20,336 research outputs found

    Secure Quantum Network Code without Classical Communication

    Full text link
    We consider the secure quantum communication over a network with the presence of a malicious adversary who can eavesdrop and contaminate the states. The network consists of noiseless quantum channels with the unit capacity and the nodes which applies noiseless quantum operations. As the main result, when the maximum number m1 of the attacked channels over the entire network uses is less than a half of the network transmission rate m0 (i.e., m1 < m0 / 2), our code implements secret and correctable quantum communication of the rate m0 - 2m1 by using the network asymptotic number of times. Our code is universal in the sense that the code is constructed without the knowledge of the specific node operations and the network topology, but instead, every node operation is constrained to the application of an invertible matrix to the basis states. Moreover, our code requires no classical communication. Our code can be thought of as a generalization of the quantum secret sharing

    Finite-Block-Length Analysis in Classical and Quantum Information Theory

    Full text link
    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects

    Energy efficient mining on a quantum-enabled blockchain using light

    Full text link
    We outline a quantum-enabled blockchain architecture based on a consortium of quantum servers. The network is hybridised, utilising digital systems for sharing and processing classical information combined with a fibre--optic infrastructure and quantum devices for transmitting and processing quantum information. We deliver an energy efficient interactive mining protocol enacted between clients and servers which uses quantum information encoded in light and removes the need for trust in network infrastructure. Instead, clients on the network need only trust the transparent network code, and that their devices adhere to the rules of quantum physics. To demonstrate the energy efficiency of the mining protocol, we elaborate upon the results of two previous experiments (one performed over 1km of optical fibre) as applied to this work. Finally, we address some key vulnerabilities, explore open questions, and observe forward--compatibility with the quantum internet and quantum computing technologies.Comment: 25 pages, 5 figure
    • 

    corecore