15 research outputs found

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    Rail Internet of Things: An Architectural Platform and Assured Requirements Model

    Get PDF
    Given the plethora of individual preferences and requirements of public transport passengers for travel, seating, catering, etc., it becomes very challenging to tailor generic services to individuals’ requirements using the existing service platforms. As tens of thousands of sensors have been already deployed along roadsides and rail tracks, and on buses and trains in many countries, it is expected that the introduction of IP networking will revolutionise the functionality of public transport in general and rail services in particular. In this paper, we propose a new communication paradigm to improve rail services and address the requirement of rail service users: the Rail Internet of Things (RIoT). To the best of our knowledge, it is the first work to define the RIoT and design an architectural platform that includes its components and the data communication channels. Moreover, we develop an assured requirements model using the situation calculus modelling to represent the fundamental requirements for adjustable, decentralised feedback control mechanisms necessary for the RIoT-ready software systems. The developed formal model is applied to demonstrate the design of passenger assistance software that interacts with the RIoT ecosystem and provides passengers with real-time information that is tailored to their requirements with runtime adaptability. Keywords—Assistance; Assured model; Inclusive; IoT; Rail Internet of Things (RIoT); Situation Calculu

    Computational Intelligence Inspired Data Delivery for Vehicle-to-Roadside Communications

    Get PDF
    We propose a vehicle-to-roadside communication protocol based on distributed clustering where a coalitional game approach is used to stimulate the vehicles to join a cluster, and a fuzzy logic algorithm is employed to generate stable clusters by considering multiple metrics of vehicle velocity, moving pattern, and signal qualities between vehicles. A reinforcement learning algorithm with game theory based reward allocation is employed to guide each vehicle to select the route that can maximize the whole network performance. The protocol is integrated with a multi-hop data delivery virtualization scheme that works on the top of the transport layer and provides high performance for multi-hop end-to-end data transmissions. We conduct realistic computer simulations to show the performance advantage of the protocol over other approaches

    Socially Aware V2X Localized QoS

    Full text link
    Vehicle-to-everything (V2X) is a core 5G technology. V2X and its enabler, Device-to-Device (D2D), are essential for the Internet of Things (IoT) and the Internet of Vehicles (IoV). V2X enables vehicles to communicate with other vehicles (V2V), networks (V2N), and infrastructure (V2I). While V2X enables ubiquitous vehicular connectivity, the impact of bursty data on the network's overall Quality of Service (QoS), such as when a vehicle accident occurs, is often ignored. In this work, we study both 4G and 5G V2X utilizing Evolved Universal Terrestrial Radio Access New Radio (E-UTRA-NR) and propose the use of socially aware 5G NR Dual Connectivity (en-DC) for traffic differentiation. We also propose localized QoS, wherein high-priority QoS flows traverse 5G road side units (RSUs) and normal-priority QoS flows traverse 4G Base Station (BS). We formulate a max-min fair QoS-aware Non-Orthogonal Multiple Access (NOMA) resource allocation scheme, QoS reclassify. QoS reclassify enables localized QoS and traffic steering to mitigate bursty network traffic's impact on the network's overall QoS. We then solve QoS reclassify via Integer Linear Programming (ILP) and derive its approximation. We demonstrate that both optimal and approximation QoS reclassify resource allocation schemes in our socially aware QoS management methodology outperform socially unaware legacy 4G V2X algorithms (no localized QoS support, no traffic steering) and socially aware 5G V2X (no localized QoS support, yet utilizes traffic steering). Our proposed QoS reclassify scheme's QoS flow end-to-end latency requires only ≈ 15%\approx~15\% of the time legacy 4G V2X requires.Comment: This work has been submitted to IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Under review by IEEE Internet of Things journa

    Situation-Aware QoS Routing Algorithm for Vehicular Ad hoc Networks

    Get PDF
    A wide range of services has been developed for Vehicular Ad hoc Networks (VANETs) ranging from safety to infotainment applications. An essential requirement for such services is that they are offered with Quality of Service (QoS) guarantees in terms of service reliability and availability. Searching for feasible routes subject to multiple QoS constraints is in general an NP-hard problem. Besides, routing reliability needs to be paid special attention as communication links frequently break in VANETs. In this paper, we propose employing the Situational Awareness (SA) concept and an Ant Colony System (ACS) based algorithm to develop a Situation-Aware Multi-constrained QoS (SAMQ) routing algorithm for VANETs. SAMQ aims to compute feasible routes between the communicating vehicles subject to multiple QoS constraints and pick the best computed route, if such a route exists. To mitigate the risks inherited from selecting the best computed route that may turn out to fail at any moment, SAMQ utilises the SA levels and ACS mechanisms to prepare certain countermeasures with the aim of assuring a reliable data transmission. Simulation results demonstrate that SAMQ is capable of achieving a reliable data transmission as compared to the existing QoS routing algorithms even when the network topology is highly dynamic
    corecore