65 research outputs found

    An Optimized Medical Image Watermarking Approach for E-Health Applications

    Get PDF
    Background: In recent years, information and communication technologies have been widely used in the healthcare sector. This development enables E-Health applications to transmit medical data, as well as their sharing and remote access by healthcare professionals. However, due to their sensitivity, medical data in general, and medical images in particular, are vulnerable to a variety of illegitimate attacks. Therefore, suitable security and effective protection are necessary during transmission. Method: In consideration of these challenges, we put forth a security system relying on digital watermarking with the aim of ensuring the integrity and authenticity of medical images. The proposed approach is based on Integer Wavelet Transform as an embedding algorithm; furthermore, Particles Swarm Optimization was employed to select the optimal scaling factor, which allows the system to be compatible with different medical imaging modalities. Results: The experimental results demonstrate that the method provides a high imperceptibility and robustness for both secret watermark and watermarked images. In addition, the proposed scheme performs better for medical images compared with similar watermarking algorithms. Conclusion: As it is suitable for a lossless-data application, IWT is the best choice for medical images integrity. Furthermore, using the PSO algorithm enables the algorithm to be compatible with different medical imaging modalities

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes

    Rapid intelligent watermarking system for high-resolution grayscale facial images

    Get PDF
    Facial captures are widely used in many access control applications to authenticate individuals, and grant access to protected information and locations. For instance, in passport or smart card applications, facial images must be secured during the enrollment process, prior to exchange and storage. Digital watermarking may be used to assure integrity and authenticity of these facial images against unauthorized manipulations, through fragile and robust watermarking, respectively. It can also combine other biometric traits to be embedded as invisible watermarks in these facial captures to improve individual verification. Evolutionary Computation (EC) techniques have been proposed to optimize watermark embedding parameters in IntelligentWatermarking (IW) literature. The goal of such optimization problem is to find the trade-off between conflicting objectives of watermark quality and robustness. Securing streams of high-resolution biometric facial captures results in a large number of optimization problems of high dimension search space. For homogeneous image streams, the optimal solutions for one image block can be utilized for other image blocks having the same texture features. Therefore, the computational complexity for handling a stream of high-resolution facial captures is significantly reduced by recalling such solutions from an associative memory instead of re-optimizing the whole facial capture image. In this thesis, an associative memory is proposed to store the previously calculated solutions for different categories of texture using the optimization results of the whole image for few training facial images. A multi-hypothesis approach is adopted to store in the associative memory the solutions for different clustering resolutions (number of blocks clusters based on texture features), and finally select the optimal clustering resolution based on the watermarking metrics for each facial image during generalization. This approach was verified using streams of facial captures from PUT database (Kasinski et al., 2008). It was compared against a baseline system representing traditional IW methods with full optimization for all stream images. Both proposed and baseline systems are compared with respect to quality of solution produced and the computational complexity measured in fitness evaluations. The proposed approach resulted in a decrease of 95.5% in computational burden with little impact in watermarking performance for a stream of 198 facial images. The proposed framework Blockwise Multi-Resolution Clustering (BMRC) has been published in Machine Vision and Applications (Rabil et al., 2013a) Although the stream of high dimensionality optimization problems are replaced by few training optimizations, and then recalls from an associative memory storing the training artifacts. Optimization problems with high dimensionality search space are challenging, complex, and can reach up to dimensionality of 49k variables represented using 293k bits for high-resolution facial images. In this thesis, this large dimensionality problem is decomposed into smaller problems representing image blocks which resolves convergence problems with handling the larger problem. Local watermarking metrics are used in cooperative coevolution on block level to reach the overall solution. The elitism mechanism is modified such that the blocks of higher local watermarking metrics are fetched across all candidate solutions for each position, and concatenated together to form the elite candidate solutions. This proposed approach resulted in resolving premature convergence for traditional EC methods, and thus 17% improvement on the watermarking fitness is accomplished for facial images of resolution 2048Ă—1536. This improved fitness is achieved using few iterations implying optimization speedup. The proposed algorithm Blockwise Coevolutionary Genetic Algorithm (BCGA) has been published in Expert Systems with Applications (Rabil et al., 2013c). The concepts and frameworks presented in this thesis can be generalized on any stream of optimization problems with large search space, where the candidate solutions consist of smaller granularity problems solutions that affect the overall solution. The challenge for applying this approach is finding the significant feature for this smaller granularity that affects the overall optimization problem. In this thesis the texture features of smaller granularity blocks represented in the candidate solutions are affecting the watermarking fitness optimization of the whole image. Also the local metrics of these smaller granularity problems are indicating the fitness produced for the larger problem. Another proposed application for this thesis is to embed offline signature features as invisible watermark embedded in facial captures in passports to be used for individual verification during border crossing. The offline signature is captured from forms signed at borders and verified against the embedded features. The individual verification relies on one physical biometric trait represented by facial captures and another behavioral trait represented by offline signature

    Discrete Cosine Transform and Singular Value Decomposition Based on Canny Edge Detection for Image Watermarking

    Get PDF
    The development of an increasingly sophisticated internet allows for the distribution of digital images that can be done easily. However, with the development of increasingly sophisticated internet networks, it becomes an opportunity for some irresponsible people to misuse digital images, such as taking copyrights, modification and duplicating digital images. Watermarking is an information embedding technique to show ownership descriptions that can be conveyed into text, video, audio, and digital images. There are 2 groups of watermarking based on their working domain, namely the spatial domain and the transformation domain. In this study, three domain transformation techniques were used, namely Singular Value Descomposition (SVD), Discrete Cosine Transform (DCT) and Canny Edge Detection Techniques. The proposed attacks are rotation, gaussian blurness, salt and pepper, histogram equalization, and cropping. The results of the experiment after inserting the watermark image were measured by the Peak Signal to Noise Ratio (PSNR). The results of the image robustness test were measured by the Correlation Coefficient (Corr) and Normalized Correlation (NC). The analysis and experimental results show that the results of image extraction are good with PSNR values from watermarked images above 50dB and Corr values reaching 0.95. The NC value obtained is also high, reaching 0.98. Some of the extracted images are of fairly good quality and are similar with the original image

    Alpha Channel Fragile Watermarking for Color Image Integrity Protection

    Get PDF
    This paper presents a fragile watermarking algorithm`m for the protection of the integrity of color images with alpha channel. The system is able to identify modified areas with very high probability, even with small color or transparency changes. The main characteristic of the algorithm is the embedding of the watermark by modifying the alpha channel, leaving the color channels untouched and introducing a very small error with respect to the host image. As a consequence, the resulting watermarked images have a very high peak signal-to-noise ratio. The security of the algorithm is based on a secret key defining the embedding space in which the watermark is inserted by means of the Karhunen–Loève transform (KLT) and a genetic algorithm (GA). Its high sensitivity to modifications is shown, proving the security of the whole system

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Open research issues on multi-models for complex technological systems

    Get PDF
    Abstract -We are going to report here about state of the art works on multi-models for complex technological systems both from the theoretical and practical point of view. A variety of algorithmic approaches (k-mean, dss, etc.) and applicative domains (wind farms, neurological diseases, etc.) are reported to illustrate the extension of the research area
    • …
    corecore