25 research outputs found

    Transmit optimization techniques for physical layer security

    Get PDF
    PhD ThesisOver the last several decades, reliable communication has received considerable attention in the area of dynamic network con gurations and distributed processing techniques. Traditional secure communications mainly considered transmission cryptography, which has been developed in the network layer. However, the nature of wireless transmission introduces various challenges of key distribution and management in establishing secure communication links. Physical layer security has been recently recognized as a promising new design paradigm to provide security in wireless networks in addition to existing conventional cryptographic methods, where the physical layer dynamics of fading channels are exploited to establish secure wireless links. On the other hand, with the ever-increasing demand of wireless access users, multi-antenna transmission has been considered as one of e ective approaches to improve the capacity of wireless networks. Multi-antenna transmission applied in physical layer security has extracted more and more attentions by exploiting additional degrees of freedom and diversity gains. In this thesis, di erent multi-antenna transmit optimization techniques are developed for physical layer secure transmission. The secrecy rate optimization problems (i.e., power minimization and secrecy rate maximization) are formulated to guarantee the optimal power allocation. First, transmit optimization for multiple-input single-output (MISO) secrecy channels are developed to design secure transmit beamformer that minimize the transmit power to achieve a target secrecy rate. Besides, the associated robust scheme with the secrecy rate outage probability constraint are presented with statistical channel uncertainty, where the outage probability constraint requires that the achieved secrecy rate exceeds certain thresholds with a speci c probability. Second, multiantenna cooperative jammer (CJ) is presented to provide jamming services that introduces extra interference to assist a multiple-input multipleoutput (MIMO) secure transmission. Transmit optimization for this CJaided MIMO secrecy channel is designed to achieve an optimal power allocation. Moreover, secure transmission is achieved when the CJ introduces charges for its jamming service based on the amount of the interference caused to the eavesdropper, where the Stackelberg game is proposed to handle, and the Stackelberg equilibrium is analytically derived. Finally, transmit optimization for MISO secure simultaneous wireless information and power transfer (SWIPT) is investigated, where secure transmit beamformer is designed with/without the help of arti - cial noise (AN) to maximize the achieved secrecy rate such that satisfy the transmit power budget and the energy harvesting (EH) constraint. The performance of all proposed schemes are validated by MATLAB simulation results

    Optimization techniques for reliable data communication in multi-antenna wireless systems

    Get PDF
    This thesis looks at new methods of achieving reliable data communication in wireless communication systems using different antenna transmission optimization methods. In particular, the problems of exploitation of MIMO communication channel diversity, secure downlink beamforming techniques, adaptive beamforming techniques, resource allocation methods, simultaneous power and information transfer and energy harvesting within the context of multi-antenna wireless systems are addressed

    Reliability performance analysis of half-duplex and full-duplex schemes with self-energy recycling

    Get PDF
    Abstract. Radio frequency energy harvesting (EH) has emerged as a promising option for improving the energy efficiency of current and future networks. Self-energy recycling (sER), as a variant of EH, has also appeared as a suitable alternative that allows to reuse part of the transmitted energy via an energy loop. In this work we study the benefits of using sER in terms of reliability improvements and compare the performance of full-duplex (FD) and half-duplex (HD) schemes when using multi-antenna techniques at the base station side. We also assume a model for the hardware energy consumption, making the analysis more realistic since most works only consider the energy spent on transmission. In addition to spectral efficiency enhancements, results show that FD performs better than HD in terms of reliability. We maximize the outage probability of the worst link in the network using a dynamic FD scheme where a small base station (SBS) determines the optimal number of antennas for transmission and reception. This scheme proves to be more efficient than classical HD and FD modes. Results show that the use of sER at the SBS introduces changes on the distribution of antennas for maximum fairness when compared to the setup without sER. Moreover, we determine the minimum number of active radio frequency chains required at the SBS in order to achieve a given reliability target

    Simultaneous wireless information and power transfer in full-duplex communication systems

    Get PDF
    As wireless devices are mostly constrained by their inability to operate independently infinitely away from centralised power sources, radio frequency (RF) energy harvesting (EH) has been identified as a promising technique for future wireless devices. For this reason, this thesis introduces a novelty in RF EH full-duplex (FD) wireless communication systems. Specifically, this thesis investigate the potentials of simultaneous wireless information and power transfer (SWIPT) in FD communication systems. This thesis firstly focuses on optimal transmit strategies, rate maximization and power minimizing approach for SWIPT in FD systems. Using the rate-split method, difference of convex programming, semi-definite programming technique and one-dimensional search, we reformulate complex optimization problems to yield problem formulations that can be efficiently solved, thus we develop rate maximization algorithm for SWIPT in a point-to-point FD system, SWIPT in FD multiple-input multiple-output (MIMO) two-way relay system and power minimization approach for SWIPT in a multiuser MIMO FD system. This thesis also presents research work carried out with the aim of maximising the secrecy sum-rate for SWIPT in FD systems. In this context, we employ the use of an amplify and forward (AF) relay to inject artificial noise (AN) in order to confuse the eavesdropper. Thus, we address the optimal joint design of the beamforming matrix and AN covariance matrix at the relay, and the transmit power at the sources. Comprehensively, we present extensive theoretical and computer simulations to corroborate the need for joint optimization

    Secrecy Performance Analysis of Cooperative Nonorthogonal Multiple Access in IoT Networks

    Get PDF
    Different system models utilizing Non-orthogonal multiple access (NOMA) have been successfully studied to meet the growing capacity demands of the Internet of Things (IoT) devices for the next-generation networks. However, analyzing the anti-eavesdropping for NOMA systems under different scenarios and settings still needs further exploration before it can be practically deployed. Therefore, in this paper, we study the secrecy performance of a cooperative NOMA system in IoT networks where two source nodes communicate with their respective destination nodes via a common relay in the presence of an eavesdropper. Specifically, two source node sends their data in parallel over the same frequency band to the common relay node using uplink NOMA. Then, the relay node forwards the decoded symbols to the respective destination nodes using downlink NOMA in the presence of an eavesdropper. To enhance the security performance of the considered system, we study and propose an artificial noise (AN)-aided scheme in which the two destination nodes emit a jamming signal to confuse the eavesdropper while receiving the signal from the common relay node. We also study the effect of NOMA power allocation, perfect successive interference cancellation (pSIC), and imperfect SIC (ipSIC) on the considered system. Analytical expressions for the Ergodic capacity, Ergodic secrecy sum rate (ESSR), and secrecy outage probability (SOP) are mathematically derived and verified with the simulation results. Our results demonstrate that a significantly higher ESSR and lower SOP of the system can be attained compared to a conventional NOMA system without a destination-assisted jamming signal scheme.acceptedVersio
    corecore