
Using Security Patterns for Modelling Security Capabilities in Grid Systems

Benjamin Aziz
School of Computing

University of Portsmouth
Portsmouth, United Kingdom

benjamin.aziz@port.ac.uk

Clive Blackwell
Department of Computing and Communication Technologies

Oxford Brookes University
Oxford, United Kingdom

cblackwell@brookes.ac.uk

Abstract—We extend previous work on formalising design
patterns to start the development of security patterns for Grid
systems. We demonstrate the feasibility of our approach with
a case study involving a deployed security architecture in a
Grid Operating System called XtreemOS. A number of Grid
security management capabilities that aid the secure setting-
up and running of a Grid are presented. We outline the
functionality needed for such cases in a general form, which
could be utilised when considering the development of similar
large-scale systems in the future. We also specifically describe
the use of authentication patterns that model the extension of
trust from a secure core, and indicate how these patterns can
be composed, specialised and instantiated.

Keywords-Security patterns; authentication patterns; secu-
rity architectures; Grid operating systems

I. INTRODUCTION

This paper demonstrates how security design patterns, in
particular those for authentication, can be used to express
Grid security management capabilities within the context of
a large-scale Grid operating system called XtreemOS [1],
[2]. These capabilities are used by administrators, users and
core services to establish and operate a Grid infrastructure.

XtreemOS provided a single abstraction layer of physical
hardware and software services offered by a collection of
standalone Linux operating systems to users within a Grid.
These operating systems could function collaboratively to
support the utilisation of computational and storage re-
sources regardless of the geographical location of their users
or machines. A major function of XtreemOS was to hide the
complexity of distributed resources dynamically aggregated
from large-scale cross-domain resource providers and to
ensure the transparency of using such a distributed operating
system. Hence, similar to a standalone operating system,
once a user is registered with XtreemOS, it should be
conceptually the same to utilise resources from any machine
that the system is composed of, regardless of whether such
resources have been recently added to the system or have
been there before.

The main contribution of this paper is to propose the
security capabilities in XtreemOS as a set of security
patterns to aid Virtual Organisation (VO) management in
future Grid and other large-scale distributed systems, such
as Clouds. This aim is motivated by the sheer scale of the

XtreemOS system, and the large industrial platform (more
than 14 industrial applications [3]) on which its use cases
were based. All of the security activities can be modelled
as security patterns, but we focus on authentication patterns
in this paper as a proof of concept. The main motivating
factor behind our approach is to facilitate the use of such
patterns in future systems based on the model provided by
XtreemOS.

II. THE SECURITY AND VO MANAGEMENT MODEL

In this section, we provide an overview of some of
the security and VO management elements needed when
designing a large-scale Grid operating system, such as
XtreemOS. These elements can be described in terms of
the trust domains, actors and other core services needed for
such functionality [4].

A. Trust Domains

The definition of security and VO management services
are based on three main trust domains:

• The Resource site domain: These are sites that offer
resources to the Grid and any VOs formed within.

• The User site domain: This includes sites that provide
users of VOs who will submit jobs to the resources
included in those VOs.

• The Core site domain: This represents the core site
in which the critical Security and VO Management
services would be running.

From the trust point of view, the Core site represents the
root of trust for both the Resource and User sites. In other
words, a Core site must have a high level of assurance since
it will be running the critical system components.

B. Actors

The main actors of the security and VO management
services include:

• The User: this actor is the user of VOs, who is also
registered in the Grid within which the VOs are created.

• The VO Administrator: this actor is a previous User
who created a VO and became the owner and adminis-
trator of that VO. Therefore, the VO Administrator has
full authority on managing the VO.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29587202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• The Resource Administrator: this is the actor owning
the resources offered to VOs. The actor could be either
a whole site administrator or the owner of one or more
machines belonging to the site.

• The Grid Administrator: this actor is responsible for
managing the security and VO management services.

C. Core Security and VO Management Services

The core services [4], shown in Figure 1, consist of the
VO Management Service (VOMS), the Resource Certifica-
tion Authority (RCA) and the VO Policy Service (VOPS).
Additionally, monitoring and auditing services can also be
deployed across the Core and resource sites to raise the level
of assurance as to the general behaviour of the system and
its processes.

Resource Site Core Site User Site

VO Management

AuditingMonitoring

VO Policy 

Management

Resource 

Certification Authority

Figure 1. The security and VO management services [4].

1) The VO Management Service (VOMS): This is a VO
and trust management service, which provides a logical
grouping of the infrastructural services needed to manage
the entities involved in a VO and ensure a consistent and
coherent exploitation of the resources and capabilities inside
the VO. The VO Management system consists of the follow-
ing components: The Root Certification Authority, which is
a service that creates the trust anchor, the Root Certificate,
and uses it to certify the identity of core services within the
operating system. This service can be performed offline to
avoid compromise of the root private key. The certification
of core services can optionally be performed by the CDA
service, described next.

The Credential Distribution Authority (CDA) Service, is
responsible for distributing the identity digital certificates
to users. These certificates can be X509-based [5] and the
CDA server may optionally be configured to provide service
certificates, certifying the identity of the core services in the
system. The Credential Distribution Authority Client, is a
client-side program or a Web client that interfaces with the
CDA service.

The Registration Manager is responsible for managing
the initial registration of users and RCAs with the operating
system. The The VO Manager controls the functionality
associated with the different stages in the lifecycle of the
VO (e.g. VO creation, operation, evolution and termination
stages). There is one instance of a VO Manager component
running per live VO, and its functions are controlled by
the user who is the VO’s Administrator. Finally, the VO

Management Database is the main database in VOMS,
in which all the information regarding the user and RCA
registrations, VO membership and lifecycle is stored.

2) The Resource Certification Authority (RCA): The RCA
is a certification authority at the level of administrative
sites offering resources to VOs. The RCA consists of
the following components. The RCA server is the main
component responsible for issuing certificates to resources.
This component is responsible for bootstrapping trust in the
individual resource domains. This trust could be used by
other components of the operating system, such as those
for the management of job submissions. The RCA client
is the client-side program that can interact with the RCA
server. This could be optionally replaced by a Web interface.
Finally, the RCA database stores the state of resources in
each administrative domain. This state may indicate whether
a resource is registered or not with the Grid and if so,
whether it is currently offered to any VOs in that Grid.

3) VO Policy Service (VOPS): The VOPS is used to
manage and enforce VO policies. The service consists of
the typical components that a distributed policy enforcement
architecture normally contain [6]; for example, a Policy
Enforcement Point (PEP), a Policy Decision Point (PDP),
a Policy Information Point (PIP), a Policy Administration
Point (PAP) and a Policy Store (PS).

4) The Monitoring and Auditing Service: This is respon-
sible for receiving status data, changes and events from
the resources where user jobs are running, and therefore
provides feedback on user behaviour and resource perfor-
mance to interested parties in the systems (e.g. the VOPS),
as well as store metrics and events about this behaviour
in a log database. The monitored information can span a
wide spectrum of data, which can be used for assessing
the security status of the operating system and analysing
past behaviour of both the system and the actors. Another
important aspect of the security auditing is the ability
to record specific actions, providing irrefutable proof of
accountability for harmful behaviour.

III. GRID SECURITY MANAGEMENT CAPABILITIES

One of the first stages in a VO lifecycle is the Grid
infrastructure set-up and population, which will be the focal
point of this paper. This stage is based on and requires the
application of the Grid security management capabilities,
before any VOs are created. Here, we outline the main
Grid security management capabilities that we defined in
XtreemOS [4]. These capabilities included the registration
and removal of users and RCAs with the Grid, the reg-
istration of local resources with RCAs, the setting-up of
Root Certificate Authorities (CAs) and the running of the
various security and VO management core services within
the system. These capabilities are depicted in Figure 2.

Generally, one can think of these capabilities as the actual
setting-up of a new Grid infrastructure, which is the first step



	  
Figure 2. Grid Security Management Capabilities in XtreemOS [4].

in a VO lifecycle. We next describe some of the main Grid
security management capabilities.

1) Configuring and Creating the Root CA: This capabil-
ity is concerned with the creation and configuration of the
root of trust in a Grid, i.e. the Root CA. The capability
is performed by the Grid Administrator, who is responsible
for generating the public/private key pair for the Root CA
with the private key later used for signing any Certificate
Signing Requests (CSRs) from other services. In the ideal
case, the machine (node) running the Root CA must be
of high assurance and not networked, to minimise security
vulnerabilities. The public key certificate is placed on a
networked core machine ready and available for public
distribution when needed.

2) Creating the VOMS Database: The second capability
is related to the creation of the VOMS database, which
will later hold all the information related to the Grid VOs
as well as the Grid membership. Again, this capability is
performed by the Grid Administrator, who initialises and
sets the database ready for use. This also includes setting-
up a password for the database, which could be the same
password assigned to the Grid Administrator (root login).

3) Setting-Up and Running Core Services: Once the Root
CA and the VOMS database components have been set-up
and initialised, it is now possible to set-up and run the Core
Services in a Grid. The actors responsible for this capability
are the Grid Administrator as well as the Resource Admin-
istrator for any organisations willing to join the Grid and
provide resources. Once this capability has been executed,
the Core Services of the operating system will be up and
running ready for users. This also implies that their security
credentials have been created. The Root CA certificate and
the CDA (Credential Distribution Authority) certificate are
placed on a networked node ready for distribution.

4) Obtaining Public Certificates: This capability is ini-
tiated by a User who wishes to obtain the public key
certificate(s) of one or more of the Core Services from the
Root CA. As a precondition, the User is expected to have the

public key certificate of the trusted certification authorities
installed on his/her system providing a way for checking
the trust and security of registered services using the chain
of keys starting with the Root CA. Once the capability is
successfully executed, the User will have obtained the public
key certificates of the requested Core Services in the Grid
operating system.

5) Processing Certificate Requests: This capability is
performed by the Grid Administrator in order to generate
certificates verifying the identity of a Core Service when
requested by a User as per the previous capability. A CSR
(Certificate Signing Request) is converted into a public key
certificate, which is sent to the originator of the request.

6) Registering Users: This capability is relevant to pop-
ulating the Grid by allowing Users to register with the
Grid infrastructure. This implies that a User can request a
Grid account upon providing their details (e.g. user name,
password, real name, organisation and email address). The
capability is executed on the Registration Manager (part of
the VOMS) by the User. A precondition is that the VOMS
database must already have been set-up and configured ready
for receiving information on Grid membership. Once the
capability has been successfully executed, the User will have
an account on the database and he will end-up sharing a
password with the Registration Manager. The success of this
capability is dependent on the completion of next capability
of approving Users.

7) Approving Users: This capability is applied by the
Grid Administrator, who will react upon receiving a request
to join the Grid from some User as per the previous
capability. The Grid Administrator will make sure that the
request itself is valid (e.g. the organisation to which the
User belongs is admissible to the Grid). It also implies that
the Grid Administrator can contact the User by email or
telephone to request further details before approving their
request. If the Grid Administrator is satisfied with the request
and the associated information about the User, they will then
approve the request leading to a successful completion of
this capability as well as the previous one.

8) Removing Users: The Grid Administrator can also
remove an already-registered User from the Grid. As a result,
the User will no longer be capable of logging-in to the
Grid, joining VOs or submitting any computational jobs.
Another form of this capability is that the User himself
decides to leave the Grid by either sending a request to the
Grid Administrator or by executing the relevant commands
on the VO Manager.

9) Registering an RCA: This capability is related to the
population of the Grid with RCAs representing resource
administrative domains. The capability allows a Resource
Administrator to request to join a RCA to some Grid in-
frastructure from the Grid Administrator. When successfully
completed, the capability will allow the Resource Adminis-
trator and the Registration Manager to share a password for



managing the RCA’s account in the VOMS. However, its
success is dependant on the success of the next capability.

10) Approving an RCA: This capability will allow the
Grid Administrator to approve a request submitted via the
previous capability for joining a RCA to the Grid. Once this
is achieved, the RCA will obtain an account on the VOMS
for its membership in the Grid and future VOs. Similarly,
the Root CA is informed of the decision in order to link
the RCA to its chain of trust. The Grid Administrator will
then inform the Resource Administrator of the decision of
joining the RCA to the Grid. The Resource Administrator
can now start applying the following two capabilities related
to offering resources to the Grid.

11) Registering Resources with the RCA: Since the RCA
is the main gateway for local resources (machines, nodes,
services) to join the Grid, this capability is essential in that
it allows the Resource Administrator to register the local
resources with the RCA. As a result, the resource details
will be recorded on the RCA and the resource will be issued
with an identity certificate that it can use to identify itself
to other Grid resources or users.

12) Removing Resources from the RCA: Finally, the last
capability for Grid Management is related to the removal of
any resources wishing to exit the Grid. As a precondition,
it must be the case that the resource was already registered
through the previous capability, and that there are no pending
jobs in the Grid currently running on the resource. Once
the resource has been removed from the RCA list of Grid
membership, any subsequent requests for its identity or
attribute certificate will fail and the resource is now outside
the Grid.

IV. GRID SECURITY PATTERNS

A. Design Spaces

GEBNF (Graphic Extension of BNF) notation can be used
to define a metamodel for a design space [7]. BNF (Backus
Normal Form or Backus-Naur Form) [8] is a well-known
notation for context-free grammars, often used to describe
the syntax of programming languages and document formats
amongst other things. The patterns in a design space can
be specified formally [7] in a language derived from the
GEBNF syntax using predicate logic. They can be defined
as compositions and instantiations of existing patterns by
applying pattern operators [9] and then the algebraic laws
proved for object-oriented design patterns [10] should also
hold for patterns in these new design spaces.

We represent a design space in the following form con-
taining the modelled elements along with different perspec-
tives such as structural or behavioural views.

DESIGN SPACE <Name>;
<Element type definitions>;
<View definitions>;
END <Name>.

We elaborate the approach of a security design space
and pattern specification [11] to authentication patterns in
realistic scenarios taken from the Grid Operating System.
We can model system security architecture in box diagrams
[12] and then give their corresponding GEBNF formulae.
A box diagram consists of a number of boxes and arrows,
where each box represents a system entity or sub-system,
and each arrow represents a channel of information flow or
interaction. These are both element types with names and
other variables for their attributes.

A view defines a set of properties for the element types
and relationships between them together with some con-
straints that limit the valid models. Each property takes
some set of defined values defined extensionally, and the
relationships define associations between elements. Trust is a
crucial property that is extended to new entities using digital
signatures created by trusted authorities, and it is important
to distinguish between strong authentication mechanisms
like signatures and weak ones like passwords. We only show
the structural view of the security design space by extending
the previous design space [11], but the dynamic view of
system behaviour modelled by sequence or activity diagrams
can also be defined in GEBNF.

DESIGN SPACE SecurityArchitecture;
TYPE
Subsystem, Pattern:
name: STRING,
content: [Value],
description: [STRING];
InfoFlow:
name: STRING,
from, to: Subsystem,
type: [STRING];
VIEW Structure;
PROPERTY
type : Subsystem -> {data_store, computation};
trust: Subsystem -> {trustworthy, untrustworthy};
strength: Pattern -> {weak, strong}
RELATION
is-a-part-of: Subsystem * Subsystem;
inherits_from: Pattern * Pattern;
instance_of: Subsystem * Pattern;
END structure;
VIEW behaviour
...
END behaviour;
END SecurityArchitecture.

B. Authentication Patterns

Section III showed the main aspects of the security
architecture that bootstraps off the trustworthy core systems
to authenticate and authorise domains, users, machines and
resources. Users are authenticated by passwords, whereas
machines and their resources are authenticated by digital
signatures. Trust is moved around the system using var-
ious authentication measures to enable the secure use of
resources. Authentication can be modelled by authentication
patterns with subpatterns for various types of authentication
mechanism such as passwords and signatures. In addition,
these patterns can be instantiated differently to meet the
differing requirements of users, domains and resources. We



first indicate the required properties of the primitive security
patterns that constitute the digital signature pattern.

% Fundamental property of signature and
verification key pairs
PATTERN Sign in SecurityArchitecture
EQUALS
[signkey = inv(verifykey)]
END Sign.

% Fundamental property of hash functions
PATTERN Hash in SecurityArchitecture
EQUALS
[Hash.Data = Hash.OtherData ==> Data = OtherData]
END Hash.

We define a specification for digital signatures using
GEBNF with the signed message created from applying a
hash to the message then signing the hash using the above
two primitive components. The message is concatenated
with the signature and sent to the recipient who performs the
reverse operations of hashing and verification. The received
message is judged valid if the computed and received hashes
are identical.

% Digital signature pattern involves elementary Hash
% and Sign patterns. Trustworthiness of the message is
% established by the receiver when the data is verified
% Trustworthiness is passed between entities by the
% Validity InfoFlow. Data-stores can easily be distinguished
% from computation. Receiver components are prefixed
% by R to distinguish them from sender components
% Some elements are missing for space reasons
PATTERN DigitalSignature in SecurityArchitecture
COMPONENT
Sender, Receiver, Message, Signature, SignedMessage,
Hash, Sign, ReceivedMessage, RSignature, RMessage,
RHash, Verify, Comparison: Subsystem;

Data, H, S, TransmittedMessage, RData, RS, VHash,
CHash, Validity, InputMessage, OutputMessage: Infoflow;

CONSTRAINT
Message, Signature is-a-part-of SignedMessage;
SignedMessage, Hash, Sign is-a-part-of Sender;
RMessage, RSignature is-a-part-of ReceivedMessage;
ReceivedMessage, Comparison is-a-part-of Receiver;
RHash, Verify is-a-part-of Comparison;
EQUALS
[Verify.RSignature = RHash.RMessage]
% ==> Message = RMessage as required
END
INFOFLOW
% InfoFlows are omitted for space.
% Each InfoFlow has a name and a source and
% destination with from as its starting box and
% to as its terminating box. For example:
Data.from = Message; Data.to = Hash
END DigitalSignature.

The Grid OS uses passwords to authenticate people by
something they know, as they are the easiest method of
authentication, but are weak as they have little or no pro-
tection in transmission. The password is exchanged over a
communication medium like the signed message, but the
same password is always exchanged rather than a varying
signature that depends upon the message.

There is an inheritance hierarchy for patterns with pass-
words and signatures inheriting from a base authentication
pattern. Passwords can be sent in the clear, which is the
basic authentication pattern. There are various password

subpatterns for when the password is protected by a hash
or key. A common password pattern is one that hashes
the password, as used for user authentication in operating
systems like Windows and UNIX.

The password is sent in the clear or hashed before
transmission. The hash computation is performed by the
sender if the password is hashed before transmission, and the
receiver simply compares the received and stored password
hashes. The computation of the hash is on the receiver’s
side if the password is transmitted in the clear, and then the
computed and stored password hashes are compared. This
is weak because the transmitted password or hash can be
captured and reused in both cases.

We can also use signatures to sign keys in digital certifi-
cates, where a certificate is simply a special type of signature
on contents containing an entity’s verification key along with
its name and other metadata. This is simply a specialisation
of the basic signature pattern into a certificate subpattern
with more structured contents. It also allows the entity being
verified to sign other certificates as well as data, thereby
permitting a chain of certificates starting at the Root CA.

The two differences between a signature pattern and the
inherited certificate pattern are the decomposition of the
message contents into its components, including the name,
key and privileges of the certified entity, and additional
outputs from the pattern for these data. The outputs can
link to the inputs of another certificate pattern if the privi-
leges indicate that the verified entity is now a certification
authority, or to a signature pattern for verified entities to sign
ordinary messages.

% Other Subsystems and InfoFlows are inherited
% from the basic signature pattern
PATTERN DigitalCertificate in SecurityArchitecture
DigitalCertificate inherits_from DigitalSignature:
VerificationKey, Name, Privileges, MetaData: Subsystem
Rights, InputRights, EntityKey, InputEntityKey: Infoflow;
CONSTRAINT
VerificationKey is-a-part-of Message;
Name is-a-part-of Message;
Privileges is-a-part-of Message;
Metadata is-a-part-of Message;
INFOFLOW
Rights.from = Privileges;
EntityKey.from = VerificationKey;
Identity.from = Name;
% Output flows have inputs to another signature
END DigitalCertificate.

The CDA certificate may be used to authenticate services
in the Grid operating system instead of the Root Authority.
The root certificate authenticates the CDA certificate to sign
services on its behalf for the practical reason that wider use
of the root key leaves it more open to compromise, and its
exposure would cause security issues for the entire system
rather than just the services.

The bootstrapping of trust via a chain of certificates is
modelled as a composition of patterns where trust is passed
between the Root CA and CDA server and then onto the
users and resources. This is a composition of the specialised



certificate pattern and the signature pattern, which is permis-
sible as they are compatible as basic signature patterns.

The password authentication of users to the Grid then
leads to the creation and distribution of their verification
keys in certificates allowing recipients of their messages to
verify their authenticity. However, the weak level of trust
from passwords cannot be elevated by using a stronger
signatures mechanism afterwards, as the password may have
been compromised initially and the signing key may be in
the possession of the wrong party.

The composition of signature and password patterns can
show the extension of trust transitively to other parties
because they are compatible as basic authentication patterns.
However, the level of trustworthiness of the composed
pattern cannot exceed the weakest level of authentication.
This will be shown on the composed pattern that will expose
the same weaknesses as the password pattern, and the rule is
that any composed pattern will have the weakest trustworthy
level of all its elementary patterns. Finally, the authentication
of users and services are instances of the same pattern with
different implementations for their specific characteristics.

V. CONCLUSION AND FUTURE WORK

We presented in this paper a general set of security and
VO management capabilities that could underlie a Grid
operating system and implement the VO lifecycle that the
system could offer to Grid users. We extended the pre-
vious work on formalising design patterns to initiate the
development of an algebra of security patterns that can be
specialised, instantiated and composed. The feasibility of
the proposed approach was demonstrated with a case study
involving an existing security architecture in the XtreemOS
Grid Operating System. Some of the security capabilities
that aid the secure set up, creation, operation, evolution and
termination of the Grid operating system could be modelled
in a general form as security patterns suitable for helping
to develop similar large-scale systems in the future, such as
Clouds. We described the use of authentication patterns to
model the building of trust in the Grid from a trustworthy
core as a proof of concept.

Further work will develop other security patterns, such
as confidentiality and access control patterns, and show
how they can be composed together to model the entire
security architecture. For example, we can model how the
VO Policy Service is used to manage and enforce access
control policies with patterns. The service consists of the
typical components that a distributed policy enforcement
architecture usually contain [6]. The access control pattern
may compose with an authentication pattern to model the
capabilities that authenticated entities are allowed to access.

We can also model various attacks on security controls
abstractly by determining if their attack patterns [13] can
compose with the security patterns to exploit any weak-
nesses. We mentioned that the password pattern is vulnerable

to certain attacks that are defeated by the signature pattern.
Various attack patterns can compose with the password
patterns to obtain or otherwise compromise a password
transmitted in the clear or as a hash, whereas composition
with the digital signature pattern will be unsuccessful as the
secret is never exchanged. The composition of security and
attack patterns is under active consideration.

REFERENCES

[1] T. Cortes, C. Franke, Y. Jégou, T. Kielmann, D. Laforenza,
B. Matthews, C. Morin, L. P. Prieto, and A. Reine-
feld, “XtreemOS: a Vision for a Grid Operating System,”
XtreemOS Technical Report # 4, May 2008.

[2] C. Morin, “XtreemOS: A Grid Operating System Making
your Computer Ready for Participating in Virtual Organiza-
tions,” in Proceedings of the Tenth IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Computing
(ISORC 2007). IEEE Computer Society, 2007, pp. 393–402.

[3] XtreemOS Consortium, “Requirements capture and use case
scenarios,” in XtreemOS public deliverables - D4.2.1. Work
Package 4.2, January 2007.

[4] XtreemOS Consortium, “Fourth Specification, Design and
Architecture of the Security and VO Management Services,”
in XtreemOS public deliverables - D3.5.13. Work Package
3.5, December 2009.

[5] R. Housley, W. Polk, W. Ford, and D. Solo, “RFC 3280
- Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” April 2002.

[6] T. Moses (Ed.), “eXtensible Access Control Markup Lan-
guage (XACML) Version 2.0,” OASIS Standard, 2005.

[7] H. Zhu, “An institution theory of formal meta-modelling in
graphically extended BNF,” Frontiers of Computer Science,
vol. 6, no. 1, pp. 40–56, 2012.

[8] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. L. McCarthy,
A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H.
Wegstein, A. van Wijngaarden, M. Woodger, and P. Naur,
“Revised report on the algorithmic language algol 60,” Com-
munications of the ACM, vol. 6(1), pp. 1–17, Jan. 1963.

[9] I. Bayley and H. Zhu, “A formal language for the expression
of pattern compositions,” International Journal on Advances
in Software, vol. 4, no. 3&4, pp. 354–366, 2011.

[10] H. Zhu and I. Bayley, “An algebra of design patterns,” ACM
Transactions on Software Engineering and Methodology,
vol. 22, no. 3, Jul. 2013.

[11] H. Zhu, “Design space-based pattern representation,” in 1st
CyberPatterns: Unifying Design Patterns with Security Pat-
terns and Attack Patterns, C. Blackwell and H. Zhu, Eds.
Springer, 2014.

[12] J. Sherwood, A. Clark, and D. Lynas, Enterprise Security
Architecture: A Business-Driven Approach. CMP Books,
2005.

[13] Mitre Corporation, “Common Attack Pattern Enumeration
and Classification (CAPEC),” 2013. http://capec.mitre.org.


