11,664 research outputs found

    A gap analysis of Internet-of-Things platforms

    Full text link
    We are experiencing an abundance of Internet-of-Things (IoT) middleware solutions that provide connectivity for sensors and actuators to the Internet. To gain a widespread adoption, these middleware solutions, referred to as platforms, have to meet the expectations of different players in the IoT ecosystem, including device providers, application developers, and end-users, among others. In this article, we evaluate a representative sample of these platforms, both proprietary and open-source, on the basis of their ability to meet the expectations of different IoT users. The evaluation is thus more focused on how ready and usable these platforms are for IoT ecosystem players, rather than on the peculiarities of the underlying technological layers. The evaluation is carried out as a gap analysis of the current IoT landscape with respect to (i) the support for heterogeneous sensing and actuating technologies, (ii) the data ownership and its implications for security and privacy, (iii) data processing and data sharing capabilities, (iv) the support offered to application developers, (v) the completeness of an IoT ecosystem, and (vi) the availability of dedicated IoT marketplaces. The gap analysis aims to highlight the deficiencies of today's solutions to improve their integration to tomorrow's ecosystems. In order to strengthen the finding of our analysis, we conducted a survey among the partners of the Finnish IoT program, counting over 350 experts, to evaluate the most critical issues for the development of future IoT platforms. Based on the results of our analysis and our survey, we conclude this article with a list of recommendations for extending these IoT platforms in order to fill in the gaps.Comment: 15 pages, 4 figures, 3 tables, Accepted for publication in Computer Communications, special issue on the Internet of Things: Research challenges and solution

    Synergistic user ↔ context analytics

    Get PDF
    Various flavours of a new research field on (socio-)physical or personal analytics have emerged, with the goal of deriving semanticallyrich insights from people’s low-level physical sensing combined with their (online) social interactions. In this paper, we argue for more comprehensive data sources, including environmental and application-specific data, to better capture the interactions between users and their context, in addition to those among users. We provide some example use cases and present our ongoing work towards a synergistic analytics platform: a testbed based on mobile crowdsensing and IoT, a data model for representing the different sources of data and their connections, and a prediction engine for analyzing the data and producing insights

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    Electric Vehicle Charging Recommendation and Enabling ICT Technologies: Recent Advances and Future Directions

    Get PDF
    The introduction of Electric Vehicles (EV) will have a significant impact on the sustainable economic development of urban city. However, compared with traditional gasoline-powered vehicles, EVs currently have limited range, which necessitates regular recharging. Considering the limited charging infrastructure currently available in most countries, infrastructure investments and Renewable Energy Sources (RES) are critical. Thus, service quality provisioning is necessary for realizing EV market. Unlike numerous previous works which investigate "charging scheduling" (referred to when/whether to charge) for EVs already been parked at home/Charging Stations (CSs), a few works focus on “charging recommendation” (refer to where/which CS to charge) for on-the-move EVs. The latter use case cannot be overlooked as it is the most important feature of EVs, especially for driving experience during journeys. On-the-move EVs will travel towards appropriate CSs for charging based on smart decision on where to charge, so as to experience a shorter waiting time for charging. The effort towards sustainable engagement of EVs has not attracted enough attention from both industrial and academia communities. Even if there have been many charging service providers available, the utilization of charging infrastructures is still in need of significant enhancement. Such a situation certainly requires the popularity of EVs towards the sustainable, green and economic market. Enabling the sustainability requires a joint contribution from each domain, e.g., how to guarantee accurate information involved in decision making, how to optimally guide EV drivers towards charging place with the least waiting time, how to schedule charging services for EVs being parked within grid capacity. Achieving this goal is of importance towards a positioning of efficient, scalable and smart ICT framework, makes it feasible to learn the whole picture of grid: - Necessary information needs to be disseminated between stakeholders CSs and EVs, e.g., expected queuing time at individual CSs. In this context, how accurate CSs condition information plays an important role on the optimality of charging recommendation. - Also, it is very time-consuming for the centralized Global Controller (GC) to achieve optimization, by seamlessly collecting data from all EVs and CSs, The complexity and computation load of this centralized solution, increases exponentially with the number of EVs. This paper summaries the recent interdisciplinary research works on EV charging recommendation along with novel ICT frameworks, with an original taxonomy on how Intelligent Transportation Systems (ITS) technologies support the EV charging use case. Future directions are also highlighted to promote the future research

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    A survey on big multimedia data processing and management in smart cities

    Full text link
    © 2019 Association for Computing Machinery. All rights reserved. Integration of embedded multimedia devices with powerful computing platforms, e.g., machine learning platforms, helps to build smart cities and transforms the concept of Internet of Things into Internet of Multimedia Things (IoMT). To provide different services to the residents of smart cities, the IoMT technology generates big multimedia data. The management of big multimedia data is a challenging task for IoMT technology. Without proper management, it is hard to maintain consistency, reusability, and reconcilability of generated big multimedia data in smart cities. Various machine learning techniques can be used for automatic classification of raw multimedia data and to allow machines to learn features and perform specific tasks. In this survey, we focus on various machine learning platforms that can be used to process and manage big multimedia data generated by different applications in smart cities. We also highlight various limitations and research challenges that need to be considered when processing big multimedia data in real-time

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues
    corecore