ ` a : LT means thata has typeLT in Γ andLT is a well-formed type.

There are two fundamental restrictions imposed by the type system, the first
is on channel types and the second is on thesend action. Channels are required
to have a policy that is more restrictive than the policy of the data they carry.
This is enforced by the following rule from Figure 6.

204

v0 : T L ∈ Γ v : Enc(L)Lk ∈ Γ ` T L ` Enc(L)Lk

Γ ` {v0}v : T Public

Γ ` k− : Dec(~P)L′ k+ : Enc(~P)L ∈ Γ ` Enc(~P)L

Γ ` k+ : Enc(~P)L

Γ ` k+ : Enc(~P)L′ k− : Dec(~P)L ∈ Γ ` Dec(~P)L

Γ ` k− : Dec(~P)L

v : T L ∈ Γ ` T L

Γ ` v : T L

` T L L0 ⊆ L

` Chan(T L)L0

L ⊆ ~P

` Dec(~P)L

L ⊆ ~P

` Enc(~P)L

Fig. 6.Well-Formed Types and Names

` TL L0 ⊆ L

` Chan(TL)L0

HereL0 is the set of principals that can access a channel of this type andL
is the set of principals that should be able to access the data sent across this
channel. As a principal must possess a channel in order to be able to receive
on it, the restrictionL0 ⊆ L means that any restricted data can be sent over a
correctly typed channel in the knowledge that any principal that can receive the
data should be allowed to do so. The condition on the data type,` TL ensures
that this type is well-formed.

The type check on the send action, from Figure 5, ensures that only data of
the correct type is sent over a channel, i.e., the type ofv matches the type that
should be carried byv0.

Γ ` v0 : Chan(TL)L0 Γ ` v : TL P ∈ L0

Γ ` P [send v0!v]

As with the other type rules, this rule also checks that the types are well-
formed and that all of the names can be used by the current principal. In the
case of the send rule we know that, asv0 has a well-formed type,L0 ⊆ L and
hence the conditionP ∈ L0 implies thatP is in the access control types for
bothv andv0.

2.1 Encryption and Types

The type system described so far is very restrictive. More over, it may not always
be possible to have a secure channel between any two principals. To make the

205

Fig. 7.Sending Data Through an Untrusted Area

type system more flexible we use encryption as a form of type downcasting to
allow us to send sensitive data over an insecure channel, in a way that is both
secure and type safe.

We associate access control lists with cryptographic keys. When a piece of
data is sent over an insecure channel it is encrypted with a key that represents
the list of principals that can access that data. Once encrypted, we remove the
access control restriction from the data, indicated by the policyPublic, meaning
that the data is not unrestricted. We consider all principals to be inPublic,
so the testP ∈ Public is always true. When encrypted data is received, the
access restrictions for the decryption key are used as the access control type.
Keys have the typeEnc(~P)L or Dec(~P)L to represent an encryption key or
a decryption key that enforces the policy~P on data. These key types are in
turn protected by a policy, in this caseL. This is illustrated in Figure 7. In this
picture, Alice wishes to send Bob some data, which is restricted to just the two
of them. Lacking a secure channel she encrypts the data with a key that enforces
the same policy as the one on the data, a type check ensures that these policies
match. The encrypted data does not have any type restrictions and so can be sent
to Bob over a public channel. Upon receiving it, Bob decrypts it and replaces
the access restrictions. Hence, as long as the key is restricted to just Alice and

206

Bob, the data has passed from one principal to another in a safe way and has
arrived with the same type as it started with.

The type rule for encryption is given in 5. This rule ensures that the right
key is used to encrypt controlled data.

Γ ` v0 : TL Γ ` v : Enc(L)Lk Γ ∪ {x : TPublic} ` P [R] P ∈ Lk

Γ ` P [encrypt {v0}v as x;R]

We note that the policy on the data being encrypted (L) must match the pol-
icy that is enforced by the key. Once the name is encrypted the access control
restrictions are removed, so it can then be sent over an insecure channel in a
type safe way, this is indicated by thePublic label on the encrypted data. The
condition that requires the current principal to be included in the policy of the
key (P ∈ Lk) and the well-formedness condition on the key type imply that
well-typed principals will only try to encrypt data that they are allowed to use
i.e., thatP ∈ L.

The matching decryption rule takes a name, without any access restrictions,
and tries to decrypt it. If the incorrect key is used the process halts. If the correct
key is provided we decode the data and give it the access control policy that is
enforced by the key. As the decryption and encryption part of a key must enforce
the same policy, we know that the decrypted name has the same type as it had
before it was encrypted.

Keys are restricted to a subset of the principals in the policy they enforce, as
seen in Figure 6. The well-formedness condition on the key types also ensures
that encryption and decryption types for the same key enforce the same policy
and then any encrypted terms in the initial network must also be well-typed, i.e.,
it must be possible to generate them from well-typed encryptions.

As an example, consider a system with two principals, aPDA and aBase
computer. If the PDA uses data packets of typedata, then a packet that was
restricted to just the PDA and the owners base computer would have the type
data{PDA,Base}, whereas public data would have the typedata{Public}.

Imagine that the PDA has a cable that connects it to the base computer and
a wireless connection. The socket for the cable connection on the PDA will se-
curely connect the PDA and base computer and so it would have a type indicat-
ing that it is safe for restricted data,Cable Socket : Chan(data{PDA,Base}){PDA}.
ThePDA label on the socket indicates that the socket connection cannot be sent
to another location. The wireless connection, on the other hand could easily be
intercepted. While it would be possible to use a secure transport layer to protect
the data sent over this connection, this might be too great a burden for a the lim-
ited CPU and battery power of the PDA, or we might just want to keep the PDA

207

Γ `A N1 Γ `A N2

Γ `A (N1 | N2)

Γ ∪ {(a : LT)} `A N

Γ `A new(a : LT)N

Γ `A P [R1] Γ `A P [R2]

Γ `A P [(R1 | R2)]

Γ ∪ {(a : TL)} `A P [R] P ∈ L `A T L

Γ `A P [new(a : TL); R]

Γ ` v : Chan(TL)L0 P ∈ A L0 ∩A 6= {} Γ ∪ {x : T L} `A P [R]

Γ `A P [receive v?x; R]

Γ ` v0 : Chan(T L1
1)L0 Γ ` v : T L2

2 bT1c = bT2c
P ∈ A L0 ∩A 6= {} 6= L2 ∩A

Γ `A P [send v0!v]

Γ ` v0 : T L Γ ` v : Enc(Lp)Lv Γ ∪ {x : T Public} `A P [R]
Lp ∩A 6= {} L ∩A 6= {} P ∈ A

Γ `A P [encrypt {v0}v as x; R]

Γ ` v0 : T Public Γ ` v : Dec(Lp)Lk Γ ∪ {x : T L
p } `A P [R]

Lk ∩A 6= {} P ∈ A

Γ `A P [decrypt v0 as {x}v; R]

Fig. 8.Types for Attackers

software as simple as possible. So, we give the socket a type indicating that it is
not safe for private data,Wireless Socket : Chan(data{Public}){PDA}.

When the PDA software is compiled we automatically detect if the program
tries to send any controlled data over the wireless connection without encrypting
it first. So, once checked the lightweight PDA program can run without any
restrictions and without a cumbersome security transport layer.

3 Untyped Attackers

The aim of this paper is the correct integration of untyped, trusted attackers into
our model. If an attacker is mentioned in the access control policy of a name it
can acquire that name and send it on anywhere it sees fit. So, an untyped attacker
can always leak some restricted data, but we can show that this abuse of trust is
not transitive. If Alice restricts her data to just herself and to Bob, and excludes
Eve, who does not respect the access control types, then the data should be safe
from Eve, even if Bob trusts her with other data and channels.

208

We include attackers into our type system by adding two new sets of type
rules and a new form of type judgement. We writeΓ `A N to mean that the net-
work N is well-typed given the fact thatA is a set of principals that can perform
attacks by ignoring access control types. Processes can now be typed with the
original “honest” type rules, or by a set of type rules for attackers, or by another
set of type rules for processes that have been corrupted by misinformation from
an attacker.

The type rules that the attackers must conform to are given in Figure 8. It
may seem odd to have type rules for untyped attackers however, these rules
place no restrictions on access control types. So, more accurately these are un-
access-control-typed attackers. The type rules do force attackers to respect the
basic nature of the names. For instance, as communication channels must be
supported by some kind of infrastructure, the attacker cannot turn an integer
into a communication channel just by changing its type. We characterise the
types the attacker can interchange by defining an erasure relation.

bChan(LT)Lc = Chan(bLTc)Public b〈〉Lc = 〈〉Public

bEnc(~P)Lc = Enc(~P)Public bDec(~P)Lc = Dec(~P)Public

As long as the attackers only substitute names with the same erasure type,
they can do what they like. In particular, we point out that the type of a name
being sent over a channel does not have to match the type that should be carried
by that channel, and that the policy enforced by the encryption key used to
encode a name does not have to match the policy on the name. This means
that an encrypted name could be encrypted with what could be regarded as the
wrong key. This is catered for by the following additional type rule for corrupted
encrypted terms.

v0 : TL ∈ Γ v : Enc(Lp)Lk ∈ Γ `A TL `A Enc(Lp)Lk

Lp ∩A 6= {} 6= L ∩A

Γ `A {v0}v : TPublic

The attackers create “correct” types. This is because we do not consider
attackers obtaining values created by other attackers as a security leak and if
these names are passed to a genuine process then the real type of the name will
not matter. The type rules also check that at least one attacker is named in each
rule used. This is a correctness criterion that, in effect, states that the attackers
have not been able to acquire any names that did not explicitly give access to an
attacker. We show later that this correctness criterion is preserved by reduction.

209

Γ ` v : Chan(TL)L0 Γ ∪ {(x : TL)} `A P [R] A ∩ L0 6= {}
Γ `A P [receive v?x; R]

Γ ` v0 : Chan(TL1
1)L0 Γ `A v : T L2

2 bT1c = bT2c
L2 ∩A 6= {} 6= L1 ∩A if L0 ∩A = {} then P ∈ L0

Γ `A P [send v0!v]

Γ ` v0 : T L Γ ` v : Enc(Lp)Lk Γ ∪ {x : T Public} `A P [R]
A ∩ L 6= {} 6= Lp ∩A if A ∩ Lk = {} then P ∈ Lk

Γ `A P [encrypt {v0}v as x; R]

Γ ` v0 : T Public Γ ` v : Dec(Lp)Lk Γ ∪ {x : T Lp} `A P [R] A ∩ Lk 6= {}
Γ `A P [decrypt v0 as {x}v; R]

Fig. 9.Types for the Corrupt

4 Corrupted Principals

While the attackers cannot acquire sensitive data, they can cause their data to be
misplaced. Hence, if you trust an untyped attacker you run the risk of becoming
corrupted. We formalise this with the rules in Figure 9.

We note that rather than having three separate sets of type rules, it would
have been possible to have a single, complicated type rule for each piece of
syntax. These rules would coalesce the conditions from each of the three type
rules. For the sake of the reader’s comfort, and our sanity, we decided to keep
the rules simple.

The send rule may be corrupt in three ways: an attacker might have messed
around with the communication channel that is being used to send the data, or
the data that is being sent, or both. As the channel must have a well-formed
type it is possible for an attacker to have access to the data being sent over the
channel but not have access to the channel itself. This means that, if the send
action is corrupt in any way, it must include an attacker in the payload type. We
use an “if” statement to see if the communication channel may also be corrupt;
if it cannot be, it must be in the right place, i.e., have the current principal in its
policy. If an attacker has corrupted the data so the type of the channel’s payload
does not match the type of the name being sent then both must contain the name
of an attacker.

In a similar way, if the attacker is named in any part of an encryption action
it, must be named in the policy enforced by the key and in the policy of the
name being encoded. If an attacker is not named in the access control policy
for the key then the attacker cannot interfere with the key and so the current

210

principal must be mentioned. Of course, as the process has been corrupted, the
policy enforced by the key does not have to match the policy on the data being
encrypted.

5 Correctness

Our type system does not allow the attackers to possess data they are not sup-
posed to have. For this reason, a well-typed system is one in which a leak has
not yet occurred, as shown by the following lemma.

Lemma 1. A well-typed network is correct, only names that explicitly allow
access to an attacker appear outside their designated area:

If Γ `A P [R] andR = C[send v1!v2] or R = C[receive v1?x;R′] or R =
C[encrypt {v1}v2 as x;R′] or R = C[decrypt v1 as {x}v2 ;R

′] andΓ ′ ` v1 :
TL1

1 , v2 : T2
L2 , whereΓ ′ is Γ extended with the types defined byC[] then

P ∈ L1 or A ∩ L1 6= {} andP ∈ L2 or A ∩ L2 6= {}.

Proof. By induction on the syntax ofR. We inspect the type rules for each
piece of syntax, observe that the conditions are fulfilled and apply the induction
hypothesis to type the remaining process.

The result of our correctness result takes the form of a subject reduction
proof; we show that well-typed systems reduce to well-typed systems. The type
system allows any given piece of syntax to be typed as an honest process, or an
attacker, or a corrupted process. This leads to multiple cases to check when as-
suming a process is well-typed. A more interesting issue is that one type might
have been used to type a name in a given process and then a name of a differ-
ent type could be substituted into its place. This will happen when an attacker
sends a wrongly typed name over a channel to an honest process. In which case
the honest process will become corrupt and we will have to type the resulting
process with the type rule for corrupt processes.

We use the following lemma to show that the substitution of one type for
another is allowed by the type rules for corrupt processes, as long there is an
attacker in the policy of both names.

Lemma 2. If Γ ∪{x : TL1
1 } `A P [R] then for all` TL2

2 such thatbT1c = bT2c
andA ∩ L1 6= {} andA ∩ L2 6= {} we have thatΓ ∪ {x : TL2

2 } `A P [R]

Proof. By induction on the syntax ofR. We give the receive case as an example.

– R ≡ receive x?y; R′

By the assumption thatP [R] is well-typed, with the original type forx,
we know that there existsT3 andL3 such thatT1 = Chan(TL3

3) and that

211

Γ ∪ {x : TL1
1 , y : TL3

3 } `A P [R′]. As bT1c = bT2c we know thatT2 =
Chan(TL4

4) for someT4 such thatbT3c = bT4c. By the well-formedness
condition for channel types we know thatL1 ⊆ L3 andL2 ⊆ L4 hence
A ∩ L3 6= {} andA ∩ L4 6= {}. So, we can apply the induction hypothesis
to show thatΓ ∪ {x : TL2

2 , y : TL4
4 } `A P [R′]. Noting thatA ∩ L2 6= {}

allows us to typeP [R] by the receive type rule for corrupt processes.

This lemma has proven the heart of our correctness result, however it re-
mains to show that types only ever get mixed up when they include an attacker
in their access control policy. We do this in our main theorem.

Theorem 1 (Subject Reduction).If Γ `A N andN → N ′ thenΓ `A N ′.

Proof. By induction on the reductionN → N ′, for each reduction rule we
consider each possible typing rule that could have been applied to typeN . We
then show that we can typeN ′, using Lemma 2 whenever the process becomes
corrupted.

And finally, we restate this as correctness:

Corollary 1. Given a well-typed honest networkΓ ` N , for any set of attackers
A and any networkNA such thatΓ `A NA the networkN | NA cannot reduce
to a state in which an attacker has a name that does not include an attacker in
its access control policy.

Proof. By Lemma 1 and Theorem 1.

6 Related Work

Mini-KDLM is designed to be simple enough to illustrate our correctness proof
while still producing results that are relevant to full KDLM [CDV03]. So, natu-
raly mini-KDLM is a cut down version of full KDLM. Both have policy types
on data and the key types that enforce a policy on the data they encrypt but
full KDLM uses an abstraction of key names to represent policies, this allows
for an accountable model of declassification. In mini-KDLM we restrict both
encryption and decryption keys, however full KDLM splits the access control
types into policies for security and authentication, meaning that encryption and
signing keys can be made public. In other work we show how key names can be
distributed and sketch how KDLM could be implemented as a type system for
Java, which we refer to as Jeddak [CDV04].

Our work is partly inspired by the Distributed Label Model [ML97] this
model was implemented as the language JFlow [Mye99]. The Jif/Split compiler

212

[ZZNM02,ZCZM03] allows a program to be annotated with trust information,
the code is then split into a number of programs that can be run on different
hosts. The partitioning preserves the original semantics of the program and en-
sures that hosts that are not trusted to access certain data cannot receive that data.
Hennessy and Riely [HR99,RH99], have developed a type system that controls
attackers in the Dpi-calculus. They allow attackers to ignore the type rules, as
we do here, but they use dynamic type checks to ensure that honest principals
do not become corrupted.

Much of the work on wide-area languages has focused on security, for exam-
ple, providing abstractions of secure channels [AFG00,AFG99], controlling key
distribution [CV99,CGG00], reasoning about security protocols [AG99,Aba97],
etc. Abadi [Aba97] considers a type system for ensuring that secrecy is pre-
served in security protocols. Other work on security in programming languages
has focused on ensuring and preventing unwanted security flows in programs
[DD77,VS97,PC00]. Sabelfeld and Myers [SM02] provide an excellent overview
of this work.

7 Conclusion and Further Work

We have provided a model of untyped attackers inside the Key-Based Decen-
tralised Label Model and proved that these attackers can cause only limited
damage. The model works by having three sets of type rules: the first for honest
processes, the second for attackers and the third for processes that have been
corrupted by an attacker. The type rules also contain checks that ensure no data,
which is not designated as accessible to an attacker, leaks outside its area. We
prove the correctness of our system by showing subject reduction.

It may be interesting to introduce a sub-typing relation for labelled types.
For instance, allowing data to be sent over channels that should carry a more
restrictive data type, and effectively up grading the data’s security restrictions.
Also, modelling corrupted types as sub-types of the original types may allow
us to reduce the total number of type rules. However, this does not catch the
different possible behaviours of honest participants and attackers and it may
make the extension of the systems more cumbersome.

We hope that this work will be a base from which to prove that an imple-
mentation of Key-Based Decentralised access control in Java is also safe from
untyped attackers. We also hope that this method can be applied to other type
systems for distributed security.

213

References

[Aba97] Martin Abadi. Secrecy by typing in security protocols. InTheoretical Aspects of
Computer Science, pages 611–638, 1997.

[AFG99] Martin Abadi, Cedric Fournet, and Georges Gonthier. Secure communications pro-
cessing for distributed languages. InIEEE Symposium on Security and Privacy, 1999.

[AFG00] Martin Abadi, Cedric Fournet, and Georges Gonthier. Authentication primitives and
their compilation. InProceedings of ACM Symposium on Principles of Programming
Languages, 2000.

[AG99] Martin Abadi and Andrew Gordon. A calculus for cryptographic protocols: The spi
calculus.Information and Computation, 148(1):1–70, January 1999.

[CDV03] Tom Chothia, Dominic Duggan, and Jan Vitek. Type-based distributed access control.
In Computer Security Foundations Workshop, Asilomar, California, June 2003. IEEE.

[CDV04] Tom Chothia, Dominic Duggan, and Jan Vitek. Principals, policies and keys in a se-
cure distributed programming language. InFoundations of Computer Security, 2004.

[CGG00] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and group creation.
In Concurrency Theory (CONCUR). Springer-Verlag, 2000.

[CV99] Guiseppe Castagna and Jan Vitek. A calculus of secure mobile computations. In
Internet Programming Languages, Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 1977.

[Dug03] Dominic Duggan. Type-based cryptographic operations.Journal of Computer Secu-
rity, 2003.

[HR99] Matthew Hennessy and James Riely. Type-safe execution of mobile agents in anony-
mous networks. InSecure Internet Programming: Security Issues for Distributed and
Mobile Objects, Lecture Notes in Computer Science. Springer-Verlag, 1999.

[ML97] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow
control. InSymposium on Operating Systems Principles, 1997.

[Mye99] Andrew C. Myers. Jflow: Practical mostly-static information flow control. InPro-
ceedings of ACM Symposium on Principles of Programming Languages, pages 228–
241, 1999.

[PC00] Francois Pottier and Sylvain Conchon. Information flow inference for free. InPro-
ceedings of ACM International Conference on Functional Programming, 2000.

[RH99] James Riely and Matthew Hennessy. Trust and partial typing in open systems of
mobile agents. InProceedings of ACM Symposium on Principles of Programming
Languages, 1999.

[SM02] Andrei Sabelfeld and Andrew Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 2002.

[VS97] D. Volpano and G. Smith. A type-based approach to program security. InProceedings
of the International Joint Conference on Theory and Practice of Software Develop-
ment. Springer-Verlag, 1997.

[ZCZM03] Lantian Zheng, Stephen Chong, Steve Zdancewic, and Andrew C. Myers. Building
secure distributed systems using replication and partitioning. InIEEE Symposium on
Security and Privacy. IEEE Computer Society Press, 2003.

[ZZNM02] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Secure
program partitioning.Transactions on Computer Systems, 20(3):283–328, 2002.

214

A security management information model derivation
framework: from goals to configurations

Laborde R., Barrère F., Benzekri A.

Université Paul Sabatier - IRIT/SIERA
118 Rte de Narbonne F31062 Toulouse Cedex04

Phone: +33 (0) 5 61 55 60 86 - Telecopy: +33 (0) 5 61 52 14 58
{laborde, barrere, benzekri}@irit.fr

Abstract. Security mechanisms enforcement consists in configuring devices
with the aim that they cooperate and guarantee the defined security goals. In the
network context, this task is complex due to the number, the nature, and the
interdependencies of the devices to consider. We propose in this article a global
and formal framework which models the network security management
information from the security goals to the security mechanisms configurations.
The process is divided into three steps. First, the security goals are specified
and the specification consistency is checked. Secondly, the network security
tactics are defined. An evaluation method guarantees the consistency and the
correctness against the security goals. Finally, the framework verifies that the
network security tactics can be enforced by the real security mechanisms.

1 Introduction

Basically, the security of distributed applications is supported by a set of security
services. ISO defines the five following services [9]: access control,
identification/authentication, confidentiality, integrity, non-repudiation. These
security services are implemented by means of security mechanisms such as security
protocols (IPsec, SSL, SSH) or access control mechanisms (firewalls, Application
Security Gateways, OS access control systems, antivirus). The security administrator
should create his own security solution selecting the security services to use and the
security mechanisms’ configurations to apply.

But the distributed application security management is by nature a distributed
function which implies the cooperation of different devices with different capabilities.
In [11], we have pointed to different problems that can disturb this fragile co-
ordination: the inconsistency and the non-correctness of the security mechanisms.

The security mechanisms inconsistency indicates that two or more security
rules/configurations are contradictory. The atomic inconsistency problem indicates
that two or more configuration rules for the same security mechanism and on the
same device are incompatible. For example, one rule states that data flows with the
source IP addresses in the range 10.0.0.0/8 can pass through the firewall and another
rule on the same firewall states that the data flow with the source IP address

215

 Laborde R., Barrère F., Benzekri A.

10.20.30.4 is denied. Several techniques [16] can be used to solve it, e.g. “negative
authorizations take precedence”, “the authorization that is most specific w.r.t. a partial
order wins”, etc. The distributed inconsistency concerns incompatible rules mapped
on different security mechanisms or devices. Thus, the administrator should pay
special attention to all dependency relations between rules applicable on different
devices. For example, an IPsec tunnel is correctly configured between two VPN
gateways and a firewall between them blocks their IPsec data flows. Some papers
provide a partial solution considering only one kind of device, for example firewalls
[2,5] or filtering IPsec gateways [7,8].

In addition to the inconsistency problem, security mechanisms implementation
must guarantee the administrator’s security objectives; this is the correctness problem.
The approach followed by network management practitioners consists of using
different abstraction levels of management information, from the goals to the
configurations [14,17]. For example, policy based network management uses this
approach in order to automate the management task [18]. Nevertheless, the refinement
process, called in this context derivation, is not controlled yet.

RBAC model

Data Flow based
Network Model

Device/technology
Model

Consistency

Correcness

Consistency

Correctness

Security objectives

Security Configuration

Fig. 1. The proposed framework process

In this article, we propose a global formal framework which includes an
expression and a verification tool to control the network security management
information. The correctness problem implies being able to specify the security goals,
the security mechanisms and their configuration. The inconsistency problem depends
only on the security mechanisms. Our framework is decomposed into three steps (fig.
1). The first one deals with the security goals specification and consistency evaluation
using the RBAC model. The second part proposes the definition of a technology
independent network security tactics which are evaluated against both inconsistency
and correctness problems. The approach focuses on the data flows and the different
applied treatments. The last part verifies that the security tactics can be enforced by
the technologies used.

2 Network Security goals definition

When a user accesses a service, a set of data flow is exchanged between the device
from which the user launches the service and the devices supporting the service
execution (fig. 2). So, a relation between a network security policy and an application
security policy can be distinguished. For example, if the application security policy
states that user “u1” can read object “o1”- noted (u1, o1, +read), then it implies that a
corresponding data flow flow(o1,+read) between the device of user “u1” and the

216

A security management information model derivation framework

device of “o1” can exist on the network. Consequently, the associated network
security policy must allow the data flows flow(o1,+read) between these two devices –
noted (device(u1) ↔ device(o1), +flow(o1, read)). Conversely, if the application
security policy states that user u2 cannot read object o2 noted (u2,o2, - read), there is no
flow flow(o2,read) between the devices of u2 and o2. Therefore, the network security
policy must forbid flow(o2, read) between the devices of u2 and o2, i.e.,
(device(u2)↔device(o2),-flow(o2,read)). We thus obtain the derivation relation noted
“⇒d” as ∀u∈USERS, ∀ o ∈ OBJECTS, ∀ a ∈ ACTIONS, (u, o, ±a) ⇒d (device(u)
↔ device(o), ± flow(o, a)).

Access control models [1,4] represent tools suited for application security
modelling. First, they allow the expression that an entity (called user/subject) can
perform or not given actions on another entity (called object). Moreover, each access
control model is associated to a set of security validation techniques in order to
guarantee the consistency of the defined rules.

ServerComputer

Acces Control
Rules

Data Flows

Application Security
Policy

Network Security
Policy

D
er

iv
at

io
n

Fig. 2. Security policy derivation

 Object User Role

Session

Operation

Permission

Role hierarchy

User
Assignement

Permission
Assignement

Role_Session User_Session

Fig. 3. The NIST RBAC Model

The framework proposes the use of the NIST RBAC model [1] that brings the
notion of role and hierarchy of roles (fig. 3). A role represents a group of users based
on their competencies and responsibilities in a given organization [6], and role
hierarchies [13] represents the organization considering its membership. An
organizational structure is often specified in terms of organizational positions such as
regional, site or departmental network manager, service administrator, service
operator, company vice-president. Specifying organizational policies for people in
terms of role-positions rather than persons, permits the assignment of a new person to
the position without re-specifying the policies referring to the duties and
authorizations of that position. Consequently, with RBAC, users are not directly
granted permissions to perform an operation, but operations are associated with roles.
Then, roles can be updated without having to update the privileges for every user
which facilitates the users’ management. RBAC also supports several well-known
security principles including the specification of competency to perform specific tasks,
the enforcement of least privileges, and the specification and enforcement of conflicts
of interest rules [6]. Moreover, RBAC has the potential to support DAC or MAC
policies and properties [15] such as the enforcement of the simple security and the *-
properties [3].

Thereafter, we consider that there is no hierarchy and that roles have disjoint
privileges (if this is not the case then we may create a partition of this set): such a
constraint will help us to group data flows based on the permissions assigned to one
role and then identifying them by the role.

217

 Laborde R., Barrère F., Benzekri A.

Users are considered in an RBAC system by their assigned role. Consequently, the
derivation relation becomes: ∀ r ∈ ROLES, ∀oi∈ OBJECTS, ∀ opj ∈
OPERATIONS, ∀u∈USERS, ∀u’∈USERS • (r, {(opj, oi)}) ∧ Assigned(u,r) ∧
¬Assigned(u’,r) ⇒d (device(u) ↔ device(oi), +flow(oi, opj)) ∧ (device(u’) ↔
device(oi), - flow(oi, opj)).

Afterward, we note by the name of the role the set of flows corresponding to the
permissions assigned to the role.

3 A flow oriented modelling language

The security application layer focuses on the end-to-end entities but intermediate
systems (e.g. routers, switches, secure gateways, firewalls) are also involved in the
security deployment. The problem consists in specifying the co-operation between
different devices which demands different configurations based on the technologies
implemented.

Network Infrastructure

Access Control Rules

User A User B Data

C

: End Flow Functionality : Filter Functionality : Active Entity

 : Channel Functionality : Transform Functionality : Passive Entity

C

Fig. 4. The specification elements

The notion of data flow is at the heart of the network security management
problem. Data flows are not restricted to a set of IP addresses, application ports, etc.
Here, data flows represent the data exchanged between the entities that perform given
actions (the subjects in the RBAC model) and the entities that store information (the
objects in the RBAC model). So our approach only considers the applicable
treatments on data flows [12]. They can be brought together into four basic
functionalities (fig. 4). Devices and networks are specified while interconnecting
these basic functionalities:
− Mechanisms that consume/produce data flows such as end-systems - called end-

flow functionalities,
− Mechanisms that propagate data flows such as physical supports and associated

devices - called channel functionalities,
− Mechanisms that transform a data flow into another such as the security protocols

or NAPT gateways - called transform functionalities,

218

A security management information model derivation framework

− Mechanisms that filter data flows such as firewalls - called filter functionalities.
Each basic functionality semantic is defined by means of Coloured Petri Nets

(CPNs [10]) using “CPN tools” [19]. The colour of token specifies the data flow. The
tuple <efs,efd,role,transf_list> defines a data flow where efs is the end-flow that
produced the data flow, efd is the destination end-flow, role represents the data flow
characteristics based on the access control rights associated to this role and transf_list
is the list of transformations applied to the data flow.

The state of the system is represented by the tokens distribution in the places. In
the CPN model, the state changes when a transition is fired. A boolean expression,
called guard, can be associated to a transition as a fire condition. If tokens in places
linked to the transition pre-arcs satisfy the guard, they are removed from the places
and new ones are created into the places linked to the post-arcs. Functions on post-
arcs allow the control of the colour and the number of the new tokens.

3.1 Active end-flow functionalities

Active end-flow functionalities (AEF) produce and consume data flows. They are
connected to the RBAC model subjects. So, they constitute the first part of the
association between the application security model and the network security model.
Figure 5 specifies the formal semantic of the AEFs. The couple efi

em/tefi
em represents

its production capacity. In the initial state, the place efi
em contains one token for each

data flow that it can send, i.e., the combination of the roles assigned to the subjects
and the passive end-flows assigned to the same roles. The place efi

rec corresponds to
its data flows consuming capability.

3.2 Passive end-flow functionalities

Passive end-flow functionalities (PEFs) produce and consume data flows.
Nevertheless, PEFs are connected to the objects of the RBAC model and form the
other part of the link between the application and the network security model. Figure.
6 specifies its formal semantic. We have modelled the couple AEF/PEF like the
client/server interactions: PEFs reply to the data flows sent by the AEFs. Data flows
are received in place efi

rec. If the data flow end-flow functionality destination is the
same as one of its assigned roles and understandable (i.e. no transformation
guaranteeing the confidentiality property is applied), the response is created (the
OK_NOK_efi post-arc, the place efi

em and the transition tefi
em).

219

 Laborde R., Barrère F., Benzekri A.

tefi
emefi

em

efi
rec

Other
Functionality

1`(efi, efs1, role1, [(any,none)]) ++
1`(efi, efs2, role1, [(any,none)]) ++
1`(efi, efs, role2, [(any,none)]) ++
 ...
1`(efi, efsn, rolen, [(any,none)]) ++

Fig. 5. The active end-flow
functionality

tefiemefiem

efi
rec

Other
Functionality

OK_NOK
efi

[(r=role1 orelse r=role2 orelse ...r=rolem) andalso
AEF.legal(efs) andalso not confidential(tl)]

Update(list,(efs, efd, r, tl))

accept_efi

hist_efi

[not member((efs,efd,r,tl),list)]

list

(efi, efs, r, tl)

Fig. 6. The passive end-flow
functionality

tfifct1fct2
Other

Functionality
fct1

fifct1fct2
Other

Functionality
fct2

hist_fifct1fct2 [(efs=a andalso efd=b andalso
r=role andalso transf(g,tl))
orelse ...]

tfifct2fct1 fifct2fct1

hist_fifct2fct1

[(efs=a' andalso efd=b' andalso
r=role' andalso transf(g',tl))
orelse ...]

Fig. 7. The filter functionality

ttfifct1fct2
Other

Functionality
fct1

tfifct1fct2

hist_tfifct1fct2

tfifct2fct1

hist_tfifct2fct1

[not transf(g',tl)
orelse ...]

case (efs,efd,r,tl) of
(x,y,role',_)=>
 1`(x,y,role',delTransf(g',tl)
| ...
|(a,b,role,_)=>
 1`(a,b,role,addTransf(g,tl)
| ...
| _=>1`(efs,efd,r,tl)

ttfifct2fct1
case (efs,efd,r,tl) of
(a,b,role,_)=>
 1`(a,b,role,delTransf(g,tl)
| ...
|(x,y,role',_)=>
 1`(x,y,role',addTransf(g',tl)
| ...
| _=>1`(efs,efd,r,tl)

[not transf(g,tl)
orelse ...]

Other
Functionality

fct2

Fig. 8. The transform functionality

Other
Functionality

fct2

cifct1

tcifct1

Other
Functionality

fct1

Other
Functionality

fctn

cifct2

tcifct2

cifctn

tcifctn

hist_ci

[not member((efs,efd,r,tl),list)]
[not member((efs,efd,r,tl),list)]

[not member((efs,efd,r,tl),list)]

Update(list,(efs, efd, r, tl))

Update(list,(efs, efd, r, tl))

Update(list,(efs, efd, r, tl))

list
list

list

Fig. 9. The channel functionality

3.3 Transform functionalities

Transform functionalities represent the capability to modify the data flows. It can
symbolize encryption protocols such as IPsec where one transform functionality adds

220

A security management information model derivation framework

some security services (e.g. confidentiality) and another removes it, or the Network
Address Translation where only one transform functionality is concerned. We have
defined the security group notion which characterizes everything that specifies a
transformation. For example, one IPsec security association is specified by a specific
security group with a set of associated security services. A LIFO (Last In First Out)
structure represents the order of applied transformations. It naturally defines the
encapsulations of transformations. The transform configurations are sets of
{efs},{efd},role � group where {efs} is the set of source end-flows, {efd} is the set of
destination end-flows, role the used role and group the transformation to apply. The
formal semantic is given in fig 8. The data flows are received in the place fifctjfctk. A
transformation with a specific security group can be applied one time to a specific
data flow (this constraint help us to obtain some interesting CPN properties). The
guard on the transition ttfifctjfctk guarantees it. If the token passes, it is stored in the
place hist_tfifctjfctk. Finally, the function on the post-arc removes (function delTransf)
and/or adds (function addTransf) a transformation according to the configuration.

3.4 Filter functionalities

The filter functionalities represent the capability to filter or let pass the data flows.
They have a configuration which is a set of 4-tuples {efs},{efd},role,group where {efs}
is the set of source end-flows, {efd} is the set of destination end-flows, role is the used
role and group is the last secure group in the LIFO. The formal definition is given in
fig 7. The filter capability is specified using guards on the transitions tfifctjfctk. If the
token passes through the transition, it is stored in the place hist_fifctjfctk.

3.5 Channel functionalities

The channel functionalities represent the data flows propagation environment that can
be material (e.g. wire or wireless) or an abstraction for the unknown systems (e.g.
Internet). Figure 9 provides the formal semantic. A data flow is received from one of
the connected functionalities fctj in place cifctj and is transmitted to all the other
connected functionalities. A data flow can only be transmitted one time through a
channel functionality thanks to the place hist_ci whose colour domain is a list of flow.
This constraint allows us to get some interesting CPN properties.

4 The evaluation method

The interactions between the specified atomic functionalities should be evaluated in
order to prove that the security tactics involve no conflict and correspond to the
required goal. The process allows the checking of the network security mechanisms
consistency and their correctness against the RBAC policies. It is divided into five
steps. First, a specification is transformed into the corresponding Colored Petri Net. It
is produced by interconnecting each CPN sub-model of the basic functionalities in the
specification. Then, the CPN model produces a reachability graph which can be

221

 Laborde R., Barrère F., Benzekri A.

analyzed thanks to the set of security properties defined in the Computational Tree
Logic (CTL) such as classical properties (confidentiality and accessibility) and
specific configuration properties on the Kripke structure corresponding to the
reachability graph. A theorem states that such an analysis is equivalent to the analysis
of these properties without the CTL operators (i.e. in the first order logic) on the only
one dead state of the Kripke structure which can be obtained by simulation. Finally,
the model is checked, i.e. the dead state satisfies or not all the security properties. If it
does not satisfy them then the mechanisms hence defined do not fulfill the
requirements otherwise the specification is considered to be secure

4.1 Network security properties definition

We use the following notation:
− FUNCT, the set of functionalities,
− FILTER, the set of filter functionalities,
− ACTIVE, the set of AEFs and PASSIVE, the set of PEFs,
− ROLE, the set of roles,
− GROUP, the set security groups,
− Assigned :(ACTIVE∪ PASSIVE) → 2ROLE, the function defines the set of roles

assigned to an end-flow functionality,
− TRANSF_LIST, the set of transformation LIFOs,
− FLOW, the set of colors in the CPN, and PLACE, the set of places in the CPN,
− Tokens: PLACE � Bag(FLOW), where Bag(FLOW) is the set of multi set on

FLOW. It provides the set of tokens in a place,
− Confidential : TRANSF_LIST � Boolean, returns if a transform list contains a

security group that provides the confidentiality property,
− Pathk(fct1,fctn) = <fct1, fct2, …,fcti, …fctn> where ∀i,j, i≠j, fcti ≠ fctj, returns the

kth path between fct1 and fctn.
For the simplification of properties writing, we use the special character “_” for

indicating one of the possible values of the variable type. The expression “state╞
property” denotes that the state in the Kripke structure of the CPN reachability graph
satisfies the property – si is the initial state and sf

 is the dead sate.
In addition, we use the following CTL operators:

− s╞AF(φ) is true if for all the states sequences form “s”, there is a state which
satisfy φ.

− s╞AG(φ) is true if for all the states sequences form “s”, all the states satisfy φ.

Property of confidentiality.
Basically, the property of confidentiality protects the data from unauthorized

disclosure. Thus, in our model, it prohibits an end-flow functionality from receiving at
any time a untransformed data flow with any unassigned role.
∀ ef ∈ ACTIVE, ∀ <_,_,r,tl> ∈ FLOW, ¬ Confidential(tl), r ∉ Assigned(ef) ⇒
si╞AG<_,_,r,tl> ∉Tokens(efrec).

222

A security management information model derivation framework

Property of accessibility.
This property stipulates that all the granted services must be available to all the

authorized entities. In the network environment, the data flows corresponding to this
must be able to travel between both devices. Consequently, its translation in our
model is that all active (resp. passive) end-flow functionalities must be able to
consume all the data flows with an assigned role sent by every passive (resp. active)
end-flow functionalities.
Let ACTIVEr = {efa ∈ ACTIVE | r ∈ Assigned(efa)}
 PASSIVEr ={efp∈ PASSIVE | r ∈ Assigned(efp)}
∀r ∈ ROLE, ∀efa ∈ ACTIVEr, ∀efp ∈ PASSIVEr, ¬Confidential(tl),
si╞AF(<efp,efa,r,tl>∈Tokens(efa

rec)) ∧ AF(<efa,efp,r,tl> ∈ Tokens(accept_efp))

As we intend to address devices configurations, we complete these classical
security properties with new ones.

Property of partitioning.

This is used to limit the propagation of data flows in order to respect the least
privileges principle. It declares that a data flow can pass a filter functionality only if
the latter is situated between the data flow source and an authorized destination. We
apply this constraint to the filter functionalities, stating that a filter functionality
allows a data flow to pass if it is situated between the data flow source and a possible
authorized destination.
Let ACTIVEr = {efa ∈ ACTIVE | r ∈ Assigned(efa)}
 PASSIVEr ={efp ∈ PASSIVE | r ∈ Assigned(efp)}
∀f ∈ FILTER, ∀fct1,fct2 ∈ FUNCT, ∀r ∈ ROLE, ∃efa ∈ ACTIVEr, ∃efp ∈
PASSIVEr , si ╞ ∀k, f ∉ Pathk(efa, efp) ⇒ AG(<efa,efp, r,_> ∉ Tokens(hist_f_fct1fct2))
∧ ∀k, f ∉ Pathk(efp, efa) ⇒ AG(<efp,efa, r,_> ∉ Tokens(hist_f_fct1fct2))

The two following constraints aim to detect useless filtering or transform rules in

the configurations.

Non productive filtering rule.
This is used to eliminate unnecessary filtering rules. When f a filter functionality is
connected to the functionalities fct1 and fct2, we say that the filtering rule
{efs},{efd},r,g from fct1 to fct2 is non productive if no data flow <efs,efd,r,g.tl> tries
to pass through the filter functionality.
Let the rule FRL = fct1 � fct2 {efs},{efd},r,g where fct1,fct2∈ FUNCT,
efs,efd∈ACTIVE∪PASSIVE, r ∈ ROLE, g ∈ GROUP then FRL is non productive if
and only if si ╞AG<efs,efd,r,g.tl> ∉ Tokens(hist_f_fct1fct2)

Non productive transform rule.

When tf a transform functionality is connected to fct1 and fct2, we say that the
transform rule {efs},{efd},r � g from fct1 to fct2 is non productive if any flow
<efs,efd,r,_> passes through the transform functionality at any time.
Let TRL = fct1 � fct2 {efs},{efd},r � g where fct1,fct2∈ FUNCT,
efs,efd∈ACTIVE∪PASSIVE, r ∈ ROLE, g ∈ GROUP then TRL non productive if

223

 Laborde R., Barrère F., Benzekri A.

and only if si ╞ AG <efs,efd,r,_>∉ Tokens(hist_f_fct1fct2) ∨ AG <efd,efs,r,g.tl> ∉
Tokens(hist_f_fct2fct1).

4.2 State graph properties definition

The state graph of a specification in our language has three important properties that
make its analysis easier.

Theorem 1: All the state graphs of a specification in our language are finite.
Demonstration: See appendices (Section 9).

Theorem 2: All the state graphs of a specification in our language have a single dead
state1.
Demonstration: See appendices (Section 9).

Theorem 3: The analysis of the dead state is necessary and sufficient for the
properties defined in section 4.1
Demonstration: See appendices (Section 9).

Theorem 1 shows that it is possible to build all the states of a specification CPN

reachability graph. Nevertheless, if the graph is sizeable, our method is vulnerable to
the combinatorial explosion problem. Both theorem 1 and theorem 2 compensate for
this problem because the single dead state is sufficient for the analysis and its
uniqueness allows us to calculate it by simulation. Consequently, we don’t have to
build all the states. Therefore, our method does not suffer from the combinatorial state
explosion and a sizeable specification can be analyzed.

5. A specification example

The following example explains how the language is used to implement an
IPsec/VPN case study strategy definition (fig. 10). As in a traditional enterprise
network, this example considers an edge router interconnecting a private network and
a DMZ. The App_Server and the FTP servers are respectively installed in the private
network and in the DMZ (fig. 6). The application level security policy is an RBAC
one, without hierarchy, where two user groups VPNmembers and Others are defined.
This organization is only based on the granted privileges. The App_Server server is
dedicated only to the services usable by the VPNmembers group. The FTP_Server has
two directories: /confidential and /pub. The directory “confidential” contains data
only accessible to the VPNmembers users group. Data of the “pub” directory is
accessible to everyone. User1, User2, User3 and User4 belong to VPNmembers and
Others groups. User5 is only member of the Others group.

The service management layer RBAC policy can be expressed as:

1 There is no transition from a dead state.

224

A security management information model derivation framework

Permissions(VPNmembers)= {(+all_access,FTP_Server/confidential),
(+all_access, App_Server)}

Permissions(Others)= {(+all_access,FTP_Server/pub)}

Private Network

User1

User2

Router

Internet

User5

User3

DMZ

App_Server

FTP_Server
/Confidential
/pub

User4

Private
Network

Edge
Router

DMZ

Internet

Rule1

Rule2

Rule5

Rule6

 {ef2,ef3},{ef4},
VPNmembers

->group1

 {ef4},{ef2,ef3},
VPNmembers

->group1

R
ul

e3
R

ul
e4

VPNmembers
Others

VPNmembers

VPNmembers
Others

Others

VPNmembers
Others

ef1

ef2

ef3 ef4

ef5

f1

f2

f3

tf2

tf1

Fig. 10. Architecture and specification example

The objective is to specify a VPN security strategy. The Private Network, the DMZ
and the Internet interconnection infrastructures are specified thanks to channel
functionalities because we use their transmission functionality. This approach of
specification with large granularity only considers the minimum set of functionalities
provided by these infrastructures: their interconnection capability.

On the contrary it is possible to refine a specification as the edge router shows it. It
has obviously the interconnection functionality (the channel functionality), setting as
a security gateway with filtering capabilities (the three filter functionalities) and
encryption mechanisms (the transform functionality, for example an IPsec module is
installed). The modelling of the routing is carried out by filtering rules on the filter
functionalities.

The servers are specified by two PEF. The App_Server server (EF2) has the
VPNmembers role because only the users with the VPNmembers role have the access
rights. The PEF corresponding to the FTP server (EF3) has the roles Others and
VPNmembers because the permission (+all_access, FTP_Server/pub) is assigned to
the Others role and (+all_access, FTP_Server/confidential) to the VPNmembers role.

The devices of user1 and user2 are represented by a single AEF (EF1) because
user1 and user2 have the same roles (Others and VPNmembers) and are connected to
the same channel functionality thanks to the concept of role which reduces the overall
size of the specification. In the same way, the devices of user3 and user4 are specified
by only one AEF (EF4). The device of user5 is specified by a different AEF (EF5)

225

 Laborde R., Barrère F., Benzekri A.

because the VPNmembers role is not assigned to him. Arbitrarily adding an AEF with
roles which permissions are reduced makes it possible to define a degree of
confidence that can be granted to a channel functionality. In this example, we do not
specify the structure of the Internet network, but it is perceived as an interconnection
environment where any connected user has at least the permission to access the /pub
directory of the FTP_Server. This allows a great flexibility of specification according
to the level of desired and/or known details.

Two transform configurations are defined on the transform functionalities tf1 and
tf2 that add security properties - according to the group1 transform actions - to the
communication between ef2, ef3 and ef4 with the role VPNmembers (fig. 10).
Moreover, the following filtering rules associated with the filter functionalities are
specified:
• Rule1 = <{ef1}, {ef3}, VPNmembers, any>, <{ef2}, {ef4}, VPNmembers, any>,

<{ef1},{ef3}, Others, any>
This rule permits the untransformed data flows from ef1 to ef3
with the roles VPNmembers and Others, and the untransformed
data flows from ef2 to ef4 with the role VPNmembers.

• Rule2 = <{ef3}, {ef1}, VPNmembers, any>, <{ef4}, {ef2}, VPNmembers, any>
<{ef3},{ef1}, Others, any>

This rule grants the reverse data flows permitted by rule1 in
order to enable bidirectional communications between the end-
flows.

• Rule3 = <{ef3},{ef1, ef4}, VPNmembers, any>, <{ef3},{ef1, ef4, ef5}, Others, any>
This rule permits the untransformed data flows from ef3 to
ef1 and ef4 with the roles VPNmembers and Others, and the
untransformed data flows from ef3 to ef5 with the role
Others.

• Rule4 = <{ef1, ef4}, {ef3}, VPNmembers, any>,<{ef1, ef4, ef5}, {ef3}, Others, any>
This rule grants the reverse data flows permitted by rule3.

• Rule5 = <{ef2, ef3}, {ef4},VPNmembers, group1>, <{ef3}, {ef4, ef5}, Others, any>
This rule permits the data flows transformed according to
group1 from ef2 and ef3 to ef4 with the role VPNmembers, and
the untransformed data flows from ef3 to ef4 and ef5 with the
role Others.

• Rule6 = <{ef4}, {ef2, ef3},VPNmembers, group1>, <{ef4, ef5}, {ef3}, Others, any>
This rule grants the reverse data flows permitted by rule5.

This specification approach facilitates the security network management layer
expression being technologies independent and aggregating management information
with the concepts of basic functionalities and roles.

This specification respects all the previous properties (i.e. confidentiality,
availability and partitioning) and contains no non productive filtering or transform
rules. So, the functionalities’ configurations are consistent and correct against the
RBAC policy. Nevertheless, it does not imply that this network security tactics can be
enforced by the underlying technologies.

226

A security management information model derivation framework

6. Enforcement validation

The language presented previously allows the expression of network security
strategies using a data flow based approach and regardless of technology specifics.
The language permits a high abstraction data flows definition. However, each
technology used for enforcing the network security tactics has its own capabilities. A
technology capability means:
1. the possible actions (i.e., the treatments that can be applied on the data flows),
2. and the possible discrimination criteria to differentiate the data flows (i.e., the set

of data flow value types that the device/technology can perceive).
Examples of the discrimination criteria are:
− HTTP proxies can differentiate data flows based on keywords in HTML pages.
− Stateless firewalls can only differentiate data flows according to IP addresses,

transport layer protocol and port numbers.
− Switches view data flows as MAC addresses, Source Service Access Points and

Destination Service Access Points numbers.

6.1 Enforcement formalisation

The problem of management refinement at this layer is to determine if the
technologies are able to enforce the associated security tactics or not. By nature, the
atomic functionalities represent the actions capabilities of the technologies. Then, the
action part does not represent a possible refinement problem. Nevertheless, the
language permits a high abstraction data flows definition. Consequently, a distinction
between two data flows made at the network security tactics abstraction level by an
atomic functionality does not imply that the corresponding technology is able to do it.
This discrimination criteria problem is formalized as follows.
Let :
− D, the set of possible values characterizing data flows,
− T, the set of types of values (e.g., IP address, transport protocol, port number),
− CX ⊆ T, the distinction capability of device X (e.g., routers perceive the IP

addresses, transport protocol, port numbers, etc.). The distinction capability of a
device is modelled as the set of types of values that it can distinguish.

− f : T � P(DT) a technology layer data flow where DT is the set of values of type T.
A data flow is modelled as a set of functions which return for each type of values a
set of values of this type.

− F, the set of technology layer data flows,
− θG : 2F � 2F , the function associated to the transform group G with θany = identity,
− δ : EF × EF × ROLE � 2F, the function that creates the associated flows (i.e., the

set of values) associated to an untransformed data flow in the Laborde et al model.

Definition 1:
The derivation function between the network security tactics abstraction and device
abstraction is defined as:
∆ ((ef1, ef2, role, <G1 • G2 •… Gn • any>)) ≡ θG1" θG2"…θGn" θany " δ (ef1, ef2, role)

227

 Laborde R., Barrère F., Benzekri A.

Definition 2:
We call the technology X perception of the data flow f: VX(f) = f |Cx.

Definition 3:
We say that technology X confuses the data flows f1 et f2 if VX(∆(f1)) ∩VX(∆ (f2))≠∅

that we note VX(∆(f1)) = VX(∆ (f2)).

Definition 4 - Strict property of derivation capability:
Technology X is said able to enforce a network security tactics:
1. if the strategy of functionality F associated to technology X states two different

actions for two distinct data flows f1 and f2,
2. it implies VX(∆ (f1)) ≠ VX(∆ (f2))

Definition 5 – Loose property of derivation capability:
Technology X is said able to enforce a network security tactics:
1. if the strategy of functionality F associated to technology X states two different

actions for two distinct data flows f1 and f2, and (f1 and f2 pass through F)
2. it implies VX(∆ (f1)) ≠ VX(∆ (f2))

The loose property of derivation capability, contrary to the strict property of

derivation capability, considers that if X never sees f1 and f2, X can confuse both data
flows and X is able to apply the network security tactics.

flow1

flow1 flow1

flow2

1 2

Fig. 11. Loose property of derivation capability example

For example, the filter functionality tactics in fig 11 states that only the data flow
flow1 can pass. Implicitly, the other data flows such as flow2 must be filtered. Then,
two system behaviors are conceivable:
1. Both flow1 and flow2 try to pass through the filter functionality. In this case, VX(∆

(flow1))must be different from VX(∆ (flow2)), where X is the technology that
enforces the strategy.

2. Only flow1 tries to pass through the filter functionality. In this case, VX(∆ (flow1))

can be equal to VX(∆ (flow2)) because X has never to distinguish flow1 and flow2.

228

A security management information model derivation framework

6.2 Enforcement analysis example

In the example of fig 10, the transform functionality tf2 has the following
configuration {ef4}, {ef2, ef3}, VPNmembers � group1. Both data flows <ef4, ef3,
VPNmembers, any> and <ef4, ef3, Others, any> pass through tf2. We recall that the
directory “confidential” on FTP_Server contains data only accessible to the
VPNmembers users group and the data of the “pub” directory is accessible to Others.
We consider also that the security group group1 represents an IPsec tunnel. The
distinction capability of IPsec CIPsec is the set of types IP address, port number and
transport protocol. Both VPNmembers and Others role use the same transport protocol
TCP and protocol numbers 21 and upper than 1024.
case 1: The address space used for the VPN architecture is private. So, the IP address
of FTP_Server for the VPNmembers role is different from its IP address for the
Others role. Consequently, VIPsec(∆(<ef4, ef3, VPNmembers, any>)) ≠ VIPsec(∆(<ef4,
ef3, Others, any>)). Then, the tactics can be enforced by IPsec.
case 2: The address spaces used for the VPNmembers and Others roles are not
different. So, the IP address of FTP_Server for the VPNmembers role is the same as
its IP address for the Others role. Consequently, VIPsec(∆(<ef4, ef3,VPNmembers,

any>)) = VIPsec(∆(<ef4, ef3, Others, any>)). Then, the tactics cannot be enforced by
IPsec because IPsec confuses ∆(<ef4, ef3, VPNmembers, any>) and ∆(<ef4, ef3,
Others, any>).

7 Conclusion

We have presented in this article a generic global framework that formalizes the
network security information management derivation process from the goals to the
configurations. The goals are specified via the RBAC model that allows us to use all
the associated analysis works. We have defined a new model to specify the network
security tactics using a data flow based approach. An analysis method has been
described and its power has been discussed. Finally, we have defined a generic device
configuration model and some derivation properties that ensure the network security
tactics to be enforceable.

Our work guarantees that the network security goals are correctly enforced.
Nevertheless, we do not consider the attackers in this framework. Consequently, our
future work will focus on including this aspect (based on risk analysis methods and
assurance evaluation methods) in order to prove a network assurance level.

Acknowledgments
We are grateful to G. Mackenzie Smith, D. Jones and B. Moore for their English
writing comments, and L. Mehats for his modelling advices.

229

 Laborde R., Barrère F., Benzekri A.

8 References

1. ANSI, “Role-Based Access Control”, ANSI/INCITS 359-2004, February 2004.
2. Y. Bartal., A. Mayer, K. Nissim and A. Wool. “Firmato: A Novel Firewall Management

Toolkit”. proceedings of 1999 IEEE Symposiumon Security and Privacy, May 1999.
3. Bell, D. E., and L. J. LaPadula, “Secure Computer Systems: Mathematical Foundations and

Model”, Bedford, MA: The Mitre Corporation, 1973.
4. Bishop M., Computer Security: Art and Science, ISBN 0-201-44099-7, 2003.
5. Ehab Al-Shaer and Hazem Hamed, “Discovery of Policy Anomalies in Distributed

Firewalls”, in IEEE INFOCOMM'04, 2004.
6. D. F. Ferraiolo , D. R. Kuhn , R. Chandramouli, Role-Based Access Control, ISBN : 1-

58053-370-1, 2003.
7. Z. Fu, F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine and C. Xu. “IPSec/VPN Security

Policy: Correctness, Conflict Detection and Resolution”, In Policy’2001 Workshop, 2001.
8. Guttman J. D., Herzog A. M., “Rigorous automated network security management”,

International Journal of Information Security, Issue 3, Volume 4, 2004
9. ISO, “OSI Reference Model - Security Architecture”, ISO 7498-2, 1988.
10. Jensen K., “An Introduction to the Theoretical Aspects of Coloured Petri Nets”. In: A

Decade of Concurrency, Lecture Notes in Computer Science vol. 803, 1994.
11. Laborde R., Nasser B., Grasset F., Barrère F., Benzekri A. “Network Security Management:

A Formal Evaluation Tool based on RBAC Policies”. IFIP NetCon'2004.
12. Laborde R., Nasser B., Grasset F., Barrère F., Benzékri A., “A formal approach for the

evaluation of network security mechanisms based on RBAC policies”, In ENTCS –
proceedings of WISP'04, Vol. 121., Elsevier, 2005.

13. Moffett J. D., “Control Principle and Role Hierarchies”, In Workshop on RBAC, 1998.
14. J. Moffet, M. Sloman: “Policy Hierarchies for Distributed Systems Management”. IEEE

Journal on Selected Areas in Communications, 11, 9, 1993.
15. Osborn, S., R. Sandhu, and Q. Munawer, “Configuring Role-Based Access Control To

Enforce Mandatory and Discretionary Access Control Policies”, ACM Transactions on
Information and System Security, Vol. 3, No. 2, May 2002,pp. 85–106.

16. Samarati P., De Capitani di Vimercati S., “Access Control: Policies, Models and
Mechanisms”, Foundations of Security Analysis and Design, LNCS 2171, 2001.

17. Westerinen A., Schnizlein J., Strassner J., Scherling M., Quinn B., Herzog S., Huynh A.,
Carlson M., Perry J., Waldbusser S., “Terminology for Policy-Based Management”, RFC
3198, November 2001.

18. Yavatkar R., Pendarakis D., Guerin R., “A Framework for Policy-based Admission
Control”, RFC 2753, 2000.

19. URL http://wiki.daimi.au.dk/cpntools/cpntools.wiki

9 Appendices

We present here the demonstration of the three theorems.

9.1 Demonstration of theorem 1

In order to prove that the state graph is finite, we prove that the CPN is K-bounded.

We use the following notation:

230

A security management information model derivation framework

− P is the finite set of places in the CPN that have the colour domain FLOW (i.e., all
places excluding places hist_ci and hist_efi that have the colour domain
FLOW_LIST which is a data flow list. Data flows are ordered according to the
colour domain FLOW ordering) ,

− PHIST is the finite set of places that have the colour domain FLOW_LIST,
− PreP : P � 2 P, the relation that defines the set of places which have one of their

post-arcs connected to the same transition as one of the pre-arcs of a place in the
CPN,

− PAEF = t
i∀

{efi
em}, the set of places efi

em where efi is an AEF,

− nb_tok : P � N, provides the number of tokens that have passed in one place,
− <x1, x2, … xn> a path of places between x1 and xn in the CPN where ∀i > 0, xi ∈ P,

xi ∈ Prep(xi+1),
− [x1 ∇ xn] the set of path of places between x1 and xn.

By construction we have:

1. ∀p ∈P\PAEF, nb_tok(p) # ∑
∈)(Pr pepx

nb_tok(x)

2. ∀efi
em ∈ PAEF, nb_tok(efi

em) = ki where ki is token number at the initial state,

3. ∀ p∈ PHIST, nb_tok(p) # ∑
∈)(Pr pex

nb_tok(x).

Consequently,

∀p ∈ P\ PEF, nb_tok(p) # ∑
∈)(Pr pepx

nb_tok(x) # ∑
∈)(Pr pepx

∑
∈)(Pr xepy

nb_tok(y)

We note: ∀p ∈ P\ PEF, ∀y ∈ P, [y ∇ p], nb_tok(p) = ∑
∇][py

nb_tok(y)

By recursion, we obtain:

∀p ∈ P\ PEF, ∀efi
em ∈ PEF, [efi

em ∇ p], nb_tok(p) # ∑
∇][pefiem

nb_tok(efi
em)

If there is no cycle in the paths between two

places ∑
∇][pefiem

nb_tok(efi
em)= ∑

∇][pefiem
ki =K

Else if there exist cycles in structural paths, for example <x2, x3> is a cycle in the
path <x1,x2,x3,x2,x3,x4>, then there is an infinite number of possible paths between x1

and x4, as <x1,x2,x3,x2,x3,x2,x3,x4>. So ∑
∇][pefiem

ki � ∝

By construction a cycle in the CPN is produced by a cycle in the functionality
specification in our language (i.e. there are several paths between two functionalities).
Moreover, there are at least two channel functionalities and one or more filter and
transform functionalities.

If there no transform functionality in the cycle. The tokens colours cannot change.
A token with the same color can pass through a channel functionality once (place
hits_ci). So, the number of possible places path is finite.

231

 Laborde R., Barrère F., Benzekri A.

If there is one or more transform functionalities, the tokens colours can change.
However, the transform functionalities check if the transformation security group
appear in the token transform list (guards on ttfi_fctjfctk). So, the number of tokens
colours is finite according to the number of transform functionalities and also the
number of possible places paths.

Consequently, ∀p∈P\PAEF,nb_tok(p)# ∑
∇][pefiem

nb_tok(efi
em) # K’.

In addition, there is only one token at each state in all the places p∈ PHIST.
Nevertheless, this token can have an infinite number of possible values (the ordered
list of flow length can be infinite). The number of token values being finite, the list of
tokens that have passed through a channel or a PEF functionality is also finite.

To resume, ∀p ∈ P\ PAEF, nb_tok(p) # K’
∀efi

em ∈ PAEF, nb_tok(efi
em) = ki

∀ i, nb_tok(ci_hist) # K’’

Then the CPN is structurally K-bounded and the state graph is finite.�

9.2 Demonstration of theorem 2

Each token is consumed by an end-flow or stopped by a filter, transform or a channel
functionality. They are also consumed by all the historic places. Then there is one or
more dead state.

In addition, the CPN has a deterministic behaviour. There is no choice (i.e., a place
with different post-arcs) in the produced CPN, and tokens are arranged in order in the
flow list of the historical places. So the colour of the historical place does not take
into account the incoming order. Consequently, there is only one dead state. �

9.3 Demonstration of theorem 3

Let the function post that returns the post-arcs of a place. We can define the following
simplification rules:
1. ∀p∈PLACE, ∀f∈FLOW,post(p)=null, si╞AG(c∉Tokens(p)) ⇔ sf ╞ c ∉Tokens(p)

Proof:
By definition si╞AG(c ∉Tokens(p)) ⇒ sf╞ c ∉Tokens(p) because sf finishes all the
traces. Moreover if sf ╞ c ∉Tokens(p) then ∀sj, <… sj… sf>, sj ╞ c ∉Tokens(p)
because post(p) = null and then si ╞ AG(c ∉Tokens(p))

2. ∀p∈PLACE, ∀f∈FLOW, post(p)=null, si╞AF(c∈Tokens(p)) ⇔ sf╞ c∈Tokens(p)
Proof:
si ╞ AF(c ∈Tokens(p)) ⇒ ∀t = <si … sf>, ∃j • < si…sj…>, sj ╞ c ∈Tokens(p).
But, post(p) = null then ∀k>j • < si…sj sk…>,sk╞ c ∈Tokens(p). Given that sf
finishes all the sequences, sf ╞ c ∈Tokens(p). Moreover, sf ╞ c ∈Tokens(p) ⇒
∀t = <si … sf>, ∃j • <si…sj…sf>, sj ╞ c ∈Tokens(p). Then, si ╞ AF c ∈Tokens(p).

The application of these simplification rules allows rewriting of all the properties in
section 4.1 without the CTL operators on the dead state. �

232

�����������
	������	�������������������� 	�!#"%$'&��(�

)�*,+ -/.10�23.547698
-;:=<?>@69AB:10C6EDF.1GIH7JK*L69A

MENPO,Q?QSRBQ/TVU%Q;WYXLZL[]_^`M9N�ab\�c,N�\
d c,abef\F^]ghab[jikQSTVl%am^]WYabc,nSO5o/W

p�qsrutfv;wfxEy�z,{;|?}S~��jtVr��Vru�?�9y��L�/�9�;� rj�fxEy�z%rhy?� ruvfw

�k���������5�S�;�I���5�S�,�/���������V���� ���¡?¢F�,�������1¢F£F¤_¥¦�S� o/[h[]\�WYXE[]g§[]Q¨oSRbRbQ�©ªZLgh_^]gKQST
o«gh_^]e9abN�\'[]Q«^]\�Wko/a¬c
oSc,QSc?iLWYQSZ,g�E©®O,abRb\KXL^]Q�e9a°¯Eabc,n«[]O,\'X=QSghghab±,abRbab[ji
[]O5o�[®[]O,\
gh_^]e9abN�\@Q�©®c,_^�N�oSc²±E^]\�oS³´[]O,\@oScLQ;c?iEWYam[µi´abc²_¶EN�\�XL[]abQSc5oSR`N�am^]N�Z,WYg¦[Po/c,N�_g�
ghZLNFO·oSgY[]Q�o/ghgha¬g¦[�abc¸o@N_^]abWYa¬c,oSR�abcEe;\�g¦[]abnfo/[]abQScB¹%º»XL^]Q/[]Q?N�Q;R®T�Q/^�oSNPO,ab\�e9abc,n
o/c,Q;c?iEWYam[µi¨©®am[]O�a¬¯L_c9[]am[ji¼\�ghN_^]Q�©#©�oSg�XL^]\�gh_c9[]\�¯1abc�½9º§ME¾À¿ Á;ÂE¹�Ãµc¼[]O,abgKX5o/Ä
X=_^�?©%\§ghO,Q�©¸[]O,o/[�[]O,o/[�XE^]QS[]Q?N�QSR3ghZLÅ3_^]g%T°^]Q;WÆghQSWY\Àgh_^]abQSZ,g�Ç=o�©®g�¹9È�\`oSRbghQ
a¬¯L_c9[]amT°i�ghQSWY\IQ/[]O,_^�Rb\�ghg�ghabn;c,amÉ,N�oSc?[�©�\�o/³EcL\�ghgh\�g(QST�[]O,\YXE^]QS[]Q?N�QSR�soSc,¯1©�\
XE^]\�gh\�c?[�o/cka¬WYXE^]Q�ef\�¯�XE^]QS[]Q?N�QSR5©®O,abNFO«ÉL¶E\�gV[]OL\�gh\®Ç=o�©®g�¹EÊÀZL^ËabWYXL^]Q�ef\�¯(XL^]QSÄ
[]Q?N�QSRBnSZ5o�^PoSc?[]\�\�g�oScLQ;c?iEWYam[µiY\�e;\�c�amTso/RbRB±LZL[�QSc,\'Q/T []O,\À\�ghN_^]Q�©ÌO,Q;R¬¯E_^]g®o/^]\
N�Q/^h^]Z,XE[�¹

Í Î,Ï�Ð=Ñ3Ò'Ó(Ô�Õ Ð3Ö]Ò�Ï

×�Ø -/D Ø <EÙ Ø -SDF>5Ú�Û�- ØVØ 27Û�4I6 Ø <EÜ7Ú°A3Ú�<EA Ø 27DF>L-/* Ø <LDË8
-S:3Ú�6(:=<?Ý'A3Þ�<L6E: Ø 8¨6f*«Ý'Ú Ø 4kß_<(D_-/8¨69Ú�A
69A3<LA,*58
<E2 Ø ßF<´ßF43- Ø -/D_>,Ú�Û�-@Ü3DF<?>5Ú�:=-/D;HËà�<?Ý`-S>E-SDSáËÚ¬ß
8¨6f*â+ -1Ú�8
ÜB<LDPß�69A,ßIÙ�<LD Ø -/D_>5Ú�Û/-
Ü3DF<?>5Ú�:=-/D Ø ß_<I+ -�6E+3Þ�-KßF<�+3D_-S6E.�6EA3<EA5*58
Ú¬ß]*
Ú�A Ø Ü -SÛ/Ú�6EÞ�Û�Ú�D_Û/238 Ø ß�69A7Û/- Ø�ã Ù�<EDÀ-�ä3698
Ü3Þ�-Eá
ßF<¸6 Ø_Ø Ú Ø ß
6âÛ/DFÚ�8
Ú°AB69Þ§Ú°A5>L- Ø ßFÚ�åL6?ß_Ú°<LAsH%æSçEè/é7êµë�êjì²è�í�î/ïFð9ñòÚ Ø :=- Ø Ú�åEA7-S:¸ß_<âÜ -/D_8
Ú¬ß
ßF47- Ø -
ß]Ý`<�69Ú�8 Ø H�ó§43-
A3<9ß_Ú°<LACÝ§6 Ø(ô D Ø ß«Ú°A,ß_DF<=:=27Û/-S:�+5*Cõ«Ú�Þ°Ú�69A·69A7:âö�-�ß_D_6EA3.�Ú°Aø÷ ù?úµá�Ý'43Ú�Û�4
ÝÀ6 Ø 8
<9ß_Ú°>?69ßF-S:@+5*�ß_43-�Ú�:=-;6 Ø Ù�DF<L8üûEè/ì¼è�í/î/ïFð?ñýè/é î/ï�ì_þ êµëuð?é�í�ìfí�ê¦è/ÿ�í���-LH åBH ÷ �?ú¦á�÷ �?ú���H��¦ß
69Þ�Þ°<?Ý Ø 69A´6EåE-/A,ß	� ßF<12 Ø - Ø -/D_>,Ú�Û�- Ø Ü3D_<?>5Ú�:3-S:�+5*�
 Ý'Ú°ßF43<L2=ß(D_-/>L-S69Þ�Ú�A3å¼43-SD(Ú�:=-/A,ß_Ú¬ß]*
ßF<�
§á5Ý'43Ú°Þ�-«69Þ�Þ°<?Ý'Ú�A3å�
¸ßF<�<E+=ß�69Ú�A@Ú°ßÀÚ�A1Ü7DF-�¦6EåED_-/-S: Ø Ü -SÛ�Ú�69Þ�Û�Ú�D�Û�238 Ø ß_69ABÛ�- Ø ��-LH åBH5Ú°A�6
8�Ú Ø 2 Ø -���áEßF452 Ø <�� -SDFÚ�A3åI6«+B69Þ�69A7Û/-K+B-/ß]Ý`-S-/A¨Ü3D_Ú�>f6LÛ�*�69A7:
8
<EA7Ú¬ß_<ED_Ú°A3å��?6LÛ/Û�<L23A,ß_6E+3Ú°Þ�Ú°ß]*EH
óV<@6LÛ�43Ú�-/>E-«ß_43Ú Ø á�� Ü3Þ�6EÛ/- Ø 43-/D(Ú�:=-SA,ßFÚ°ß]*1Ú�A´69AÌè�í/î�ï_ð?ñ�è�ç�î_è/ï�êµë �`î��?êhè�åE-/A7-/D�6?ßF-;:�Ý'Ú¬ß_4
6�ßFD_2 Ø ß_-S:¸ë�í�í��7è�ï�áBÝ'43Ú�Û�4 Ø 43-kÜ7DF- Ø -SALß Ø ßF<�
øÝ'47-/A�DF-��,23- Ø ßFÚ�A3å¨Ú°ß Ø�Ø -/D_>5Ú�Û/- Ø H3ó§43-IÛ/-/D�
ßFÚ ô Û/69ßF-
Ú Ø�� è�ï�ë ���� �!°è/ás>5Ú#"LH$
ýÚ Ø åLÚ°>L-/A·6@åL2769D�69A,ßF-S-kß_476?ß«ßF47-�- Ø Û/DF<?ÝÀ-S:�Û/-/DFßFÚ ô Û/69ßF-�Ú Ø
>f6EÞ°Ú�:�69A7:1ß_476?ß'ß_43-YÚ�:3-/A,ßFÚ°ß]*@Ú Ø D_-SÛ�<?>L-/D�69+3Þ�-%�uÝ'Ú¬ß_4C6�43-/Þ�Ü�<9Ù'è�í/î/ïFð?ñ&�('Lè/é7êµá3Ý'43Ú�Û�4�Ú Ø
ßF43- Ø 698
-Y6 Ø Ú ØFØ 23-SD'Ú°A�<E27DÀ-/ä=ÜB< Ø Ú°ßFÚ�<EA)��H* Þ°-;69D_Þ°*LáBß_43Ú Ø Ú�:=-SA,ßFÚ°ß]*C- Ø Û�D_<?Ý Ø * Ø ßF-S8 +3D_-S69. Ø :=<?Ý'A·Ú¬ÙÀÚ Ø_Ø 23-/D«Ú Ø :=Ú Ø 43<LA3- Ø ßSás6EA7:
ßF<â6L:3:=D_- Ø_Ø ßF47Ú Ø Ü3D_<E+3Þ�-/8 0C6ED Ø 4769Þ�Þ`6EA7:²0�<LÞ°Ú�A76+-,LÚ°8
Ú�A3-�"´÷ .9ú§Ü3D_<EÜ < Ø -S:²6�Ü7DF<EßF<=Û�<LÞ
6?ß�/=)	0=ó21 3��´Ù�<ED
69A3<LA5*,8
Ú°ß]*¸Ý'Ú¬ß_4 Ú�:=-/A,ß_Ú¬ß]*²- Ø Û/DF<?ÝYá%Ý'43-/D_-@- Ø Û/DF<?ÝÀ-S:ÌÛ�-/DFßFÚ ô ÛS6?ßF-1Ú Ø
åE-/A7-/D�6?ßF-;:¸+5*·6 Ø -�ß�<9ÙKÚ ØFØ 23-SD Ø ��A76E8�-;:ýëuçEè/é7êµë�êµì´êhðSûLè�é´þ ïFð � ëuçLè�ï�í�Ú°A ßF43-SÚ°D�Ü769Ü -/D���H4 -/Ú°ßF47-/D5
 A3<LD�6EA5*·Ú�:=-SALß_Ú¬ß]*·ß_<E.E-SAÌÜ3D_<?>5Ú�:3-/D�6EDF- Ø 27Ü3ÜB< Ø -;:¸ßF<·.5A3<?Ý ßF47-1Ú�:=-/A,ß_Ú¬ß]*
+B-S43Ú°AB:C69A�- Ø Û�D_<?ÝÀ-S:�Û�-/DFßFÚ ô ÛS6?ßF-Lá7+323ß�Ú¬Ù®Ú°ß�Ú Ø Ü3D_<?>E-;:�A3-SÛ/- Ø_Ø 6EDF*Lá369Þ�ÞsßF<L.E-SA�Ü7DF<?>5Ú�:=-/D Ø
Û/69A�Û�<5<LÜB-SD_69ßF-«Ú°A�<LD_:=-SDÀßF<
DF-S>E-;69Þ�Ú¬ß;H�hAIß_43Ú Ø ÜB69Ü -/D;á?43<?Ý`-S>E-SDSá;Ý`- Ø 43<?Ý²ß_476?ß�ß_43-/Ú�D�Ü3D_<9ßF<=Û/<EÞ Ø 26� -SD Ø Ù�D_<E8 Ø -/D_Ú°<L2 Ø87 6fÝ Ø(9

233

:<;>=@?�A>BDCE=GFHBJI(KLI�=)M)KA5*²ßF<L.E-SAÌÜ3D_<?>5Ú�:=-SD%NPOYÛS69AÌ8
Ú Ø 2 Ø - Ø -/D_>,Ú�Û�- Ø <9Ù2
Q��<LD¨Þ°-/ß
Ø <L8
-/<EA7-�-SÞ Ø -�:=<¸ßF4B6?ß���á�69AB:øÛS69AøÚ°8
Ü3Þ�Ú�Û/6?ß_-C69A5* -SALß_Ú¬ß]*R� Ø 27Û�4ý6 Ø �S��Ú°A Ø 27Û�4
8
Ú Ø 2 Ø -EH

:UTWVL=@X�Y�BZY�[\CE])FH^8?+]_FHBDI�=_M /7<ED@-;6EÛ�4 - Ø Û/DF<?ÝÀ-S: Û/-/DFßFÚ ô Û/69ßF-a` ß_476?ß�
 DF-;Û�-SÚ°>L- Ø á
ßF43-SDF-�-/ä=Ú Ø ß Ø 6·ß_<E.L-/A Ü3D_<?>,Ú�:=-SD�N O Ý'47<²Ú°A Û/<L69Þ�Ú°ßFÚ�<EAøÝ'Ú¬ß_4G
»ÛS69A D_-SÛ�<?>L-/D�ßF47-
Ú�:3-/A,ßFÚ°ß]*@- Ø Û/DF<?ÝÀ-S:@Ú°Ab`§H
)�:3:3Ú¬ß_Ú°<LA769Þ�Þ°*Lá9Ú°Ù�
´476 Ø�Ø 27Û/Û/- Ø_Ø Ù�27Þ°Þ�*kD_-(�,23- Ø ßF-;:YÙ�<LD®6�Û/-/DFß_6EÚ°A�- Ø Û�D_<?Ý`-;:IÛ�-SDPß_Ú ô Û/6?ß_-
ßF<¨+ -Y23A7Û/<?>E-/D_-S:sáLß_43-/A�Ú°ß�Û/6EA�:3Ú Ø Û�<?>L-/DÀßF43-IÚ�:=-SA,ßFÚ°ß]*@<9Ù�69A5* Ø 23+ Ø -(�,23-SALßK2 Ø -SD'<9Ù
Ú¬ß ØKØ -/D_>,Ú�Û�- Ø H

c -K6EÞ Ø <«Ú�:=-SA,ßFÚ°Ù�* Ø <E8
-§<9ß_43-/D�Þ�- Ø_Ø®Ø Ú°åLA3Ú ô Û/69A,ß�ÝÀ-S69.5A3- ØFØ - Ø <EÙBß_43-'Ü3D_<9ßF<=Û/<EÞ=Ú�A�÷ .9ú¦áE6EA7:
Ü3DF- Ø -SA,ß«6EAâÚ�8
Ü3DF<?>L-S:�Ü7DF<EßF<=Û�<LÞ%Ý'47Ú�Û�4 ô ä=- Ø ßF47- Ø - 7 6fÝ Ø H>d(23DYÜ3D_<9ß_<5Û/<EÞ%åE276ED_6EA,ßF-/- Ø
69A3<LA,*58
Ú°ß]*¼-/>L-/A�Ú¬Ù�69Þ�Þ�+32=ßK<LA3-«<9Ù%ßF43-«ß_<E.E-SA1Ü7DF<?>5Ú�:=-/D Ø 69D_-�Û/<ED_DF23Ü3ßSH

ó§43-¼Ü76EÜB-SDkÚ Ø <ED_åL6EA3Ú Ø -S:·6 Ø Ù�<EÞ�Þ°<?Ý Ø H>�hA¸ßF47-@A3-/ä,ß Ø -;Û�ßFÚ�<EAVásÝ`-@Ü3DF- Ø -SA,ßkÜ3DF-SÞ°Ú�8
Úe
A769D_Ú°- Ø á7Ú°A7Û/Þ°2B:=Ú°A7å¨ßF43-I<ED_Ú°åLÚ°A76EÞ�Ü3D_<9ßF<=Û/<EÞµH_d(23D�6EA769Þ�* Ø Ú Ø Ù�<EÞ�Þ°<?Ý Ø Ú°A Ø -SÛ�ßFÚ�<EA��3áB69A7:�Ú�A
Ø -;Û�ßFÚ�<EAf.«ÝÀ-'Ü3DF- Ø -SA,ß�<L23D®Ú�8
Ü3DF<?>L-S:I>E-/D Ø Ú°<LA�<EÙBß_43-'Ü3D_<9ßF<=Û/<EÞµH�05-SÛ�ßFÚ�<EA5�«Û�<LALß�69Ú�A Ø <E27D
Û�<EABÛ�Þ�2 Ø Ú�<EA Ø H

g hâÑ6i$jPÖ�k ÖPÏml�Ñ7Öni$o
p MJq rs])Y(t�Y�BD]_X
ó§43-«Ù�<EÞ�Þ°<?Ý'Ú�A3å�Þ�6E+B-SÞ°Ú�A3å¼Û/<EA5>E-SALß_Ú°<LA Ø 69D_-�2 Ø -;:@ß_43D_<E23åL43<E2=ßÀßF47-YÜ769Ü -/D 9
:
ø:=-/A3<EßF- Ø 69A�69A3<LA,*58
<E2 ØÀØ -/D_>5Ú�Û/-«Ü3DF<?>5Ú�:=-/D;H
: Nvuxw(N$y�z�NP{|z�}(}�}~N>�+�«Ú Ø 6 Ø -/ßK<9Ù§ëuçEè/é7êµë�êjì¨êhðSûLè/é¨þ ï_ð � ëuçEè/ï�í�H: ` O Ú Ø 69A
Ú�:=-/A,ß_Ú¬ß]*�ßF<L.E-/A
Ú ØFØ 23-;:�+5*%NP�W��H c -�69Þ Ø <«Ý'D_Ú¬ß_-m`��CÙ�<LD�ßF47-KÚ�:3-/A,ßFÚ°ß]*Iß_<E.L-/A
<E+=ß�69Ú�A3-S:1+5*��Æ+5*¼2 Ø Ú�A3å�ßF43-YÜ3D_<9ß_<=Û�<EÞµH

:U� u�w � y�z(}�}�}(z ��� �«Ú Ø 6 Ø -/ßK<9Ùm�Eç~���7ç?ëuî��?êhð?ï�í�H: � Ú Ø 6 Ø -SDF>5Ú�Û�-K2 Ø -/D;H���#:=-/A7<9ßF- Ø ß_43-�D_-SÛ/-/Ú�>E-/D�� <9Ùs6I8�- ØFØ 69åL-Eá9Ý'47-/A¨ß_43-�Ú�:=-/A,ß_Ú¬ß]*
<9Ù��ÆÚ Ø A7<9ßK.5A3<?Ý'A1ßF<�ßF43-Y8
- ØFØ 69åL- Ø -/A7:3-/D;H

:U� �²Ú Ø ��1 Ø Ü323+7Þ°Ú�Û«.E-S*EHs÷ �@ú�� Ú Ø ßF43-Y8
- ØFØ 69åL-	� -SA7Û�D_*5Ü=ßF-;:@Ý'Ú°ßF4�ß_43-YÜ323+3Þ�Ú�Û«.E-/*
� H

: ÷ �1ú �S� Ú Ø ßF43-@8�- ØFØ 69åL-f� Ø Ú�åEA7-S:·Ý'Ú¬ß_4¸ßF43-¨Ü7DFÚ�>?6?ßF-¨.L-/*·Û�<ED_D_- Ø ÜB<LA7:=Ú�A3å@ß_<�ßF47-
Ü323+3Þ�Ú�Û � H c -(6 Ø_Ø 238
-'ßF4769ß�÷�÷ �1ú � ú � � á ÷�÷ �1ú � � ú � 69A7:f��69D_-�69Þ�ÞB:3Ú Ø ßFÚ�A7Û�ß���ß_452 Ø á
Ú°A�Ü76EDPß_Ú�Û/23Þ�69D;áLß_43-kö�õ2�À69Þ�åE<LDFÚ°ßF438 Ú Ø A3<Eß Ø Ú�8
Ü3Þ�-�2 Ø -Y<EÙ%J�0=)S��H

p M p ��� =�])?+BD�_BDXLt6��^L?+]�Y�]>C�]_�
0C69D Ø 4B69Þ�Þ�6EA7:�0�<EÞ�Ú�A76+-,EÚ�8
Ú°A7-�"�1 Ø Ü3D_<9ßF<=Û/<EÞ®÷ .9úVÛ�<LA Ø Ú Ø ß Ø <EÙVß]ÝÀ<�ÜB69DFß Ø(9
:) í�ëe'9é)�-�;þýÜ7DF<EßF<=Û�<LÞjá�Ý'43Ú�Û�4 Ú Ø ß_43-�8
6EÚ°A Ü3D_<9ß_<=Û�<EÞÀß_476?ß¨Ú Ø -�ä=-SÛ/2=ßF-;: +5*��üß_<
DF-;Û�-SÚ°>L-�6´ßF<L.E-/AÌÙ�DF<L8 ßF43-�8
-S8I+ -/D Ø <EÙ	NkH�ó§43-1ßF<L.E-SAÌÜ -/D_8�Ú°ß Ø �üß_<·2 Ø -�ßF47-
Ø -SDF>5Ú�Û�-�Ù�D_<E8\
��

: 69A7:�6Cî�ð9ÿKþ�!#�?ë�éBêÀï_è�í/ð+!e�=êjëuð9éâÜ3D_<9ß_<=Û�<EÞµá=Ý'43Ú�Û�4�Ú Ø -�ä=-SÛ/2=ßF-;:�+,*b
 23ÜB<LAC6
8
Ú Ø 2 Ø -
<9Ù Ú¬ß Ø®Ø -SDF>5Ú�Û�-Lá;Ú�A
<ED�:=-/D%ß_<�D_-/>L-S6EÞLß_43-§Ú�:3-/A,ßFÚ°ß]*I<EÙ7ßF47-'<|��-/A7:=Ú�A3åY69A7<EA5*58�<L2 Ø 2 Ø -/D;H

234

;>BJ�)XPK8^&^L?+]�Y�]>C�]_�~M �hA´<ED�:=-SD�Ù�<LDS� ßF<12 Ø -�ßF47- Ø -/D_>5Ú�Û/- Ø <EÙ�
§á Ø 47-I8I2 Ø ß«Ü3Þ�6EÛ�-�43-/D
Ú�:=-SA,ßFÚ°ß]*IÚ�A�- Ø Û/DF<?ÝÌÝ'Ú¬ß_4�ß_43-'-/Þ�-/8
-SALß Ø <9Ù�N 69A7:�<E+=ß�69Ú�A¨6�ß_<E.L-/AsH�0547-'2 Ø - Ø ßF47Ú Ø ß_<E.L-/A
ßF<�Ü3D_<?>E-�ßF<�
ýß_476?ß Ø 43-
476 Ø Ü3Þ�6LÛ�-;:´43-SDYÚ�:3-/A,ßFÚ°ß]*´Ú�Aâ- Ø Û/DF<?ÝYá�6EA7:�
 ß_43-/A·Ü3D_<?>,Ú�:=- Ø
ßF43- Ø -/D_>5Ú�Û/-EH

ó§43-«Ü3DF<EßF<=Û�<LÞ�Ý`<LDF. Ø 6 Ø Ù�<EÞ�Þ�<?Ý Ø H=)ÆÛ�43<5< Ø - Ø 6 Ø -��L27-/A7Û/-SN ��� znN ��� z(}�}�}(znN �¡ <EÙË-/Þ�-W
8�-SA,ß Ø <EÙ8N¢��Ü < Ø_Ø Ú�+3Þ�*¼Ý'Ú¬ß_4�:=23Ü3Þ�Ú�ÛS6?ß_Ú°<LA Ø ��H£ �¤� ¥_¦ N>� � 9 ÷s÷P§�¨�©�ª6«E¬�ú � � ú �¯®�° �

ù��±N>� � ¥_¦ � 9 ÷6`¯y�ú � á3Ý'47-/D_-2`¯y�u ÷s÷ � �Ëú²��® ° � ú � �® ° �
§�¨�©�ª6«@¬�8
-S69A Øa³ Ú�:=-SA,ßFÚ°ß]*âß_<E.L-/A²D_-(�,23- Ø ß¡´7H 4 -�ä5ßSáµ�ü6EA3<EA5*58
Ú Ø - Ø ßF43-1ßF<L.E-/A²+5*

åE-�ßFßFÚ�A3åfN>� � z�}(}�}(znN>� ß_<¨-/A7Û/DF*5Ü=ßK69AB: Ø Ú°åLA�Ú¬ß 9

¶
·¸¸¸¸¹ ¸¸¸¸º

£�» �±� ¼�¼�½ N>���#¾ � 9 ÷P§�¨�©6¿)À�Á¯ÂÃ` O ú �¯®�° �#¾ �
Ý'47-/D_- `�O8u ÷°÷�`�OZÄ y ú � ® ° � ú � �®�° �

ù » �ÅN � �Æ¾ � ¥_¦ �� 9 ÷�÷s÷�`�O�ú � ® ° �Æ¾ � ú � �® ° �#¾ � ú ��Ç
È -/Ù�<ED_- Ø Ú�åEA3Ú�A3å�ßF43-�ßF<L.E-SAsá�N ��É8y >E-SDFÚ ô - Ø ßF4B6?ßKÚ°ß§4B6 Ø +B-S-/A Ø Ú°åLA3-S:@+,*169A3<EßF43-SD`ß_<E.L-/A
Ü3DF<?>5Ú�:=-/D;H6§�¨�©6¿�À�Á�Ú°A7:3Ú�ÛS6?ßF- Ø 6 Ø Ú�åEA769ßF23D_-KD_-(�,23- Ø ßSH ¶ Ú�A7:=Ú�Û/69ßF- Ø DF-SÜB-;6?ß_-S:¼6EÜ3Ü3Þ�Ú�ÛS6?ßFÚ�<EAVH
ó§43-�:36 Ø 43-;:¨69D_DF<?Ý Ú°AB:=Ú�ÛS6?ß_- Ø ß_476?ßÀ6Y8
- Ø_Ø 6EåE-§Ú Ø`Ø -SA,ß`69A3<LA5*,8
<L2 Ø Þ�*EáEÚjH -EHEßF43-(DF-;Û�-/Ú�>E-SD
Û/69A�A3<Eß'ßFD�6EÛ�-«+76LÛ�.
ßF43-YÚ�:=-SALß_Ú¬ß]*1<9Ù%ßF43- Ø -/AB:=-/D;H

�E�¤� ¼�¼�½
 9 ÷6¿�«EÊ�Ë@ª6«@¬�z �ÍÌ� z�`��²ú ��Î
.@�Ï
 ¥�¦ �� 9 ÷�Ð�z � ú �fÇ���¤� ¼�¼�½
 9 ÷�Ñ�ú � Î á3Ý'43-SDF-�ÑÓÒ � <9Ù�Û/6ED_:3Ú°A76EÞ°Ú°ß]*�Ð
Ô �Ï
 ¥�¦ �� 9 ÷6Õ�Ö À+×
ú ��Ç

� Ì� Ú Ø 6CA3-SÝòÜ323+7Þ°Ú�Û@.L-/*²Û�D_-S69ßF-;:²+5*Ø� Ù�<ED�2 Ø -1Ý'Ú°ßF4ÌßF43- Ø -/D_>,Ú�Û�-LHµd(+5>5Ú°<L2 Ø Þ°*Lá
<EA3Þ�*H� 4B6 Ø ßF43-�Û�<LDFD_- Ø Ü <EA7:=Ú�A3åCÜ7DFÚ�>?6?ßF-1.E-S*EHL�hA Ø ßF-SÜ�.7á�
 Ú�A5>5Ú¬ß_- Ø �òß_<·Û�47<,< Ø -16
Ø -/ß2ÑÙÒ � <EÙ¯ÐÌ6E:+Ú]27:=Ú�Û/6?ß_<ED Ø á Ý'43<�Ý'Ú°Þ�Þ�>E<EßF-�<EACÝ'43-/ßF43-SD���1 Ø Ú�:=-SA,ßFÚ°ß]* Ø 43<L23Þ�:C+ -
DF-S>E-S6EÞ°-;:�Ú°A�ß_43-�ÛS6 Ø -Y<9Ù�6¼Û/<E8
Ü3Þ�69Ú�ALß;H��hA Ø ßF-SÜ Ô á_
 Ø -/AB: Ø 6EAC69A3<LA,*58
<E2 Ø Ú�:3-/A,ßFÚ ô -/D
Ù�<EDf� ß_<´2 Ø -�Ý'43-/A 2 Ø Ú�A3åâßF43- Ø -/D_>,Ú�Û�- Ø
 <|��-/D Ø HL�hA ß_43-/Ú�D
Ü769Ü -/D�÷ .Eúµá%ß_43-�6E2=ßF47<ED Ø
Ø ß_Ú°Ü327Þ�69ßF-kß_476?ß�
 Ý'Ú�Þ°Þ�:=Ú�>5Ú�:=-�ßF47-IÚ�:=-/A,ßFÚ°ß]*�ßF<L.E-/A´Ú°A,ßF< Ø -S>E-SD_6EÞsÜ769DFß Ø 69AB:C:=Ú Ø ß_DFÚ�+32=ß_-
ßF43-S8òßF<¼6L:�Ú]27:=Ú�Û/69ßF<LD Ø á52 Ø Ú�A3å¨JK6E+3Ú°A$1 Ø Ú�A=Ù�<LDF8¨6?ß_Ú°<LA�:3Ú Ø ÜB-SD Ø 69Þ®÷ÜÛ;ú¦H

ó§43-�6923ßF43<LD Ø 6 ØFØ 238
-§ßF4B6?ß®ß_43-�Ú�:=-/A,ß_Ú¬ß]*�ßF<L.E-/A
Ú Ø 23A7ÚÆ�,23-SÞ°*�ßFÚ�-S:�ß_<I69A¨-SALß_Ú¬ß]*LáL6EA7:
6E:�Ú]27:3Ú�ÛS6?ßF<LD Ø 6EDF-�ßFD_2 Ø ßF-;:@ß_<
Ü3DF<?>5Ú�:=-Y6�Ùu69Ú�DK6E:�Ú]27:3Ú�ÛS6?ßFÚ�<EA1Ù�<EDKÛ/<E8
Ü3Þ�69Ú�A,ß Ø H
Ý]_FÞ^µ�Dt6BJX�Y�?+=@I�]_�DK8Y(BD]_XÞ^L?+]�Y�]>C�]_�~M c 43-SAÃ
¸D_-SÛ/-/Ú�>E- Ø 6�Û�<E8
Ü3Þ�69Ú�A,ß�ßYáLßF43-(Ù�<EÞ�Þ�<?Ý�
Ú°A3å
Ü3D_<9ß_<=Û�<EÞ�Ú Ø -�ä=-;Û�2=ß_-S:�á3Ý'Ú°ßF47<E2=ß�� 9

235

£ �Ï
 ¥�¦ � O 9 ÷�à�×�áEª6«E¬�znß ú �¯â �
0�- Ø_Ø 6EåE- £ Ú Ø'Ø -/A,ß'ßF<
-;6EÛ�4 � O�ãbÑ²H

ù�� � O ¥)¦
 9 ÷s÷)ä O ú � �â � ú � Î
ó§43-�>L<9ß_-�ä O Û�<EA Ø Ú Ø ß Ø <EÙ`61+769Þ�Þ°<Eßf�j61:3-SÛ�Ú Ø Ú°<LAC+5*�ßF43-¨6E:+Ú]27:=Ú�Û/6?ß_<ED�<EA´ßF43-¨Û�<L8�

Ü3Þ�6EÚ°A,ß�ßYáV-EH å´*L- Ø �fA3<��(ßF<LåE-�ß_43-/D�Ý'Ú¬ß_4²ßF47-1Û�<L8
Ü3Þ�6EÚ°A,ßåßYHL�¦Ù'ßF47-@>E<EßF- Ø 69D_-¨Ü < Ø Ú¬ß_Ú°>L-
Ú°A¸ß_43-@8¨6+Ú]<LDFÚ°ß]*EáL
 Ü7DF- Ø -SALß Ø ßF47-¼ßF27Ü3Þ°-@<9Ù Ø Ú�åEA7-S:¸>E<EßF- Ø ä ßF<aN �� áËßF43-@Þ�6 Ø ßkß_<E.L-/A
Ü3DF<?>5Ú�:=-/D§Ú�A�ßF43- Ø -(�,23-SA7Û�-YÛ�43< Ø -SA1+5*�� 9

�E�Ï
 ¥�¦ N � � 9 ÷6ª�«EË6«�Õ�æ�z�`�O�znß�z�Ñsz�ä ú �¯® ° �
.@�±N>��� ¥)¦
 9 ÷�` OZÄ y(ú ��Î

ó§43-'Þ�6 Ø ß�ß]ÝÀ< Ø ßF-/Ü Ø 69D_-§DF-SÜB-;6?ßF-;: Ø -S>E-/D�69Þ5ß_Ú°8
- Ø áEßFD�6EÛ�Ú�A3å«+76LÛ�.,Ý§69D�: Ø ßF47DF<L23åE4�ßF47-
Ø -��L27-/A7Û/-SN>� � z�}�}(}�z�NP� Û�43< Ø -/A�+5*��ká7+B-/Ù�<ED_- ô A769Þ�Þ°*1<E+=ß�69Ú�A3Ú�A3å � ��H
ç èýÏ�lµj~émo,Ö�o
ó§43-YÜ3D_<9ßF<=Û/<EÞ�Ú Ø�Ø 23+6Ú]-SÛ�ß§ß_<
ßF43-«Ù�<LÞ°Þ�<?Ý'Ú°A7å Ø -/D_Ú°<L2 Ø >523Þ�A3-/D�69+3Ú�Þ�Ú¬ß_Ú°- Ø�9
;>=@?�A>BDCE=aêëBJI(KLI(=_M�ì é7ì@ðníYê�î7è�ëuçEè/é7êµë�êjì¼êhðSûLè/é¼þ�ïFð � ëuçEè/ï�í�î��?é·ÿ�ë�í��5í/èkí�è/ï � ëuî_è�í�ðní�
ï ð9ï2!°è�ê�í/ð?ÿ¨è_ð9é è�èW!mí/èIê¦ð@çEð
êZî6�9êeð5�?é�ç�ñ�í��=ï�êZî3è/ï�ÿ
ð9ïFè�ñ®ë�ê§î��?éCë�ÿ�þ_!bëuî��9ê¦è��?éBì¨è/é7êµë�êµì¨ðní
ë�êuíIî�î3ð?ëuî�è�ë�éCí��7î�î��¼ÿ�ë�í��5í/è 9
0523Ü3Ü < Ø -�N>���ÀÚ Ø 6¼:=Ú Ø 43<LA3- Ø ßKß_<E.E-SA�Ü3DF<?>5Ú�:=-/D;H3àK-�Û/69A�Ü7DF- Ø -SALß�6EA5*@Ú�ALß_-/D_8
-S:=Ú�6?ß_-

ßF<E.L-/A�Ý'43Ú�Û�4�43-ÀDF-;Û�-/Ú�>E- Ø :323DFÚ�A3å�ßF43- Ø Ú°åLA�µ27ÜkÜ3D_<9ßF<=Û/<EÞLßF<�
§á?69A7:I<E+=ß�69Ú�A�69A�Ú�:3-/A,ßFÚ ô -/D
ßF<¨2 Ø -�ßF43- Ø -/D_>5Ú�Û/-EH3àK-kÛS69A�8
Ú Ø 2 Ø -«ßF43- Ø -/D_>5Ú�Û/-«6EA7:1Ú°A�:=<LÚ°A3å Ø <
Ú°8
Ü3Þ�Ú�Û/6?ß_-«ßF43-Y2 Ø -SD
Ý'43<
Ú°A3Ú°ßFÚ�6?ß_-S:1ßF47-kÛ�D_-S6?ß_Ú°<LA1<EÙVß_43-YÚ°A,ß_-/D_8�-;:=Ú�6?ßF-«ß_<E.L-/AsH

0�<ED_-/<?>L-/D;á Ø Ú°A7Û/-«ßF43-YÚ�:=-SALß_Ú¬ß]*@ßF<L.E-/A1ß_6E.E- Ø ß_43-«Ù�<ED_8

÷�÷P}(}�};÷�÷ � �Ëú��¯® ° � ú � �® ° � }�}�}Pú²��® ° ú � �® °
69A7:�N ��� 476 Ø 6LÛ/Û/- Ø_Ø ßF<���1 Ø Ü327+3Þ°Ú�Û¨.L-/* � � ás47-¼Û/69A¸Û�D_-S69ßF-�÷�÷ � � ú � ® ° � ú � �® ° � 6EA7:
69A3<LA,*58
<E2 Ø Þ�*¨DF-��,23- Ø ß§ßF43- Ø Ú°åLA76?ß_23D_- Ø -/D_>5Ú�Û/- Ø Ù�DF<L8QN>� � z(}�}(}WznN>� Ú�A�<ED�:=-/DÀß_<¼Û�D_-S6?ß_-
ßF43-«Ù�23Þ�Þ�ß_<E.E-SA@Ù�<LDm�kH�¦ßkÚ Ø -S>,Ú�:=-SALßYß_476?ß Ø 27Û�4¸>523Þ�A3-/D�69+3Ú�Þ�Ú¬ß_Ú°- Ø 69D_-�Ü < Ø_Ø Ú°+3Þ�-¨:=23-
ß_<�Ü32=ßPß_Ú°A7å�Ù�23Þ°Þ�ßFD_2 Ø ß
<EA ß_<E.L-/A Ü3D_<?>5Ú�:3-/D Ø 6EA7: åL-/A3-SD_69ßFÚ�A3å Ú�:=-/A,ßFÚ°ß]*ýß_<E.E-SAG`�� ß_476?ß�Ú Ø A3<Eß�ßFÚ�-S:ýß_<ø6EA
69A3<LA,*58
<E2 Ø .L-/* � Ì� á3ÚµH -LH=Ý'43<5-/>L-/D§åE-/ß Ø 43<EÞ�:1<9ÙVß_43-�ßF<L.E-/A�Û/6EA@2 Ø -«Ú¬ßKÝ'Ú°ßF4�6�.E-S*¨<9Ù
43Ú Ø <?Ý'AsH�hA¸6L:3:=Ú°ßFÚ�<EAsá�ß_43-@6E2=ßF43<LD Ø <EÙ`ß_43-¼Ü3D_<9ß_<5Û/<EÞ�:=<�A3<Eß Ø Ü -/Þ�Þ®<L2=ßI6 Ø_Ø 278�Ü3ßFÚ�<EA Ø ß_43-/*
8
6E.E-¼<LA²ßF47-�6EA3<EA5*58
<E2 Ø Û�4769A3A7-/Þ Ø H%ó§4,2 Ø á%<EA3-�Û�<L23Þ�:Ì69Þ Ø <´Û/Þ�6EÚ°8 ß_476?ß
+B-;Û/6E2 Ø -16
8�- ØFØ 69åL-`6EA3<EA5*58
<E2 Ø Þ°* Ø -/A,ß�+5*å� 6?ß Ø ß_-/Ü £(» :=<5- Ø A7<9ß�Ú°ABÛ�Þ�27:=- ³ D_-/Ü3Þ�*YÚ�A Ø ß_DF2BÛ�ßFÚ�<EA Ø ´7á

236

-EH å7Hs6�ßF-S8
ÜB<LD_6EDF*�Ü327+3Þ°Ú�Û
.E-S* �ÍÌ� á��9é7ì´ç?ë�í�î7ð?é è�í�ê®þ��?ï�êµì�ò êZî6�?ê«î��?éøè�� � è�í/ç?ïFð�þ ð9é�aó í
ð|�=ê²',ð?ë�é�'�ÿ
è�í�í���',è�í¨ð~íkêZî3è�þ�ïFð?êhð;î_ð|!®î¡�9éH�Eî�ôW�=ë�ï_è5� � �|!bëuç�ëuçEè/é7êµë�êjì�êhðSûLè�és` �öõ ò
Ú°A,ßF-SD_Û/-/Ü=ß Ø �9Û�<LÜ3Ú°- Ø 8�- ØFØ 69åL- Ø á=Ý'43Ú�Û�4�6EDF-�ß_<¨+B- Ø -/A,ß�69A7<EA5*58�<L2 Ø Þ°*¨+5*��IáB6EA7:�á5ßF47-/Asá
DF-SÜ3Þ�6f* Ø ßF47-/8�69A3<LA,*58
<E2 Ø Þ�*
ßF<¼6EÞ°Þ>N � � Ø Ú�A�<ED�:=-SD`ß_<¨DF-;Û�-SÚ°>L-2` � Ý'43Ú�Û�4�ÛS69A�+ -Y2 Ø -;:
ßF<
DF-��,23- Ø ß Ø -SDF>5Ú�Û�- Ø Ù�D_<E8Q
§H * Þ�-S6EDFÞ�*Eá Ø Ú�8�Ú�Þ�69D;á,+72=ß�6�Ý`-;69.E-SD Ø ß_69ßF-S8�-SA,ß'ÛS69A�+B- Ø 69Ú�:
<9Ù�6�:3Ú Ø 43<EA7- Ø ß§-SA,ßFÚ°ß]*¼ßF4B6?ßKÛ/6EA�-;6f>E- Ø :=D_<EÜ@<EA�69A5*¼<9ÙµN>��� Ø 13Û�<EA7A3-SÛ�ßFÚ�<EA Ø H4 <9ß_-«ßF4769ßKÚ°AC6EA5*@Û/6 Ø -Lá76¨:=Ú Ø 43<LA3- Ø ßmN>���`<ED'Ý'43<5-/>L-/D'8
Ú Ø 2 Ø -S:1ß_43- Ø -/D_>,Ú�Û�- Ø <9Ù�

Ý'Ú¬ß_4b`��§á3ÛS69A�A3<Eß§+ - Ø 43<?Ý'A@ß_<
476f>E-YÛ�43-;6?ßF-;:�H

TWV8=�X�Y�BZY�[Ý]_FÞ^L?�]_FHBJI(=R÷�q6ø�MØù �;þLþ3ð?í/è5�úî6�?í�ëuçLè�éBêjë �Àè�ç¸ê�î7è�í/è�ôW�7è/é î�èCðní1êhðSûLè/é
þ ïFð � ëuçLè�ï�íöN ��� z�N �W� z�}(}�}�z�N �¡ ñ¯�9é çSN ��� ë�í«ç9ë�í�î3ð?é�è�í�ê-ûmü�î3è/éCê�î7è�í/è�ï � ëuî�èÀþ�ïFð � ëuçEè/ï�
#ë�é�´î�ð(�|!bë�êµëuð?éøñ�ë�ê�îsN �(� î¡�9é ëuçEè/é7êµë í�ìCêZî3è@ëuçEè/é7êµë�êjì�êhðSûLè/é ê�î��?ê��\î6�?í
í��� /ÿ�ë�êjêhè�ç�ê¦ð�
�ñ� ë#ý�ûP` �öõ

0523Ü3Ü < Ø -åN>� � Ú Ø :=Ú Ø 47<EA3- Ø ß;á ÚµH -EH�Ú¬ß«D_-/>E-;69Þ Ø ß_<b
 Ú�:=-SALß_Ú¬ß]*�ß_Ú�Û�.L-�ß Ø Ú°ßYÚ Ø_Ø 27- Ø H ó§43-SA
Ú¬ß'ß�69.E- Ø 6?ßK8
< Ø ßöÐ � Ä y A5238�+B-SDK<9Ù%<EÜ -/D�6?ßFÚ�<EA Ø �n§�¨@©6¿)À�Á¨DF-��,23- Ø ß Ø 69AB:@-SA7Û�D_*5Ü=ßFÚ�<EA Ø ��á
Ý'43-/D_-�Ð1Ú Ø ßF43-§ß_<9ß�69Þ3A5238�+B-SD�<9Ù�Ú�:=-SA,ßFÚ°ß]*kßF<L.E-SA�Ü3D_<?>5Ú�:3-/D Ø 6EA7:fþIÚ Ø ßF47-'Þ°-SA3å9ß_4�<EÙ��å1 Ø
DF-��L27- Ø ß Ø Û�4769Ú�Asá�Ù�<LD«ßF43-¨Û�<,69Þ�Ú¬ß_Ú°<LA´ß_< ô A7:â<E2=ß�`��v�6 Ø ßFD�69Ú�åE4,ßPÙ�<LDFÝ§69D�:�+3D_2=ßF-�jÙ�<LD_Û/-
Ø -;69D�Û�4sH

àK<?ÝÀ-/>E-SDSáBÚ¬ÙÀÝ`-
69Þ�Þ�<?Ý ßF43-¨Û/<L69Þ�Ú°ßFÚ�<EA�ß_<�-;6f>E- Ø :=D_<EÜ�<LA´8
- Ø_Ø 69åE- Ø <EÙ`<EßF43-SD(ß_<E.L-/A
Ü3DF<?>5Ú�:=-/D Ø NP�W��á�ßF43-SAâß_43-
A5238I+ -/DY<EÙ�<EÜ -/D�6?ß_Ú°<LA Ø ßF43-S*CA3-/-;:Cß_<�ÜB-SDPÙ�<LDF8 åL<5- Ø :=<?Ý'A
ßF<¼6?ß'8
< Ø ßöÐ��Jþ�¥ £ ��H3ó§43Ú Ø Ú Ø :=<LA3-k6 Ø Ù�<LÞ°Þ�<?Ý Ø(9
: ó§43-�Û�<,69Þ�Ú¬ß_Ú°<LA Ø ß_6EDPß Ø A7<9ßFÚ�A3å¸Ú�A 6 Ø -�ß�ÿ 6EÞ°Þ§ß_43-�8
- Ø_Ø 6EåE- Ø ßF4B6?ß¼<9ß_43-/D
ß_<E.L-/A
Ü3D_<?>,Ú�:=-SD Ø 6 Ø ÝÀ-/Þ�Þs6 Ø
ÌD_-SÛ�-SÚ°>L-�Ù�DF<L8 ßF43-Y8
<L8�-SA,ßmNP� � Ø -/A7: Ø `¯yfH

: × Ü <EA�D_-SÛ�-SÜ=ßFÚ�<EA�<9Ù�`�{ Ø Û�43-SÛ�.¨Ú°Ù®69A5*¨Ú Ø Ú°A�ÿ á=-/Þ Ø -�Ý§69Ú°ßK23A,ßFÚ�Þs<LA3-«<9ÙVß_43-/8üÚ Ø H
: J'-/Ü -S69ß'ßF43-k6E+B<?>L- Ø ßF-SÜ Ø 23A,ß_Ú°Þ$` � Ú Ø Ù�<L23A7:�H

05<7á5Ú°ßÀÚ Ø A3<?Ý Ü < Ø_Ø Ú�+3Þ�-�ß_< ô AB:¼ß_43-�Û/<ED_DF- Ø Ü <EAB:=Ú°A7åkßF<L.E-SA¨Ù�<EDÀßF47-«Û�47< Ø -/A¼Ú�:=-/A,ß_Ú¬ß]*
Ý'Ú¬ß_43Ú°A�Ü <EÞ�*5A3<E8
Ú�69Þ�ßFÚ�8
-YÚ°A�þ18
<=:=23Þ�<�ß_43-kÛ�< Ø ß Ø <9Ù�-S6f>L- Ø :=DF<LÜ3Ü3Ú�A3å7H

TWV8=�X�Y�BZY�[Ý]_FÞ^L?�]_FHBJI(=�÷ p ø�M�ù �;þLþ3ð?í�èS
Gî��fíYí��7î�î_è�í�íZí���!�!bì«þ ï_ðSî�è�í_í/è�ç���î�ð?ÿ�þ_!#�9ë�é7ê�� �ð+�=ê2��þ6�9ï�êjëuî���!#�9ï��5í�è/ï�û�ü�î3è/é�
 î��?é ïFè � è¡�|!®êZî3è¨ëuçLè�éBêjë�êµì´ð~í��9é7ì�í��� �í/è�ô��7è�éBêö�5í�è/ï
ð~íYêZî3èkí/è�ï � ëuî�è(û
d(A7Û�-�
»476 Ø¨Ø 27ÛSÛ�- Ø_Ø Ù�23Þ°Þ�* Ü3D_<=Û�- ØFØ -S:ø6¸Û�<E8
Ü3Þ�69Ú�A,ßSá®47-�Ú Ø Ú�A ÜB< ØFØ - Ø_Ø Ú�<EAø<9Ù�ßF47-

Ú°A=Ù�<LDF8¨69ßFÚ�<EAÞßmz¡Ñsz¡ä Û/<ED_DF- Ø Ü <EAB:=Ú°A7å1ß_<Cß_43-@Û�<L8
Ü3Þ�6EÚ°A,ß;HËàK-�Û/6EA²2 Ø -@ßF43Ú Ø ß_<´8¨69.L-ª�«EË6«�Õ�æ¼D_-(�,23- Ø ß Ø ßF<C6EA,* Ø -��L27-/A7Û/-�<EÙ�N O 1 Ø Û/<ED_DF- Ø Ü <EA7:3Ú°A3å1ßF< Ø <E8
-
<9ß_43-/DYÜ7DF<EßF<=Û�<LÞ
Ø - ØFØ Ú°<LAsá369AB:¼ß_43-/D_-/+5*¼+3D_-S6E.¼Ú°ß Ø 69A7<EA5*58�Ú°ß]*EH

� Y � =@?��U=�t��>XL=�I(I�=�I�M ó§43-
Ü3D_<9ßF<=Û/<EÞ�69Þ Ø <�476 Ø ßF43-
Ù�<LÞ°Þ�<?Ý'Ú°A7å123AB:=- Ø Ú°D�69+7Þ°-�Ü3D_<EÜ -/D�
ßFÚ�- Ø �fåEÞ�Ú°ß_Û�43- Ø�9
:)KA5*²ß_43Ú°D�:øÜ769DFß]* Û/6EA ô A7:ø<E2=ß¨Ý'43<¸8
Ú Ø 2 Ø -S:ÌßF43- Ø -/D_>5Ú�Û/- Ø <9ÙY69A 69A3<LA5*,8
<L2 Ø
Ø -SDF>5Ú�Û�-«Ü3D_<?>5Ú�:=-SDm
§H

237

:)#:3Ú Ø 43<EA7- Ø ß Ø -SDF>5Ú�Û�-(Ü3DF<?>5Ú�:=-/D�
²Û/6EA@6E:�Ú]2 Ø ß`ßF43- Ø -/ß�Ñ�ß_<IÚ�A7Û�Þ�27:=- ³ Û/<EA5>E-SA3Ú°-SA,ß¡´
6E:�Ú]2B:=Ú�ÛS6?ß_<ED Ø á�Ý'43-SAâD_-(�,23- Ø ß_Ú°A3å1ßF<�D_-/>L-S69Þ%ß_43-
Ú�:=-SA,ßFÚ°ß]*C<9Ù§69A¸69A3<LA,*58
<E2 Ø 2 Ø -SD
Ú°A�ß_43-kÛ�<L8�Ü7Þ�6EÚ°A,ß'DF- Ø <LÞ°23ßFÚ�<EA�Ü3DF<EßF<=Û�<LÞjH

: d(+5>,Ú�<E2 Ø Þ�*EáEßF43-(Þ�6 Ø ß�8
- ØFØ 69åL-'Ú°A¨ß_43-(Û/<E8
Ü3Þ�69Ú�A,ß�DF- Ø <LÞ°23ßFÚ�<EA¨Ü3D_<9ß_<5Û/<EÞBA3-/-;: Ø ß_<I+ -
692=ß_43-/A,ß_Ú�ÛS6?ßF-;:�H

� Î@k��(Ñ3Ò	�¯iVÓ h´Ñ3Ò®Ð5Ò'Õ�Ò¯j
�hA·<LD_:3-/D(ßF<�Ü3D_- Ø -/A,ß�ßF43-¨Ü3D_<9ß_<=Û�<EÞ�Û/<EA7Û/Ú Ø -/Þ�*Eá�ÝÀ-�<L8
Ú¬ßI:=-/ß_6EÚ°Þ Ø 69+ <E2=ß��å1 Ø Û�47<EÚ�Û�-�<9Ù
ßF43-k6L:�Ú]27:=Ú�Û/69ßF<ED Ø ÑÓÒ � H

 MJq ��� =��2?+])Y(]>CE])�
�¦ßI69Þ Ø <�Û�<LA Ø Ú Ø ß Ø <9ÙÀß]Ý`<�Ü76EDPß Ø Yí�ëe'Eé��;þ 6EA7: î_ð9ÿKþ�!#�?ë�éBê(ï_è�í/ð+!e�=êjëuð9éÞ'ßF4769ßk476f>E-�ßF47-
Ø 6E8�-«Ü327DFÜ < Ø -Y6 Ø ßF47-YÜ3DF-S>5Ú°<L2 Ø <EA3- Ø á=+323ß�Ý'Ú¬ß_4�6�:3Úe��-/D_-/A,ß Ø ßFD_27Û�ß_23DF-LH
;>BJ�)XPK8^�M

� Û�43<5< Ø - Ø 6 Ø -��,23-/A7Û/-mN>� � z�NP� � z�}(}�}�z�N>���<9Ùs-/Þ�-/8
-SALß Ø <EÙ>Në��Ü < Ø_Ø Ú�+3Þ�*�Ý'Ú°ßF41:=23Ü3Þ�Úe
Û/6?ß_Ú°<LA Ø ��H_�hAâÛ�<LA,ßFD�6 Ø ß�Ý'Ú¬ß_4Cß_43-�Ü7DF-S>,Ú�<E2 Ø Ü3D_<9ß_<=Û�<EÞµá7ÝÀ-
:=Ú Ø ßFÚ�A3åL23Ú Ø 4�ß]ÝÀ<¼ß_-/8
ÜB<LD_6EDF*
.E-/* Ø Ù�<LDm�kH�� Û/DF-;6?ßF- Ø 6�ßF-/8
Ü <ED�69D_* Ø -/D_>,Ú�Û�-�Ü323+7Þ°Ú�Û«.E-S* ��� ��� Ý'43Ú�Û�4 Ø 43-YÝ'Ú�Þ°ÞV2 Ø -�ß_<
Ú�:=-SA,ßFÚ°Ù�*k43-/D Ø -/Þ°Ù7ßF<�
§H?)(:3:=Ú°ßFÚ�<EA76EÞ°Þ�*Eá Ø 43-§Û�D_-S69ßF- Ø 6(Ü323+3Þ�Ú�Û§.E-/* �vÌ� Ý'43Ú�Û�4 Ø 43-§Ý'Ú°Þ�Þ=2 Ø -Ú°A 6EA3<EA5*58
<E2 Ø Û�<L8
8I23A3Ú�Û/69ßFÚ�<EA¸Ý'Ú°ßF4¸ßF<L.E-SA·Ü7DF<?>5Ú�:=-/D Ø á ß_<�Ú°A7:3Ú�ÛS6?ßF-@Ý'43<�ßF43-@DF-SÜ3Þ°*
A3-/-;: Ø ßF<
+ - Ø -SA,ßÀß_<7H£ �¤� ¼�¼�½ N>� � 9 ÷P§�ÖPÀ���§�¨�©�ª6«@¬Ez ��� ��� z � Ì� ú �¯® ° �

ù��±N>� � ¥_¦ �� 9 ÷6`¯y�ú �fÇ áÝ'43-SDF-�`¯ymu�÷V÷�§(ÖPÀ���§�¨@©�ª6«@¬�z ��� ��� ú��¯®�° � ú � �® ° �
È *�Ú�A7Û�Þ�27:=Ú�A3åkß_43- Ø -/D_>5Ú�Û/-'.E-S* ��� ��� Ú°A¨ß_43-�8
- ØFØ 69åL-'<9Ù Ø ßF-/Ü £ áEÝÀ-KÝ'Ú�Þ°Þ Þ�6?ßF-SD�476f>L-ßF43Ú Ø .E-/*²6 ØFØ <=Û�Ú�6?ßF-;:²Ý'Ú°ßF4 �å1 Ø Ú�:=-/A,ß_Ú¬ß]*¸ß_<E.E-SAÌÚ�AÌ<LD_:=-SD�6f>L<EÚ�:¸ßF43-s05-SDF>5Ú�Û�-10CÚ Ø 2 Ø -

6?ßPß�6EÛ�.�áEÝ'47-/D_-/+5*¨69A5*E<LA3-'Ý'43<�6LÛ��,23Ú�DF- Ø 43-SD�ß_<E.L-/A@ÛS69A¼2 Ø -�Ú°ß�ß_<I<L+=ß_6EÚ°A@6 Ø -SDF>5Ú�Û�-K<LA
+B-S4769Þ°Ùs<9Ù$� Ù�DF<L8¢
§H 4 <EßF-Kß_476?ß;áLÚ�A@Û/<EA,ßFD�6 Ø ß®Ý'Ú¬ß_4¨ßF47-�Ü3D_-/>5Ú�<E2 Ø Ü3DF<EßF<=Û�<LÞjáE� 476 Ø A3<Eß
DF-S>E-S6EÞ°-;:¼43-SD'Ú�:3-/A,ßFÚ°ß]*¼ß_<�NP� � H/3<ED��µu £ ßF<�ÐÃ¥²ù 9

¶
·¸¸¸¸¸¹ ¸¸¸¸¸º

£�» �¤� ¼W¼(½ N � �Æ¾ � 9 ÷>§�¨�©�ª6«@¬�zm`�Onz � Ì� ú � ® ° �Æ¾ �
Ý'47-/D_- ` O	� ÷s÷6` ODÄ y|z���¨����®ú��¯® ° � ú � �® ° �

ù » �±N � �Æ¾ � ¥_¦ �� 9 ÷s÷V÷�`�Onz��@¨ � �Æ¾ � ú � ® ° �Æ¾ � ú � �®�° �#¾ � ú ��Ç

238

È *�ß_43-¨-/AB:´<EÙ�ßF47- Ø -��L27-/A7Û/-�<EÙ`8
- Ø_Ø 69åE- Ø � £ 67áVù96E�%�ZÐ ¥ ù@ßFÚ�8
- Ø ��á$� 476 Ø Û�<EA6
Ø ß_DF27Û�ßF-;:@ß_43-«ßF<L.E-SAÃ`���Ä y 9
÷/÷3÷S÷+}�}(}�÷/÷3÷S÷e§�ÖPÀ���§�¨�©�ª6«@¬Ez ��� ��� ú��¯® ° � ú � �® ° � z���¨�� � ú²��® ° � ú � �® ° � }(}�}?ú��¯® ° � � � ú � �® ° � � � z���¨6�� � � ú²��® ° � � � ú � �® ° � � �
Ý'43Ú�Û�4 Ø -/D_>E- Ø 6 Ø 6�:=Ú Ø åL23Ú Ø -¨<9Ù§43-SDY.E-/* ��� ��� H 4 <9ß_-
ßF43-¼A7<EA7Û/- Ø ��¨��W�(Ú�A·ßF43-¼6E+B<?>L-
Ø ß_-/Ü Ø á?åE-SA3-/D�6?ß_-S:k+5*�N>����H��¦ß�Ú Ø A3-;Û�- Ø_Ø 69D_*YÚ°A�<ED�:=-/D%ß_<�Ü7DF-;Û�Þ�27:=-��]:=-/A,ß_Ú¬ß]* * <L8
Ü3DF<L8
Ú Ø -� £ �§69ßPß�6EÛ�.�� Ø -/-k)�A769Þ�* Ø Ú Ø'Ø -SÛ�ß_Ú°<LA)��Hc -¼6 ØFØ 238
-Iß_476?ßI6EÞ°Þ`69åE-SA,ß Ø DF-;Û�-SÚ°>5Ú�A3å�6 Ø Ú�åEA3-;:´8
- Ø_Ø 69åE-�>E-SDFÚ°Ù�*�ß_43- Ø Ú�åEAB6?ßF27DF-LH
ó§4,2 Ø áL<EA¨D_-SÛ�-SÚ°>5Ú�A3åY8
- Ø_Ø 6EåE-�� £ 6E��á�N>��É8yÀ>L-/D_Ú ô - Ø ß_476?ß`ßF43-'ß_<E.L-/A¨476 Ø +B-S-/A Ø Ú�åEA3-;:�+5*
69A3<EßF43-SD§ßF<E.L-/A�Ü3D_<?>,Ú�:=-SDÀ+ -�Ù�<LDF-«43- Ø Ú�åEA Ø Ú°ß(69A7: Ø -/A7: Ø Ú°ßK<EAVH4 -�ä5ß;á>�»D_-/>L-S6EÞ Ø 43-/DYÚ�:=-/A,ß_Ú¬ß]*�ß_<ÃN � � á�+5* Ø Ú°åLA3Ú°A7å@ß_43-�ßF<E.L-/A�`���Ä y H>0,ßF-SÜ Ø �3á�.7á�E63á�.,6ID_-/>L-/D Ø -�ßF43Ú ØKØ -(�,23-SA7Û�-«<9Ù%-/A7Û/DF*5Ü=ß_Ú°<LA Ø á369A7:�6?ß§ßF47- Ø 6E8�-(ßFÚ�8
-«ßF43-S*@+327Ú°Þ�:�23Ü
ßF43-YÚ�:=-/A,ß_Ú¬ß]*@ßF<E.L-/A��`���Ä y H

�E�¤� ¥_¦ N � � 9 ÷s÷P§�¨�©�¿)À�Á6zm`���Ä y zö�ªú � � ú �¯®�° �
.@�±N>�� ¥_¦ � 9 ÷��`¯y�ú � áÝ'43-SDF- �`¯y � ÷s÷s÷�§�¨�©6¿�À�Á)z�` ��Ä y|zm� ú � � ú��¯®�° � z�` ��Ä y�ú � �®�° �/3<ED��µu £ ßF<�ÐÃ¥²ù 9

¶
·¸¸¸¸¸¹ ¸¸¸¸¸º

� » �¤� ¼W¼(½ N>�� � � 9 ÷>§�¨�©6¿)À�Á�z �` O z � Ì� ú � ® ° � � �
Ý'43-/D_- �`�OLu ÷s÷��`�ODÄ y z���¨�� �� � �Æ¾ � ú � ® ° �(¾ � � � zö`���Ä_O�ú � �® ° �(¾ � � �
. » �±N>�� � � ¥_¦ �� 9 ÷�÷V÷ �` O z���¨ � �� � � ú��¯® ° � � � z¡` ��Ä_ODÄ y�ú � �® ° � � � ú ��Ç

���¤� ¼�¼�½ N>� � 9 ÷P§�¨�©6¿)À�Á�z �` ��Ä y+z � Ì� ú �¯®�° �
Ô �±N ��� ¥_¦ �� 9 ÷s÷s÷��`���Ä y z���¨ � � � ú � ® ° � z ��� ��� ú � �®�° � ú ��Ç

× Ü <EA�DF-;6EÛ�43Ú�A3å�N ��� ÝÀ-Y476f>L-�ß_43-«ßF<L.E-/A
�`���u ÷S÷P}�}(}«÷S÷!�` y z"��¨ � �� � � ú � ® ° � � � z¡` y ú � �® ° � � � z���¨ � � � ú � ® ° � z ��� ��� ú � �® ° �

Ý'43-/D_- �`¯ymu ÷/÷�÷#§�¨�©6¿)À�Á�zö` ��Ä {Ezm�ªú � � ú��¯® ° � zm` ��Ä { ú � �® ° �
ó§43-�ßF<E.L-/A��`��16 ØFØ <=Û�Ú�6?ßF- Ø ß_43- ��� ��� Ý'Ú¬ß_4Ã�Iá369A7:@ßF47-/D_-�Ù�<ED_-«Û/69A�<EA7Þ°*¨+ -Y2 Ø -S:1+,*¼6EA
-/A,ßFÚ°ß]*@Ý'43Ú�Û�4�.,A7<?Ý Ø ßF43-YÜ3D_Ú�>f69ßF-«.E-S*@Û�<LDFD_- Ø Ü <EA7:=Ú�A3åIßF< ��� ��� HÛ|�¤� ¼�¼�½
 9 ÷��`���z ��� ��� ú ��Î

� Ü3D_- Ø -/A,ß Ø ß_43-¼ß_<E.L-/A·ßF<
Æ6EA7:¸Ú�A3Ú¬ß_Ú�69ßF- Ø ßF47- Ø -SDF>5Ú�Û�-LH8
ÆÛ�43-SÛ�. Ø ß_476?ßIßF43-1.E-/*
��� ��� ßF4B6?ßö� Ü3D_<?>5Ú�:3-S:
Ú Ø Û/<EA,ß_6EÚ°A3-;:
Ú°A Ø Ú�:=-(ßF43-�ßF<E.L-/A¼Ý'47Ú�Û�4¼Ú ØÀØ Ú�åEA3-;:¨+5*
<EA3-K<EÙsßF47-
Ü3DF<?>5Ú�:=-/D Ø H

239

Ý]_FÞ^µ�Dt6BJX�Y$#�=@I�]_�DK8Y(BD]_X
c -�6 Ø_Ø 238
-
ß_476?ß�ßF43-�Û�<E8
Ü3Þ�69Ú�A,ßIÚ Ø 23A7ÚÆ�,23-SÞ°*²6 Ø_Ø <5Û/Ú�69ßF-;:âÝ'Ú°ßF4 ��1 Ø ß_<E.E-SAsHËó§47-

Û�<E8
Ü3Þ�69Ú�A,ß'8I2 Ø ß�Û�<LALß�69Ú�A1-S>5Ú�:=-SA7Û�-«Ý'43Ú�Û�4�Ú Ø A7<9ß'Ù�<ED_åE-;69+3Þ�-�+,*Ã
§H£ �Ï
 ¥�¦ � O 9 ÷�à�×�áEª6«E¬�znß ú � â �
ù�� � O ¥)¦
 9 ÷s÷)ä�O�ú � �â � ú � Î
�E�Ï
 ¥�¦ N ��� 9 ÷�ª6«�Ë6«�Õ�æ�z%�` � z�ßmz¡ä¯z¡
 ú �¯®�° �
.@�±N>� � ¥_¦
 9 ÷ �` ��Ä y|znß ú ��Î

¶ & � » �Ï
 ¥_¦ NP�W� 9 ÷�ª6«�Ë6«�Õ�æ@z��'�` ��Ä_O É8y+z%�` ��Ä_O É>{Ez�}(}�}Wz(�` � ��z�ßmz¡ä¯z¡
 ú � ® ° ��()��±NP�W� ¥_¦
 9 ÷ �` ��Ä�O z�ß ú ��Î

�hAC8
- Ø_Ø 6EåE-å�L63á3ß_43-�ßF23Ü3Þ�-�<9Ù*�`�O Ø(Ø -/D_>E- Ø ßF<1Ü3D_-/>E-SA,ß(Û�<L8�Ü7Þ�6EÚ°A,ß(D_- Ø <EÞ�2=ß_Ú°<LA�8�- Ø
Ø 6EåE- Ø Ú°A¨<LA3- Ø - Ø_Ø Ú�<EA
+ -/Ú�A3åI2 Ø -S:
Ú�A¼69A7<9ßF47-/D;H(+�6LÛ�4fN � �%Û�47-SÛ�. Ø ßF4B6?ß�ß_43- Ø -(�,23-SA7Û�-K47-
DF-;Û�-/Ú�>E- Ø Ú Ø Û�<LDFD_-SÛ�ßSá�69A7:´ßF4B6?ß«ßF43-
Þ�6 Ø ßY-/Þ�-/8
-/A,ßY<9Ù®ß_43- Ø -��,23-/A7Û/-
Ú Ø ßF47-
ßF<E.L-/A´ßF4769ß
ßF43-kÛ/<E8
Ü3Þ�69Ú�ALßößªÚ Ø 27A3ÚÆ�,23-SÞ°*�6 Ø_Ø <=Û/Ú�69ßF-S:@Ý'Ú¬ß_4sH

)Àß�ßF43-HÐ�ß_4 Ú¬ß_-/D�6?ß_Ú°<LA�
 D_-/>L-S69Þ Ø ßF43-ÌÚ�:=-SA,ßFÚ°ß]* <9Ù
ß_43-²2 Ø -/DCÝ'43-SA Ú¬ßCD_-SÛ/-/Ú�>E- Ø
÷m§�¨�©�¿)À�Á6z�` ��Ä y�z¡��ú � � Ù�D_<E8 N>�� H��h8�Ü <EDFß_6EA,ßFÞ�*Eá®Ú�A ßF43- Ø -��L27-/A7Û/-�<9Ù«23A=Ù�<EÞ�:=Ú�A3å Ø
<9Ù �`���� Ø á6
 6EÞ Ø <I.L-/-SÜ Ø ß_D_6LÛ�.
<9Ù8`���� Ø Ú�A Ø Ú�:3-�ß_43-/8�á=Ú�A@<ED�:=-SD�ß_<�8¨69.L- Ø 23D_-Kß_476?ßö` ��Ä y
Ú Ø Ù�<ED_8
-S:�Ù�D_<E8 ßF47-�.L-/* Ø 47-IÝ§6 Ø åLÚ°>L-/A�Ú�ACß_43- Ø -/D_>5Ú�Û/-kD_-(�,23- Ø ß Ø ßF-SÜsá >,ÚÆ"EH Ú°ß�Ú Ø � Ì� H�¦Ù�ßF47-/D_-�Ú Ø 6@8
Ú Ø 8¨69ß_Û�4sá Ø 43- ô A7: Ø <L2=ß�Ý'47Ú�Û�4�N � �KÛ�43-;6?ßF-;:�á�69A7:sá�Ù�23DPß_43-/D_8
<ED_-Eá�476 Ø
-/>5Ú�:3-/A7Û/-(ß_<¨Ü3D_<?>E-(ßF4769ß'ßF<¨69A5*¼<EßF43-SD'Ü769DFß]*EH

 M p �2?+])^¯=@?�Y�BD=�I�]-,öY � =�^8?+])Y(]>CE])�
�¦Ù%ß_43-Yß_<E.E-SA1Ü7DF<?>5Ú�:=-/D Ø ßFD_*¼ß_<¨åE-/A7-/D�6?ßF-�ß_<E.E-SA Ø +5*¼ß_43-/8 Ø -/Þ�>E- Ø á=ß_43-/*�Û/6EA�+ - Ø 43<?Ý'A
ßF<�476f>L-�Û�43-;6?ß_-S:�HV)�Þ Ø <�ßF43-
ß_<E.L-/A²Û�D_-S69ßF-S:´Ù�<ED�� Ú Ø 23A52 Ø 69+7Þ°-
+5*â6EA,*´<9ßF47-/DY-/A,ß_Ú¬ß]*
ßF4769ß�6EÛ��,23Ú�D_- Ø Ú¬ß;H�¦ÙY69ß1Þ�-S6 Ø ß@<LA3-C<EÙ�ß_43-Cß_<E.L-/AýÜ3D_<?>5Ú�:=-SD Ø Ú�Aýß_43- Ø -(�,23-SA7Û�-�N ��� znN ��� z(}�}�}�znN � �øÚ Ø
43<EA3- Ø ß;á�ß_43-/A&��1 Ø Ú�:=-/A,ß_Ú¬ß]*øÚ Ø A3<Eß1D_-/>E-;69Þ�-S:øÝ'Ú°ßF43<L2=ß1>?69Þ�Ú�: Û�<L8�Ü7Þ�6EÚ°A,ßSHÀó§452 Ø á`ßF47-
Ü3DF<EßF<=Û�<LÞ�6f>E<EÚ�: Ø ßF47-YÚ�:=-SA,ßFÚ°ß]*1Û�<L8
Ü3DF<L8
Ú Ø -�69ßPß�6EÛ�. Ø <9Ù Ø -;Û�ßFÚ�<EAb�3H
. /âÒ`Ï�ÕPjPÔ	o5Ö]Ò�Ï	o
ó§43-¨Ü3D_<9ßF<=Û/<EÞ%Ù�<EDk6EA3<EA5*58
Ú¬ß]*CÝ'Ú°ßF4¸Ú�:=-/A,ß_Ú¬ß]*â- Ø Û�D_<?Ý Ú°Aý÷ .9ú®Ú ØkØ 43<?Ý'A´ß_<�476f>E- Ø <E8
-
Ø -SDFÚ�<E2 Ø�7 6fÝ Ø H c -�476f>L-KÜ3D_- Ø -/A,ßF-;:¼69A@Ú°8
Ü3D_<?>E-;:
Ü3DF<EßF<=Û�<LÞ3ß_<�6LÛ�43Ú°-S>E-'ß_43- Ø 698
-�69Ú�8�á
69A7:�Ú�A1ß_43-«Ù�2=ß_23DF-YÝÀ<ED_.¼ÝÀ-«Ý'Ú°Þ�Þs>E-SDFÚ°Ù�*¨ß_43-kÜ3D_<9ß_<5Û/<EÞ�2 Ø Ú°A7å¼69Ü3Ü3D_<EÜ7DFÚ�6?ß_-�ß_<,<LÞ Ø á Ø 27Û�4
6 Ø ö®D_<?>E-SDFÚ°Ù�÷ £ úV<LD�� Ø 69+ -/Þ�Þ�-
÷ Ô ú¦H

240

0 i21¡iVÑ6iVÏ�Õ�i8o
3 ¹'lË^]ZLc,QYlËR°o/c,NPO,_[�¹�º`c�\54YN�ab\�c?[�N_^hiEXL[]QSnS^PoSXLO,abN'XL^]Q/[]Q?N�Q;R ef_^]amÉ5_^�±,oSgh\�¯�QSc
XL^]QSRbQ;n«^]Z,Rb\�g�¹

Ãjc�M9[]_ef\YM9NFOLc,\�a¬¯L\F^�B\�¯Lam[]QS^� 657 �� 98;:	:2:=<V�/�?>�@9�j¢F¥BA3¢h¤5@9¥P�����$C �D@9�=¡FES�����S�L£�G
�/¥IH/£¦ L��>
X,oSn;_gKJ�LNMPOFQ9SU�oSX=\ËlË^]_[]QScBSRÀQ�eSo®MEN�Q/[]a¬oE/U�o/c5o;¯LoE'T;ZLc,\	LSÁSÁ 3 ¹�Ã;U2U	U¼U%QSWYX,ZL[]\F^�M9Q?N�ab_[µiV ^]\�ghg�¹L?¹�TL¹(W'abRba°o/c¨oSc,¯$U�¹ V _[h^PoScL³3¹�Ã¦¯L_c9[]am[jiY\�ghN_^]Q�©'¹ ��¡DX'E/�=¤P¢F£§���Y<�¥P��>,�u�FZb�I[S� Ä%U]\K^ V ¾®Ê ¿ OFJ9_ R'U�M3 3N` Q�Lba 3 QFOM 3 JFc9 3 ODOFJE¹

Â9¹'½%¹ ¾À¹ _ _a¬nSO?[]Q;cB¹@½,oSabRbg]o/T�\�³f_i�\�ghN_^]Q�©Æg¦iEg¦[]\�WYg�¹ed ¢h¤P 9�L��¤IEFZ2f�¢F�«� 7hgFi;2j�Ã¦¾ _ o/±B¹�T�QS^
U%QSWYX,ZL[]\F^`MEN�ab\�cLN�\; 3 OFO ` ¹` ¹ _ ¹ ½%¹(j
o�^]ghO5o/R¬RBoSc,¯IU`¹(j�Q;Rbabc5o/Ä!T;abWYabc,\5k;¹�º�c,Q;c?iEWYam[µiK©®am[]O�a¬¯E\�c?[]ab[ji«\�ghNF^]Q�©'¹ ÃµcI¾À¹Pl§abW«Ä
am[h^PoS³;Q;gkoSc,¯â½%¹	j
o�^h[]abc,\�RbRba��\�¯Eab[]Q/^]g�]m ¥¦��¤F¢]¢h¡S���b[S£¨�;nI�� ,¢ 6 £P�"8P�L�j¢F¥F��ES�����S��EFZoG��S¥pH/£¦ L��>
�S�qC �S¥P�BEFZB�À£r>L¢h¤_��£����9A3¢h¤5@9¥F�����qES�5¡ d ¥�@E£]� 7X5o/n;\�g 3 L 3 M 3 LDOEBÃµg¦[]am[]ZE[]Q�¯Ea ÃjcLT�Q/^]Wko/[]abN�ok\
¾ _R¬_Wko/[]abN�oE V abg]o9sLSÁSÁ;Â9¹t ¹KM=¹uj�abN�o/Rba�¹�½5o/am^(XLZ,±LR¬abN_Äu³f\Fi¨N_^hiEXL[]QSg¦iLg¦[]_WYg�¹ ��¡'X'ES�=¤P¢F£Y���v<�¥P��>5�u�FZb�I[S� ÄÀU]\K^ V ¾®Ê(¿ O�L9_ R'U�M3�c ` ÁE 3 OFOSÂE¹Q9¹ _ ¹�U`¹ V o/Z,RbghQ;c7¹·¾�OL\
abc5¯EZ,N_[]abef\�oSXLXL^]Qfo/NFOC[]Q�e;_^]amT�iEabc,n@N_^hiEXL[]Q;n/^PoSXLO,abN
XL^]Q/[]Q?N�Q;Rbg�¹�w%x<V�S�y>�@9�j¢F¥zA3¢h¤5@9¥F����� �QPa J t M 3 L'JE 3 ODOFJE¹c?¹zj1¹?Ê(¹F\`oS±La¬c7¹�UK4YN�ab\�c?[Ë¯LabghX=_^]g]o/R,Q/T3a¬cET�Q/^]Wko/[]abQ;c�T�QS^Ëgh\�N�ZE^]ab[ji?/R¬Q;o;¯«±,oSR¬oScLN�abc,nKoSc,¯�T�oSZ,Rm[
[]QSR¬\F^PoSc,N_\;¹?w �'@E¥P��EDZ��;n§�� ,¢'�{<�f ,ÂDQ(|}LD~�a ÂSÂ t M9Â ` JE 3 ODJFO9¹

241

242

���������
	������������������������	������� �!���"���#	$�&%(')����	+*�	��� ',�-�.�0/��1*��"*

2�3&4
5&687:9<;=5&689�>@?�A!3&B�CD7E9�9�>GF�7IHJ3KB�9�CL>GMN5
O#P 4�3�3KQ�3&R1ST3K686UB�F�> P 5WVD>G3KFYX�F�MK>GF�7E7:CL>GF�M�?�Z!F�>\[K7:CL]D>\V_^`3&R1abVc4<3&R0A!3d[K7E6Ue�7EC:?�Sf5&C�Vc4
5&M&7

gihKjkl+m:nDk
o�pEqsr�t:uLtdvxw�tywzv$r{v$|�}zr�uTwzv$~�u�}zqs�D|:uL~
u�t:tEwz�DuL��p=����w0r�}{wz�E�x}z�Ewzqs|E�Tr{v$�$�ywzq�}G�=�Ev$�$qsr{qs�D|��Eu�}�u���uLr{vxr�}z�

r{�Et:td��w{}�uD�y�Du�|:�$v_�JuL�y}z�D��u�}zv$�����:|:�@}zq��L|�u�~�q�}zqsvr����v�wzvxtEwzv$r{v$|�}�u+}{}�uL����r�u�|����$�D�E|�}zvxwz��v_uLr{�ywzv$r
qs|fu
�E|:q����yqs|:��v$|���qswz�L|:��v$|�}N�Er{qs|:��wzv$~�u+}zq��L|�u�~�uL~s�Lv$�Ew�u����#�L}zp1u+wzv��yqsvx��v_�1u�r#u��x}zqs�D|Er�}zp:u�}�uL�@}#qs|1�Lt:td�Lr{qs}zv
��u�|:|Evxwzr$���=v�q�|�}{wz���y�:�$v�uL|���w��Evxwzqs|E�1}zp�u�}�uL~s~s�_��r�}z��w�uL|E�Jr{vx�$�Ewzq�}G�f�Ev$�xq�r{qs�L|:r"u��$�$��w��Eqs|:�1}z�1}zpEv$q�w
v@���qsv|:�@����q�}zp�wzvxr{tdv$�x}�u��Dqs�cvx|�u+}{}�uL�������:�Ew{}zpEvxwz���LwzvL�N��vTtywz�+�cv�}zp�u�}-}zp:qsr0��w��Evxwzqs|E�=�yvx��|Ev$r1u
~�u+}{}zq��xvx�\r�}{wz�:�x}z�ywzv�}zp�u+}��$uL|fr{vxwz�Dv�}z�1��uL|:uL�Lv�}zp:v��yv$�$qsr{qs�D|��Eu�}�uL�:uLr{vD�

 ¡K¢J£�¤�¥�¦!§=¨�£�©+¥�¢
ª�«�¬�=®�¯b®y°²±d¬@«�¬�³b®E¬�´&µL¶�®y·fµy¸b¬@«²¯W¶+µ�®J¹ºµ�»¼±yµD®�½$¬�¸�®y¯!«�·f¾W¿E½�À$®�¯:À�´�½$®�¯b¶$³=¿�¹
¶+¿E·T¾bÁdÀ@µL½�¬�µD¶+Á�½x«�Àz±EÂ.Ã"³�«�¬�³b®E¬
´&µ�µ�¯I·f¿�À@«�Ä�®�ÀxµLÅ�´�±�Àx³�µTÅ�«�ÆÇ¶+Áb°�Àx«²µD¬0¹\®y¶+µDÅ�´�±�À@³�µTµ�¯:Àxµ�½x¾�½@«�¬@µL¬�À@¿=¾�½@µD¬�µL½@ÄEµ�À@³bµ�«�½-«�¯d¹º¿y½x·�®�Àx«²¿E¯I¬@±�¬�À@µL·�¬
®�ÀT®�¯È®y¶L¶+µ�¾�Àx®�´b°²µÇ¬@µL¶�Á�½@«²Àz±É°�µ�ÄEµ�°�·f¿dÅdÁ�°�¿�½xµL®y¬@¿y¯W®�´�°�µf«²¯�ÄyµD¬zÀx·fµ�¯:Àx¬LÂ!ÊË¬�À@½xÁb¶+À@Á�½xµLÅÈ¬�À@ÁbÅ�±É¿�¹"Àx³�µÇ½x«�¬@d¬
À@³W®�À�À@³b½@µD®�À@µL¯�®�¬@µ�¯b¬@«²À@«�Äyµ�¬�±d¬�À@µL·Ì°²µ�À�À@³�µÇ¬@µL¶�Á�½x«�Àz±�®y¯b®�°�±d¬zÀ�¬@µ�°�µL¶_À1Àx³�µÇ®�¾�¾b½@¿E¾�½@«�®�ÀxµJ¶�¿yÁ�¯:À@µL½@·fµD®y¬@Á�½@µD¬
®y¶L¶+¿E½xÅd«�¯�Í�Àx¿�À@³bµÎ¿y½xÍE®y¯�«�ÏL®�Àx«²¿E¯I¯bµ�µLÅb¬�ÂÈÐ-¯�µÎ®�·f¿E¯�Í�À@³bµÎ·f¿E¬�ÀT®EÅdÄ�®�¯:Àx®yÍyµ�¿EÁb¬�¶$³b®y½x®E¶_Àxµ�½x«�¬�À@«�¶�¬1¿y¹�½@«�¬�
®�¯W®�°�±�¬@«�¬�«�¬�À@³b®�À�«�À�«�¯:À@µ�ÍE½x®�À@µD¬�¬@µL¶�Á�½@«²Àz±Ç¶+¿E¯b¶+µL½@¯W¬�«�¯!À@³�µ�´�ÁW¬�«�¯�µL¬x¬"®y¶+À@«�Ä:«²Àz±Ç¿y¹�À@³bµ0µL¯:À@µ�½x¾�½x«�¬@µyÂ�Ñ�¿E¯�µ+Àx³�µ+Ò
°�µL¬x¬�¸�¬�ÁW¶$³!®y¶+À@«�Ä�«�Àx«²µD¬�®y½@µ�¬�À@«�°�°&¯b¿�À�«�·f¾�°�µ�·fµ�¯:À@µDÅÎ®�À�®�´b½@¿:®yÅ�°�µ�ÄEµ�°GÂ�Ã"³�µ1¶+¿E·f¾�°²µ�Ód«�Àz±f¿�¹NÀx³�µ0½@«�¬�f®�¯W®�°�±�¬@«�¬
¾�½x¿d¶+µL¬x¬�«�¬L¸y«�¯f¿yÁ�½�¬@µ�¯W¬�µE¸�À@³�µ�·�®y«²¯f¿y´W¬zÀ$®y¶+°�µ�À@³b®�À
µ�Ä�«�Å�µ�¯b¶�µL¬�Àx³�«�¬�½@µL°²Áb¶+Àx®y¯b¶+µEÂ#Ã#¿1®E¶$³�«�µ�Äyµ�¶�¿y·f¾�°�µ+À@µL¯�µL¬x¬L¸
»�³�«�¶$³�«�¬�¿E¯�µi¿y¹
À@³�µi¹ºÁ�¯bÅ�®y·TµL¯:Àx®�°�½xµLÔ:Á�«�½@µL·fµ�¯:Àx¬�¿y¹.½x«�¬@=®y¯b®�°�±d¬�«�¬L¸bÄ�Á�°�¯�µ�½$®�´�«�°�«�Àx«²µD¬-®y¯bÅ�À@³b½@µD®�Àx¬-¬�³b¿yÁ�°�Å
´&µ0µ�Ód³b®�Áb¬�À@«�ÄyµL°²±ÇÅ�µL®�°²À�»�«�Àx³ÕÂ�Ã"³�«�¬�À@Á�½x¯b¬"¿EÁdÀ"À@¿f´Wµ�¾b½x®E¶_À@«�¶�®y°²°�±�Á�¯d¹ºµD®y¬@«²´b°²µ�®y¬�Àx³�µ�¬�«�Ï�µ1¿�¹#À@³�µ�®cÄ�®�«�°�®�´�°�µ
Å�®�Àx®�´W®y¬@µL¬#¿�¹ÖÀ@µL¯fµ+Ó�¶+µLµLÅ�¬�¿y¯bµ�Àx³�¿yÁW¬@®y¯bÅ�Á�¯b«�À$¬�Â
Ã#¿�Àx³�«�¬�¾bÁ�½@¾&¿E¬@µy¸E®�ÁdÀx¿y·�®�Àx«²¯�Í-À@³bµ�Áb¯bÅdµ�½x°�±:«�¯�Í0¹ºÁ�¯b¶+À@«�¿y¯b¬
«�¬-¯bµL¶+µD¬@¬x®�½x±yÂ�×�µL¬@«�ÅdµL¬L¸K·T¿:¬zÀ1¿�¹.À@³�µf½xµL¬@µL®�½$¶$³�»�«²À@³�«�¯ÉÀx³�«�¬�ØWµ�°�Å�³b®E¬-´&µ�µL¯IÅd«�½xµL¶_ÀxµLÅ�À@¿�»"®�½$Å�¬�Àx³�«�¬0¶$³W®�°²Ò
°�µ�¯�ÍEµ0Ù�Úy¸:Û�¸yÜ�¸yÝ�¸EÞDß�Â
ª�«�¬@i®y¯b®�°�±d¬�«�¬�·fµ+À@³b¿�Å�¿y°�¿yÍy«�µL¬�®y½@µ"¿�¹ÖÀxµ�¯�ÅdµD¬�«�Íy¯�µDÅi«�¯�®1·�®�¯�¯�µL½�À@³b®�À�ÍyÁb®y½x®y¯:À@µ�µD¬#®y¯
µL®E¬�±�®yÁdÀ@¿E·f®�À@«�¿y¯ÕÂJÑ�µ�ÄEµ�½@À@³�µL°²µD¬@¬L¸N¬�¿E·fµJ«�·f¾W¿E½�À$®�¯:À0®E¬�¾&µL¶+Àx¬0³b®cÄyµJ¯�¿�À�´&µ�µL¯�®EÅ�Åd½xµL¬x¬�µDÅNÂ�ª�«�¬@�®�¯W®�°�±�¬@«�¬
¬@¿�¹ÖÀz»"®�½xµiÅdµ�ÄEµ�°�¿y¾&µ�½$¬�¹º¿d¶�Áb¬�¿E¯ÉµL¯�½@«�¶$³�«�¯�Í!Åb®�Àx®!¬zÀx½@ÁW¶_À@Áb½@µD¬-®y¯bÅÉ¬�À@«�°²°�½xµ�°�±�¿y¯É«�¯�ÍEµ�¯�Á�¿yÁW¬-®y¾�¾�½x¿E®y¶$³bµL¬"Àx¿
µL¬�À@«�·�®�Àxµ1À@³�µ�¬@µL¶�Á�½@«²Àz±�½x«�¬@d¬�®�¯bÅ!À@³b«�¬�Å�¿:µD¬"¯�¿�À�¬x®�Àx«�¬�¹º±�Àx³�µ�µ�¯:À@µL½@¾b½@«�¬�µD¬�à�¯�µLµLÅ�¬LÂ�á�¿y¯W¬�µDÔEÁbµ�¯:À@°�±y¸�Àx³�µ�Áb¬@µ
¿�¹�À@³bµL¬@µ1¬@¿�¹ÖÀz»"®�½xµ1¬zÀx«²°�°Õ½xµLÔ:Á�«�½@µD¬�®y¯!«�·f¾W¿E½�À$®�¯:À�µ+âK¿y½@À�¹º½@¿E·�À@³bµ�¬�µD¶+Á�½x«�Àz±Ç®y¯b®�°�±d¬zÀDÂ
ã{¯ä¬@¿y·fµÎ¾�½xµ�Ä�«�¿yÁb¬�»�¿E½@d¬L¸�Àx³�µ!®yÁdÀ@³�¿E½x¬J®�À@À@µ�·f¾dÀxµLÅUÀx¿IÅdµD®�°�»�«�Àx³ÈÀ@³�«�¬J¾�½@¿E´�°�µ�·å´:±U¾�½xµL¬@µ�¯:Àx«²¯�Í�®y¯

®�°�ÍyµL´�½$®�«�¶�®�¾�¾b½@¿:®y¶$³Ç®�°�°�¿�»�«²¯�Í�À@¿f¬zÀx½@Áb¶+À@Á�½xµ�Àx³�µ1Å�®�À$®i®�¯WÅ�À@¿T·f«²·f«�¶�Àx³�µ0³:Áb·f®y¯Î½xµL®E¬�¿E¯�«²¯bÍÇÙ æ�¸�çcßGÂ
è�¿�»"Ò
µ�ÄEµ�½D¸�¿y¯bµ�«�¬x¬@Á�µ�½xµ�·�®�«�¯�µLÅ=Á�¯:Àx½@µD®�À@µDÅNÂ�ã�À-¶�¿y¯b¬@«�¬�Àx¬�«²¯�Àx³�µi®E¬@¬@¿d¶+«�®�À@«�¿y¯�´&µ+Àz»�µ�µL¯�®f¾W¿yÀ@µ�¯:Àx«�®y°ÕÀ@³b½@µD®�À-®y¯bÅ
®�¬@µ+Ài¿y¹"ÅdµD¶+«�¬�«�¿y¯W¬1À@³b®�À�À@³�»"®�½@À�«�ÀDÂ=Ã"³b«�¬�¬@µ�°�µL¶+À@«�¿y¯U«�¬�·�®�«�¯�°�±y¸�µ�ÄyµL¯�À@¿�À$®�°�°²±I«²¯È·f¿:¬zÀi¶L®y¬@µL¬L¸�´b®E¬�µDÅI¿E¯
À@³bµ��¯�¿�»�°²µDÅdÍyµ�¿y¹�À@³�µJ½@«�¬�=®�¯b®y°²±d¬�ÀLÂ�Ã"³�«�¬�¾b®y¾WµL½�«�¯EÀx½@¿dÅdÁW¶+µL¬-®f½@µL°�®�À@«�¿y¯b®y°�®�¾b¾�½@¿:®y¶$³!À@¿Î¶�¿y¾&µ�»�«²À@³�Àx³�«�¬
°�«²·f«²Àx®�Àx«²¿E¯ÕÂ�ã�ÀJ«�¯EÀx½@¿dÅdÁW¶+µL¬T®�Å�®�Àx®y´b®y¬@µ�À@³W®�Àf´b®y¬@«�¶L®�°�°²±�½xµ�°�«²µD¬�¿y¯8µ+Ód¾�½xµL¬x¬�«�¯�Í�´&¿�À@³é®�À@Àx®y¶$d¬J®�¯bÅä¶�¿yÁ�¯�Ò
À@µL½@·fµD®y¬@Á�½@µD¬�Àx³�½@¿EÁ�Íy³�Àx³�µTÁb¬�µT¿�¹�½xµ�°�®�Àx«²¿E¯b®�°�¬�¾&µL¶�«�Ø&¶�®�Àx«²¿E¯b¬LÂ0Ã"³�µD¬�µJ°�®�À�Àxµ�½$¬-¶�¿y¯b¬�À@«²À@ÁdÀxµJ®ÎÄyµ�½$¬x®�À@«�°�µ�À@¿�¿y°
À@³W®�À�³b®E¬1´WµLµ�¯U»�«�Å�µ�°�±ÉÁb¬@µLÅ�´�±�À@³bµÇ¬�¿y¹ÖÀz»�®y½@µTµ�¯�ÍE«²¯bµ�µ�½x«�¯�Í=¶�¿y·f·iÁb¯�«�Àz±EÂÇÃ"³�µ�·�®�«�¯U·TµL½@«²À�¿�¹�À@³�µ�¾b½@¿yÒ
¾&¿E¬@µLÅä·fµ�À@³�¿dÅä«�¬iÀ@³b®�ÀTÁb¬@µ�½T«�¯EÀxµ�½xÄyµL¯EÀx«²¿E¯ä«�¬J¯b¿É°�¿y¯�ÍEµ�½i¯bµ�µLÅ�µLÅÈÀx¿I°�«�¯�È³b®�½x·T¹ºÁ�°"®y¶_Àx«²¿E¯b¬iÀ@¿U¬�µD¶+Á�½x«�Àz±
¬@¿y°�ÁdÀ@«�¿y¯b¬LÂ
ê�¿y·fµ�®yÁdÀ@¿E·f®�À@µDÅ�ÔEÁbµ�½x«²µD¬�®�°�°²¿�»Yµ�Ód®E¶_À.®y¯bÅÇ®�¾b¾�½@¿cÓd«�·�®�À@µ"½xµ+Àx½@«�µ�Ä�®�°b¿�¹NÀ@³bµ�¬�µD¶+Á�½x«²Àz±T¬@¿y°�ÁdÀ@«�¿y¯W¬
À@³W®�À�À@³�»"®�½@À�®T¬@¾&µL¶+«²ØW¶1®�À@Àx®E¶$&Â
Ã"³�µ�·f¿E¬�À�«�·T¾&¿y½@Àx®y¯:À�®EÅdÄ�®�¯:Àx®yÍyµD¬1¿�¹�À@³�µ�Áb¬@µ�¿�¹"¿yÁb½�½@µL°�®�À@«�¿y¯b®y°
®�¾�¾�½x¿E®E¶$³I®y½@µ�³�«�Íy³b°²«�Íy³:À@µDÅÉ«�¯UÀ@³bµ

¹º¿y°�°�¿�»�«²¯�ÍT¾&¿y«�¯EÀ$¬�ë

ì ×�«�¯b®y½@±�½xµ�°�®�Àx«²¿E¯b¬"¶�®�¯=´&µ�Áb¬�µDÅ!À@¿f·f¿�Å�µ�°Õ¾�½xµ�ÄEµ�¯:À@«�Äyµ1®�¯WÅ!½xµL®E¶_Àx«²ÄEµ-½x«�¬@Î®y¯b®�°�±d¬�«�¬�¾�½@¿d¶�µL¬x¬�µD¬�Â

Ú

243

ì Ê�¯é«²·f¾&¿y½@Àx®�¯:À�«�¬@¬@Á�µ=»�«�Àx³é½xµ�Í:®�½$ÅUÀ@¿U½xµL®E¶_À@«�Äyµ!½@«�¬@ä®�¯b®y°²±d¬@«�¬T«�¬TÀ@³�µ�«�¯EÀx½@¿dÅdÁW¶_À@«�¿y¯é¿�¹0½@µL°�®�À@«�¿y¯b®y°¬�¾&µL¶�«�ØW¶L®�Àx«²¿E¯b¬�À@¿�·f¿dÅdµ�°�¬@µL¶�Á�½x«�Àz±Ç®y°²µL½�À$¬�Â
ì Ê�À�Àx®E¶$Î¬x¶+µ�¯W®�½x«²¿:¬�¶L®�¯=´Wµ�·�®�¯W®�ÍyµDÅÎ´�±�Àx³�µ�½x«�¬@Î®�¯W®�°�±�¬@«�¬�½xµ�°�®�Àx«²¿E¯b®�°N¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯!¹º½x®y·fµ�»�¿y½x&Â
ì ×�«�¯b®y½@±�½xµ�°�®�Àx«²¿E¯b¬"¶�®�¯=´&µ�Áb¬�µDÅ!À@¿�¶+¿E·T¾W®�½xµ1¶L®�¯bÅ�«�Å�®�À@µ�¬@µL¶+Áb½@«²Àz±ÇÅdµL¶�«�¬@«�¿y¯b¬LÂ

Ã"³�µ-½@µL·f®y«²¯b«²¯�Íi¾b®�½@À�¿y¹&Àx³�«�¬�¾W®�¾&µ�½.«�¬�¿y½xÍE®�¯b«²ÏLµLÅf®y¬.¹º¿y°�°²¿�»�¬LÂ
ê�µL¶+À@«�¿y¯!Û�¬@³�¿�»�¬.³�¿�»Y½@µL°�®�À@«�¿y¯b®y°W¬@¾WµD¶+«²ØW¶�®�Ò
À@«�¿y¯W¬�¶�®y¯�´WµJÁb¬�µDÅ=À@¿Ç·f¿dÅdµL°#®�À@Àx®E¶$�¬�®�¯bÅ�¬@µL¶�Á�½@«²Àz±!Å�µL¶+«�¬@«²¿E¯b¬�Â�ê�µD¶_À@«�¿y¯�ÜÇ¾�½@µD¬�µL¯:Àx¬"Àx³�µ��������	��
U¶+¿y¯W¶+µ�¾�À
À@³W®�À"µ�¯b¶�¿y·f¾b®y¬x¬@µL¬.À@³�½xµL®�Àx¬"®�¯bÅ!¶+¿EÁ�¯:À@µ�½x·fµL®E¬�Á�½xµL¬LÂ�êdµL¶_Àx«²¿E¯ÎÝfÅdµ+ØW¯�µL¬"®�¯!¿y½$Ådµ�½x«�¯�Íi¶�®y°²°�µLÅÎ·f¿y½xµ+Ò{Ådµ+Øb¯bµLÅ
·f¿dÅdÁ�°�¿b¸NÁb¬@µLÅ�À@¿=½x®y¯��ÅdµL¶�«�¬@«²¿E¯b¬0®y¶�¶�¿y½$Åd«�¯�ÍÇÀx³�µ�«�½1µ+ÆÇ¶+«�µ�¯b¶�±y¸Õ®y¯bÅ�µ�Ó�¾b°²¿E½@µD¬�«²Àx¬1·�®�Àx³�µ�·�®�Àx«�¶L®�°�¾�½x¿y¾&µ�½@Ò
À@«�µL¬LÂ
ê�µL¶+À@«�¿y¯ÇÞ-µL¬�Àx®�´b°²«�¬�³bµL¬�À@³bµ�¬zÀx½@Áb¶+À@Á�½xµ"¿�¹&À@³�µ�¾b½@¿E¾W¿:¬�µDÅiÅdµD¶+«�¬�«�¿y¯f¬�¾&µL¶�«�Ø&¶�®�Àx«²¿E¯TÅb®�Àx®y´b®y¬@µ�®�¯bÅTÅdµ�Øb¯�µL¬
³�¿�» µL¯:À@½x«²µD¬�¶�®�¯I´WµÇ¬�À@¿E½@µDÅÉ®y¯bÅÉÅdµL°²µ�À@µDÅNÂ�-Á�µ�½x±�«²¯�Í�®�¯WÅ�½xµ+À@½x«�µ�Ä�®�°
®�½xµf®yÅ�Åd½xµL¬x¬@µLÅ�«�¯Èê�µL¶+À@«�¿y¯Uæ�ÂfÃ�»�¿
¬�À@½$®�À@µLÍy«�µL¬�®y½@µ�¾�½x¿y¾&¿E¬@µLÅ=«�¯�À@³�«�¬�¶�¿y¯:À@µ�Ó�ÀL¸�Àx³�µ�ØW½x¬�À�¶+¿E½@½xµL¬@¾W¿E¯bÅÎÀ@¿Çµ�Ód®E¶_À�·�®�Àx¶$³�«�¯�ÍÇ®�¯WÅ=À@³�µi¬@µL¶�¿y¯bÅ!Àx¿
®�¾b¾�½@¿cÓd«�·�®�À@µ1¬@µL®�½$¶$³ÕÂ���«²¯b®y°²°�±y¸&ê�µL¶+À@«�¿y¯�çi¶�¿y¯b¶�°²ÁWÅdµL¬�Àx³�µ�¾b®�¾&µ�½DÂ

� �������1£�©+¥�¢������������ ��¦!�"��¨�§!¤�©$£$#%�'&(��¨�©�)=¨*�1£#©+¥i¢��
ã{¯�Àx³�«�¬0¬@µL¶_Àx«²¿E¯Õ¸&»�µiØb½x¬�À0Å�µL¬x¶+½x«²´&µ�¿yÁb½�½xµ�°�®�À@«�¿y¯W®�°�Ä�«�µ�» ¿�¹�«�¯d¹º¿E½@·�®�Àx«²¿E¯�¬�±d¬�À@µL·f¬LàK¬�µD¶+Á�½x«�Àz±EÂ�Ã"³�«�¬�°�®�À@À@µ�½
«�¬�µ�â&µD¶_Àx«²ÄEµ�°�±Ç´b®y¬@µLÅÇ¿y¯�¬zÀ$®�À@µ�Ò Àx½x®y¯b¬@«�Àx«²¿E¯Ç·f¿�Å�µ�°�«²¯�ÍWÂ
Ã"³�µ�¯Õ¸d»�µ-¹º¿�¶�Áb¬�¿y¯ÎÀ@³�µ1¾�½x¿y´�°�µ�·�¿y¹#¬@¾WµD¶+«²¹º±:«�¯�ÍTÀ@³bµ
«�¯d¹º¿y½x·�®�À@«�¿y¯�¬@±�¬�À@µL· ¬�Àx®�À@µyÂ,+�¿y½xµ1¾�½@µD¶+«�¬�µL°²±E¸d»�µ�¬@³�¿�»<À@³b®�À�À@³�«�¬�¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯�¬�³b¿yÁ�°�Å!®y´�«�Ådµ�´�±!¬@µ�ÄyµL½x®y°
¶+¿E¯bÅd«²À@«�¿y¯b¬�¹º¿E½"À@³�µ�¾bÁ�½@¾&¿E¬@µ1¿�¹�·f®�À@³�µL·�®�À@«�¶�®y°�¬@¿yÁ�¯bÅ�¯�µL¬x¬�Â

-/.10 2,354635783:9;4�<>=:?@3�?BAC<EDFA/GH7 I1?J<LKMAON�?J<LNPAO9;DF463�?BAC<E=�QL=R357 D =S7 TVUH9;?@3WQ
Ã"³�µJ·f®WXz¿y½-¿y´5XzµD¶_À@«�Äyµi¿�¹
À@³b«�¬0»�¿y½x!«�¬�Àx¿!¬@µ�°�µL¶+À0®Ç¬@µ+À0¿�¹�¶�¿E¬�À�Ò�µ+âKµL¶_Àx«²ÄEµi¶+¿EÁ�¯:À@µL½@·fµL®E¬�Áb½@µD¬�À@³b®�À0¾�½xµL¬@½xÄyµ
À@³bµ-¬@µL¶+Áb½@«²Àz±i¿y¹N®�Íy«�Äyµ�¯Ç¬@±d¬zÀxµ�·�Â�Ã"³�«�¬�µ�¯W¬�Á�½xµL¬
À@³b®�À�»�³b®�À.«�¬�¬�¾&µ�¯:À�À@¿i¶�¿�Äyµ�½�À@³�µ�¬@µL¶�Á�½x«�Àz±T´�½xµL®y¶$³bµL¬
Åd¿�µL¬
¯�¿yÀ1µ�Ó�¶+µ�µDÅ�Àx³�µf´WµL¯�µ+Ø�À�½xµL¬@Á�°²À@«�¯�Í!¹º½@¿E·)À@³�µ�®y¾�¾�°�«�¶L®�À@«�¿y¯I¿�¹�À@³�µ�¬@µ�°�µL¶_ÀxµLÅIÅdµL¶�«�¬@«²¿E¯b¬LÂJÃ#¿!Àx³�«�¬1¾�Á�½x¾W¿:¬�µE¸
À@³bµ1¬@µL¶�Á�½x«�Àz±Ç®y¯b®�°�±d¬zÀ�¬�³b¿yÁ�°�ÅÎ´bÁ�«²°�Å�®iÍE°²¿E´b®�°KÄ�«�µ�» Àx³b®�À"Àx½x®y¯b¬�°�®�ÀxµL¬"®y¶L¶+Á�½$®�Àxµ�°�±TÀ@³�µ�¬�Àx®�Àxµ1¿�¹�Àx³�µ�¬�±d¬�À@µL·=Â
Ê�¯I®y¶_Àx«²¿E¯�¾&µ�½@¹º¿y½x·TµDÅ�¿y¯ÉÀ@³�µT¬�±d¬�À@µL·Ì¶�®�¯É´WµT·f¿�Å�µ�°�µLÅ�´�±�®Ç´�«�¯b®y½@±�½xµ�°�®�À@«�¿y¯É¿y¯�Àx³�µT¬@µ+À0¿�¹�¬�Àx®�À@µD¬

®y¬"«�°�°²Áb¬�À@½$®�ÀxµLÅ!´�±ZY.Ô:Áb®�Àx«²¿E¯UÚyÂ
[]\M^;_	`baWc1`edgf*hji dRk l am_	`banf'o l d,_p`$dqfVo l�r _p`Va�cJ`$dgfnsLc t Úqu

»�³�µL½@µ [«�¬�À@³�µ!®y¶_Àx«²¿E¯Õ¸ i «�¬�À@³�µÎ¬@µ+ÀJ¿�¹�¬�±d¬�À@µL·å¬�Àx®�À@µL¬L¸�®�¯bÅ l a�c l d ®�¯WÅ l�r ®�½xµfØb½x¬�À�Ò�¿y½$ÅdµL½�¾�½@µDÅd«�¶�®�Àxµ¹º¿y½x·iÁb°�®E¬�Â
Ã"³�«�¬Î½xµ�¾b½@µD¬�µL¯EÀ$®�Àx«²¿E¯`µ�·f¾�³b®E¬�«�Ï�µD¬ÇÀx³�µ�¶$³W®�¯�ÍEµL¬�Àx³b®�À�®�¯¼®y¶+À@«�¿y¯ «�¯:À@½x¿�Å�Áb¶+µD¬Î¿E¯`À@³�µÈ¬�Àx®�À@µÉ¿y¹�À@³bµ

¬@±�¬�À@µL·�Â
ã{¯d¹º¿y½x·�®�°�°²±E¸SY�ÔEÁW®�À@«�¿y¯UÚ�¶�®y¯!´&µ�½xµL®yÅ=®y¬�¹º¿E°²°�¿�»�¬Lë
v �xwqy�
z��
{�x
;�x���	��|,}~���W��y `ba }~�;�P���p���W���p��y����W�~���5|�� l am_	`banf ��}Z���~�;y����P���e|����x
S���p��y��������	��
 [{� ���5|���Jy����5�~
��Z}~���W��y `$d ����� � �5�	�����x�;y/�b�JyP���	�P���@y*�����~�]�5|���y l dO_	`$dqf ��
b� l�r _	`baWc1`ednf �W�Jy����~�;yg�ã{¯!À@³�µ1¹º¿E°²°�¿�»�«²¯bÍb¸�®T¾�½xµLÅd«�¶�®�À@µ1³b®cÄ�«²¯bÍT®y¯�®y½@«²Àz±���»�«²°�°N´Wµ�Å�µ�¯�¿yÀ@µLÅ�®E¬�¹º¿y°�°²¿�»�¬Lë

�$���g�S�;_�[S�n�SaWc� ¡ ¡cJ[S�g��¢�f~c
»�³�µL½@µ [S�g� a ¸NÂ�Â²¸ [R�g� ¢ ½xµ�¾�½xµL¬@µ�¯:À"À@³bµ�®�½xÍyÁ�·fµ�¯:À$¬�¿y¹�Àx³�µ�¾�½xµLÅd«�¶�®�À@µ�®�¯bÅ ` «�¬�À@³�µ�¬@±d¬zÀxµ�· ¬zÀ$®�À@µ1°�®�´&µ�°GÂ
£�¤R¥�¦6§p¨n§�©$¦8ªe«�¬1®1®�¯b°�±�²Z³>
´�R�����	��
�µ¶��}·}����	�����¸Py���
�¯e®1®J¯b°R±�� ����
b��W
;|¹��� ���x�*w�y��~� º*y~}

� � �V_ µ f'»�iV¼¾½\À¿] t ÛRu
Ã"³�µL½@µ�¹º¿y½xµy¸�®�¯f®�À@Àx®E¶$�«�¬
®y¯T®E¶_Àx«²¿E¯iÀx³b®�À�·�®�¾W¬�À@³�µ�¬@±d¬zÀxµ�· ¹º½x¿y· ®-ÍE«²ÄEµ�¯T¬zÀ$®�À@µ t À@³b®�À.¶+¿EÁ�°�ÅJ´&µ�¬�µD¶+Á�½xµ¿y½�«²¯W¬�µD¶+Á�½xµgu
À@¿i®y¯Ç«²¯W¬�µD¶+Á�½xµ�¬�Àx®�ÀxµyÂm��¿E½.µ�Ód®y·f¾�°²µE¸:À@³�µ�¹º¿y°�°²¿�»�«�¯�Íi®E¶_À@«�¿y¯�«�¬�®�¯Î®�À�Àx®E¶$iÀx³b®�À�·�®�yµD¬.®�³b¿E¬�À

Á$Â �¯�¿�» Àx³b®�À�®fÍy«�ÄyµL¯Î¾&¿y½@À�«�¬"¿E¾WµL¯�¿y¯!À@³�µ�³�¿:¬zÀ Á Â
ÃgÄ�[� \ ^ _p`Va�cJ`$dgf/h�i d k Å Á c Á;Â'ÆRÁ;Ç ÃnÈ~c�� Æ � Ç �qÈ~c

É6Ê ÃqË � ÇqÌ � �qÍW_ Á �"c Á$Â f'o Ê Ã Ç �$� � �qÍ�_ Á �bfVo Ê ÃqË � ÇqÌ � �gÎW_ Á � c Á;Â f'o Ê Ã Ç �e� � �nÎ�_ Á �ef~ÏCc
»�³�µL½@µ Á � ¬�Àx®�¯WÅ�¬�¹º¿y½�¾&¿y½@À � ¿�¹�³�¿E¬�À Á Â

Û

244

� ��¨.£#©+¥i¢ � &´��¨�©~)�¨,�1£�©+¥�¢
Ê�¶�¶�¿y½$Åd«�¯�ÍfÀ@¿�Àx³�µi¾b½@µLÄ:«�¿yÁW¬�½@µD®y¬@¿y¯�«�¯�ÍW¸dÀ@³�µT¬�±d¬�À@µL· ¬�Àx®�À@µJ¶L®�¯�´&µJÅdµ�Øb¯�µDÅ=À@³�½x¿yÁ�ÍE³�À@³�µJÁb¬@µ�¿�¹.®Ç¬@µ+À-¿�¹
Ä�®�½x«�®y´�°�µL¬LÂO��¿y½�«�¯b¬�Àx®y¯b¶+µE¸d¹º¿y½�®y¯�®y¶_Àx«²¿E¯ÎÀx³b®�À-«²¯�Äy¿E°²ÄEµL¬�Àz»�¿T¾b½@¿d¶+µD¬@¬@µL¬L¸�¬x®c± � a ®y¯bÅ � d ¸W®�¯bÅ�®TØb°�µ���¸dÀ@³bµ¹º¿y°�°�¿�»�«²¯�ÍfÅdµD¶+°�®�½$®�À@«�¿y¯�¬@³�¿yÁ�°�Å!´Wµ�·�®yÅ�µ0«�¯=À@³�µ�®E¶_Àx«²¿E¯!¾�½xµL®y·i´�°�µyÂ

� a c	� d Æ����	��
�����
� Æ������

Ã"³�µL½@µ�¹º¿y½xµy¸cÀ@³bµ"¬@±d¬zÀxµ�· ¬�Àx®�À@µ"«�¬
Ådµ+Øb¯bµLÅJ´:±J®0Ü�ÒGÁb¾�°²µ�À _¹� a c	� d c � f Â6��«�½x¬�À�Ò�¿y½$ÅdµL½#¾�½xµLÅ�«�¶L®�À@µD¬�¶�®�¯T´&µ�ÁW¬�µDÅ�Àx¿µ+Ód¾�½xµL¬x¬�À@³�µ�´&µ�³W®cÄ:«�¿yÁb½�¿�¹�Àx³�µ�¬@±�¬�À@µL· ®y¬�®J¹ºÁ�¯W¶_À@«�¿y¯�¿y¹#Àx³�µ�´WµL³b®cÄ�«²¿EÁ�½"¿�¹�À@³�µD¬�µ1µL°²µL·TµL¯:Àx®�½x±ÇÄ�®�½x«�®�´�°�µL¬LÂ
Ê�¯�®y¶+À@«�¿y¯=«�¬�Àx³�µ�¯�®y¯!µL¯EÀx«�Àz±ÇÀ@³b®�ÀL¸d«²¹�µ�Ó�µD¶+ÁdÀxµLÅÎ¹º¿y½�®y¯!«�¯�¾�ÁdÀ�¬�Àx®�À@µE¸d½@µ�À@Á�½x¯b¬�®T¬�µ�À�¿�¹#¿EÁdÀ@¾bÁdÀ�¬zÀ$®�ÀxµL¬LÂ

Ã"³�«�¬�«�¬@¬@Á�µ�·JÁb¬zÀ�´&µ�¾&¿y«�¯:À@µLÅf¿EÁdÀ�®E¬�«�À�¶�¿y¯b¬�À@«²À@Á�À@µL¬�À@³�µ�·f®WXz¿y½�Åd«²âKµ�½xµ�¯b¶�µ�»�«�Àx³fÀ@³�µ-¬�¿y¹ÖÀz»�®y½@µ�µ�¯�ÍE«²¯bµ�µ�½x«�¯�Í
¶+¿E¯:À@µ+Ó�À�»�³�µL½@µf´�«�¯b®�½x±�½xµ�°�®�Àx«²¿E¯b¬1³b®cÄyµT´&µ�µ�¯U»�«�Ådµ�°�±ÉÁW¬�µDÅNÂ�ã�¹�¹\®E¶_ÀD¸#®=¾�½x¿yÍy½$®�·�� ¿y¯È¬@¾b®y¶�µ i Ådµ�Øb¯�µL¬®�¹ºÁb¯b¶_Àx«²¿E¯�¿y¯ i ¸&´bÁ�«²°²À1´:±!À@³bµT¬@µ+À0¿�¹ t «�¯�«²À@«�®�°
¬�Àx®�Àxµ�Øb¯W®�°�¬zÀ$®�À@µqu�¾b®y«²½$¬�Àx³b®�À0«�À�Ådµ�Øb¯�µL¬LÂ-Ã"³b«�¬-¹ºÁ�¯b¶+À@«�¿y¯Õ¸»�³�«�¶$³ä«�¬�«�¯bÅdÁb¶�µLÅÈ´�±�À@³�µ!¾�½x¿yÍy½$®�·�¸#«�¬TÅdµ�¯b¿�À@µDÅU´�±�� ����ÂÉÃ"³�µ�¯�¸�®�¾�½x¿yÍy½$®�·�� «�¬T¬@®y«�Å�Àx¿�´&µ=¶�¿y½x½@µD¶_À
»�«²À@³ä®�½xµ�°�®�Àx«²¿E¯b®�°�¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯�� «�¹�®�¯WÅU¿y¯�°�±É«²¹�� ����«�¬�·T¿E½@µ�Ò�Å�µ+Øb¯�µDÅIÀ@³b®y¯��JÂ�Ñ�¿y¯�µ�À@³�µL°²µD¬@¬L¸#«�¯UÀ@³bµ
¶+¿E·f¾�ÁdÀ@µL½�¬�µD¶+Á�½x«²Àz±!¶+¿E¯:À@µ+Ó�ÀD¸�À@³�µ�Ådµ�À@µL½@·f«�¯b®y¶�±Î¾�½x¿y¾&µ�½@Àz±�«�¬�°²¿:¬zÀ�¹º¿E½"À@³�µi¶�¿y¯b¬@«�Ådµ�½xµLÅ!®y¶_Àx«²¿E¯b¬L¸�µL¬@¾WµD¶+«�®�°�°²±
¹º¿y½�¬@µL¶�Á�½@«²Àz±�®�À@Àx®E¶$�¬LÂ��b¿y½1«²¯W¬zÀ$®�¯b¶�µy¸Õ®!·f®y°²«�¶+«�¿yÁW¬0¶�¿dÅdµ t µyÂ ÍbÂ�¸ÕÄ�«²½xÁb¬Pu�·�®c±�«�¯d¹ºµL¶+À�Åd«�âKµ�½xµ�¯:À1Øb°�µL¬0¿y¯IÀ@³bµ¬x®�·fµ-¬@±d¬zÀxµ�· «�¹#µ+ÓdµL¶�ÁdÀ@µDÅfÀz»�¿iÀ@«�·fµL¬�«²¯ÇÀ@³�µ1¬@®y·fµ-¶+¿E¯bÅd«²À@«�¿y¯b¬LÂ
Ã"³�«�¬�¶�¿y·fµL¬.¹º½@¿E· À@³�µ-¹\®y¶+À.À@³W®�À�¬�µD¶+Á�½x«�Àz±
®�À@Àx®E¶$�¬�¿�¹ÖÀ@µL¯�µ+Ód¾�°�¿y«²À�¬@µ�ÄyµL½x®y°�»�µL®��¯�µD¬@¬@µL¬�½xµ�°�±�«²¯bÍ�¿y¯�¾b®y½x®y·Tµ�À@µL½x¬
»�³b«�¶$³Ç®y½@µ�³b®y½xÅJÀx¿i´&µ�Ä�«²µL»�µDÅf´:±JÀ@³bµ
¬@µL¶+Áb½@«²Àz±Î¬@¾WµD¶+«�®�°�«�¬�ÀLÂ

Y�°�µ�·fµ�¯:À$®�½x±J®y¶+À@«�¿y¯b¬�¶�®y¯�´Wµ�À@³�¿EÁ�Íy³:À.¿y¹N®E¬�«�¯b¬�À@½xÁb¶_Àx«²¿E¯b¬�»�³�«�¶$³Ç®�½xµ�µ�Ó�µD¶+ÁdÀxµLÅf¿E¯fÀ@³�µ�Àx®�½xÍyµ�À.¬�±d¬�À@µL·=Â
��¿E½�µ+Ó�®�·f¾�°�µy¸d«²¹�¾�½@¿d¶�µL¬x¬ � a ½@µDÔ:Á�µL¬�Àx¬"½xµL®EÅ!®E¶�¶+µD¬@¬�Àx¿JØW°²µ���¸�Àx³�µ�®y¶+À@«�¿y¯�¬�³�¿EÁ�°�Å!´&µ

Ç �$� � _¹� a c � c Â ���q[:� Â f�
Ã"³�«�¬i¾b½@µD¬�Á�¾b¾W¿:¬�µD¬�À@³bµ!µ�Ó�«�¬�À@µ�¯W¶+µÎ¿y¹�®�°�®�¯�ÍEÁb®�ÍEµ�À@³b®�ÀJ½xµ�¾�½xµL¬@µ�¯:À$¬�À@³bµL¬@µ!®y¶+À@«�¿y¯b¬LÂÉã{¯äÀ@³�µ=¾b®y¬�ÀL¸
·�®y¯:±
°�®�¯�ÍEÁb®�ÍEµL¬�³b®cÄEµ�´&µ�µ�¯Éµ�Äy¿E°²ÄEµLÅ=Àx¿Î·f¿dÅdµ�°�«²¯:Àx½@Áb¬@«�¿y¯b¬L¸&®�À�À$®y¶$d¬�¸&®�¯bÅ�µ+Ód¾�°�¿y«²Àx¬LÂ-Ã"³�µJ¾�½@¿E¾W¿:¬�µDÅ�½@µL°�®�À@«�¿y¯b®y°
¹º½$®�·fµ�»�¿y½xf«�¬"ÍEµ�¯�µL½@«�¶�µL¯�¿yÁbÍy³ÇÀx¿f´Wµ�¶�¿y¯�ÄyµL¯�«²µL¯:À�¹º¿E½"®y°²°N¿y¹�Àx³�µL¬@µ1°�®y¯�ÍyÁb®yÍyµD¬�Â� `«�Àx³�«�¯!Àx³�µ0¹º½x®y·fµ0¿y¹�Àx³�«�¬
»�¿y½x&¸E»�µ-Áb¬@µ-®i¶�Áb¬�À@¿y·f«�Ï�µDÅ�°�®y¯�ÍyÁW®�Íyµ�À@³b®�À"®y°²°�¿�»�¬�À@¿T½xµ�¾�½xµL¬@µ�¯:À�Àx³�µ�»�«�Ådµ0Äc®y½@«�µ+Àz±T¿�¹Õµ�Ó�®�·f¾�°�µL¬.À@³b®�À�»�µ
¾�½x¿y¾&¿E¬@µyÂ

! "$# � ���1£�£#©+¨*� ¥&%{� ��¨�§Î¤�©$£$# � &´��¨�©~)�¨,�1£�©+¥�¢��
'L.10 2*7"TVUL9;?B3WQEGL7"TV?1=:?BAC<>=
Ã"³�½x¿yÁ�ÍE³�¿yÁ�À.À@³b«�¬�¬@µL¶+À@«�¿y¯Î»�µ1®�À�Àxµ�·f¾dÀ"À@¿fÅdµ�Øb¯�µ0À@³�µ1¶+¿E¯b¶+µL¾dÀ�¿�¹#¬@µL¶�Á�½x«�Àz±�¶+¿EÁ�¯:À@µL½@·fµL®E¬�Áb½@µD¬�»�«²À@³=½@µ�¹ºµ�½@Ò
µ�¯W¶+µ0À@¿Ç®�À�Àx®E¶$d¬.Àx³b®�À�³W®cÄyµ0´WµLµ�¯�«²¯:Àx½@¿dÅdÁb¶�µLÅ=¾�½xµ�Ä�«�¿yÁb¬@°²±EÂ
£�¤R¥�¦6§p¨n§�©$¦�(V«�¬*)�+q°,.-/B®10 °324,.5m®6+-87�+q¯49	,.-�+9�²�³M�Jy�|������	��
;: ��}��Z�P���5
$��y��~��y���}~�5�Jy���������
(�������R�*<�µ
� ���W
e��W
;|¹��� �=: ��}��¾}���|¹�5���	��
��B���W
ey]�B���p��y,����|x|�� � �x
S�jy?>��;�����	��
�}A@��x
CBED8F

@�� DGBIH*µKJML�HON _�i�P�f~c
@��x� D&QRHSB�JTL�HON _�i�P�f�c
� ��y��JyUQ ��}��W
(��|¡y��~���P���~�Jy�}����W
e���x
:�����Z�x�;y������@���?<�µ��,��
b�&N _�i�P�fO\WVR_	` c1`bf k `�h�i�PnÏ �
Ê�°�µ+¹ÖÀT¾�½@¿dÅdÁW¶_À�·fµL®y¯b¬�Àx³b®�À�Àx³�µ!¬@¿y°�ÁdÀx«²¿E¯�¾b½@µLÄyµ�¯:À$¬1À@³�µ!®�À�À$®y¶$É¹º½@¿E· ÍEµ�¯�µL½x®�À@«�¯�Í�«²¯b¬@µL¶�Á�½xµÎ¬zÀ$®�ÀxµL¬LÂ

Ã"³�«�¬�¶�®y¯!´&µ�®y¶$³b«²µLÄyµLÅÎ´�±Ç·f¿�Ä:«�¯�ÍTÀ@³bµ�¬�±d¬�À@µ�·ËÀ@¿�»"®�½$Å�¬"¬zÀ$®�À@µD¬�À@³b®�À�Åd¿f¯�¿�À�¶�¿y¯b¬�À@«²À@ÁdÀxµ�«²¯b¾�ÁdÀx¬�¹º¿y½Lµ�Â
Ã"³�µ�¬@µL¶�¿y¯bÅfµDÔ:Áb®�Àx«²¿E¯fÅ�µL®�°�¬�»�«²À@³!¬�µD¶+Á�½x«�Àz±T®�°�µ�½@Àx¬.½x®�À@³�µL½
À@³b®y¯Ç®�À@Àx®y¶$d¬.´WµD¶�®�ÁW¬�µ�«²À�¶�¿y¯b¶�µ�½x¯b¬��JyP�������xwqy

¶+¿EÁ�¯:À@µL½@·fµL®E¬�Áb½@µD¬�¸�»�³b«�¶$³�®y½@µ�¾&µ�½@¹º¿y½x·fµLÅ�®�¹ÖÀxµ�½�À@³�µJ¿�¶L¶+Á�½x½xµ�¯b¶�µ�¿�¹�®Ç¬@¾WµD¶+«²ØW¶1À@³b½@µD®�ÀLÂ�Ã"³b«�¬-«�¬�¾WµL½�¹ºµD¶_Àx°²±
¬@¿yÁ�¯bÅÉ®y¬1¬�µD¶+Á�½x«²Àz±=½xµL¬@¾&¿y¯b¬@µL¬-®�½xµiÍyµL¯�µ�½$®�°�°�±!¾&µ�½@¹º¿y½x·fµLÅ�¿E¯�À@³bµJ´b®E¬�«�¬-¿�¹�®y°²µL½�À$¬�Àx³b®�À�®�½xµiÍEµ�¯�µL½x®�À@µLÅ�´�±
ã1X1êd¬�Â
è�µL¯b¶+µE¸c«�¹4: «�¬�¬�¿E°²Á�À@«�¿y¯�¿y¹dÀ@³�µ�Øb½$¬zÀ t ½@µD¬�¾�Â#¬@µL¶+¿E¯bÅ;uÕµLÔ:Áb®�Àx«²¿E¯Õ¸c«�À�«�¬#¶L®�°�°²µDÅ��e�Jy�w�y�
$���xw�y t ½xµL¬@¾ÕÂC��y��R�����xw�ygu¶+¿EÁ�¯:À@µL½@·fµL®E¬�Áb½@µEÂ
Ã"³�µT«²¯:Àxµ�½xµL¬�À@µLÅÉ½@µD®yÅdµL½-»�¿yÁb°�ÅÉ¯�¿�Àx«�¶�µiÀx³b®�À1Øb¯bÅ�«²¯�Í�®=¶+¿EÁ�¯:À@µ�½x·fµL®E¬�Á�½xµ�»�¿yÁ�°�ÅÉ¶�¿y½x½@µD¬�¾&¿y¯WÅ�À@¿�¬�¿E°²ÄEµ

Y.Ô:Áb®�À@«�¿y¯ t «xu�«²¯=Àx³�µ�¾�½xµ�ÄyµL¯:À@«�Äyµ1¶�®y¬@µ1®�¯bÅ�Y.Ô:Áb®�À@«�¿y¯ t «�«�u"«�¯!À@³�µ�½xµL®E¶_À@«�Äyµ�¶L®y¬@µyÂ

Ü

245

'L.�- �]A���4�9;GH= AO9;GH7'9;?1<HKM=S7 TVUH9;?@3WQ GH7 TV?1=:?1AC<H=
£�¤R¥�¦6§p¨n§�©$¦�� «�� y�� ��� � a �>��
b�A� d ¸�yZ�x�5�JyPyZ¸��x
e���~�j��y�|��W���	�W
�}��A� d ��}�}��W�	�j�@��¸Py¾�¾�W�Jy�Ry	ºC
eyP���p���W

� a�� ©
	���	©E� @@�R¸n¸��Jy�wq� � a���� � d D�� ���W
e����
;|���� � F

� � Ç�� _ � anf J � Ç�� _ � dgf�c� `�hj� Ç�� _ � anf:` � dC»�` �_ ��� H L f J ` � am»�`" ¡_ ��� H L f�c
� ��y��JyU��� \M^$_	`"c���f*h�i d k _��bc1`ef�h � s�
ã�À"«�¬�¯�¿yÀ@µ�»�¿y½@À@³�±TÀ@³W®�À�À@³�µ1½xµ�°�®�À@«�¿y¯ � � µ+Ó�À@µL¯bÅ�¬�À@³bµ�Àx½x®EÅd«�Àx«²¿E¯b®�°K·f¿y½xµ+Ò{Ådµ�Øb¯�µLÅÇ½@µL°�®�À@«�¿y¯ t�� u�Ù �cß�Â
ã{¯¹\®y¶+ÀL¸d¹º¿E½ � \ LT¸�»�µ0³W®cÄyµ

� a � � � d «²¹
®�¯bÅ!¿y¯�±Ç«²¹�� a � � d Â
Ã"³�µ�½xµL®EÅdµ�½1·�®c±É»�¿y¯bÅ�µ�½�®�´&¿yÁdÀ�Àx³�µÇ½x¿y°�µf¿�¹.Àx³�µÇ·f¿dÅdÁ�°�Áb¬&�T¸ÕÀx³�µf¹º¿y°�°�¿�»�«²¯�Í�¾�½x¿y¾&¿E¬@«²À@«�¿y¯�«²°�°²Áb·T«�¯b®�À@µL¬
À@³b«�¬�¬@Á�´5XzµD¶_ÀDÂ
����©��,©! g§p¨g§	©e¦{ª$«�""�����x�5�JyPy�¸��x
b���~�]�Jy�|������	��
;}O��� � a �O��
b� � d �6�p��y�� � �*����|x|¡� � �x
S���q}P}�y��~���	�W
�}��W�Jy�y?>��5�xw$#��|¡y�
$� F

@�� D � a���� � d �
@��x� D&� a HO� � � d HO�¾�

Ã"³�µL½@µ�¹º¿y½xµy¸&À@³�µfÍE¿E®�°�¿y¹�®yÅbÅd«²¯bÍ=®!·f¿�Å�Á�°²ÁW¬0À@¿=À@³�µf·f¿y½xµfÅdµ+Øb¯bµLÅI¿y½$Ådµ�½1«�¬�Àx¿�®y¬x¬�µD¬@¬�Àz»�¿=½xµ�°�®�À@«�¿y¯W¬
»�«²À@³�½xµL¬@¾WµD¶_À�Àx¿�À@³bµJ¶+¿E·f¾W¿:¬�«²À@«�¿y¯�»�«²À@³É®�À@³�«�½xÅ�½xµ�°�®�Àx«²¿E¯ÕÂ�Ã"³�µi¾b½@«�·�®�½x±Î«�¯EÀxµ�½xµL¬�À�«�¬�¿�¹.¶�¿yÁ�½$¬@µ1À@¿Ç�¯�¿�»
«²¹#Àx³�µ � � Eµ�µ�¾W¬�À@³�µ1¿y½$ÅdµL½�¾�½@¿E¾WµL½�Àz±�¿y¹#Àx³�µ � ½xµ�°�®�Àx«²¿E¯ÕÂ
����©��,©! g§p¨g§	©e¦T('«%" �W����Jy�|¡�����	��
 ���,�x�;y���y�|��W���	�W
 ��� �Ry	ºC
ey�}���
����J�Ry��~�x
:�j��
(�x�;y�}�y����B����y�|��W���	�W
�}��W

i �
Ã"³�µ-«²¯:À@µL½@µD¬zÀ"¿�¹#Áb¬�«�¯�ÍiÀ@³�«�¬�¯�µ�» ¿E½xÅ�µ�½.«�¯ÇÀx³�µ�¬�µD¶+Á�½x«²Àz±f¶�¿y¯:À@µ�Ó�À�«�¬.Àx¿J¶�¿y·f¾b®�½xµ�Àx³�µ0µ+âKµL¶_À"¿�¹�¬�µD¶+Á�½x«�Àz±

ÅdµD¶+«�¬�«�¿y¯b¬�»�«²À@³Î½xµL¬@¾&µL¶_À�À@¿f¬�¿E·fµ-¬@¾WµD¶+«²ØW¶-®�À�À$®y¶$d¬�Â�ã{¯�¹\®E¶_ÀL¸�®JÅdµL¶�«�¬@«�¿y¯;: a ·T«�Íy³:À�´Wµ0·f¿y½xµ-Ådµ�Øb¯�µLÅÇÀ@³b®y¯®�ÅdµD¶+«�¬�«�¿y¯�: d ´�ÁdÀ : d ·�®c±I´WµÇ·f¿E½@µ�µ�Æ�¶�«²µL¯:À�«²¯UÀx³:»"®�½@À@«�¯�Í�®�¯ä®�À�À$®y¶$�µiÂ=Ã"³�µÎÁb¬�µ�¿y¹ ��& ¾&µ�½x·T«²Àx¬À@¿!°²«�¯��·f¿y½xµiÅdµ�Øb¯�µLÅ�¯�µL¬x¬�»�«²À@³I¬�µD¶+Á�½x«�Àz±�¬@¿y°�ÁdÀ@«�¿y¯�µ�ÆÇ¶+«�µ�¯b¶�±yÂ�Ã"³�µi¹º¿y°�°²¿�»�«�¯�ÍÎÅ�µ+Øb¯:À@«�¿y¯�¹º¿y½x·f®y°²«�Ï�µD¬�Àx³�«�¬
«�ÅdµL®bÂ
£�¤R¥�¦6§p¨n§�©$¦('"«)�"y��*µ ¸Py���}�yP���5�~�x���������@���?<��W
e�C: a�c : d � � �����W�5
;�@y��~��yP�q}~�5�Jy�}��Jy�|��W��yP�j�@��µ]�C: a ��}}����	�����¸Py������Jy]y�*{���	y�
$�,�p���W
 : dZ� �x�p���Jy�}���yP���,�@��µ � ����
b���
$|¹��� � : a���& : d �
Ê�¯!«²¯:Àxµ�½xµL¬�À@«�¯�ÍJ¾&¿y«�¯:À�Àx³b®�À�¬@³�¿yÁb°�ÅÎ´Wµ0Á�¯bÅdµL½@°�«�¯�µLÅ=®�À�À@³�«�¬�°²µLÄyµL°&«�¬�À@³b®�À"À@³�µ0½@µL°�®�À@«�¿y¯ ��� «²¯bÅ�Áb¶+µD¬�®y¯µLÔ:Á�«�Ä�®�°�µ�¯b¶�µ1½@µL°�®�À@«�¿y¯,+ � Ådµ+ØW¯�µLÅ�®y¬�¹º¿E°²°�¿�»�¬Lë

� a + � � d.- � a���� � dCo � d���� � aq
Ã"³�«�¬ÇµDÔEÁb«²Ä�®�°�µ�¯W¶+µ�½xµ�°�®�À@«�¿y¯Y«�¬�¸"«�¯ ¬�¿E·fµ�¬�µL¯b¬�µE¸�®�¯b®y°²¿EÍyÁ�¿EÁb¬JÀ@¿ÈÀx³�µÉ¶+°�®y¬x¬@«�¶L®�°�¶+¿E¯�Íy½xÁ�µL¯b¶+µ�Ådµ�Øb¯�µLÅY¿E¯
¯b®�À@Á�½$®�°W¯:Áb·i´&µ�½$¬�Â�ã{¯�¹\®E¶_ÀL¸d®i¯:Áb·i´&µ�½ � «�¬�¶�¿y¯�ÍE½@Á�¿EÁb¬�Àx¿T®�¯�Á�·J´WµL½0/�·T¿dÅdÁb°²¿T®�¯�Á�·i´&µ�½ � «�¹�®y¯bÅÇ¿E¯�°²±«²¹�1�23�4 \ 1653%4 Â.ê�«�·f«²°�®�½x°�±y¸d»�µ�Ådµ+Øb¯bµ1®y¯�¿y¾&µ�½$®�À@¿E½87 _B ¡c� f ¬�ÁW¶$³!Àx³b®�ÀDë7 _ � aqc � dgfC\ V:_p` c9��f k : ½\;�b � J `" � ÏO
 �µ-¶�®y¯ÇµL®E¬�«�°�±iØb¯WÅfÀ@³b®�À � a + � � d «�¹�®y¯bÅ�¿y¯b°²±f«²¹<7 _ � aWc � fO\ 7 _ � aqc � f Â�X-Á�µ-À@¿iÀ@³�µ0Åd«²Ä�«�¬�«�¿y¯�ÒG°�«²Eµ¾�½x¿y¾&µ�½@À@«�µL¬�Àx³b®�À�³W®y¬"´&µ�µ�¯�³b«²ÍE³�°²«�Íy³:ÀxµLÅ=«²¯UÙ�Ú>=cß�¸�Àx³�µ1Àz»�¿Ç¶+¿y¯W¶+µ�¾�Àx¬"°�¿:¿EÎ½xµL®y°²°�±Î¬@«²·f«�°�®y½LÂ.Ã"³b«�¬�«�¯:À@½x«²ÍEÁ�«�¯�Í

®�¯W®�°�¿yÍy±�³b¿y°�Å�¬�µ�ÄEµ�¯=¹º¿y½-®�¯�«²¯:ÀxÁ�«�Àx«²ÄEµ�½@µD®y¬@¿y¯�«�¯�ÍWÂ�Ã�»�¿f½@µL°�®�À@«�¿y¯b¬ � a ®�¯WÅR� d ®y½@µ�¶+¿E¯�Íy½xÁ�¿EÁb¬�·T¿dÅdÁb°²¿C�
«²¹NÀ@³�µL±T´&µ�³W®cÄyµ�«�Ådµ�¯:À@«�¶�®y°²°�±T»�³�µ�¯Î¶�¿y·f¾&¿E¬@µLÅf»�«²À@³;�TÂ�Ã"³�µ�½xµ�°�®�Àx«²¿E¯b¬ � a » � � H�L¼®y¯bÅA� d » � � H�L¼¶�®y¯´&µ0¬@µ�µL¯!®y¬.À@³bµ-½xµL¬@¾WµD¶_Àx«²ÄEµ�½xµ�·�®�«�¯bÅdµL½x¬.¿�¹ÕÀx³�µ0Å�«²Ä�«�¬�«�¿y¯Ç¿y¹�� a ®y¯bÅ;� d ´�±C�TÂ� `³�µ�¯!Áb¬@«²¯�ÍiÀ@³�µ0½xµ�°�®�À@«�¿y¯W¬� � ®y¯bÅ?+ � ¸4� a ®y¯bÅ � d ®�½xµ�®y¬x¬�µD¬@¬@µLÅÎ»�«�Àx³�¿yÁ�À�½@µLÍE®�½$Åd«�¯�Í�Àx³�µL¬@µ�½xµ�·�®�«�¯bÅdµL½x¬LÂ
����©��,©! g§p¨g§	©e¦@� «�ACBE°/ +85O°0 2�D 98+q°,.-8/B® 0FE +q°8/ 9	/ 245�9HG�I	� : a ��
e��: d ���Jy�� � ��}�yP���5�~�x����}��W|¹�5���	��
�} ���W���
��������R�*<�µ��O�p��y�
 : a �W
e� : d ���Wwqy¾� ��& #	���JyP���@y~}~�,|�� � y���¸P���5
b� @B��y�
e���@yP��: aKJ : d DZy9L��b�Jy~}P}�yP�¸��8F

: aKJ : dH\ N _NM�Oqf H)P _ : aRQ : dnf » µ � H L�S c
� ��y��Jy M�O�\ � Ç�� _ � a�f'»�� Ç�� _ � dqf �

Ý

246

����©��,©! g§p¨g§	©e¦ '"«� ��� -�+ � ¯$® / 245W2�D 98+q°8,�-8/B® 0 E +g°/ 9	/ 245�9HG�Ip� : a ��
e� : d �W�Jy�� � �Z}�yP���5�~�x���¾}��W|¹�5���	�W
�}��������
��W���@���?<·µF}~�;�P�Z�p���W� � Ç�� _ : a�f�»]� Ç�� _ : dqfO\ � Ç�� _ : aV» : dnf �m�p��y�
A: a �W
e� : d ���Wwqy�� ��& #@|�yP��}P��g���;y���¸��W�5
e� @@�Ry�
b���@yP�&: a�� : d Dy9L��e��y~}P}�yP�¸��8F
: a � : d \ N _NM a f HO: a Q N _NM d f HO: d Q : a » : d »(_ µ � H L f~c

� ��y��Jy M�aL\ _�� Ç�� _ : a�f'»�� � �V_ µ f1f��(� Ç�� _ : dnf �W
e� M]dH\ _�� Ç�� _ : dqfV»� � �V_ µ f1f���� Ç�� _ : a�f �
� «�Ä:«�¯�Í�®�¾�½$®y¶+À@«�¶�®y°.¬�µL¯b¬@µfÀ@¿�À@³bµL¬@µÇ¾�½x¿y¾&¿E¬@«�Àx«²¿E¯Õ¸�»�µ�½@µL·�®�½x�À@³b®�À�À@³bµÇ°²µD®y¬�ÀiÁ�¾�¾&µ�½i´W¿EÁ�¯bÅU¿�¹"Àz»�¿

½xµ�°�®�À@«�¿y¯W¬�½xµ�¾�½xµL¬@µ�¯:À$¬�À@³bµJÀx¿�À$®�°�«²¯�Á�¾bÁdÀ�Ò�¿yÁdÀx¾�ÁdÀ�¬zÀ$®�ÀxµL¬-À@³�µL±�ÍyµL¯�µ�½$®�Àxµ�À@¿�¶+¿�ÄEµ�½�À@³�µfµ+âKµL¶+À0¿y¹�®�¯�®�À@Àx®y¶$
µ�ÂÎÐ-¯IÀ@³�µ�¿yÀ@³�µL½1³b®�¯bÅÕ¸ÕÀ@³bµTÍE½@µD®�ÀxµL¬�À0°�¿�»�µL½1´W¿EÁ�¯bÅI½@µL¾�½@µD¬�µL¯:Àx¬-À@³�µÇÅ�Á�¾�°�«�¶L®�À@µDÅÉµ�ÆÇ¶+«�µ�¯b¶�±�¿�¹�À@³�µfÀz»�¿
¶+¿EÁ�«�¯EÀxµ�½x·fµL®y¬@Á�½xµL¬L¸E«²À�¶�®y¯!´&µ1À@³bµ�½xµ+¹º¿y½xµ1Áb¬@µLÅ!À@¿�®�ÍEÍy½xµ�Í:®�À@µ0¬�µD¶+Á�½x«²Àz±Ç¬�¿E°²ÁdÀx«²¿E¯b¬LÂ
Ã"³�«�¬Õ°�®�À@À@«�¶+µ�¶L®�¯�¬@µ�½xÄyµ
Àx¿�½xµ�Áb¬@µ.¬@µL¶+Áb½@«²Àz±0Å�µL¶+«�¬@«²¿E¯b¬Õ»�³�«�¶$³�®�½xµ.¬�À@¿E½@µDÅ1»�«�Àx³�«²¯J®�¬zÀx½x¶�ÁdÀ@Áb½@µDÅ�½@µL¾W¿:¬�«²À@¿E½@±EÂ

Ã#¿JÀx³�«�¬�µ�¯bÅÕ¸b®�¯�®�¾�¾b½@¿E¾�½@«�®�Àxµ0¬@µ�·�®y¯EÀx«�¶1¬@³�¿yÁb°�Å!´Wµ�Å�µ+Øb¯�µDÅ!¹º¿y½"À@³bµ�½@µL¾W¿:¬�«²À@¿E½@±Ç®y½x¶$³�«²À@µD¶_ÀxÁ�½@µEÂ

� 	 �1£"������� � �N£#¤�§=¨�£�§Î¤�©+¢�

Ã"³�µ�«�ÅdµL®=¿y¹�¾�Á�À�À@«�¯�Í�ÅdµD¶+«�¬�«�¿y¯U¬@¾WµD¶+«²¹\¶�®�Àx«²¿E¯b¬1«�¯EÀx¿�®�¬zÀx½@Áb¶+À@Á�½xµLÅI½xµ�¾&¿E¬@«�Àx¿y½x±�®�°�°²¿�»�¬0Àx¿=µ�ÓdµL¶+Á�À@µÇ¬@µ�ÄyµL½x®y°
¿y¾&µ�½$®�Àx«²¿E¯b¬�À@³b®�À�Ä�®�½x±0¹º½@¿E· ¬�«�·f¾�°�µ�«�¯�«²À@«�®�°�«²ÏD®�À@«�¿y¯iÀ@¿1®yÅdÄ�®y¯b¶+µDÅi¬@µL®�½$¶$³ÕÂ�Ã"³bµ�·f¿E¬�À�«²·f¾&¿y½@Àx®�¯:À�¿y¾&µ�½$®�À@«�¿y¯W¬
®�½xµ�ÅdµL¬x¶+½x«�´WµDÅÎ«�¯=À@³�µ1Àx³�µ1¹º¿y°�°²¿�»�«�¯�ÍWë
ì X-®�Àx®�´W®y¬@µ0«�¯�«²À@«�®�°�«�®�À@«�¿y¯Õë�Ã"³�µ�«²¯b«�Àx«�®y°#¬�À@½xÁb¶_ÀxÁ�½@µ1¿y¹�Àx³�µ�ÅdµD¶+«�¬�«�¿y¯�½xµ�¾&¿E¬@«�Àx¿y½x±Ç«�¬�«²·f¾&¿y½@Àx®�¯:À�´&µL¶L®�Áb¬@µ¾b®�½@À.¿�¹�À@³�µ-½@µL·f®y«²¯b«²¯�Íi¿y¾&µ�½$®�À@«�¿y¯W¬ t µEÂ ÍWÂ²¸�«�¯b¬@µ�½@À@«�¿y¯Õ¸�Ådµ�°�µ+Àx«²¿E¯$u�®�½xµ�´b®y¬@µLÅÇ¿y¯�Àx³�µ�«�¯�«²À@«�®�°N¬zÀx½@ÁW¶_À@Áb½@µE¸
ì ã{¯b¬�µL½�Àx«²¿E¯Õë�Ã"³�µT½@µL¾W¿:¬�«²À@¿E½@±�¬�³b¿yÁ�°�Å�¬@Á�¾�¾&¿y½@À-µ�¯:Àx«�Àz±�«�¯b¬@µ�½@À@«�¿y¯ÕÂ� `³�µ�¯ÉÀ@³�µT¬�µD¶+Á�½x«²Àz±�®y¯b®�°�±d¬zÀ1®yÅ�Åb¬¬�¿E·Tµ�®�À�Àx®E¶$�¿y½�Å�µL¶+«�¬@«²¿E¯T¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯b¬L¸�Àx³�µ�¬zÀx½@ÁW¶_À@Áb½x®y°�¶$³b®�¯�ÍEµL¬�«�¯bÅdÁb¶�µLÅT¿y¯TÀx³�µ�µ+Ód«�¬zÀx«²¯�Í1°�«²´b½x®y½@±E¸
ì X�µL°²µ�À@«�¿y¯Õë�Ã"³�µ�½xµ�¾&¿E¬@«�Àx¿y½x±i¬�³b¿yÁ�°�Åf´Wµ-®�ÁdÀx¿y·�®�Àx«�¶L®�°�°²±�½xµL¬�À@½xÁb¶+À@Á�½xµLÅT»�³�µL¯f®y¯�µ�¯:À@«²Àz±i«�¬�»�«²À@³WÅd½x®c»�¯�¸
ì ª�µ+Àx½@«�µ�Ä�®�°Gë�Ã"³�µ=½@µL¾W¿:¬�«²À@¿E½@±�¬�³�¿EÁ�°�Åä¬�Áb¾�¾W¿E½�À�¬@«²·f¾�°�µ!®y¯bÅä®yÅ�Äc®y¯b¶+µDÅä¬@µ�½$®y¶$³U¹ºÁ�¯b¶+À@«�¿y¯b®y°²«²À@«�µL¬LÂUÊ�À°²µD®y¬�ÀL¸�Àx³�µ�¹º¿E°²°�¿�»�«²¯bÍ�¬@¶�µ�¯b®y½@«�¿E¬
¬@³�¿yÁb°�ÅT´&µ�¾&¿E¬x¬�«�´�°�µyë t Úgu�Àx³�µ-¬@µL¶�Á�½x«�Àz±T®�¯b®y°²±d¬�À.¬�Á�´b·T«²Àx¬�À@³�µ-¬�¾&µL¶�«�Ø�Ò¶�®�Àx«²¿E¯Î¿y¹#®�¯�®�À@Àx®y¶$f°�¿�¿y�«²¯bÍi¹º¿E½�Àx³�µ�ÅdµL¶�«�¬@«�¿y¯b¬�À@³W®�À"À@³�»"®�½@À�«²ÀL¸ t Û�u.À@³�µ�¬@µL¶�Á�½@«²Àz±Ç®�¯W®�°�±�¬�À�¬�Á�´b·T«²Àx¬À@³�µi¬@¾&µL¶+«²ØW¶L®�À@«�¿y¯�¿y¹
®ÎÅdµL¶�«�¬@«²¿E¯�°²¿�¿y�«�¯�Íf¹º¿y½�À@³�µi®�À�À$®y¶$d¬"À@³W®�À�«²À�·f«�Àx«²Í:®�ÀxµL¬L¸ t ÜSu"³�µi¬@µL¶�Á�½x«�Àz±=®�¯b®�Ò°²±d¬�À-¬�Áb´�·f«�À$¬�Àx³�µJ¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯�¿y¹
®y¯�®�À@Àx®y¶$�®�¯WÅ=À@³�µT¬�¾&µL¶�«�ØW¶L®�Àx«²¿E¯�¿�¹�®ÇÅdµD¶+«�¬�«�¿y¯�Àx³b®�À0¾b®�½@À@«�®�°�°²±
®�¯�¯�«�³�«�°�®�À@µ1«²À�°²¿�¿y�«�¯�ÍJ¹º¿y½"À@³bµ�ÅdµL¶�«�¬@«²¿E¯b¬�À@³W®�À�¶+¿E·f¾�°²µ�À@µ0À@³b«�¬�¾W®�½@À@«�®�°Nµ+âKµL¶+ÀLÂ

 `³�«�°²µ�À@³bµL¬@µ�¿E¾WµL½x®�À@«�¿y¯b¬�»�«²°�°E´&µ"Ådµ+À$®�«�°²µDÅ�«�¯�À@³bµ�¬@µLÔ:Á�µ�°G¸cÀ@³b«�¬�¬@µL¶_Àx«²¿E¯�¾�½x¿y¾&¿E¬@µL¬#®�¯i®y¾�¾�½x¿y¾�½x«�®�À@µ.¬�À@½xÁb¶+À@Á�½xµ
¹º¿y½�Àx³�µ�ÅdµL¶�«�¬@«²¿E¯Î°�«²´b½x®y½@±EÂ
êd¿y·fµ�¹ºÁb¯bÅ�®�·fµL¯EÀ$®�°NµL°²µL·TµL¯:Àx¬�¿�¹�®�¯!®E¶�¶�Á�½x®�À@µ1¬�±�¯:Àx®�ÓÇ®�°�°²¿�»�«�¯�ÍJÀ@¿T³b®�¯bÅ�°²µ0À@³bµ
Å�®�Àx®�´W®y¬@µ0®y½@µ�®�°�¬@¿JÍE«²ÄEµ�¯ÕÂ

�/.10 z46354��H4m=S7 7 <,3:9$?B7 =
Ð-Á�½1®�¾�¾b½@¿:®y¶$³�«�¬�´b®E¬�µDÅ�¿E¯�À@³�µT½xµ�°�®�À@«�¿y¯ ��� À@³b®�À0³b®E¬�´&µ�µL¯É«�¯:À@½x¿�Å�Áb¶+µDÅ�®�´&¿�ÄyµEÂ-ã{¯É¹\®y¶_ÀD¸N»�µT¶+¿E¯b¬�«�ÅdµL½À@³bµ=Åd¿E·�®�«�¯b¬�� ®�¯bÅ M Ådµ�¯�¿yÀ@«�¯�ÍÉ½xµL¬@¾&µL¶_Àx«²ÄEµ�°�±�®I¬�µ�ÀJ¿y¹�®�À�À$®y¶$È¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯b¬J®�¯bÅä®I¬�µ�ÀJ¿y¹-ÅdµL¶�«�¬@«�¿y¯¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯b¬LÂ� �µ�®�°�¬�¿=Ådµ+Øb¯bµJÀx³�µf½@µL°�®�À@«�¿y¯�� h M�� �¼À@³W®�À�¬zÀ$®�ÀxµL¬0»�³�µ+Àx³�µ�½�®�ÅdµD¶+«�¬�«�¿y¯ÉÀ@³�»�®y½�À$¬-®y¯®�À@Àx®E¶$&Â�ã{¯�¿�Àx³�µ�½"Àxµ�½x·�¬�¸��=«�¬�À@³�µ�¬@µ+À�¿�¹�¾b®y«²½$¬ _���c Q f/h?M�� �éÀx³b®�À�ÄEµ�½x«�¹º± � HOQ�JTLTHSN _�i�P�f Â×"®y¬@µLÅ-¿y¯0À@³b«�¬�½@µD®y¬@¿y¯�«�¯�Í"®�°�°�À@³�µ.«�Àxµ�·�¬Õ¬�À@¿y½xµLÅ0«�¯1À@³�µ
½xµ�¾&¿E¬@«²À@¿y½x±�®y½@µ�«�Ådµ�¯:À@«²ØbµDÅ1´:±�À@³�µ.yµ�± _	�S�gÄ Ê Ã Ê Ç � cJ[SÈ@ÈB[:Ä�Ë�f ÂÃ#»�¿I¿y½$Ådµ�½x«²¯bÍ�½@µL°�®�À@«�¿y¯b¬T®�½xµÎÁW¬�µDÅ8®�ÀTÀ@³b«�¬T°�µ�ÄyµL°.Àx¿I¿E½@Í:®�¯�«�Ï�µÇÀ@³�µD¬�µ=µ�°�µ�·fµ�¯:À$¬�ë�Àx³�µ!À@½$®yÅd«²À@«�¿y¯b®y°�·f¿E½@µ�Ò
Ådµ�Øb¯�µLÅ�½xµ�°�®�Àx«²¿E¯ t � u+¸�®�¯WÅ�Àx³�µ�·f¿y½xµ+Ò{Ådµ+Øb¯bµLÅ ���g���5|��=½xµ�°�®�Àx«²¿E¯ t���� u+¸�»�³�«�¶$³�³b®y¬0´&µ�µ�¯U«�¯:À@½x¿�Å�Áb¶+µDÅÉ«�¯À@³b«�¬-¾b®�¾&µ�½DÂ�Ã"³�µi¹º¿y½x·TµL½�½xµ�°�®�À@«�¿y¯�»�«�°�°#¬@µ�½xÄyµ1À@¿!°²«�¯��®�À@Àx®y¶$�¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯b¬�»�³�«²°�µ�Àx³�µi°�®�À@À@µ�½-«�¬-Áb¬@µLÅ=Àx¿
¶+¿E·f¾b®�½xµ�Àx³�µ�µ+âKµL¶+À�¿�¹�Àz»�¿�¬@µL¶�Á�½@«²Àz±ÇÅdµD¶+«�¬�«�¿y¯b¬"¿E¯=®f¬@¾WµD¶+«²ØW¶�®�À@Àx®E¶$&Â

��«²ÍEÁ�½xµJÚ�«�°²°�Áb¬�À@½$®�ÀxµL¬�À@³b«�¬�¬�À@½xÁb¶_ÀxÁ�½xµ1®y¯bÅ=·�®�¾b¬�Àx³�µ1¹º¿y°�°²¿�»�«�¯�Íf¶�®E¬�µ1¿�¹�ØbÍEÁ�½@µEë
ÚEÂ MM\ V��ga�c���d�c�� r c�����c����Wc��� �c���!WÏ ¸"� \WV Q aqc Q d�c Q r c Q �Rc Q ��Ï ¸
Û�Â Q a � Q � ¸ Q d � Q r � Q � � Q � ¸

Þ

247

α_3

α_2

α_4

α_5

α_1

Ω_Α

Ω_(∆,α_1)

δ_1

δ_2 δ_3

Ω_(∆,α_3)

δ_4

Ω_(∆,α_5)

δ_5

δ_6

δ_7

Α

��«²ÍEÁ�½@µfÚEë�Ê ¬x®�·f¾�°�µ�®�À@Àx®y¶$:Ò{ÅdµL¶�«�¬@«�¿y¯Î°�®�À@À@«�¶+µEÂ

ÜbÂ � � VR_��qa�c Q a�f~cg_���dRc Q a�f�cn_ � r c Q a�f~cg_�����c Q r f~cn_ ����c Q �gf�cn_�� Wc Q �gf~cn_ ��!Rc Q �nf~Ï ¸
ÝWÂ � d ���:Í � a ¸ � r ���SÍ � a ¸ � ! ����� � ����� � � Â

Ã"³�µ�ØWÍyÁ�½xµ�½@µL¾�½xµL¬@µ�¯:Àx¬�Àx³�µiè�®E¬@¬@µ�Åd«�®�ÍE½x®y·f¬"¿y¹�À@³�½xµ�µ�´�«�¯b®y½@±!½@µL°�®�À@«�¿y¯b¬"»�³�µL½@µJ¬�¿E°²«�Å=°²«�¯�µL¬�·T¿dÅdµL°ÕÀx³�µ �½xµ�°�®�À@«�¿y¯�¸�Å�®y¬@³�µLÅ!°�«²¯�µD¬"·f¿�Å�µ�°NÀx³�µ �!½xµ�°�®�Àx«²¿E¯Õ¸�Åd¿yÀ�À@µDÅ=°²«�¯�µL¬"·f¿dÅdµL°NÀ@³�µ � � ½@µL°�®�À@«�¿y¯ÕÂ
�/.�- �R<>?@3�?B4mIJ?��V463�?BAC<
ã{¯�«²À@«�®�°�«²ÏL«²¯bÍUÀ@³�µ�½xµ�¾&¿E¬@«²À@¿y½x±ä¶+¿E¯b¬@«�¬�Àx¬�«�¯`Ådµ+ØW¯�«²¯bÍUÀ@³�µ�Áb¯�«²ÄEµ�½$¬@®y°�°²¿�»�µ�½Ç®y¯bÅéÁ�¾�¾&µ�½Ç´&¿yÁb¯bÅ�¬LÂÀ��¿E½�À@³bµ
®�À@Àx®E¶$i°�®�À�Àx«�¶�µy¸:À@³bµL¬@µ�´W¿EÁ�¯bÅ�¬�®�½xµ�½xµL¬@¾WµD¶_À@«�ÄyµL°²± _ : c : f ¸:®y¯bÅ _ : c
	��'f ¸�»�³�µL½@µ 	���\ L H�N _�iV¼gf ®�¯WÅ : «�¬.À@³bµµ�·f¾dÀz±d¬@µ+À
½xµ�°�®�À@«�¿y¯�Â�ã{¯:À@Á�«²À@«�ÄyµL°²±E¸�L H N _�iV¼nf ¶L®�¯TµL®y¬@«�°²±�´&µ�¾�½x¿�ÄyµLÅi®y¬�À@³bµ�Áb¯�«²ÄEµ�½$¬@®y°�Á�¾�¾&µ�½
´&¿yÁ�¯bÅT´&µL¶L®�Áb¬@µ«²À1«�¬0À@³bµT·f¿:¬zÀ���W
S�Sy������:}�®�À�À$®y¶$K¸N«�¯ÉÀx³�µ�¬�µL¯b¬�µJÀ@³W®�À�«�À�ÍEµ�¯�µL½x®�À@µD¬�Àx³�µf·T¿:¬zÀ�«�·f¾W¿E½�À$®�¯:À1Åb®�·�®�ÍEµL¬LÂ�ã{¯
¹\®y¶+ÀL¸�«²À�½xµ+À@Áb½@¯b¬�®y°²°KÀx³�µ�¾&¿E¬x¬�«�´�°�µ0«�¯b¬@µL¶�Á�½@µ�¬�Àx®�À@µL¬LÂ
Ð-¯�Àx³�µ-¿yÀ@³�µL½"³b®�¯bÅÕ¸E¹º¿E½�®y¯!®�À�Àx®E¶$ Q�¸�À@³bµ-Á�¯b«²ÄEµ�½$¬@®y°W´&¿yÁ�¯WÅ�¬�¹º¿y½�À@³�µ1ÅdµL¶�«�¬@«�¿y¯b¬.À@³b®�À�·f«²À@«�ÍE®�À@µ0«�À�®�½xµ

_ : c Q f ¸d®�¯WÅ _	��� c : f ¸�»�³�µL½@µ 	��� \ L�H�N _�i��$f Â
ã�À�¶�®y¯Ç´&µ0¬@µ�µL¯�À@³b®�À 	��� ¶�¿y·f¾W¿:¬�µDÅf»�«�Àx³ Q�ÍyµL¯�µ�½$®�ÀxµL¬�®y°²°À@³bµ�«²¯�¾bÁdÀ�¬zÀ$®�ÀxµL¬�À@³W®�À�®�½xµ1«²¯W¶+°�ÁbÅdµLÅ=«�¯ � � �V_ Q f Â
�/.� 2,35AO9;46KC7
Ã#¿J¬�À@¿y½xµ-®y¯Çµ�¯:Àx«�Àz± _��Wc Q f*h?M � �8«�¯ÇÀx³�µ1¬zÀx½@Áb¶+À@Á�½xµLÅÇ°²«�´�½$®�½x±y¸�Àx³�µ-¹º¿y°�°²¿�»�«�¯�Í�¾�½x¿d¶+µD¬@¬�¬�³b¿yÁ�°�Å�´&µ0¶L®�½x½@«�µLÅ¿yÁ�ÀLë t Úgu1ãzÅ�µ�¯:À@«²¹º±ÉÀx³�µÎ¬@µ+À�� a ¿y¹�®�°�°.®�À@Àx®y¶$d¬�«�¯ � Àx³b®�ÀJ®y½@µf«�·f·TµDÅd«�®�À@µL°²±�·f¿y½xµ+Ò{Ådµ+ØW¯�µLÅIÀ@³W®�¯�Q�¸�®y¯bÅÀ@³bµ1¬@µ+À�� d ¿�¹�®�°�°Õ®�À�À$®y¶$d¬�«²¯ � À@³b®�À�®y½@µ0«�·T·fµDÅd«�®�À@µL°²±Ç°�µL¬x¬�Ò�Ådµ�Øb¯�µDÅ�À@³W®�¯ Q�¸ t Û�uOX�µL°²µ�À@µ0À@³bµ1Å�«²½xµL¶+À�°�«²¯b�¬´&µ+Àz»�µ�µ�¯�� a ®�¯bÅ�� d ¸bã�¹�®�¯=µ�°�µ�·fµL¯EÀ�¿y¹�� d ³b®E¬�®fÅdµD¶+«�¬�«�¿y¯ÎÀ@³b®�À�À@³�»"®�½@Àx¬�«�À�®y¯bÅ QÈ¬@«�·iÁ�°²Àx®y¯�µ�¿EÁb¬�°�±y¸d«²À�«�¬®�À@Àx®E¶$³�µLÅÎÀ@¿AQä®y¯bÅ�Ådµ�°�µ+ÀxµLÅ!¹º½@¿E·Ë«²Àx¬�«�¯�«²À@«�®�°N¾&¿E¬@«�Àx«²¿E¯ÕÂ
Ã"³�µ-«²¯:À@µL½@µD¬zÀxµLÅÎ½@µD®yÅdµL½.»�¿yÁ�°�Å�½xµ�·�®�½xiÀx³b®�À�À@³bµL¬@µ0¬�À@µL¾b¬"®�¾�¾�°�±f¿y¯�°�±f«²¯ÎÀ@³�µ1¶�®E¬�µ-»�³�µ�½xµ�Àx³�µ0«²¯b¬@µ�½@À@µDÅ

ÅdµD¶+«�¬�«�¿y¯�«�¬�°²«�¯�EµLÅ!À@¿Ç®�¬@¾WµD¶+«²ØW¶�®�À@Àx®E¶$&Â�Ê�¯�¿yÀ@³�µL½�¶�®E¬�µ1·�®c±!¶�¿y¯b¬@«�¬zÀ�«�¯�¬�Á�´b·T«²À�Àx«²¯bÍÎ®f¬�«�¯�Íy°�µ�ÅdµD¶+«�¬�«�¿y¯ �«�¯!Àx³�µiÅ�®�Àx®y´b®y¬@µ���Àx³�«�¬-ÅdµL¶�«�¬@«�¿y¯�¬�³�¿EÁ�°�ÅÎÀx³�µ�¯�´&µi®yÁdÀ@¿E·f®�À@«�¶�®y°²°�±Î®�À@Àx®E¶$³�µLÅÎÀ@¿fÀx³�µi¶+¿E½@½xµL¬@¾&¿y¯bÅd«�¯�Íf®�À@Àx®y¶$
¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯ÕÂ�Ã"³b«�¬0¶�®y¯�´WµT®y¶$³�«�µ�ÄEµLÅ!À@³�½x¿yÁbÍy³�À@³bµiÀz»�¿f¹º¿y°�°²¿�»�«�¯�ÍÎ¬�À@µL¾b¬Lë t Úgu�ãzÅdµ�¯:À@«²¹º±=À@³�µT¬�µ�À���¿y¹
®y°²°®�À@Àx®E¶$�¬-«�¯���À@³b®�À�®�½xµi·f«�Àx«²Í:®�ÀxµLÅ�´�±�Àx³�µTÅ�µL¶+«�¬@«²¿E¯ � Â�+�®�À@³�µL·f®�À@«�¶�®y°²°�±y¸KÀx³�«�¬1¬@µ+À�¶�®y¯É´&µJµ�Ó�¾b½@µD¬@¬@µLÅ�´�±
� \ �� � \KV Q h � k _���c Q f*h � Ï ¸�®y¯bÅ t ÛRu�Ê-¬@¬@¿d¶+«�®�Àxµ-Àx³�µ�ÅdµD¶+«�¬�«�¿y¯ � Àx¿TÀ@³�µ�·�®�Ód«�·�®�°Nµ�°�µ�·fµL¯EÀ$¬�¿�¹��-Â

� 	 �1£"������� �å¥�&(�"¤6�1£�©+¥�¢��
Ã#»�¿!«²¯:À@µL½@µD¬zÀx«²¯bÍ!¾�½x¿y¾&µ�½@À@«�µL¬-·iÁW¬zÀ1´WµTÁ�¯bÅ�µ�½x°²«�¯�µLÅI®�À0À@³�«�¬0°²µLÄyµL° Â�Ã"³�µJØb½$¬zÀ�¬�Àx®�ÀxµL¬-À@³W®�À �É«�¬0¶�¿y¯b¬@«�¬zÀxµ�¯:À
»�«²À@³`½xµ�ÍE®y½xÅ8À@¿ � � ®y¯bÅ À@³�µI¬�µD¶+¿y¯WÅé®E¬@¬@µ�½@Àx¬TÀx³b®�À ��� «�¬Î¶+¿y·f¾b®�À@«�´�°�µ�»�«�Àx³ � »�«²À@³`½xµL¬@¾&µL¶_À�Àx¿ÈÀ@³bµ·f¿dÅdÁ�°�Áb¬�¶+¿E·f¾W¿�µ�¯bµ�¯:ÀLÂ
Ã"³�«�¬�¶�®y¯!´&µ�·�®�Àx³�µ�·�®�Àx«�¶L®�°�°²±Îµ+Ód¾�½xµL¬x¬�µDÅÎ®y¬�¹º¿E°²°�¿�»�¬Lë

æ

248

ÚEÂ _ �4H � � f J �N¸
Û�Â �%��� � Â o Q � Q Â�� ������� � Â Â
Ê�¶�¶�¿y½$Åd«�¯�Í�À@¿ÈÀx³�µL¬@µIÅdµ�Øb¯�«²À@«�¿y¯b¬L¸"À@³bµ�Áb¬@µ�½ t « Â µyÂ�¸�¬@µL¶�Á�½@«²Àz± ®y¯b®�°�±d¬zÀ~uf¶�®y¯`¾WµL½�¹º¿E½@· À@³�µÉ¿y¾&µ�½$®�À@«�¿y¯W¬Ådµ�Øb¯�µLÅÉ®�´&¿�Äyµ1À@³b½@¿EÁ�Íy³=À@³bµiÁb¬@µ�¿�¹.®Ç½@µ�À@½x«²µLÄc®y°ÕyµL±ÎÀx³b®�À0¬�³�¿EÁ�°�Å�´WµTÅdµ+Øb¯bµLÅ�®E¬�®�¾b®y«²½ _���c Q f>hFM � ��Âã{¯IÀ@³�µJØb½$¬zÀ�¶�®E¬�µE¸K»�³�µ�¯IÀ@³�µfÁb¬@µ�½0»�«�³�µL¬0Àx¿!«�Ådµ�¯:Àx«�¹º±�Àx³�µ�ÅdµL¶�«�¬@«�¿y¯b¬�À@³b®�À�·T«²À@«�ÍE®y½@µf®!Íy«�Äyµ�¯I®�À�À$®y¶$K¸KÀ@³bµ

Øb½$¬zÀ"ØbµL°�Å=«�¬�¬@µ+À"À@¿�µL·T¾�Àz±Î®�¯bÅ!Àx³�µ�yµL±fÀx®�Eµ0À@³�µ1¹º¿E½@· _ : c Q f Â
�/.10 � UL7'9�Q�?J<LKFA���7'9�463�?BA,<H=
Ã"³�«�¬1¬�Á�´W¬�µD¶_À@«�¿y¯�Åd«�¬@¶�Áb¬@¬@µL¬�À@³bµf¬@±�¯:Àx®�Ó�¿y¹.À@³bµTÔ:Á�µL½@«�µL¬0»�µJ»�«�°²°
¶�¿y¯b¬@«�Å�µ�½-À@¿�½@µ�À@½x«²µLÄyµ�µL¯:À@«²À@«�µL¬0¹º½x¿y· À@³bµ
ÅdµD¶+«�¬�«�¿y¯�¬�¾&µL¶�«�Ø&¶�®�Àx«²¿E¯=Åb®�Àx®y´b®y¬@µyÂ�Y.¬x¬@µ�¯:À@«�®�°�°²±E¸�¹º¿yÁ�½"¹º¿E½@·�¬"¿y¹�Ô:Á�µL½@±�»�«�°²°�´Wµ�Ådµ�Øb¯�µDÅNë
ÚEÂ �	�	
�
��
������������� �S�gÄ Ê Ã Ê Ç ��� ��� �*� [� ����� ���	���������
�� � � � \ [SÈ@ÈB[:Ä�Ë � ÃJ�$�qÄ��
Û�Â �	�	
���� ���
��!��� �S�qÄ Ê Ã Ê Ç ��� �"� �/� [� ����� ��	�#
��
�� ��� �$� � � � \ �S�gÄ Ê Ã Ê Ç ��� Ã1�e�qÄ��
ÜbÂ �	�	
�
8��%������"%��"�&�'
��
����������(��� �S�qÄ Ê Ã Ê Ç ��� �"� �/� [� ����� ��	� _ �������
�� � � � \ [SÈ@ÈB[:Ä�Ë � ÃJ�$�qÄLo
��
�� ��� �$� � � � \ �R�qÄ Ê Ã Ê Ç ��� Ã1�e�qÄ�f)�
ÝWÂ �	�	
�� �����	�"*+��%,��� �#
��
�� ��� �$�(�-� �R�qÄ Ê Ã Ê Ç ��� �"� �/� [� �.�/� ���	�0�������
�� � � � \ [RÈ@ÈB[:Ä�Ë � ÃJ�e�gÄ1�

Ã"³�µiØb½x¬�À-Ô:Á�µL½@±�®�°�°²¿�»�À@¿Î«�ÅdµL¯:À@«²¹º±�®y°²°�ÅdµD¶+«�¬�«�¿y¯b¬�À@³b®�À0®�°�°�¿�»�Àx¿Ç°�«²·f«²À�À@³bµiµ+âKµL¶+À-¿y¹.®�Íy«�ÄyµL¯�®�À�À$®y¶$KÂ�Ð-¯
À@³bµ�¿y¾�¾&¿E¬@«�Àxµy¸�Àx³�µ�¬@µL¶+¿E¯bÅJ¿y¾&µ�½$®�À@«�¿y¯J½@µ�À@Á�½x¯b¬
®y°²°�®�À�Àx®E¶$d¬�Àx³b®�À.®y½@µ�·f«�Àx«²Í:®�ÀxµLÅJ´:±iÀ@³�µ�¬@Á�´�·f«²À�À@µDÅ�ÅdµL¶�«�¬@«�¿y¯
¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯ÕÂ
Ã"³�µ0À@³b«²½$Å!Ô:Á�µL½@±�«�¯�ÍT¿y¾&µ�½$®�À@«�¿y¯!®�°�°²¿�»�¬�À@³bµ1¬@µL¶�Á�½x«�Àz±Ç®y¯b®�°�±d¬zÀ�À@¿f¬�Áb´�·f«�À�®y¯!®�À@Àx®E¶$Ç®�¯bÅ!®
ÅdµD¶+«�¬�«�¿y¯iÀ@³b®�À�«�¯b¶�¿y·f¾�°�µ+À@µL°²±1Àx³�»�®y½�À$¬#«²À
«²¯J¿y½$Ådµ�½#À@¿1«�Ådµ�¯:Àx«�¹º±�Àx³�µ�¶+¿E·T¾b°²µL·TµL¯:Àx®�½x±�ÅdµL¶�«�¬@«�¿y¯b¬ t «�¯JÀ@³�µ�¬@µ�¯b¬@µÀ@³W®�À�À@³bµ�±!®y°²°�¿�»`Àx¿Ç¶+¿�ÄyµL½�À@³�µ�¾b®y½�À�¿y¹#Àx³�µ�®�À@Àx®y¶$Î»�³�«�¶$³=«�¬�¯�¿�À"Àx³:»"®�½@À@µDÅÎ´�±ÎÀ@³�µ�¬@Á�´�·f«²À�À@µDÅ�ÅdµL¶�«�¬@«²¿E¯$u_Â
Ã"³�µ�°�®y¬�À�Ô:Á�µ�½x±Ç¾&µ�½x·T«²À�Àx¿�«�ÅdµL¯:À@«²¹º±ÇÀ@³bµ�·f¿E¬�À�¶�¿y¯�ÄyµL¯�«�µ�¯:À�ÅdµL¶�«�¬@«²¿E¯b¬"¹º¿E½�®�¯�®�À@Àx®y¶$ÇÀ@³b®�À�«�¬�¯b¿�À�Åd«�½@µD¶_Àx°²±
®�À@Àx®E¶$³�µLÅÎÀ@¿�®�¯�±Î¬@µL¶�Á�½x«�Àz±Î¬@¿y°�ÁdÀx«²¿E¯ÕÂ
ã�À�«�¬�¯�¿�Àxµ�»�¿y½@À@³�±�Àx³b®�Ài¿E¾WµL½x®�À@«�¿y¯b¬�Ü�®y¯bÅ�Ý�¶+¿E½@½xµL¬@¾W¿E¯bÅ�Àx¿É®�¾b¾�½@¿cÓd«�·�®�À@µf¬@µL®�½$¶$³UÔEÁbµ�½x«²µD¬0À@³b®�ÀJ®�½xµ

Áb¬@µLÅ�ÅdÁ�µ1Àx³�µ�³�±�¾W¿yÀ@³�µ�À@«�¶�®�°�«²¯b¶�¿y·f¾�°�µ+Àxµ�¯�µD¬@¬"¿y¹#Àx³�µ�ÅdµL¶�«�¬@«�¿y¯�Å�®�À$®�´b®E¬�µEÂC�-Á�µ�½x±ÎÜT«�¬�Áb¬�µDÅ=»�³�µ�¯�¬@µ�ÄyµL½x®y°
¬@¿y°�ÁdÀ@«�¿y¯b¬-®�½xµi®�°�½xµL®yÅ�±Î«�·T¾b°²µL·TµL¯:À@µLÅ�À@¿!¬@µL¶�Á�½xµ�À@³�µJ«²¯�¹º¿y½x·f®�À@«�¿y¯�¬@±d¬zÀxµ�· ´�ÁdÀ-À@³�µL±�Å�¿Î¯�¿yÀ-®y¶$³�«�µ�ÄEµ�À@³bµ
®�«�·fµLÅ ¾�½x¿�À@µD¶_Àx«²¿E¯ °�µ�ÄEµ�°GÂYÃ"³bµ�¹º¿yÁ�½@À@³é¿y¾&µ�½$®�Àx«²¿E¯ ¬@µ�½xÄyµL¬JÀx¿ä¶+¿yÁb¯EÀxµ�½�®�À@Àx®E¶$�¬J¹º¿E½�»�³�«�¶$³éÀx³�µ�ÅdµL¶�«�¬@«�¿y¯
Å�®�Àx®�´W®y¬@µ0®EÅd·f«²¯�«�¬�À@½$®�À@¿E½"³b®y¬"¯�¿yÀ�®y¬x¬�¿d¶�«�®�À@µLÅÎµ+Ód¾�°�«�¶�«�Àx°²±=¬�µD¶+Á�½x«²Àz±Ç¬�¿E°²ÁdÀx«²¿E¯b¬LÂ

�/.�- 2{7V359;?B7+364mI�A4��7'9�463�?BAC<>=
ã{¯Ç¿E½xÅdµL½
À@¿i°²¿d¶�®�À@µ�®y°²°KÅdµD¶+«�¬�«�¿y¯Ç¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯b¬�À@³b®�À.·f«�Àx«²Í:®�Àxµ-®�¯Ç®�À�À$®y¶$f¬�Á�´b·T«²À�ÀxµLÅ�»�«²À@³b«²¯�Àx³�µ�½xµ+Àx½@«�µ�Ä�®y°
yµL± _ : c Q f ¸#®ÎÀz»�¿�Ò{¬zÀxµ�¾É¾b½@¿d¶+µD¬@¬0·JÁb¬zÀ�´&µ�µ+ÓdµL¶�ÁdÀ@µDÅNë t Úgu�Øb¯WÅ�®y°²°�Àx³�µÇ®�À@Àx®y¶$d¬ Q Â ¬�Áb¶$³IÀ@³W®�À�®�½xµJ·f¿E½@µ�ÒÅdµ�Øb¯�µLÅ!Àx³b®�À=Q t Q � Q Â u_¸W®�¯bÅ t ÛRu�½@µ�À@½x«²µLÄyµ1®�°�°�ÅdµL¶�«�¬@«�¿y¯b¬�À@³W®�À�À@³�»"®�½@À"À@³�µD¬�µ�®�À@Àx®E¶$�¬LÂÃ"³�µL¿y½xµ+À@«�¶�®y°²°�±y¸�À@³�«�¬�·fµL®y¯b¬
Àx³b®�À.À@³�µ0¬�±d¬�À@µ�· ¬�³b¿yÁ�°�Åf°²¿�¿E�¹º¿y½.À@³�µ-¬�µ�À _ Q �_ �Hf1fV ��´�±TÁb¬�«�¯�Íi®1´&¿�À@À@¿E·JÒÁ�¾�°�®�À�Àx«�¶�µ1À@½$®cÄyµL½x¬x®�°&®�°�Íy¿y½x«²À@³�·�Â
Ð-¯TÀ@³�µ�¿yÀ@³�µL½�³b®y¯bÅN¸�Àx¿�«�Ådµ�¯:À@«²¹º±JÀ@³�µ�®�À�Àx®E¶$d¬�À@³b®�À.®�½xµ�·f«�Àx«²Í:®�À@µDÅT´:±T®�¬�¾&µL¶�«�Ø&¶�ÅdµL¶�«�¬@«�¿y¯ t Ô:Á�µ�½x±TÛRu_¸:®À@¿E¾dÒ{Åd¿�»�¯ÎÀx½x®cÄEµ�½$¬@®y°W¿y¹�Àx³�µ�°�®�À�Àx«�¶�µ1«�¬�¯bµ�µLÅ�µLÅNÂ.Ã"³bµ-¹º¿E°²°�¿�»�«�¯�Í�¬zÀxµ�¾b¬�·JÁb¬�À�Àx³�µ�½xµ+¹º¿E½@µ1´&µ�¾WµL½�¹º¿E½@·fµDÅNë t Úqu«�Ådµ�¯:À@«²¹º±�Àx³�µ�®�À�À$®y¶$d¬-À@³b®�À�®�½xµT®�À�Àx®E¶$³�µLÅ�À@¿=À@³bµf¬@Á�´�·f«²À�ÀxµLÅ�ÅdµL¶�«�¬@«²¿E¯Õ¸�®y¯bÅ t Û�u-µ+ÀxÁ�½@¯IÀ@³bµf®�À�À$®y¶$d¬-À@³b®�À®�½xµ1°²µD¬@¬�Å�µ+Øb¯�µDÅ!À@³b®y¯ÎÀx³�µ1¹º¿y½x·fµ�½�¿y¯bµL¬LÂ
Ã"³�µ�½xµL®EÅdµ�½-¬�³�¿EÁ�°�Å�¯�¿�Àx«�¶�µ�À@³b®�À�Àx³�µL¬@µ�½xµ+À@½x«�µ�Ä�®�°�¬�À@½$®�Àxµ�ÍE«²µD¬�½@µL°²±=¿y¯�Àx³�µ�Àz»�¿�¾�½x¿y¾&µ�½@À@«�µL¬�«�¯:À@½x¿dÅdÁb¶+µDÅ

®�À"Àx³�µ�´WµLÍy«�¯�¯�«�¯�Í�¿�¹#À@³�«�¬�¬@µL¶+À@«�¿y¯ÕÂ

5 6 ¥i¢!¨*�+§���©+¥�¢
ã{¯�Àx³�«�¬�¾b®�¾&µ�½-»�µi³b®cÄyµ�«�¯:À@½x¿�Å�Áb¶+µDÅ�®ÇÅ�®�À$®�´b®E¬�µ1¹º¿E½-¬@µL¶�Á�½@«²Àz±�ÅdµL¶�«�¬@«²¿E¯b¬LÂO �µi³W®cÄyµ�Ådµ�Øb¯�µLÅÉ®�¯�¿y½$ÅdµL½@«�¯�Í
¶�®y°²°�µLÅ(�����Jy #1��y�ºO
byP�Z���n�W�5|��fÀx³b®�À�³W®y¬�´&µ�µL¯�¬�³b¿�»�¯ÎÀx¿Î¶+¿E¯d¹ºµ�½�®f°�®�À@À@«�¶+µi¬�À@½xÁb¶+À@Á�½xµ1À@¿Ç®�¬@µ+À�¿y¹�¶�¿yÁ�¯:Àxµ�½@Ò
·fµL®E¬�Á�½xµL¬�½xµ�°�®�ÀxµLÅJÀ@¿J®�¬�¾&µL¶�«�ØW¶�®�À�À$®y¶$KÂ�Ð-Áb½.®�¾�¾b½@¿:®y¶$³f®�°�¬�¿1Áb¬@µL¬�À@³�µ�Àx½x®EÅd«²À@«�¿y¯b®y°d·T¿E½@µ�Ò�Å�µ+Øb¯�µDÅT½@µL°�®�À@«�¿y¯

ç

249

t ¾b½@µLÄ:«�¿yÁW¬�°�±ÎÁb¬@µLÅ�À@¿Î¬�À@½xÁb¶_ÀxÁ�½xµ�¬�¿y¹ÖÀz»�®y½@µ�®y½x¶$³�«�ÄyµD¬�u+ÂS �µJ¬�À@ÁWÅd«²µDÅ�À@³bµ�·�®�À@³bµ�·�®�Àx«�¶L®�°�¾b½@¿E¾WµL½�Àx«²µD¬�¿�¹�Àx³�«�¬°�®�À�Àx«�¶�µ�®�¯bÅé»�µ�µL¬�Àx®y´�°²«�¬@³�µLÅ À@³bµ�µ+Ód¾�½xµL¬x¬�«�¿y¯b¬f¿y¹-Àx³�µ�Íy½xµL®�À@µD¬zÀ�°�¿�»�µL½�´W¿EÁ�¯bÅY®�¯bÅé¿y¹0Àx³�µ�°�µL®y¬�ÀÇÁ�¾�¾&µ�½
´&¿yÁ�¯bÅ�¹º¿y½"®�¾b®y«²½�¿�¹�¬@µL¶+Áb½@«²Àz±T¬@¿y°�ÁdÀx«²¿E¯b¬�Â
Ã"³�µ�¹º¿y½x·fµ�½�¶�¿y½x½@µD¬�¾&¿y¯WÅ�¬�À@¿iÀ@³�µ0®�ÍEÍy½xµ�ÍE®�À@«�¿y¯f¿�¹NÀz»�¿iÅdµD¶+«�¬�«�¿y¯W¬
»�³�«�°²µ1Àx³�µ�°�®�À�Àxµ�½�¶L®�¾dÀxÁ�½@µD¬�À@³�µL«²½�À@¿�À$®�°Nµ�Æ�¶�«²µL¯b¶+±EÂO+�¿y½xµ�¿�ÄEµ�½D¸E»�µ1³b®cÄyµ1ÍE«²ÄEµ�¯ÇÀx³�µ�´b®E¬�«�¶1¿y¾&µ�½$®�Àx«²¿E¯b¬�À@³b®�À
®�°�°�¿�» À@¿�·�®�¯b®yÍyµJÀ@³�µÇÅb®�Àx®y´b®y¬@µyÂfÃ"³�µD¬�µf´�½xµL®y�«²¯:À@¿=Àz»�¿�¶+°�®y¬x¬�µD¬�ë1Å�®�À$®�´b®E¬�µf¶+¿E¯b¬�À@½xÁb¶_Àx«²¿E¯É¿y¾&µ�½$®�Àx«²¿E¯b¬L¸
®�¯WÅÉÔ:Á�µ�½x±�«²¯bÍ!®�¯WÅ�½@µ�À@½x«²µLÄ�®�°�«²¯d¹º¿E½@·�®�À@«�¿y¯ÕÂ �µi¹º¿EÁ�¯bÅ�À@³b®�À1®y°²°�À@³bµT®y°²ÍE¿y½x«�Àx³�·�¬�Àx³b®�À1«²·f¾�°�µ�·fµL¯EÀ0À@³b¿E¬@µ
¹ºÁ�¯b¶+À@«�¿y¯b®y°²«²À@«�µL¬�®�½xµ-´b®E¬�µDÅÎ¿E¯�°�®�À�À@«�¶+µ0Àx½x®cÄEµ�½$¬@®y°&¬�À@½$®�Àxµ�Íy«�µL¬LÂ
ê�¿E·Tµ0Á�¯�µ�Ód¾�°²¿E½@µDÅÇÀx½@µL¯bÅ�¬�»�«�°²°�®y°�¬@¿T´Wµ0À@³bµ1¬@Á�´5XzµD¶_À�¿y¹�®i¹ºÁdÀ@Á�½xµ�»�¿y½x&Â�Ã"³�µ1Áb¬@µ1¿�¹#·JÁ�°²À@«�¾�°²µ�¶�½@«²À@µL½@«�®

À@¿T½$®�¯��¬@µL¶+Áb½@«²Àz±ÇÅdµL¶�«�¬@«�¿y¯b¬�«�¬�¿E¯�µ0®y·f¿y¯�ÍiÀ@³�µ1·f¿E¬�À"¶$³W®�°�°²µL¯�Íy«�¯�Í�¾�½x¿y´b°²µL·f¬�Àx³b®�À"»�¿EÁ�°�ÅÇµ�¯b½@«�¶$³ÇÀx³�µ-¾b½@¿yÒ
¾&¿E¬@µLÅÇ·fµ�À@³�¿dÅNÂ
ã{¯=®yÅ�Åd«²À@«�¿y¯�¸�®y¯!®y¾�¾�½x¿y¾�½x«�®�À@µ�°�®�¯bÍyÁb®yÍyµ�Àx³b®�À"¾&µ�½x·T«²Àx¬�Àx¿J³b®y¯bÅd°�µ0Å�µL¶+«�¬@«²¿E¯!¬@¾WµD¶+«²ØW¶�®�À@«�¿y¯
Å�®�Àx®�´W®y¬@µL¬�´�±Î«�·f¾�°�µ�·fµ�¯:À@«�¯�ÍÎÀ@³�µi®y°²ÍE¿y½x«�Àx³�·�¬�Ådµ�Øb¯�µLÅ�«�¯�Àx³�«�¬�¾b®�¾&µ�½�»�¿EÁ�°�Å�´&µi«�¯:À@µL½@µD¬zÀx«²¯�ÍfÀx¿ÎÅdµLÄyµ�°�¿y¾�Â
��«²¯W®�°�°²±E¸
À@³�µ�¶$³b®y¯�ÍyµD¬J¶�¿y¯d¹ºµL½@µDÅUÀ@¿IÀ@³�µ=°�®�À�Àx«�¶�µ=¬�À@½xÁb¶+À@Á�½xµÎ´�±UÀ@³bµ!Áb¬@µ=¿�¹-®I¬�¾&µL¶�«�®y°"¶�°�®E¬@¬i¿�¹�½xµ�°�®�Àx«²¿E¯b¬L¸
¶�®y°²°�µLÅ�½@µLÍyÁ�°�®�½�½xµ�°�®�Àx«²¿E¯b¬L¸bÀx³b®�À0³b®cÄyµ�´&µ�µL¯É¾�½x¿�ÄyµDÅ=À@¿!µ+Ód³�«�´�«�À0·�®�¯�±�Áb¬�µ�¹ºÁ�°�¾�½x¿y¾&µ�½@À@«�µL¬�«�¯�Àx³�µT¬@¿�¹ÖÀz»"®�½xµ
µ�¯bÍy«�¯�µ�½x«²¯bÍT¶�¿y¯:À@µ�Ó:À�Ù�ÚyÚ+ßGÂ

��� %��"¤6��¢=¨,���
Ù�Ú+ß � Â�ê:Àx¿y¯�µL´�Á�·fµ�½D¸�Ê�Â � ½x¿yÍEµ�¯Õ¸dÊ�Â��bµ�½x«²¯bÍb¸���ª�«�¬@Z+�®�¯W®�ÍyµL·fµ�¯:À � Á�«�Ådµ0¹º¿y½"ã{¯d¹º¿E½@·�®�À@«�¿y¯!Ã#µL¶$³b¯�¿y°�¿yÍE±
ê�±d¬�À@µL·f¬L¸ �1Ñ�®�À@«�¿y¯b®y°Nã{¯b¬�À@«²À@ÁdÀxµ1¹º¿y½�ê:À$®�¯bÅ�®y½xÅb¬�®�¯bÅ=Ã�µD¶$³�¯�¿E°²¿EÍy±y¸�ê�¾&µL¶�«�®y°���Á�´b°²«�¶�®�À@«�¿y¯�� = =�Ò�ÜH=�Â

Ù�Ûcß��@Ê � Á�«�ÅdµIÀ@¿8ª�«�¬@{+É®�¯b®yÍyµ�·fµL¯EÀ=®�¯bÅ êd®�¹ºµ�ÍEÁb®�½$Å ê�µ�°�µL¶+À@«�¿y¯Y¹º¿E½!ãzÃ)ê�±d¬�À@µ�·�¬L¸ � � ¿�ÄyµL½@¯b·TµL¯:ÀÇ¿�¹
á�®y¯b®yÅ�®b¸bá�¿y·f·iÁ�¯b«�¶L®�À@«�¿y¯W¬�ê�µL¶�Á�½@«²Àz±ZY.¬�Àx®y´�°�«�¬@³�·fµ�¯:ÀL¸	�:®�¯�Áb®y½@±�Ú$� �Eæ�Â

Ù Ü�ß���ã{¯d¹º¿y½x·�®�Àx«²¿E¯Éê�µL¶�Á�½@«²Àz±�ª�«�¬��Ê-¬@¬@µL¬x¬@·TµL¯:ÀLë
��½$®y¶+À@«�¶+µD¬�¿y¹��ÕµD®yÅd«�¯�Í�Ð-½xÍE®y¯�«�ÏL®�Àx«²¿E¯b¬L¸ ���¯b«�ÀxµLÅUê:Àx®�À@µL¬
� µL¯�µ�½$®�°NÊ�¶�¶�¿yÁ�¯:Àx«²¯�ÍÎÐ�ÆÇ¶+µE¸ � Ê�Ð���Ê�ãB+ X�Ò = =�Ò�ÜEÜ�¸�Ñ�¿�ÄEµ�·i´&µ�½1Ú$� � �bÂ

Ù Ý�ß���ã{¯d¹º¿y½x·�®�Àx«²¿E¯ ê�µL¶�Á�½x«�Àz±�+�®y¯b®�ÍEµ�·fµ�¯:ÀLë��ÕµL®y½@¯b«²¯�Í�¹º½@¿E·��ÕµL®EÅd«�¯�ÍUÐ-½xÍE®y¯�«²ÏD®�Àx«²¿E¯b¬�¸ ���¯b«�ÀxµLÅYê:Àx®�À@µL¬
� µL¯�µ�½$®�°NÊ�¶�¶�¿yÁ�¯:Àx«²¯�ÍÎÐ�ÆÇ¶+µE¸ � Ê�Ð���Ê�ãB+ X�Ò ����Ò�æ���¸:+�®c±�Ú$� ���bÂ

Ù�Þcß�+�¿E³b®�·fµDÅéè-®�·�Åd«G¸
�y«�³	��� ad µ��1½x«�¶$³���� ad µE¸L+�®�³b·T¿EÁbÅYÃ�¿EÁ�¯b¬@« ¸�Ñ�¿yÁ�½xµLÅbÅd«²¯bµ�×�¿EÁbÅd½x«²Í:®���Ñ�µ+Àxª�ÊH+ÈëÊËÑ�¿�ÄyµL°O+�µ+Àx³�¿dÅ�¹º¿y½iÑ�µ+Àz»�¿y½x�ê�µD¶+Á�½x«�Àz±�ª�«�¬�(+�®�¯b®yÍyµL·TµL¯:ÀL¸ �ÇÑ�¿y½$Åd«�¶ I¿E½@d¬@³�¿y¾U¿y¯äê�µD¶+Á�½xµ�ãzÃ
ê�±d¬�À@µL·f¬ t Ñ�¿E½xÅbêdµL¶nu+¸WÛ =H=yÜbÂ

Ù æ�ß�+�¿E³b®�·fµDÅäè�®y·fÅ�« ¸.Ñ�¿yÁ�½xµLÅbÅd«²¯bµ=×�¿yÁWÅd½@«�ÍE®��{Ê�°²ÍEµ�´�½$®�«�¶Îê�¾&µL¶�«�ØW¶L®�Àx«²¿E¯8¿�¹0Ñ�µ+Àz»�¿y½xÈê�µL¶�Á�½@«²Àz±Èª�«�¬�
+�®y¯b®�ÍEµ�·fµ�¯:ÀD¸ �C��«²½$¬�À#Ê�á*+ I¿E½@d¬@³�¿y¾0¿y¯��b¿y½x·�®�°�+�µ�À@³�¿dÅ�¬�«²¯iêdµL¶+Áb½@«²Àz±>Y.¯�Íy«�¯�µ�µL½@«�¯�ÍW¸ U®y¬@³�«�¯�Í�Àx¿y¯
XJÂ�á-Â�¸WÛ = =yÜbÂ

ÙsçDß�+�¿E³b®�·fµDÅ�è�®y·fÅ�« ¸ÕÑ�¿yÁ�½xµLÅ�Å�«²¯�µf×�¿yÁbÅ�½@«�ÍE®��@Ê�¯�Ê�´b¬�À@½$®y¶+À1ª�µLÅdÁb¶+À@«�¿y¯(+�¿dÅdµ�°�¹º¿y½�á�¿y·f¾�Á�À@µ�½�Ñ�µ+À�Ò
»�¿y½x�ê�µL¶�Á�½@«²Àz±Éª�«�¬@��_¸���½x¿d¶+µ�µDÅd«�¯�ÍE¬1¿y¹.À@³bµ=Ú$��Àx³IãB��ã��¼ã{¯EÀxµ�½x¯b®�Àx«²¿E¯b®�°�ã{¯d¹º¿E½@·�®�À@«�¿y¯�êdµL¶+Áb½@«²Àz±�á�¿y¯�Ò
¹ºµL½@µL¯b¶+µE¸bÛ = =yÝJãB��ã��� �¿y½x°�Å�á�¿y·f¾�ÁdÀx«²¯bÍ!á�¿y¯d¹ºµL½@µL¯b¶+µE¸�Ã#¿yÁb°²¿EÁb¬�µE¸���½$®�¯b¶�µy¸�Ê�Á�ÍyÁb¬�À-Û =H=�ÝWÂ

Ù ��ß�ÑiÂ&×�¿yÁWÅd½@«�ÍE®b¸WÊiÂb+�«²°�« ¸Nª�ÂV+�«²À�Àxµ�½x·fµ�«�½L¸	�xê�µ�·�®�¯:Àx«�¶+Ò�×"®y¬@µLÅ�ê�¿y¹ÖÀz»�®y½@µJª�µ+Àx½@«�µ�Ä�®�°#À@¿�ê�Á�¾�¾&¿y½@À0ª�®�¾�«�Å
��½x¿�Àx¿�Àz±�¾�«�¯�Í��_¸�ê:À@½xÁb¶+À@Á�½xµLÅ���½x¿yÍy½$®�·f·f«�¯�Íb¸KÚLÜ=¸ ¾�¾ÕÂÕÚ$= ��ÒxÚcÛEç�¸WÚ>�H�EÛdÂ

Ù ��ß�ÑiÂb×�¿yÁbÅd½x«�ÍE®�¸5��Â�Y�°�°�¿yÁ�·f«G¸bÊ�Âe+�«²°�«G¸��xÐ-¯!À@³bµ���®�À@À@«�¶+µ�¿y¹
ê�¾&µL¶�«�Ø&¶�®�Àx«²¿E¯b¬Lë�Ê�¾�¾�°�«�¶L®�Àx«²¿E¯b¬"À@¿Ç®�ê�¾&µL¶�«�Ò
ØW¶L®�Àx«²¿E¯�+�µ�À@³�¿dÅd¿E°²¿EÍy±E¸ ���b¿y½x·�®�°NÊ�¬@¾WµD¶_À$¬�¿�¹.á�¿y·f¾�ÁdÀx«²¯bÍb¸bê�¾�½x«�¯�ÍyµL½�Ò�
µ�½x°�®yÍb¸&Ú>�H��ÚyÂ

Ù�Ú>=�ß��WÂ X-µL¬@³b®�½x¯b®y«�¬L¸DÊiÂ!�:®�Áb¿yÁb®b¸g��Â�+�«�°²«G¸�Ñ�Âc×�¿EÁbÅd½x«²Í:®�¸cÊ�Âq+�«�°²«G¸"��Ã"³bµ"á�¿y¯WXzÁ�ÍE®�À@µ#�1µL½@¯�µL°bë�Ê�¯TÐ-¾&µ�½$®�À@¿E½
¹º¿E½
��½x¿yÍy½$®�· á�¿y¯b¬�À@½xÁb¶_Àx«²¿E¯$�_¸ I¿E½@d¬@³�¿y¾�¿y¯Éá�¿E¯b¬zÀx½@ÁW¶_À@«�Äyµ�Ê�°²ÍE¿y½x«�Àx³�·�¬�ë�Àx³�µ�½x¿y°�µ1¿�¹�ª�µ�°�®�Àx«²¿E¯b¬�«�¯
¾�½x¿yÍE½x®y· X�µLÄyµ�°�¿y¾b·TµL¯:ÀL¸NÚ>�H� =bÂ

Ù�ÚyÚ+ß�ÊiÂ��E®y¿yÁb®b¸�Ê�Âe+�«²°�«G¸WÑ�Â&×�¿yÁbÅd½x«�ÍE®�¸	�WÂ ��X�Á�½x«�µ�ÁdÓN¸%�@ª�µLÍyÁ�°�®�½x«�Àz±�¿y¹
½@µL°�®�À@«�¿y¯b¬Lë�Ê +�µD®y¬@Á�½@µ1¿y¹&�¯�«²¹º¿y½@Ò
·f«²Àz±y¸ �1Ã"³�µL¿y½xµ+À@«�¶�®y°�á�¿y·f¾�ÁdÀxµ�½�êd¶�«²µL¯b¶+µE¸&ç �b¸d¾�¾ÕÂbÜ:Û�Ü�Ò{ÜyÜH��¸WÚ>� �bÚyÂ

�

250

Formal Verification of a Timed Non-Repudiation
Protocol

Kun Wei and James Heather

Department of Computing, University of Surrey, Guildford, Surrey GU2 7XH, UK
Email: {k.wei,j.heather}@surrey.ac.uk

Abstract. Fairness of non-repudiation is naturally expressed as a live-
ness specification. We formalize this idea by using the process algebra
CSP to analyze the well-known Zhou-Gollmann protocol. We here model
and verify a variant of the ZG protocol that includes a deadline (timestamp)
for completion of the protocol, after which an agent can no longer initiate
the recovery protocol with the TTP to get hold of the non-repudiation
evidence. The verification itself is performed by the FDR model-checker.

1 Introduction

Security protocols are often complex because they represent concurrent sys-
tems in which various entities can run independently and simultaneously. Con-
sequently, constructing proofs of correctness by hand can be arduous and error-
prone.

Over the past decade, formal methods have been remarkably successful in
their application to the analysis of security protocols. For example, the combin-
ation of CSP and FDR has proved to be an excellent tool for modelling and
verifying safety properties such as authentication and confidentiality. However,
non-repudiation properties have not yet been mastered to the same degree since
they must often be expressed as liveness properties and the vast bulk of work to
date has been concerned only with safety properties.

Schneider shows in [Sch98] how to extend the CSP approach to analyze non-
repudiation protocols. His proofs of correctness, based on the traces and the
stable failures models of CSP as well as on rank functions, are constructed by
hand. For safety properties, one usually assumes that one honest party wishes
to communicate with another honest party, and one asks whether a dishon-
est intruder can disrupt the communications so as to effect breach of security.
When considering non-repudiation, however, we are concerned with protecting
one honest party against possible cheating by his or her interlocutor. Thus a
non-repudiation protocol enables parties such as a sender Alice and a respon-
der Bob to send and receive messages, and provides them with evidence so that
neither of them can plausibly deny having sent or received these messages when
they later resort to a judge for resolving a dispute.

There are two basic types of non-repudiation: Non-repudiation of Origin
(NRO) provides Bob with evidence of origin that unambiguously shows that

251

Alice has previously sent a particular message, and Non-repudiation of Receipt
(NRR) provides Alice with evidence of receipt that unambiguously shows that
Bob has received the message. Unforgeable digital signatures are usually the
mechanism by which NRO and NRR can be obtained.

However, a major problem often arises: there may come a point during the
run at which either Alice or Bob reaches an advantageous position; for example,
Alice may have collected all the evidence she needs before Bob has collected his,
and Alice may then deliberately abandon the protocol to keep her advantageous
position. Usually we will want to ensure that the protocol is fair.

• Fairness guarantees that neither Alice nor Bob can reach a point where he
or she has obtained non-repudiation evidence, but where the other party is
prevented from retrieving any required evidence that has not already been
obtained.

Obviously, fairness is the most difficult property to achieve in the design of
such protocols, and several different solutions have been proposed. Two kinds of
approach are discussed in [KMZ02], classified according to whether or not the
protocol uses a trusted third party (TTP). The first kind of approach providing
fairness in exchange protocols is based on either a gradual exchange [Ted83] or
probabilistic protocol [MR99]. Without the involvement of a TTP, a sender Alice
gradually releases messages to a responder Bob over many rounds of a protocol,
with the number of rounds chosen by Alice and unknown to Bob. Bob is supposed
to respond for every message, and any failure to respond may cause Alice to
stop the protocol. However, such protocols require that all parties have the same
computational power, and a large number of messages must be exchanged. The
other kind of approach uses a TTP to handle some of the evidence. Many fair
non-repudiation protocols use the TTP as a delivery authority to establish and
transmit some key evidence. The efficiency of such protocols depends on how
much a TTP is involved in the communication, since heavy involvement of the
TTP may become a bottleneck of communication and computation.

In this paper, we will verify fairness of the timed Zhou-Gollmann protocol
with an off-line TTP [ZG97]—that is, a TTP that is involved in the protocol
only when parties are in dispute. To model such a protocol, we build a model
of all of the entities involved in the network: a spy, a TTP, an honest party and
so on. The factor of time is also considered in such a protocol; for example, it is
reasonable that the responder should know when the evidence is available from
the TTP, so that it does not have to poll the server at regular intervals, causing
unnecessary network traffic.

In the CSP model, fairness is naturally described as a liveness property. It
is impossible for fairness to guarantee that both Alice and Bob can collect the
required evidence simultaneously, since we are dealing with an asynchronous
network, but it does guarantee that either of them must be able to access the
evidence as long as the other party has obtained it.

Fairness in the Zhou-Gollman protocol relies on the assumption that the
communication channels between a TTP and all parties are resilient. A resilient
channel may delay a message for a finite, unknown amount of time, but will

252

eventually deliver it to its destination. Communication between parties, however,
goes across unreliable channels that allow a message to be lost, delayed, or even
delivered to the wrong destination.

The paper is organised as follows: the CSP notation is briefly introduced,
and the timed Zhou-Gollmann protocol is described. We give details of the CSP
modelling for every entity involved in a run, and its associated FDR encoding.
Finally, we discuss the implications of the successful verification, and talk about
future work.

2 CSP notation

CSP is an event-orientated language for describing concurrent systems and their
interactions. A security protocol is a concurrent system in which a series of
messages are exchanged among the various parties involved. CSP is therefore
well suited to the modelling and analysis of security protocols.

In CSP, a system can be considered as a process that might be hierarchically
composed of many smaller processes. An individual process can be combined
with events or other processes by operators such as prefixing, choice, parallel
composition, and so on. For safety properties, the traces model of CSP is enough.
In this paper, we use the stable failures model of CSP to verify fairness in the ZG
protocol. We will briefly illustrate the CSP language and the semantic models;
for a fuller introduction, the reader is referred to [Ros98,?].

Stop is a stable deadlocked process that never performs any events. The
process c → P behaves like P after performing the event c. A event like c may
be compounded; for example, one often used patten of events is c.i .j .m consisting
of a channel c, a sender i , a receiver j and a message m.

The external choice P1 2 P2 may behave either like P1 or like P2, depending
on what events its environment initially offers it. The traces of internal choice
P1 u P2 are the same as those of P1 2 P2, but the choice in this case is non-
deterministic.

The process P1 A‖B P2 is the process where all events in the intersection
of A and B must be synchronized, and other events within A and B can be
performed independently by P1 and P2 respectively. An interleaving P1 ||| P2

executes each part entirely independently and is equivalent to P1 ‖
∅

P2.

The process P \ A will pass through the same events as P, but events in the
set A become be invisible. The renamed process P [a ← b] means that the event
a is completely replaced by b in the process P . In addition, processes may also
be described recursively whenever such descriptions are well defined.

A trace is defined to be a sequence of finite events. A refusal set is a set of
events from which a process can fail to accept anything no matter how long it
is offered; refusals(P/t) is the set of P ’s refusals after the trace t ; then (t ,X) is
a failure in which X denotes refusals(P/t). If the trace t can make no internal
progress, this failure is called a stable failure.

Liveness is concerned with behaviour that a process is guaranteed to make
available, and can be inferred from stable failures; for example, if, for a fixed

253

trace t , we have a 6∈ X for all stable failures of P of the form (t ,X), then a must
be available after P has performed t .

Verification in FDR is done by means of determining whether one process
refines another. In the stable failures model, this equates to checking whether
the traces and failures of one process are subsets of the traces and failures of the
other:

P vF Q ≡ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

The properties we are considering are preserved by refinement; that is, if P meets
the properties we are verifying and Q refines P , then Q also meets them.

3 The timed Zhou-Gollmann protocol

Zhou and Gollmann present in [ZG96] a basic fair non-repudiation protocol using
a lightweight TTP, which supports non-repudiation of origin and non-repudiation
of receipt as well as fairness. They then propose an improved protocol in [ZG97],
with an off-line TTP that is more efficient in environments in which the two
parties usually play fair in a protocol run, and want to resort to the TTP only
when they are in dispute. In addition, it is possible (and, indeed, desirable) to
include a timeout in the protocol, so that the responder will know at what point
he will be able to recover evidence from the TTP.

The main idea of all Zhou-Gollmann protocols is that a sender Alice delivers
the ciphertext and the message key to Bob separately; the ciphertext is sent from
the originator Alice to the recipient Bob, and Alice then sends the message key
encrypted with her secret key to Bob or the TTP. Finally Alice and Bob may get
the evidence or confirmation messages from the TTP to establish the required
non-repudiation. The notation below is used in the protocol description.

• M : message to be sent from A to B .
• K : symmetric key defined by A.
• C : commitment (ciphertext) for message M encrypted with K .
• L: a unique label used to identify a particular protocol run.
• fNRO , fNRR, fEOO , fEOR, fSUB , fCON : flags indicating the purpose of a signed

message.
• T : the deadline by which the TTP must have been asked to make the evid-

ence available to the public.
• si : an asymmetric key used to generate i ’s digital signature.

After cutting down the plaintext part, the simplified protocol can be divided
into a main protocol and a recovery protocol. In the normal case, the sender Alice
and the responder Bob will exchange messages and non-repudiation evidence

254

directly, described as follows:

1. A → B : sA(fNRO ,B ,L,T ,C)
2. B → A : sB (fNRR,A,L,T ,C)
3. A → B : sA(fEOO ,B ,L,K)
4. B → A : sB (fEOR,A,L,K)

And if Alice does not get message 4 from Bob after sending message 3, she then
launches the recovery protocol to get the associated evidence from the TTP.

1. A → TTP : sA(fSUB ,B ,L,T ,K)
2. B ↔ TTP : sT (fCON ,A,B ,L,T ,K)
3. A ↔ TTP : sT (fCON ,A,B ,L,T ,K)

We briefly examine the protocol step by step to see how it works. Firstly,
Alice composes a message including a flag, a unique label L, the receiver’s name
B and a ciphertext C = K (M), along with a chosen deadline T (which is to
be interpreted according to the TTP’s clock); Alice then signs the message with
her private key and sends it to Bob. Secondly, Bob collects the message as one
piece of evidence in which the label L identifies the run of the protocol, and then
Bob responds with his signed message to provide A with evidence that B really
has received C in this run. Bob can also refuse to respond to Alice if he is not
satisfied with the deadline T .

After she has got a response, Alice directly sends the encrypted message
key K to Bob, and Bob then sends the associated evidence back again. The
protocol is now successfully completed if no dispute occurs; however, if Alice
does not get her evidence at step 3 of the main protocol, she can launch the
recovery protocol and submit a message to the TTP to retrieve the evidence.
The TTP will check the deadline T first to determine whether or not to accept
the request. If the request comes in before the deadline, the TTP will generate
the evidence and make it available to Alice and Bob. The advantage of this
deadline is that if Bob does not receive message 3 from Alice, he does not have
to poll the TTP indefinitely to see if Alice has initiated the recovery protocol
and thus made the key and the evidence available to him. He can simply wait
until time T and then poll the TTP. If Alice has already initiated the recovery
protocol then he will be able to get the key K and the non-repudiation evidence;
if she has not done so then he will not be able to get the key or the evidence, but
he will know that Alice cannot get the non-repudiation evidence either, since the
deadline has now passed.

The guarantee of fairness of such a protocol comes from an assumption that
the channels between TTP and the parties are resilient; that is, messages may
be delayed, but will be eventually arrive in a finite amount of time. However,
the channels between Alice and Bob can be unreliable; that is, the medium may
delay, lose or misdirect messages.

255

Although Bob in the execution of the protocol can be temporarily in an
advantageous position, Alice and Bob should be in a fair position at the end of
the protocol. The introduction of the deadline T does in principle compromise
the fairness of the protocol; for instance, Alice may not get the evidence from
Bob at step 4 in the main protocol, but the submission of Alice’s request to
initiate the recovery protocol may be so severely delayed that the deadline has
passed by the time it arrives and the TTP refuses to respond to it. Alice will in
this instance not get all the required evidence, even though Bob has obtained
his. As suggested in [ZG97], Alice has to choose T to be large enough that this
issue will not arise in practice.

4 CSP modelling

Fairness says that if either A or B has obtained full non-repudiation evidence,
then the other party cannot be prevented indefinitely from retrieving the cor-
responding evidence. We cannot assert for verifying fairness that once A has
obtained the evidence then B must have obtained the evidence as well, because
there may be a delay between A’s reception and B’s reception. However, we can
ensure that the evidence must be available to B, or that a specific action must
be about to happen to enable B to get the evidence in the future.

To check a protocol like this one with CSP, we have to build models of the
parties, the TTP and the medium and see how they can interfere with each
other. Since the protocol is used to protect parties that do not trust each other,
we do not need to model a special intruder party. However, fairness is only
guaranteed to a party who runs in accordance with the protocol; for example, if
A releases the symmetric key K before B responds, A will certainly place herself
in a disadvantageous position.

In our model, we directly formalize the outcome of the TTP’s test for whether
the deadline has passed, without modelling specific values of T ; in other words,
we model the deadline T as a boolean variable. When the TTP judges whether T
has expired, the outcome will be either true or false, and the TTP will accordingly
either accept or refuse the request. The deadline test can be modelled within the
TTP using internal choice.

4.1 Date types

The above description of the protocol indicates that the message space contains
flags, labels, various keys, names of parties, text messages, the deadline and
combinations of these. Encryption, as is typical in these situations, is treated
symbolically.

Like other model checkers, FDR can only verify systems with a reasonable
number of states. Therefore, we assume that only two parties are communicating,
and we restrict the number of possible messages of each data type.

datatype fact = Sq.Seq(fact) |

256

SK.(fact,fact)| Encrypt.(fact,fact) |
Alice | Bob | TTP |
pkA | pkB | pkT | skA | skB | skT |
fNRO | fNRR | fEOO | fEOR | fSUB | fCON |
La | Lb | Ka | Kb | T | AtoB | BtoA

where the type fact is a collection of all constants, and it can be used to represent
any message appearing in the protocol.

We also define some sets, functions and definitions to represent legitimate
messages, symbolic encryption and mapping of labels, keys and messages with
the identities of parties.

We assume that no party is able to forge other parties’ digital signatures;
that is, parties never release their private keys. In our scenario, we will treat A
as a dishonest party, or a spy, and B as an honest party who always performs
in accordance with the protocol; A and B may behave either as a sender or as a
responder. A and B may run the protocol many times, and A may make use of
the information deduced from B’s messages to initiate a new run.

4.2 Defining honest parties

We now represent the behaviour of an honest party in the timed ZG protocol.
The protocol specification assumes that the channel between parties is unreliable,
whereas the channel between the TTP and parties is resilient. We define, as
follows, the transmission of messages using CSP channels.

channel trans,rec:agents.agents.Umessages
channel send,get:allagents.allagents.Rmessages
channel evidence:agents.messages

where trans and rec are for unreliable channels, and send and get are for
resilient channels; the channel evidence represents announcement of parties’
obtained evidence; Umessages and Rmessages include messages in unreliable
channels and resilient channels respectively.

A party can act either as a sender or as a responder; once its labels have run
out, it acts only as a responder.

User(id,ls) = ls!=<> & Send(id,ls)
[] Resp(id,ls)

When acting as a sender, the party chooses the facts from its own knowledge
to construct and transmit the messages in turn. In order to keep the size of all
parties’ message spaces fairly small, the parties A and B have only one value for
labels, message keys and plaintext, but A may get some of information from B
such as the message key Kb during the execution of the protocol and use it in
later runs.

We integrate all behaviour of a party in the main protocol and the recovery
protocol into one process. After A sends the message to B at step 3 in the main

257

protocol, she may wait for a response from B and finish the protocol, or initiate
the recovery protocol to retrieve the evidence from the TTP.

Send(id,ls) = |~|a:diff(agents,{id})@ (|~|l:label(id)@
(|~|k:symkeys(id)@ (|~|m:text(id)@

trans.id.a.ske(sk(id),Sq.<fNRO,a,l,T,encrypt(k,m)>) ->
rec.id.a.ske(sk(a),Sq.<fNRR,id,l,T,encrypt(k,m)>) ->
trans.id.a.ske(sk(id),Sq.<fEOO,a,l,k>) ->

((rec.id.a.ske(sk(a),Sq.<fEOR,id,l,k>) -> User(id,tail(ls)))
[]
(send.id.TTP.ske(sk(id),Sq.<fSUB,a,l,T,k>) ->
get.id.TTP.ske(skT,Sq.<fCON,id,a,l,T,k>)->User(id,tail(ls)))))))

The responder process performs the protocol from the opposite perspective.
Note that we assume the responder can refuse to accept messages including its
own labels, since the labels are usually generated associated with the plaintexts
and the message keys; therefore, it is reasonable to suppose that the receiver is
vigilant enough to spot such abuses.

Resp(id,ls) = []a:diff(agents,{id})@ ([]l:diff(labels,label(id))
@([]k:symmetrickey@([]m:plaintext@

rec.id.a.ske(sk(a),Sq.<fNRO,id,l,T,encrypt(k,m)>)->
trans.id.a.ske(sk(id),Sq.<fNRR,a,l,T,encrypt(k,m)>)->

((rec.id.a.ske(sk(a),Sq.<fEOO,id,l,k>) ->
trans.id.a.ske(sk(id),Sq.<fEOR,a,l,k>)-> User(id,ls))
[]
(get.id.TTP.ske(skT,Sq.<fCON,a,id,l,T,k>) ->User(id,ls))))))

The responder does accept any commitment because it does not know what
the commitment means until the end of the run. In addition, A may not send
message 3 to B at all; B must thus be able to check whether the evidence is
available from the TTP.

For the purpose of verification, we define a process Show(id) to show the
evidence that a party has obtained. This process may show the evidence to the
network as long as the relevant party has got the evidence. Finally, a well-behaved
party is described as:

Party(id,ls) = User(id,ls) [|{|rec,get|}|] Show(id)

4.3 Creating a spy

In the modelling of the non-repudiation protocol, we do not define a special
party, a spy, as different from the legitimate parties. On the contrary, we assume
that one of two communicating parties is a spy who may be able to deduce some-
thing of value from the messages it has received. The non-repudiation protocol
is supposed to provide fairness for an honest party even if the other party is
a spy. Our spy model roughly corresponds to Roscoe’s lazy spy model [Ros98],

258

but slightly modified to suit our case. We here represent some key parts of the
model; more details may be found in [Ros98].

A spy first has a set of deductive rules; for example, if it knows all members
of a sequence, then it can build the sequence. A deduction is a pair (X,f) where
X is a finite set of facts and f is an individual fact. Thus, anyone in possession of
X can construct f as well. In our spy model, three types of deduction are built
based on constructing and extracting sequences, symmetric-key encryption and
public-key encryption.

The spy has an initial basic knowledge, such as public keys, labels and so
on, and can further close up such basic facts by means of the Close function
to construct a number of legitimate messages before the start of the protocol.
The full initial knowledge of the spy is constructed by closing up the initial basic
knowledge under deduction rules. In this case we chose Alice as a spy, what she
initially knows may then be represented as follows:

IK= {Alice,Bob,TTP,pkA,pkB,pkT,skA,T,
fNRO,fNRR,fEOO,fEOR,fSUB,fCON,La,Ka,AtoB}

Known = Close(IK)

In order to restrict the state space to a manageable size, we define a new
set of deductions whose conclusion is something that the spy does not know
yet, but that it will learn. In other words, the spy can never deduce anything
it already knows. Additionally, to reduce the size of state space further and to
ensure efficient compilation by the model checker, we define a parallel network
which has one process for every fact inside the spy’s LearnableFacts.

ignorantof(f) = member(f, messages)& learn.f -> knows(f)
[] infer?t:{(X,f’)|(X,f’)<-Deductions,f==f’}->knows(f)

knows(f) = member(f,messages)&say.f -> knows(f)
[] member(f,messages)&learn.f->knows(f)
[] infer?t:{(X,f’)|(X,f’)<-Deductions,member(f,X)}->knows(f)

where Deductions is a collection of all possible deductive rules only for learnable
facts.

Finally, the spy is then constructed by putting all these processes in parallel,
hiding the inferences, and applying the chase operator1.

Spy = chase((||f:LearnableFacts@[AlphaL(f)]ignorantof(f))
\{|infer|}) ||| SayKnown

where SayKnown makes the spy say or learn legitimate messages in its Known
facts.

To make the spy useful in a real network, we rename it so that it may commu-
nicate with other parties. Also, we provide the spy with the capability to show
its evidence.
1 The chase operator is designed specifically for this purpose; the reader is invited to

consult [For97] for more information.

259

RenSpy(id) =((Spy[[say.f<-trans.a.b.f,learn.f<-rec.a.b.f|
a.b.f<-Ucomm,a==id]]

[[say.f<-send.a.b.f,learn.f<-get.a.b.f|
a.b.f<-Rcomm,a==id]])

[|{|rec,get|}|] Show(id))

where Ucomm and Rcomm are used to reduce unnecessary states; for example,
Rcomm may restrict that one of agents must be the TTP and f must be the
messages circulating in the resilient channel.

4.4 TTP and Medium

The trusted third party is supposed to act in accordance with its role in the
protocol; that is, the TTP accepts signed messages, generates new evidence and
makes them available to associated parties. The TTP also refuses to respond the
parties whenever the deadline T has expired. The test for expiry of the deadline
T is modelled by an internal choice in CSP. It is therefore modelled as follows:

Tnot(m)=send?a:agents!TTP!m->(Tnot(m) |~| Tknows(Gen(m)))
Tknows(S)=get?m:S->Tknows(S)[]idle-> Tknows(S)

TrustTP = (|||m:mess_SUB@ Tnot(m))

where, obviously, the TTP will not confirm the party’s submission after T in
the Tnot(m); if the TTP accepts it, the message will go into the process Tknows
where the evidence will be available to both parties. Note that we implement the
possibility of delays in the resilient channels by introducing an action idle in the
Tknows(S). When the TTP receives a message, it then can hold the message in
a finite amount of time, but will send it out eventually. The TTP only accepts
messages with the label fSUB . Also, we define a function Gen(m) to transform
submitted messages to confirmed messages for involved parties.

The medium provides two types of message delivery service: one is an unre-
liable channel where messages might be lost, delayed and sent to any address;
another one is a resilient channel where messages might be delayed, but will
eventually arrive, and also be guaranteed not to arrive at the wrong address.
Since the resilient channel has been modelled in the definition of the TTP, the
model of the medium here is defined only for the unreliable channel:

Hears(m) = member(m,Umessages)&
trans?a?b:diff(agents,{a})!m -> Middle(m)

Middle(m) = idle -> Middle(m)
[]lost -> Hears(m)
[]rec?a?b:diff(agents,{a})!m -> Hears(m)

Medium = |||m:Umessages@Hears(m)

The medium is modelled exactly in terms of its description in the protocol.
We define two channels idle and lost to represent messages being delayed or
lost.

260

4.5 Specification and Verification

A

TTP

B

MEDIUM

trans

rec

send

get

resilient channel

unreliable channel

evidence.A evidence.B

trans

rec

Fig. 1. Network for a non-repudiation protocol

The two parties and the TTP transmit messages via unreliable channels and
resilient channels in the medium as shown in Figure 1. It would be desirable to
allow more potential protocol participants, since the protocol is expected to be
correct even in the presence of other parties of the network. However, a bigger
network would quickly give rise to state space explosion.

The entire network is the parallel combination of these components:

Network = ((RenSpy(Alice) ||| Party(Bob,<Lb>)
[|{|send,get|}|] TrustTP)

[|{|trans,rec|}|] Medium

We can then test for attacks on the protocol by checking whether this network
satisfies a specification encapsulating the fairness property.

Fairness is naturally specified by Schneider [Sch98] in the stable failures model
of CSP. The essence of his idea is that if one of the two parties has obtained
full evidence, then the other party either is already in possession of it or is able
to access it. We have slightly changed the above specification to meet the timed
Zhou-Gollmann non-repudiation protocol, and we give here two specifications
according to the different role of B.

First, we deal with the case where B acts as a responder. In the normal case,
if A has got evidence of receipt then B must be in a position to obtain evidence

261

of origin.

FAIR1(tr ,X) =̂ evidence.A.sB (fEOR,A,La,T ,Ka) in tr
∧ evidence.A.sB (fNRR,A,La,C) in tr
⇒
(evidence.B .sA(fNRO ,B ,La,Ka) 6∈ X
∧ evidence.B .sA(fEOO ,B ,La,T ,Ka) 6∈ X)

When a dispute arises, the specification is defined as follows:

FAIR2(tr ,X) =̂ evidence.A.sT (fCON ,A,B ,La,T ,Ka) in tr
∧ evidence.A.sB (fNRR,A,La,T ,C) in tr
⇒
get .B .TTP .sT (fCON ,A,B ,La,T ,Ka) 6∈ X ∨
(evidence.B .sA(fNRO ,B ,La,T ,Ka) 6∈ X
∧ evidence.B .sT (fCON ,A,B ,La,T ,Ka) 6∈ X)

The above specification shows that if A holds the full evidence, then B must
either be able to get the evidence or have already obtained such evidence.

Secondly, we deal with the case in which B acts as a sender. For this case,
the specification is different from the above one, since a sender is in a weaker
position in the protocol. If no dispute arises:

FAIR3 =̂ evidence.A.sB (fEOO .A.Lb.Kb) in tr
∧ evidence.A.sB (fNRO .A.Lb.T .C) in tr
⇒
send .B .TTP .sB (fSUB .B .Lb.T .Kb) in tr ∨
send .B .TTP .sB (fSUB .B .Lb.T .Kb) 6∈ X

Because of the unreliable channel between A and B, B may not obtain the
evidence, but he can not be prevented from initiating the recovery protocol.
Furthermore, if B has launched the recovery protocol, he then must be able to
get the evidence from the TTP.

FAIR4 =̂ send .B .TTP .sB (fSUB ,A,Lb,T ,Kb) in tr
⇒
get .B .TTP .sT (fCON ,B ,A,Lb,T ,Kb) 6∈ X

To meet the fairness property of the timed Zhou-Gollmann protocol, the
process Network must satisfy FAIR1–FAIR4 in the stable failures model of CSP.

The formal verification shows that the timed ZG protocol meets its non-
repudiation specification under the assumptions described in this paper, except

262

for the minor compromise caused by the introduction of the deadline T . As the
designers say, the deadline T may result in the sender not getting the evidence;
in practice, the sender simply has to choose T big enough and send K to the
responder only when it has sufficient time to launch the recovery protocol. In
addition, the responder can be temporarily in an advantageous position, but the
two agents will be in a fair position at the end of the protocol run.

5 Discussion and future work

In this paper, we have modelled and analyzed the timed Zhou-Gollmann non-
repudiation protocol. Fairness, an important property in a non-repudiation pro-
tocol, requires that neither of the two parties can establish evidence of origin
or evidence of receipt while still preventing the other party from obtaining such
evidence. In the CSP modelling, fairness is naturally described as a liveness
property in the stable failures model.

Although the introduction of the deadline T makes the protocol closer to
reality, it compromises the fairness of the parties. There are also two minor
hidden issues: one is that the responder can be temporarily in a advantageous
position, the other is that the sender may initiate the recovery protocol even
when it has got the evidence. The evidence will mean the same to a judge
regardless of whether it has been obtained through the main protocol or the
recovery protocol, but it might be considered problematic that it is easy for the
responder to prove that the initiator asked the TTP to intervene in the protocol
execution. In the context of electronic commerce, it may result in bad publicity
if it is known that the parties had to resort to the trusted third party to get the
required evidence.

Some related work can be found in the literature concerning verification of
non-repudiation protocols using different approaches. Zhou et al. in [ZG98] firstly
use ‘BAN-like’ belief logic to check only safety properties of the non-repudiation
protocols. Schneider [Sch98] gives an excellent overview of the CSP modelling
and proves the correctness of properties using stable failures and rank functions;
however, the proofs are constructed by hand. Shmatikov and Mitchell in [SM01]
verify fairness as a monotonic property using Murϕ; that is, if fairness is broken
at one point of the protocol, the protocol will remain unfair. This approach
also cannot deal with liveness properties. Kremer and Raskin [KR01] use the
finite state model checker MOCHA to verify non-repudiation and fair exchange
protocols. This approach, which is rather different from ours here, can also cope
with liveness properties as well as safety properties. However, they have modelled
networks in which A and B can engage in only one run of the protocol.

We have shown that the combination of CSP and FDR is an excellent tool
to verify non-repudiation protocols. We also wish to cover timeliness; that is, we
wish to verify that all honest parties can reach a point where they can stop the
protocol while preserving fairness. We will extend our current model to cover
this issue in future work.

263

We still have some distance to go towards our aim of proving fairness of the
protocol in its full generality, with an unbounded number of participants and
atomic messages. Evans in [Eva03] gives a useful start on this issue by using
rank functions and a theorem prover, PVS, to verify safety properties. This
approach allows one to deal with networks with an infinite number of states and
even a infinite number of parties. In the future, we will investigate this approach
and apply it in the analysis of liveness properties of non-repudiation protocols.

References

[Eva03] Neil Evans. Investigating Security through Proof. PhD thesis, Royal Holloway,
University of London, 2003.

[For97] Formal Systems (Europe) Ltd. Failures-Divergence Refinement—FDR 2 user
manual, 1997. Available from Formal Systems’ web site at http://www.formal.
demon.co.uk/FDR2.html.

[KMZ02] Steve Kremer, Olivier Markowitch, and Jianying Zhou. An intensive survey
of non-repudiation protocols. Technical Report 473, 2002.

[KR01] Steve Kremer and Jean-François Raskin. A game-based verification of non-
repudiation and fair exchange protocols. Lecture Notes in Computer Science,
2154, 2001.

[MR99] Olivier Markowitch and Yves Roggeman. Probabilistic non-repudiation
without trusted third party. In Second Workshop on Security in Communication
Network 99, 1999.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Inter-
national, 1998.

[Sch98] Steve A. Schneider. Formal analysis of a non-repudiation protocol. In Proceed-
ings of the 11th IEEE Computer Security Foundations Workshop, 1998.

[Sch99] Steve A. Schneider. Concurrent and real-time systems: the CSP approach. John
Wiley & Sons, 1999.

[SM01] Vitaly Shmatikov and John C. Mitchell. Analysis of abuse-free contract sign-
ing. In FC ’00: Proceedings of the 4th International Conference on Financial
Cryptography, pages 174–191, London, UK, 2001. Springer-Verlag.

[Ted83] Tom Tedrick. How to exchange half a bit. In CRYPTO, pages 147–151, 1983.
[WH05] Kun Wei and James Heather. Formal verification of fair non-repudiation pro-

tocols, 2005. submitted to ESORICS2005.
[ZG96] Jianying Zhou and Dieter Gollmann. A fair non-repudiation protocol. In

Proceedings of the IEEE Symposium on Research in Security and Privacy, pages
55–61, Oakland, CA, 1996. IEEE Computer Society Press.

[ZG97] Zhou and Gollmann. An efficient non-repudiation protocol. In Proceedings of
The 10th Computer Security Foundations Workshop. IEEE Computer Society
Press, 1997.

[ZG98] J. Zhou and D. Gollmann. Towards verification of non-repudiation protocols. In
Proceedings of 1998 International Refinement Workshop and Formal Methods
Pacific, pages 370–380, Canberra, Australia, September 1998.

264

	cover13.pdf
	Consiglio Nazionale delle Ricerche
	T. Dimitrakos, F. Martinelli, P. Ryan, S. Schneider
	Iit

