thesis

Simultaneous wireless information and power transfer in full-duplex communication systems

Abstract

As wireless devices are mostly constrained by their inability to operate independently infinitely away from centralised power sources, radio frequency (RF) energy harvesting (EH) has been identified as a promising technique for future wireless devices. For this reason, this thesis introduces a novelty in RF EH full-duplex (FD) wireless communication systems. Specifically, this thesis investigate the potentials of simultaneous wireless information and power transfer (SWIPT) in FD communication systems. This thesis firstly focuses on optimal transmit strategies, rate maximization and power minimizing approach for SWIPT in FD systems. Using the rate-split method, difference of convex programming, semi-definite programming technique and one-dimensional search, we reformulate complex optimization problems to yield problem formulations that can be efficiently solved, thus we develop rate maximization algorithm for SWIPT in a point-to-point FD system, SWIPT in FD multiple-input multiple-output (MIMO) two-way relay system and power minimization approach for SWIPT in a multiuser MIMO FD system. This thesis also presents research work carried out with the aim of maximising the secrecy sum-rate for SWIPT in FD systems. In this context, we employ the use of an amplify and forward (AF) relay to inject artificial noise (AN) in order to confuse the eavesdropper. Thus, we address the optimal joint design of the beamforming matrix and AN covariance matrix at the relay, and the transmit power at the sources. Comprehensively, we present extensive theoretical and computer simulations to corroborate the need for joint optimization

    Similar works