13 research outputs found

    On the Use of Secret Sharing as a Secure Multi-use Pad

    Get PDF
    Secret sharing (SS) is a cryptographic method proposed independently by Adi Shamir and George Blakley in 1979 to encode the keys of public-key cryptography by splitting them into maximally entropic shares that are distributed to participants, only revealing the secret when combined. Each new sharing instance, even of the same key, produces a different set of shares to distribute anew. This paper investigates SS as an independent cipher to secure confidential messages between a limited set of trusted participants by eliminating the need to redistribute shares. A participant's master share is permanently fixed and unlimited temporary shares are created and combined with it to reveal new messages. Security is argued against specific and general attacks

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    From Classical to Quantum Shannon Theory

    Full text link
    The aim of this book is to develop "from the ground up" many of the major, exciting, pre- and post-millenium developments in the general area of study known as quantum Shannon theory. As such, we spend a significant amount of time on quantum mechanics for quantum information theory (Part II), we give a careful study of the important unit protocols of teleportation, super-dense coding, and entanglement distribution (Part III), and we develop many of the tools necessary for understanding information transmission or compression (Part IV). Parts V and VI are the culmination of this book, where all of the tools developed come into play for understanding many of the important results in quantum Shannon theory.Comment: v8: 774 pages, 301 exercises, 81 figures, several corrections; this draft, pre-publication copy is available under a Creative Commons Attribution-NonCommercial-ShareAlike license (see http://creativecommons.org/licenses/by-nc-sa/3.0/), "Quantum Information Theory, Second Edition" is available for purchase from Cambridge University Pres

    Quantum information theory

    Get PDF
    Finally, here is a modern, self-contained text on quantum information theory suitable for graduate-level courses. Developing the subject \u27from the ground up\u27 it covers classical results as well as major advances of the past decade. Beginning with an extensive overview of classical information theory suitable for the non-expert, the author then turns his attention to quantum mechanics for quantum information theory, and the important protocols of teleportation, super-dense coding and entanglement distribution. He develops all of the tools necessary for understanding important results in quantum information theory, including capacity theorems for classical, entanglement-assisted, private and quantum communication. The book also covers important recent developments such as superadditivity of private, coherent and Holevo information, and the superactivation of quantum capacity. This book will be warmly welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theorists

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available
    corecore