3 research outputs found

    Secure set-based policy checking and its application to password registration

    Get PDF
    Policies are the corner stones of today's computer systems. They define secure states and safe operations. A common problem with policies is that their enforcement is often in con ict with user privacy. In order to check the satisfiability of a policy, a server usually needs to collect from a client some information which may be private. In this work we introduce the notion of secure set-based policy checking (SPC) that allows the server to verify policies while preserving the client's privacy. SPC is a generic protocol that can be applied in many policy-based systems. As an example, we show how to use SPC to build a password registration protocol so that a server can check whether a client's password is compliant with its password policy without seeing the password. We also analyse SPC and the password registration protocol and provide security proofs. To demonstrate the practicality of the proposed primitives, we report performance evaluation results based on a prototype implementation of the password registration protoco

    Zero-Knowledge Password Policy Check from Lattices

    Get PDF
    Passwords are ubiquitous and most commonly used to authenticate users when logging into online services. Using high entropy passwords is critical to prevent unauthorized access and password policies emerged to enforce this requirement on passwords. However, with current methods of password storage, poor practices and server breaches have leaked many passwords to the public. To protect one's sensitive information in case of such events, passwords should be hidden from servers. Verifier-based password authenticated key exchange, proposed by Bellovin and Merrit (IEEE S\&P, 1992), allows authenticated secure channels to be established with a hash of a password (verifier). Unfortunately, this restricts password policies as passwords cannot be checked from their verifier. To address this issue, Kiefer and Manulis (ESORICS 2014) proposed zero-knowledge password policy check (ZKPPC). A ZKPPC protocol allows users to prove in zero knowledge that a hash of the user's password satisfies the password policy required by the server. Unfortunately, their proposal is not quantum resistant with the use of discrete logarithm-based cryptographic tools and there are currently no other viable alternatives. In this work, we construct the first post-quantum ZKPPC using lattice-based tools. To this end, we introduce a new randomised password hashing scheme for ASCII-based passwords and design an accompanying zero-knowledge protocol for policy compliance. Interestingly, our proposal does not follow the framework established by Kiefer and Manulis and offers an alternate construction without homomorphic commitments. Although our protocol is not ready to be used in practice, we think it is an important first step towards a quantum-resistant privacy-preserving password-based authentication and key exchange system
    corecore