
EMI Registry Manual

EMI REGISTRY MANUAL

EMIR Product Team

Document Version: 1.2.1
Component Version: 1.2.1
Date: 23 11 2012

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.

EMI Registry Manual

Contents

1 Overview 1

1.1 EMIR Server (DSR or GSR) . 1

1.2 EMIR’s Service Endpoint Record Publisher (EMIR-SERP) 1

2 Getting Started in 5 Minutes 2

2.1 Domain Service Registry (DSR) . 2

2.2 Global Service Registry (GSR) . 3

2.3 Service Endpoint Record Publisher (EMIR-SERP) with site BDII information
source . 3

2.4 Service Endpoint Record Publisher (EMIR-SERP) with resource BDII informa-
tion source . 4

3 Installation 5

3.1 EMIR Server (DSR or GSR) . 5

3.2 Installing the Publisher Client: EMIR-SERP 7

4 EMIR Server Configuration 7

4.1 General Configuration . 7

4.2 PKI Trust Settings Configuration . 8

4.3 Configuring the Credentials . 13

4.4 ACL Based Authorization . 15

4.5 Policy Based Authorization with XACML . 16

4.6 MongoDB Database Configuration . 17

4.7 Building EMIR Network . 18

4.8 Service Endpoint Record (SER) Management 21

4.9 Logging Configuration . 22

4.10 Advanced HTTP Server Settings . 23

5 EMIR-SERP Configuration 24

5.1 Configuration options . 25

EMI Registry Manual

6 How to use EMIR API? 28

6.1 Register new Services . 28

6.2 Updating the Service information . 29

6.3 Delete existing Services . 29

6.4 Querying the EMIR . 30

6.5 Rich Querying in EMIR . 31

6.6 Querying the EMIR for GLUE 2.0 XML Documents 31

6.7 Rich Querying the EMIR for GLUE 2.0 XML Documents 32

6.8 Viewing the Service information template . 32

6.9 Monitoring the Registry . 32

7 Appendix I 33

8 Appendix II 35

EMI Registry Manual 1

1 Overview

1.1 EMIR Server (DSR or GSR)

EMI Service Registry is a Service Endpoint Registry conceived during the EMI project. Its main
goal is to discover all the Service Endpoints that exist. It consists of a collection of services
that enables storing service records in a federated manner. Each of the record is a Service
Endpoint Record (SER) complying with the OGF’s GLUE 2.0 standard. The deployment of
EMIR (which implies building an EMIR network over WAN) is bipartite: 1) Building a rooted
hierarchy with a single EMIR server aggregating all the information within a federation 2)
Sharing the information at the root level among peered EMIR servers (using P2P), thus enabling
intra-federation discovery.

Feature Highlights:

• the service endpoint record registration includes the management of the services’ endpoint
information.

• Powerful data back-end based on MongoDB

• Schema-free information model based on JSON (using GLUE2 entity names for specific at-
tributes)

• REST-ful API to browse the service registrations

• Security

– PKI governed authentication

– Policy based authorisation

For more information about EMIR, visit EMI’s TWiki.

1.2 EMIR’s Service Endpoint Record Publisher (EMIR-SERP)

The UMD services need to be registered into the EMI Registry service infrastructure to be
discoverable for the clients. Most of the services or even the containers executing them provide a
way to do this but not all of them. For those that are unable to register themselves automatically
and periodically the EMIR-SERP is available.

The EMIR-SERP is a daemon like (background) service that can be executed next to these
services (preferably on the same machine) and able to perform the automatic and periodical
registration and update against the configured EMI Registry service on behalf of the service
itself. This client uses exactly the same, standard RESTful API as the other clients do.

Most of the parameters of these registrations and updates can be configured. For the details see
the Configuration section!

https://twiki.cern.ch/twiki/bin/view/EMI/EMIRegistry

EMI Registry Manual 2

After the successful registration until the termination of the daemon, the EMIR-SERP client
do the periodical updates then finally, when the execution of the daemon is over, it attempts to
delete the service entries from the remote database.

The service entries can be defined in single files, in multiple files in a watchdir (that is periodi-
cally scanned for new files) or in resource BDIIs.

The entries can contain any kind of information allowed and accepted by the EMI Regisrty
services and can be configured in the form of whole, formatted json documents or LDAP in
case of BDII usage. The LDIF→ JSON converson is also performed by EMIR-SERP.

2 Getting Started in 5 Minutes

2.1 Domain Service Registry (DSR)

This sections explains how to setup a Domain Service Registry (DSR) for a site. As a prerequi-
site, any SL6 host, either real of virtual is required.

2.1.1 Installing the DSR

Install the EMI release package

rpm -Uvh http://emisoft.web.cern.ch/emisoft/dist/EMI/2/sl6/x86_64/ ←↩
base/emi-release-2.0.0-1.sl6.noarch.rpm

Install the EMI Registry package.

yum install -y emi-emir

2.1.2 Configure the DSR

Edit the file

/etc/emi/emir/emir.config

and set the hostname and port.

emir.address=http://example.com:9126

Set the DSR parent attribute.

emir.parentAddress=http://parent.example.com:9126

Start the services

service mongod start
services emi-emir start

EMI Registry Manual 3

2.1.3 Test the DSR

Check that the DSR is running

http://example.com:9126/ping

2.2 Global Service Registry (GSR)

2.2.1 Installing the DSR

Same as DSR

2.2.2 Configuration

Edit the file

/etc/emi/emir/emir.config

and set the hostname and port.

emir.address=http://example.com:9126

set the global GSR flag

emir.global.enable=true

Start the services

service mongod start
services emi-emir start

2.2.3 Test the GSR

Check that the GSR is running

http://example.com:9126/ping

2.3 Service Endpoint Record Publisher (EMIR-SERP) with site BDII infor-
mation source

2.3.1 Installing the EMIR-SERP

Install the emir-serp.

EMI Registry Manual 4

yum install emir-serp

Install the service translator

rpm -Uvh http://cern.ch/lfield/ginfo-0.1.5-1.noarch.rpm

2.3.2 Configure the EMIR-SERP (publisher)

Edit the file /etc/emi/emir-serp/emir-serp.ini and set the url for yor DSR.

url = http://example.com:9126

Set the json_dir_location

json_dir_location = /var/cache/emir-serp/services

Create the json directory.

mkdir -p /var/cache/emir-serp/services

Create a hourly cron job to run the following command, where bdii.example.com is the host
name of a site BDII.

ginfo --host bdii.example.com --emi > /var/cache/emir-serp/services ←↩
/example

Start the service

service emir-serp start

2.3.3 Test the EMIR-SERP

Check the expected services are published

http://example.com:9126/services

2.4 Service Endpoint Record Publisher (EMIR-SERP) with resource BDII
information source

2.4.1 Installing the EMIR-SERP

Install the emir-serp.

yum install emir-serp

EMI Registry Manual 5

2.4.2 Configure the EMIR-SERP (publisher)

Edit the file /etc/emi/emir-serp/emir-serp.ini and set the url for yor DSR and setup your creden-
tials if needed.

url = http://example.com:9126

Set the resource_bdii_url variable.

resource_bdii_url = ldap://your.resource.bdii:2135/o=glue

Start the service

service emir-serp start

2.4.3 Test the EMIR-SERP

Check the expected services are published

http://example.com:9126/services

3 Installation

3.1 EMIR Server (DSR or GSR)

In order to install EMIR Server, it is a pre-requisite to install SUN or OpenJDK Java 6 (JRE or
SDK). If not installed on the target system, it can be downloaded from http://java.oracle.com

• Linux based operating system

• MongoDB

EMIR is distributed in the following formats:

• Platform independent format, provided in "tar.gz" format

• RPM package, suitable SL5/SL6 and other Fedora based Linux derivatives (RedHat, CentOS
etc. . .)

• Debian package

http://java.oracle.com
http://www.mongodb.org

EMI Registry Manual 6

IMPORTANT NOTE ON PATHS
The location of the installation and configuration files differ depending on the type of bundle
(see the above section).
If RPM bundle is being installed, the following paths will be used:

CONF=/etc/emi/emir
BIN=/usr/sbin
LOG=/var/log/emi/emir
LIB=/usr/share/emi/emir/lib

The platform independent binary places all the files under single directory. The contents will
be:

CONF=INST/conf/
BIN=INST/bin/
LOG=INST/logs/
LIB=INST/lib/

The above variables (CONF, BIN, LOG, and LIB) will be used throughout the rest of this
manual.

3.1.1 Installation using the RPM bundle (RedHat Distributions)

Download EMIR Server’s RPM distribution from the EMI’s emisoft and install it using the rpm
or yum command.

Example

yum install -y emi-emir

3.1.2 Installation on Debian (Centos/Debian Distributions)

Download EMIR DEB distribution from the EMI’s emisoft and install it using the apt-get com-
mand.

3.1.3 Database Installation

EMIR server uses MongoDB database as a backbone to store and indexe SER collections. The
database dependency will automatically be fetched from the emisoft repository, while installing
the EMIR Server. Otherwise it should be installed and configured before installing the EMIR.
The installation and configuration instructions to setup the MongoDB database can be found on
MongoDB’s Web site.

http://emisoft.web.cern.ch/emisoft/
http://emisoft.web.cern.ch/emisoft/
http://www.mongodb.org/display/DOCS/Quickstart

EMI Registry Manual 7

3.1.4 Installation from the self-contained archive (tar.gz)

In order to generate, build and install the self contained binary it is required to follow the steps
written below:

CREATING THE BUNDLE

1. check out the source code from git://github.com/eu-emi/emiregistry.git

2. go to SOURCE_ROOT/emir-dist directory

3. run mvn assembly:assembly -DskipTests

The archive can be found inside the SOURCE_ROOT/target/emir-distribution-x.y.z-a-all.(tar.gz/zip),
that contains all the necessary files for installation thus no special actions will be required except
extraction to the target folder.

3.2 Installing the Publisher Client: EMIR-SERP

The installation of the EMIR-SERP client is trivial. The only thing to do is to install the
emir-serp package from the EMI repository by executing:

yum install emir-serp

The package installation will provide the packages that are defined as dependencies, like python,
python-ldap and python-simplejson if they are not previously installad on the machine.

4 EMIR Server Configuration

The EMIR server comes with a well documented configuration file (CONF/emir.config), con-
taining a number of options to setup registry hierarchy, p2p, security, http server, and database.
The settings in the configuration file are pre-defined to start-up the server in a non-production
environment, however the administrator needs to review before deploying on the production
Grid environments.

4.1 General Configuration

The server configuration options in the CONF/emir.config are:

• Server address (plain or SSL)

• Settings of the type of the registry node, i.e. whether the current EMIR server instance is a
child of some other (a parent) EMIR server node or a top/global registry in a hierarchy.

EMI Registry Manual 8

Property name Type Default value Description
Server general settings

emir.address string - The address/URL of the
EMIR server on which
it receives registration
and query requests. It
should either start with
http or https (SSL/TLS)
mode, if "https" mode
is selected the
Authentication and
Authorisation
properties must be
properly configured

emir.anonymousPort Unsigned
Integer

- The anonymous http
port number. Setting
the property will start
an additional http server
(without SSL/TLS)
only if the above server
address is https (with
SSL/TLS). It will
provide anonymous
access to the query
interface (i.e. /services
REST Web Service).

4.2 PKI Trust Settings Configuration

EMIR endorses Public Key Infrastructure (PKI) trust settings to validate certificates using EMI’s
caNL (JAVA version). The validation is performed when a connection with a remote peer is
initiated over the network, using the SSL (or TLS) protocol, i.e. emir.address value has
https scheme.

Certificates validation is primarily configured using a set of initially trusted certificates of so
called Certificate Authorities (CAs). Those trusted certificates are also known as trust anchors
and their collection is called as a truststore.

The validation mechanism except the trust anchors can use additional input for checking if a
certificate being checked was not revoked and if its subject is in a permitted namesapce.

EMIR allows different types of truststores. All of them are configured using a set of specific
properties in CONF/emir.config file.

https://twiki.cern.ch/twiki/bin/view/EMI/EMIcaNl

EMI Registry Manual 9

4.2.1 OpenSSL Truststore

It allows using a directory with CA certificates stored in PEM format, with precisely defined
names: Certificate Authorities (CA), Certificate Revocation List (CRL), signing policy and
namespaces files are named as <hash>.0, <hash>.r0, <hash>.signing_policy and <hash>.namespaces
respectively. Hash is the old hash of the trusted CA certificate subject name - in OpenSSL ver-
sion newer than 1.0.0 use -suject_hash_old switch to generate it. If multiple certificates have the
same hash then the default zero number must be incremented. It is suggested when a common
truststore with EMI (and Globus) middlewares is needed.

4.2.2 Directory Truststore

It allows to use a list of wildcard expressions, concrete paths of files, or URLs to remote files
as a set of trusted CAs and CRLs. The truststore is configured as a directory containing all the
trusted certificates (or with a specified extension). The directory with stored IGTF trust anchors
can be set as a EMIR truststore for instance.

4.2.3 Java Keystore (JKS) Truststore

A single repository (or a binary file) of X.509 public key certificates with (optionally) accom-
panying private key certificates. The Java JDK already bundles keytool utility - a certificate
manage utility to create JKS truststores.

4.2.4 PKCS#12 Truststore

Similar to JKS trustore, single binary file can be used to store X.509 public with (optionally)
accompanying private key certificates. The OpenSSL pkcs12 command can be used to parse,
read, and create these files; the extension for PKCS#12 files is ".p12".

Property name Type Default
value /
mandatory

Description

emir.security.truststore.allowProxy[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

emir.security.truststore.type[keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

emir.security.truststore.updateIntervalinteger number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

--- Directory type settings ---

http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

EMI Registry Manual 10

Property name Type Default
value /
mandatory

Description

emir.security.truststore.directoryConnectionTimeoutinteger number 15 Connection timeout for
fetching the remote CA
certificates in seconds.

emir.security.truststore.directoryDiskCachePathfilesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

emir.security.truststore.directoryEncoding[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER.

emir.security.truststore.directoryLocations.*list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
emir.security.truststore.keystoreFormatstring - The keystore type (jks,

pkcs12) in case of truststore
of keystore type.

emir.security.truststore.keystorePasswordstring - The password of the
keystore type truststore.

emir.security.truststore.keystorePathstring - The keystore path in case of
truststore of keystore type.

--- Openssl type settings ---

EMI Registry Manual 11

Property name Type Default
value /
mandatory

Description

emir.security.truststore.opensslNsMode[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDPMA_GLOBUSIn case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).

emir.security.truststore.opensslPathfilesystem path /etc/grid-security/certificatesDirectory to be used for
opeenssl truststore.

--- Revocation settings ---
emir.security.truststore.crlConnectionTimeoutinteger number 15 Connection timeout for

fetching the remote CRLs
in seconds (not used for
Openssl truststores).

emir.security.truststore.crlDiskCachePathfilesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

emir.security.truststore.crlLocations.*list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

EMI Registry Manual 12

Property name Type Default
value /
mandatory

Description

emir.security.truststore.crlMode[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

emir.security.truststore.crlUpdateIntervalinteger number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

emir.security.truststore.ocspCacheTtlinteger number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)

emir.security.truststore.ocspDiskCachefilesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

emir.security.truststore.ocspLocalResponders.<NUMBER>list of
properties with
a common
prefix

- Optional list of local OCSP
responders

emir.security.truststore.ocspMode[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAILABLEGeneral OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

emir.security.truststore.ocspTimeoutinteger number 10000 Timeout for OCSP
connections in miliseconds.

emir.security.truststore.revocationOrder[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

emir.security.truststore.revocationUseAll[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

EMI Registry Manual 13

4.2.5 Examples

Directory truststore, with a minimal set of options:

emir.security.truststore.type=directory emir.security.truststore.directoryLocations.1=/trust/dir/.pem
emir.security.truststore.directoryLocations.2=/other/dir/.pem emir.security.truststore.crlLocations=/trust/dir/*.crl

Directory truststore, with complete set of options:

emir.security.truststore.type=directory
emir.security.truststore.allowProxy=DENY
emir.security.truststore.updateInterval=1234
emir.security.truststore.directoryLocations.1=/trust/dir/*.pem
emir.security.truststore.directoryLocations.2=http://caserver/ca.pem
emir.security.truststore.directoryEncoding=PEM
emir.security.truststore.directoryConnectionTimeout=100
emir.security.truststore.directoryDiskCachePath=/tmp
emir.security.truststore.crlLocations=/trust/dir/*.crl http://caserver/crl.pem
emir.security.truststore.crlUpdateInterval=400
emir.security.truststore.crlMode=REQUIRE
emir.security.truststore.crlConnectionTimeout=200
emir.security.truststore.crlDiskCachePath=/tmp

Openssl truststore:

emir.security.truststore.type=openssl
emir.security.truststore.opensslPath=path/to/truststores/openssl
emir.security.truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
emir.security.truststore.allowProxy=ALLOW
emir.security.truststore.updateInterval=1234
emir.security.truststore.crlMode=IF_VALID

Java keystore used as a truststore:

emir.security.truststore.type=keystore
emir.security.truststore.keystorePath=path/to/truststores/emir-truststore.jks
emir.security.truststore.keystoreFormat=JKS
emir.security.truststore.keystorePassword=xxxxxx

4.3 Configuring the Credentials

EMIR uses private key and a corresponding certificate (called together as a credential) to iden-
tify clients and servers. The credentials can be provided in several formats. The following table
list all possible variants and corresponding parameters.

EMI Registry Manual 14

Property name Type Default
value /
mandatory

Description

emir.security.credential.pathfilesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

emir.security.credential.format[jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

emir.security.credential.passwordstring - Password required to load
the credential.

emir.security.credential.keyPathstring - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

emir.security.credential.keyPasswordstring - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

emir.security.credential.keyAliasstring - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.

4.3.1 Examples

Credential as a pair of DER files:

emir.security.credential.format=der
emir.security.credential.password=emi

EMI Registry Manual 15

emir.security.credential.path=path/to/credentials/cert-1.der
emir.security.credential.keyPath=path/to/credentials/pk-1.der

Credential as a JKS file (type can be autodetected in almost every case):

emir.security.credential.path=path/to/credentials/server1.jks
emir.security.credential.password=xxxxxx

4.4 ACL Based Authorization

The EMIR offers two alternative options to authorise its’ clients.

• Using Access Control List (ACL)

• XACML Policy based authorization

This is the default mechanism to access control the Create,Update, and Delete operations
on EMIR’s SER database. The client SERP or child DSR registering SERPs with a parent
DSR/GSR get authorised while matching it’s distinguished name (DN) against the pre-defined
ACL file (CONF/emir.acl). Whereas the file contains a list of DN and role pairs, separated by
:: symbol, see the example below:

the property in the CONF/emir.config file

Property name Type Default value Description
emir.security.accesscontrol.aclfilesystem

path
CONF/emir.acl The location of the

ACL file

Example ACL file contents

emailAddress=emiregistry@user.eu,CN=EMIRegistry-Demo-User,OU=JSC,O= ←↩
Forschungszentrum Juelich GmbH,L=Juelich,C=DE :: serviceowner

emailAddress=emiregistry@user.eu-admin,CN=EMIRegistry-Demo-User- ←↩
Admin,OU=JSC,O=Forschungszentrum Juelich GmbH,L=Juelich,C=DE :: ←↩
admin

The public key certificate or DN should be sent to the DSR administrator for successfull SER
registrations.

Roles: There are only two pre-defined roles within the scope of ACL file:

• the admin is a super user who can change any registration, owned by anyone, and

• the serviceowner is only allowed to create new or modify his created SERPs.

EMI Registry Manual 16

Important
The ACL based authorisation is only activated when the DSR/GSR is running on
SSL/TLS mode

4.5 Policy Based Authorization with XACML

Using XACML 2.0 is an alternative way to authorize clients (User, EMIR-SERP, DSR, or
GSR) in a fine grained manner. The administrator should review the policies defined in the
CONF/xacml2Policies/ folder and change them according to her infrastructure needs.
However the already defined policies provides a good starting point to the administrators to
define/modify the policies.

Important
the XACML policy based authorization will be ignored, if the ACL based authorisation
is activated

In order to enable the XACML based authorization: attribute sources and policies must be
configured.

4.5.1 Setting Attribute Sources

EMIR only supports file based attribute sources; the client DNs can be included in the attributes
file.

Table 1: File Attribute Source Settings

Property name Type Default value Description
emir.security.attributes.orderstring FILE This property is a space

separated list of
attribute source names,
which are then
configured in detail
below. The named
attribute sources are
queried in the given
order.

emir.security.attributes.FILE.classstring eu.emi.emir.aip.FileAttributeSourceconfiguration of the
FILE attribute source

EMI Registry Manual 17

Table 1: (continued)

Property name Type Default value Description
emir.security.attributes.FILE.matching[strict,

regexp]
- Specifies the matching

or client DNs
emir.security.attributes.FILE.filefilesystem

path
CONF/users/testUd-strict.xml
or
CONF/users/testUd-regexp.xml

The path to the file
containing subjects’
DNs. The file suffixed
with strict use strict
checking of DNs,
whereas the file
suffixed with regexp
contain entries using
regualr expressions

4.5.2 Setting XACML Policies

Table 2: Policy settings

Property name Type Default value Description
emir.security.accesscontrol.pdpConfigfilesystem

path
CONF/xacml2.configThe path to the

XACML2
configuration,
containing the rules of
executing the policies

emir.security.accesscontrol.pdpstring eu.unicore.uas.pdp.local.LocalHerasafPDPThe name of the pdp
class to endorse, for the
xacml2 policies
execution

The CONF/xacml2.config file contains raw xacml polices, enable EMIR (DSR or GSR)
administrators to write their own rules.

4.6 MongoDB Database Configuration

The EMIR uses MongoDB to store and index the SER collections. It must be configured and
running before deploying any EMIR (DSR or GSR) server.

EMI Registry Manual 18

Property name Type Default value Description
Connection Settings

emir.mongodb.hostNamestring localhost Fully qualified host
name of the machine on
which MongoDB is
setup

emir.mongodb.port Integer 27017 The port number
Database Settings

emir.mongodb.dbName string emiregistry The name of the
database to store the
SERP records

emir.mongodb.colName string services The name of the
collection (of the
database) in which the
records will be stored

Login Settings
emir.mongodb.userNamestring - The username to access

the MongoDB database
emir.mongodb.passwordstring - The password to access

the MongoDB database

For high loads, especially at the GSR level, it is recommended to setup MongoDB replication
for enhanced scalability and performance.

4.7 Building EMIR Network

EMIR allows building a network of registries participating in a Grid infrastructure or federation.
The network can be of type hierarchical or Peer-to-Peer (P2P). In an hierarchical network, the
SER collections are propagated from leaf DSR node to the top level root node, called GSR.
Each DSR has only one parent, either DSR or GSR to which it pushes it’s SER collections.
At the root level the P2P network of GSR is formed to replicate the SER collections among
multiple GSRs by referring a pre-configured Global list. The global list contains a listing
of URLs of all the GSRs, each of which should be able to access the URLs.

Note
The machines running the EMIR servers should be time synchronised, either by NTP or any
alternative mechanism

4.7.1 How to Setup DSR?

In order to build hierarchy of DSRs must be able to propagate the SER collections to any single
parent DSR or a GSR.

http://www.mongodb.org/display/DOCS/Replication

EMI Registry Manual 19

Table 3: Parent DSR Settings

Property name Type Default value Description
EMIR’s DSR settings

emir.parentAddress string - The address/URL (http
or https) of the EMIR
DSR server to which it
propagates its SER
collection

Important
Add DN of child DSR into the parent DSRs CONF/emir.acl or CONF/users/testUd-
(strict | regsexp).xml

4.7.2 How to Setup GSR?

The root level GSR has two primary functions:

• aggregation of children DSR SER collections

• replicating the SER collections among other GSRs (visible of Global List)

Table 4: GSR Settings

Property name Type Default value Description
General GSR Settings

emir.global.enable boolean false If set to true, indicating
the registry node is
global. It will then
replicate the state
among peer global
registries (GSRs), the
emir.parentAddress
property will be
ignored (if enabled), as
the root registry should
not contain any parent.

EMI Registry Manual 20

Table 4: (continued)

Property name Type Default value Description
emir.global.sparsity Unsigned

Integer
2 It determines the

number of neighbors as
a function of the actual
number of member
nodes of the network.

emir.global.retry Unsigned
Integer

5 It specifies a number of
attempts if
communication to
another GSR is failed.

emir.global.etValid Unsigned
Integer

12 Specifies period in
hours for checking the
entries in the soft state
database and strip the
expired entries (but still
keeps them).

emir.global.softStateDelayInteger 2 Extend the expiration
time with this time
delay in hours.

emir.global.etRemove Integer 24 Specifies period in
hours for checking the
entries in the soft state
database and remove
the expired entries.

Global List Settings
emir.global.providerListURL or

filesys-
tem
path

- Link to the document
listing GSR URLs. The
URL(s) is/are important
for building the GSR’s
P2P network at the
global level.

Important
Add DN of child DSR into the GSRs CONF/emir.acl or CONF/users/testUd-(strict |
regsexp).xml

EMI Registry Manual 21

4.8 Service Endpoint Record (SER) Management

4.8.1 Setting Service Endpoint Records (SER) Lifetime

In EMIR, every SER has associated lifetime or (Time-To-Live) TTL. The settings can be de-
fined in DSR or GSR to restrict the maximum assignable lifetime and assign default lifetime if
missing from the registration.

Table 5: SER TTL Settings

Property name Type Default value Description
emir.record.expiryMaximumUnsigned

Integer
(in days)

- Maximum assignable
lifetime for the SERs
containing the
Service_ExpireOn
property, defined in
days, minimum value:
1.

emir.record.expiryDefaultUnsigned
Integer
(in days)

- The default lifetime
will be set from the
given property if the
incoming registration is
without the
Service_ExpireOn
attribute.

4.8.2 Filtering Service Endpoint Records (SER)

EMIR offers a way to block

• SERs from being registered via DSR or EMIR-SERP

• SERs from being propagated to it’s parent DSR or GSR

Table 6: SER Filter Settings

Property name Type Default value Description
emir.record.blockList.incomingfilesystem

path
CONF/inputfiltersThe file containing list

of SER IDs, matching
services will be blocked
from registration to it’s
index

EMI Registry Manual 22

Table 6: (continued)

Property name Type Default value Description
emir.record.blockList.outgoingfilesystem

path
CONF/outputfiltersThe file containing list

of SER IDs, matching
services will be blocked
from propagation to it’s
parent DSR

4.8.3 Validation of Mandatory Attributes

Usually the DSR or GSR does not allow the SER to be registered(or updated) without having
mandatory attributes. This validity check can be disabled to allow the publishers to register a
SER with custom attributes to the EMIR server. Hence providing a flexibility to the publishers,
whereas the consumers have to examine all the attributes while performing some operation on
the service (contained in the SER) itself.

Table 7: Enable/Disable Validity Checks

Property name Type Default value Description
emir.record.attributeCheckingModeString strict There are two possible

modes: strict or
flexible. If set to strict
the emir server will
check mandatory
attributes in the record
being updated or
registered. If set to
flexible only SER-
VICE_ENDPOINT_ID
will be checked.

4.9 Logging Configuration

The EMIR server uses log4j to provide log facilities to record all but some of the server activ-
ities. In order to change the logging configuration, CONF/log4j.properties should be reviewed
by the administrator.

http://logging.apache.org/log4j/1.2/index.html

EMI Registry Manual 23

4.10 Advanced HTTP Server Settings

EMIR uses Eclipse’s Jetty server to host REST Web services. Following table lists the important
properties.

Important
Do not set emir.jetty.requireClientAuthn and emir.jetty.wantClientAuthn in CON-
F/emir.config file, as they are automatically set by the EMIR server on start-up.

Property name Type Default
value /
mandatory

Description

emir.jetty.disabledCipherSuitesstring empty
string

Space separated list of SSL
cipher suites to be disabled.

emir.jetty.fastRandom[true, false] false Use insecure, but fast
pseudo random generator to
generate session ids instead
of secure generator for SSL
sockets.

emir.jetty.gzip.enable[true, false] false Controls whether to enable
compression of HTTP
responses.

emir.jetty.gzip.minGzipSizeinteger number 100000 Specifies the minimal size
of message that should be
compressed.

emir.jetty.highLoadConnectionsinteger >= 1 200 If the number of
connections exceeds this
amount, then the connector
is put into a special low on
resources state. Existing
connections will be closed
faster. Note that this value
is honored only for NIO
connectors. Legacy
connectors go into low
resources mode when no
more threads are available.

emir.jetty.lowResourceMaxIdleTimeinteger >= 1 100 In low resource conditions,
time (in ms.) before an idle
connection will time out.

EMI Registry Manual 24

Property name Type Default
value /
mandatory

Description

emir.jetty.maxIdleTimeinteger >= 1 200000 Time (in ms.) before an idle
connection will time out. It
should be large enough not
to expire connections with
slow clients, values below
30s are getting quite risky.

emir.jetty.maxThreadsinteger >= 1 255 Maximum number of
threads to have in the thread
pool for processing HTTP
connections.

emir.jetty.minThreadsinteger >= 1 1 Minimum number of
threads to have in the thread
pool for processing HTTP
connections.

emir.jetty.requireClientAuthn[true, false] true Controls whether the SSL
socket requires client-side
authentication.

emir.jetty.soLingerTimeinteger number -1 Socket linger time.
emir.jetty.useNIO [true, false] false Controls whether the NIO

connector be used. NIO is
best suited under high-load,
when lots of connections
exist that are idle for long
periods.

emir.jetty.wantClientAuthn[true, false] true Controls whether the SSL
socket accepts (but does not
require) client-side
authentication.

5 EMIR-SERP Configuration

The configuration of EMIR-SERP can be performed by editing its configuration file or files. The
configuration can be found basically in one file that default location is /etc/emi/emir-serp/emir-serp.ini.

This file contains every configuration options that can be the EMIR-SERP daemon control by,
like service url, logging verbosity, credential location, etc.

The advanced service entries to be propagated can be described in separated configuration files
preferably also under this directory and use to have .json extension.

The main configuration file has INI format. The emir-serp section contains the daemon
scoped options while the others are to describe the different service entries to be registered. In

EMI Registry Manual 25

these cases the exact name is indifferent, they just have to differ from each other and must avoid
the emir-serp name as well.

5.1 Configuration options

Note
The names of options are case-insensitive.

5.1.1 url

Location: emir-serp section

Default value: No default value

Mandatory: Yes

Description:

URL of the EMIR service to connect in a protocol://domain:port format.

If protocol is missing default https is used. If port is missing default 54321 is used. The
domain part is mandatory.

Examples
url = emiregistry2.grid.niif.hu
url = https://emiregistry2.grid.niif.hu
url = https://emiregistry2.grid.niif.hu:54321

5.1.2 period

Location: emir-serp section

Default value: No default value

Mandatory: Yes

Description:

The period of the registration/update messages. Its value is given in hours.

5.1.3 validity

Location: emir-serp section

Default value: No default value

Mandatory: Yes

Description:

The validity of the registration entries. Its value is given in hours.

EMI Registry Manual 26

5.1.4 cert

Location: emir-serp section

Default value: /etc/grid-security/hostcert.pem

Mandatory: No

Description:

User certificate file location in PEM format. Only used and checked if the protocol in the url
option is https.

5.1.5 key

Location: emir-serp section

Default value: /etc/grid-security/hostkey.pem

Mandatory: No

Description:

User key file location in PEM format. Only used and checked if the protocol in the url option is
https.

5.1.6 cadir

Location: emir-serp section

Default value: /etc/grid-security/certificates

Mandatory: No

Description:

A path pointing to the store where the PEM certificate of the trusted Certificate Authorities can
be found. Only used and checked if the protocol in the url option is https.

5.1.7 verbosity

Location: emir-serp section

Default value: error

Mandatory: No

Description:

Logging verbosity. The parameter is optional. If missing or an invalid value is given, the
default value will be used. The logs are written into the log file that can be found in the
/var/log/emi/emir-serp directory by default.

EMI Registry Manual 27

Note
The service entries can be defined in separated ini sections. The name of the section is
irrelevant but must be different in every cases!
Any of json_file_location, json_dir_location or resource_bdii_url must be present in a section
to enable EMIR-SERP registration otherwise section is going to be skipped.

5.1.8 json_file_location

Location: service related section

Default value: No default value

Mandatory: Yes

Description:

The service entry can be defined in a single external json formatted file per service. Any al-
lowed json attributes are allowed in this way. The location of this file must be defined in the
json_file_location ini variable.

The value of json_file_location is used only if no resource_bdii_url or json_dir_location
are present in the same section.

5.1.9 json_dir_location

Location: service related section

Default value: No default value

Mandatory: Yes

Description:

Multiple entries belonging to a service can be put into separated json files in a common direc-
tory. The script periodically scan the content of the directory setted up with this attribute and
the content of the found json files will be propagated to the EMIR service.

The value of json_dir_location is used only if no resource_bdii_url is present.

5.1.10 resource_bdii_url

Location: service related section

Default value: No default value

Mandatory: Yes

Description:

EMI Registry Manual 28

The service information to be registered can be harvested from directly from resource BDII
LDAP servers. EMIR-SERP periodically queries the remote database, converts the result, and
publish the service information to the previously configured EMIR service.

If resource_bdii_url attribute is present both json_dir_location and json_file_location are ig-
nored.

If port is missing default 2170 is used. If LDAP base is missing default o=glue is used. Only
ldap scheme is accepted in the URL.

6 How to use EMIR API?

The EMI Registry allows Services to register/publish their capabilities while the Service Con-
sumers are able to find the deployed services.

This section contains the description of the REST-ful interface, that allows the management of
the service information (or entries) by exposing the individual URIs. The normative description
of the API cab also be defined as Web Application Description Language (WADL) document
WADL Section 8.

6.1 Register new Services

HTTP Method : POST

URI : /serviceadmin

Content Type : application/json

Security Implications : Requires authenticated "and" authorized user access to per-
form this operation

6.1.1 Request

The message body contain a JSON Array containing the JSON objects (see below), each of
which would be a service entry in the EMI registry.

Service description is defined as a Section 7 document.

Important
The only mandatory attribute is Service_Endpoint_URL, which should be unique

EMI Registry Manual 29

6.1.2 Response

The response contains similar array of JSON Objects as it was in sent request, confirming the
successful update.

Status Code : OK / 200

6.2 Updating the Service information

HTTP Method : PUT

URI : /serviceadmin

Content Type : application/json

Security Implications : Requires an authenticated "and" authorized user access to
perform this operation

6.2.1 Request

The request body contain a similar JSON array object as defined POST method that con-
tains the description of the Services to be updated. The Service Entries identified by the Ser-
vice_Endpoint_URL key in the individual JSON objects will be updated respectively.

6.2.2 Response

The response contains similar array of JSON Objects as it was in sent request, confirming the
successful update.

Status Code : OK / 200

6.3 Delete existing Services

HTTP Method : DELETE

URI : /serviceadmin

Security Implications : Requires an authenticated "and" authorized user access to
perform this operation

6.3.1 Request

The Service Entry matching the Endpoint ID will be deleted from the registry only if the client
executing the action has authorised access and the method is allowed by the security plugins.

Query Parameters : Service_Endpoint_ID= <Service unique Endpoint ID>

Example : /serviceadmin?Service_Endpoint_ID=urn:endpoint:emi1

EMI Registry Manual 30

6.3.2 Response

Status Code : OK / 200

6.4 Querying the EMIR

HTTP Method : GET

URI : /services

Content Type : application/json

6.4.1 Request

The request contains the key-value pairs separated by ampersand &

Query Parameters : AttributeName=<Attribute_Value>&AttributeName=<Attribute_Value>&. . .

Example : /services?Service_Type=eu.emi.es&Service_Endpoint_HealthState=ok

The additional parameters can also be added to restrict and/or paginate the result

Additional Query Parameters :

skip=Integer value

skip returns the result skipping the given number of entries

limit=Integer value

limit defines the maximum number of result containing the service entries

Response+Additional Query Parameters+ :

skip=Integer value

skip returns the result skipping the given number of entries

limit=Integer value

limit defines the maximum number of result containing the service entries

The response contains an array of service entries packed in a JSON array object

Status Code : OK / 200

EMI Registry Manual 31

6.5 Rich Querying in EMIR

HTTP Method : GET

URI : /services

Content Type : application/json

6.5.1 Request

The request contains the JSON document including with support for defining advanced clauses,
the http://www.mongodb.org/display/DOCS/Advanced+Queries, MongoDB Advanced Queries[MongoDB
JSON Query Language] describes the various types of queries

Additional keys (skip, limit) can also be added to paginate the returning results.

6.5.2 Response

The response contains the array of service entries packed in a JSON array object

Status Code : OK / 200

6.6 Querying the EMIR for GLUE 2.0 XML Documents

HTTP Method : GET

URI : /services

Content Type : application/xml

6.6.1 Request

The request contains the key-value pairs separated by ampersand &

Query Parameters : AttributeName=<Attribute_Value>&AttributeName=<Attribute_Value>&. . .

Example : /services?Service_Type=eu.emi.es&Service_Endpoint_HealthState=ok

The additional parameters can also be added to restrict and/or paginate the result

Additional Query Parameters :

skip=Integer value

skip returns the result skipping the given number of entries

limit=Integer value

limit defines the maximum number of result containing the service entries

http://www.mongodb.org/display/DOCS/Advanced+Queries

EMI Registry Manual 32

6.6.2 Response

The response contains an XML document containing service entries in GLUE 2.0 format

Status Code : OK / 200

6.7 Rich Querying the EMIR for GLUE 2.0 XML Documents

The request and response interface is same as defined above, however the content type must be
defined as application/xml instead.

6.8 Viewing the Service information template

This To view the GLUE 2.0’s JSON flavored service model.

HTTP Method : GET

URI : /model

Content Type : application/json

6.8.1 Request

N/A

6.8.2 Response

JSON document, as described in the /serviceadmin POST method

Status Code : OK / 200

6.9 Monitoring the Registry

Allows registry users to view the registry status

HTTP Method : GET

URI : /ping

6.9.1 Request

N/A

EMI Registry Manual 33

6.9.2 Response

Status Code : OK / 200

7 Appendix I

The service record JSON template of EMIR interface.

[//Example Service Endpoints Records (belonging to the same ←↩
service)

{
"Service_ID":"s1",
"Service_Name":"ComputingService",
"Service_CreationTime":{"$date":"2011-07-21T11 ←↩

:47:24Z"},
"Service_Type":"job-management",
"Service_Contact": [{"ContactType":"sysadmin", " ←↩

Detail":"http://contactlink"},{"ContactType":" ←↩
developer", "Detail":"http://contactlink"}],

"Service_Endpoint_ID":"se1", //this should be ←↩
unique

"Service_Endpoint_URL":"http://1",
"Service_Endpoint_Capability":["capability1"," ←↩

capability2"],
"Service_Endpoint_Technology":"technology",
"Service_Endpoint_InterfaceName":"interface",
"Service_Endpoint_InterfaceVersion":["version1"," ←↩

version2"],
"Service_Endpoint_InterfaceExtension":["extension1 ←↩

","extension2"],
"Service_Endpoint_WSDL":"http//1.wsdl",
"Service_Endpoint_SupportedProfile":["profile1"," ←↩

profile2"],
"Service_Endpoint_Semantics":["semantic1"," ←↩

semantic2"],
"Service_Endpoint_HealthState":"ok",
"Service_Endpoint_HealthStateInfo":"state info",
"Service_Endpoint_ServingState":"production",
"Service_Endpoint_StartTime":{"$date":"2011-07-21 ←↩

T11:47:24Z"},
"Service_Endpoint_DowntimeAnnounce":{"$date ←↩

":"2011-07-21T11:47:24Z"},
"Service_Endpoint_DowntimeStart":{"$date ←↩

":"2011-07-21T11:47:24Z"},
"Service_Endpoint_DowntimeEnd":{"$date":"2011-07-21 ←↩

T11:47:24Z"},
"Service_Endpoint_QualityLevel":"production",
"Service_Location_Address":"A Street 1",

EMI Registry Manual 34

"Service_Location_Place":"Bonn",
"Service_Location_Country":"Germany",
"Service_Location_PostCode":"53119",
"Service_Location_Latitude":53.3,
"Service_Location_Longitude":4,
"Service_ExpireOn":{"$date":"2020-07-21T11:47:24Z"}

},
{

"Service_ID":"s1",
"Service_Name":"ComputingService",
"Service_CreationTime":{"$date":"2011-07-21T11 ←↩

:47:24Z"},
"Service_Type":"job-management",
"Service_Contact": [{"ContactType":"sysadmin", " ←↩

Detail":"http://contactlink"},{"ContactType":" ←↩
developer", "Detail":"http://contactlink"}],

"Service_Endpoint_ID":"se2", //this should be ←↩
unique

"Service_Endpoint_URL":"http://1",
"Service_Endpoint_Capability":["capability1"," ←↩

capability2"],
"Service_Endpoint_Technology":"technology",
"Service_Endpoint_InterfaceName":"interface",
"Service_Endpoint_InterfaceVersion":["version1"," ←↩

version2"],
"Service_Endpoint_InterfaceExtension":["extension1 ←↩

","extension2"],
"Service_Endpoint_WSDL":"http//1.wsdl",
"Service_Endpoint_SupportedProfile":["profile1"," ←↩

profile2"],
"Service_Endpoint_Semantics":["semantic1"," ←↩

semantic2"],
"Service_Endpoint_HealthState":"ok",
"Service_Endpoint_HealthStateInfo":"state info",
"Service_Endpoint_ServingState":"production",
"Service_Endpoint_StartTime":{"$date":"2011-07-21 ←↩

T11:47:24Z"},
"Service_Endpoint_DowntimeAnnounce":{"$date ←↩

":"2011-07-21T11:47:24Z"},
"Service_Endpoint_DowntimeStart":{"$date ←↩

":"2011-07-21T11:47:24Z"},
"Service_Endpoint_DowntimeEnd":{"$date":"2011-07-21 ←↩

T11:47:24Z"},
"Service_Endpoint_QualityLevel":"production",
"Service_Location_Address":"A Street 1",
"Service_Location_Place":"Berlin",
"Service_Location_Country":"Germany",
"Service_Location_PostCode":"53011",
"Service_Location_Latitude":53.5,

EMI Registry Manual 35

"Service_Location_Longitude":4,
"Service_ExpireOn":{"$date":"2020-07-21T11:47:24Z"}

}

]

8 Appendix II

The EMIR WADL document to define the REST-ful API

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://wadl.dev.java.net/2009/02">

<doc xmlns:jersey="http://jersey.java.net/" jersey:generatedBy ←↩
="Jersey: 1.9.1 09/14/2011 02:05 PM"/>

<grammars/>
<resources base="https://localhost:54321/">

<resource path="/children">
<method id="childDSRs" name="GET">

<response>
<representation mediaType="*/*"/>

</response>
</method>
<method id="checkin" name="POST">

<response>
<representation mediaType="*/*"/>

</response>
</method>

</resource>
<resource path="/neighbors">

<method id="childDSRs" name="GET">
<response>

<representation mediaType="*/*"/>
</response>

</method>
</resource>
<resource path="/parent">

<method id="childDSRs" name="GET">
<response>

<representation mediaType="*/*"/>
</response>

</method>
</resource>
<resource path="/serviceadmin">

<method id="getServicebyUrl" name="GET">
<response>

<representation mediaType="application/json"/>
</response>

EMI Registry Manual 36

</method>
<method id="registerServices" name="POST">

<request>
<representation mediaType="application/json"/>

</request>
<response>

<representation mediaType="application/json"/>
</response>

</method>
<method id="updateServices" name="PUT">

<request>
<representation mediaType="application/json"/>

</request>
<response>

<representation mediaType="application/json"/>
</response>

</method>
<method id="deleteService" name="DELETE">

<response>
<representation mediaType="*/*"/>

</response>
</method>

</resource>
<resource path="/services">

<method id="queryWithParams" name="GET">
<response>

<representation mediaType="application/json"/>
</response>

</method>
<method id="queryWithJSON" name="POST">

<request>
<representation mediaType="application/json"/>

</request>
<response>

<representation mediaType="application/json"/>
</response>

</method>
<method id="queryXMLWithJSON" name="POST">

<request>
<representation mediaType="application/json"/>

</request>
<response>

<representation mediaType="application/xml"/>
</response>

</method>
<method id="queryXMLWithParams" name="GET">

<response>
<representation mediaType="application/xml"/>
<representation mediaType="text/xml"/>

</response>

EMI Registry Manual 37

</method>
<resource path="/urls">

<method id="getServiceEndPoints" name="GET">
<response>

<representation mediaType="application/json ←↩
"/>

</response>
</method>

</resource>
<resource path="/types">

<method id="getServiceTypes" name="GET">
<response>

<representation mediaType="application/json ←↩
"/>

</response>
</method>

</resource>
<resource path="/query.xml">

<method id="queryXml" name="GET">
<response>

<representation mediaType="application/xml ←↩
"/>

<representation mediaType="text/xml"/>
</response>

</method>
</resource>
<resource path="/pagedquery">

<method id="pagedQuery" name="GET">
<response>

<representation mediaType="*/*"/>
</response>

</method>
</resource>

</resource>
<resource path="/model">

<method id="getModel" name="GET">
<response>

<representation mediaType="text/html"/>
<representation mediaType="application/json"/>

</response>
</method>

</resource>
<resource path="/ping">

<method id="ping" name="GET">
<response>

<representation mediaType="application/json"/>
<representation mediaType="text/plain"/>

</response>
</method>

</resource>

EMI Registry Manual 38

</resources>
</application>

	Overview
	EMIR Server (DSR or GSR)
	EMIR's Service Endpoint Record Publisher (EMIR-SERP)

	Getting Started in 5 Minutes
	Domain Service Registry (DSR)
	Global Service Registry (GSR)
	Service Endpoint Record Publisher (EMIR-SERP) with site BDII information source
	Service Endpoint Record Publisher (EMIR-SERP) with resource BDII information source

	Installation
	EMIR Server (DSR or GSR)
	Installing the Publisher Client: EMIR-SERP

	EMIR Server Configuration
	General Configuration
	PKI Trust Settings Configuration
	Configuring the Credentials
	ACL Based Authorization
	Policy Based Authorization with XACML
	MongoDB Database Configuration
	Building EMIR Network
	Service Endpoint Record (SER) Management
	Logging Configuration
	Advanced HTTP Server Settings

	EMIR-SERP Configuration
	Configuration options

	How to use EMIR API?
	Register new Services
	Updating the Service information
	Delete existing Services
	Querying the EMIR
	Rich Querying in EMIR
	Querying the EMIR for GLUE 2.0 XML Documents
	Rich Querying the EMIR for GLUE 2.0 XML Documents
	Viewing the Service information template
	Monitoring the Registry

	Appendix I
	Appendix II

