15,986 research outputs found

    MARINE: Man-in-the-middle attack resistant trust model IN connEcted vehicles

    Get PDF
    Vehicular Ad-hoc NETwork (VANET), a novel technology holds a paramount importance within the transportation domain due to its abilities to increase traffic efficiency and safety. Connected vehicles propagate sensitive information which must be shared with the neighbors in a secure environment. However, VANET may also include dishonest nodes such as Man-in-the-Middle (MiTM) attackers aiming to distribute and share malicious content with the vehicles, thus polluting the network with compromised information. In this regard, establishing trust among connected vehicles can increase security as every participating vehicle will generate and propagate authentic, accurate and trusted content within the network. In this paper, we propose a novel trust model, namely, Man-in-the-middle Attack Resistance trust model IN connEcted vehicles (MARINE), which identifies dishonest nodes performing MiTM attacks in an efficient way as well as revokes their credentials. Every node running MARINE system first establishes trust for the sender by performing multi-dimensional plausibility checks. Once the receiver verifies the trustworthiness of the sender, the received data is then evaluated both directly and indirectly. Extensive simulations are carried out to evaluate the performance and accuracy of MARINE rigorously across three MiTM attacker models and the bench-marked trust model. Simulation results show that for a network containing 35% MiTM attackers, MARINE outperforms the state of the art trust model by 15%, 18%, and 17% improvements in precision, recall and F-score, respectively.N/A

    Benets of tight coupled architectures for the integration of GNSS receiver and Vanet transceiver

    Get PDF
    Vehicular adhoc networks (VANETs) are one emerging type of networks that will enable a broad range of applications such as public safety, traffic management, traveler information support and entertain ment. Whether wireless access may be asynchronous or synchronous (respectively as in the upcoming IEEE 8021.11p standard or in some alternative emerging solutions), a synchronization among nodes is required. Moreover, the information on position is needed to let vehicular services work and to correctly forward the messages. As a result, timing and positioning are a strong prerequisite of VANETs. Also the diffusion of enhanced GNSS Navigators paves the way to the integration between GNSS receivers and VANET transceiv ers. This position paper presents an analysis on potential benefits coming from a tightcoupling between the two: the dissertation is meant to show to what extent Intelligent Transportation System (ITS) services could benefit from the proposed architectur

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times

    Advancement in infotainment system in automotive sector with vehicular cloud network and current state of art

    Get PDF
    The automotive industry has been incorporating various technological advancement on top-end versions of the vehicle order to improvise the degree of comfortability as well as enhancing the safer driving system. Infotainment system is one such pivotal system which not only makes the vehicle smart but also offers abundance of information as well as entertainment to the driver and passenger. The capability to offer extensive relay of service through infotainment system is highly dependent on vehicular adhoc network as well as back end support of cloud environment. However, it is know that such legacy system of vehicular adhoc network is also characterized by various problems associated with channel capacity, latency, heterogeneous network processing, and many more. Therefore, this paper offers a comprehensive insight to the research work being carried out towards leveraging the infotainment system in order to obtain the true picture of strength, limitation, and open end problems associated with infotainment system

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed
    • …
    corecore