22,576 research outputs found

    Secure Communication over Parallel Relay Channel

    Full text link
    We investigate the problem of secure communication over parallel relay channel in the presence of a passive eavesdropper. We consider a four terminal relay-eavesdropper channel which consists of multiple relay-eavesdropper channels as subchannels. For the discrete memoryless model, we establish outer and inner bounds on the rate-equivocation region. The inner bound allows mode selection at the relay. For each subchannel, secure transmission is obtained through one of two coding schemes at the relay: decoding-and-forwarding the source message or confusing the eavesdropper through noise injection. For the Gaussian memoryless channel, we establish lower and upper bounds on the perfect secrecy rate. Furthermore, we study a special case in which the relay does not hear the source and show that under certain conditions the lower and upper bounds coincide. The results established for the parallel Gaussian relay-eavesdropper channel are then applied to study the fading relay-eavesdropper channel. Analytical results are illustrated through some numerical examples.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    Secure Transmission in Amplify-and-Forward Diamond Networks with a Single Eavesdropper

    Full text link
    Unicast communication over a network of MM-parallel relays in the presence of an eavesdropper is considered. The relay nodes, operating under individual power constraints, amplify and forward the signals received at their inputs. The problem of the maximum secrecy rate achievable with AF relaying is addressed. Previous work on this problem provides iterative algorithms based on semidefinite relaxation. However, those algorithms result in suboptimal performance without any performance and convergence guarantees. We address this problem for three specific network models, with real-valued channel gains. We propose a novel transformation that leads to convex optimization problems. Our analysis leads to (i)a polynomial-time algorithm to compute the optimal secure AF rate for two of the models and (ii) a closed-form expression for the optimal secure rate for the other.Comment: 12pt font, 18 pages, 1 figure, conferenc

    Resource Allocation for Secure Gaussian Parallel Relay Channels with Finite-Length Coding and Discrete Constellations

    Full text link
    We investigate the transmission of a secret message from Alice to Bob in the presence of an eavesdropper (Eve) and many of decode-and-forward relay nodes. Each link comprises a set of parallel channels, modeling for example an orthogonal frequency division multiplexing transmission. We consider the impact of discrete constellations and finite-length coding, defining an achievable secrecy rate under a constraint on the equivocation rate at Eve. Then we propose a power and channel allocation algorithm that maximizes the achievable secrecy rate by resorting to two coupled Gale-Shapley algorithms for stable matching problem. We consider the scenarios of both full and partial channel state information at Alice. In the latter case, we only guarantee an outage secrecy rate, i.e., the rate of a message that remains secret with a given probability. Numerical results are provided for Rayleigh fading channels in terms of average outage secrecy rate, showing that practical schemes achieve a performance quite close to that of ideal ones

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    On Secure Transmission over Parallel Relay Eavesdropper Channel

    Full text link
    We study a four terminal parallel relay-eavesdropper channel which consists of multiple independent relay-eavesdropper channels as subchannels. For the discrete memoryless case, we establish inner and outer bounds on the rate-equivocation region. For each subchannel, secure transmission is obtained through one of the two coding schemes at the relay: decoding-and-forwarding the source message or confusing the eavesdropper through noise injection. The inner bound allows relay mode selection. For the Gaussian model we establish lower and upper bounds on the perfect secrecy rate. We show that the bounds meet in some special cases, including when the relay does not hear the source. We illustrate the analytical results through some numerical examples.Comment: 8 pages, Presented at the Forty-Eighth Annual Allerton Conference on Communication, Control, and Computing, September 29 - October 1, 2010, Monticello, IL, US

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Robust Power Allocation and Outage Analysis for Secrecy in Independent Parallel Gaussian Channels

    Full text link
    This letter studies parallel independent Gaussian channels with uncertain eavesdropper channel state information (CSI). Firstly, we evaluate the probability of zero secrecy rate in this system for (i) given instantaneous channel conditions and (ii) a Rayleigh fading scenario. Secondly, when non-zero secrecy is achievable in the low SNR regime, we aim to solve a robust power allocation problem which minimizes the outage probability at a target secrecy rate. We bound the outage probability and obtain a linear fractional program that takes into account the uncertainty in eavesdropper CSI while allocating power on the parallel channels. Problem structure is exploited to solve this optimization problem efficiently. We find the proposed scheme effective for uncertain eavesdropper CSI in comparison with conventional power allocation schemes.Comment: 4 pages, 2 figures. Author version of the paper published in IEEE Wireless Communications Letters. Published version is accessible at http://dx.doi.org/10.1109/LWC.2015.249734
    corecore