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Abstract Secret sharing (SS) is a cryptographic method 

proposed independently by Adi Shamir and George 

Blakley in 1979 to encode the keys of public-key 

cryptography by splitting them into maximally entropic 

shares that are distributed to participants, only revealing 

the secret when combined.  Each new sharing instance, 

even of the same key, produces a different set of shares to 

distribute anew.  This paper investigates SS as an 

independent cipher to secure confidential messages 

between a limited set of trusted participants by eliminating 

the need to redistribute shares.  A participant's master share 

is permanently fixed and unlimited temporary shares are 

created and combined with it to reveal new messages.  

Security is argued against specific and general attacks. 
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1 Introduction 

 

Secret Sharing (SS) was developed by Shamir[20] and 

Blakley[5] as a solution to the secure distribution of keys 

in public-key cryptography.  In Shamir's Secret Sharing 

(SSS), there are n shares, any k of which can combine to 

reveal the secret.  Each share is maximally entropic, 

revealing no information about the secret, even with 

infinite computation.  

As proved in [20], it is information-theoretically secure, 

not relying on computational problems such as prime 

factorisation, so various uses have been proposed and 

developed, such as secure multi-party computation (MPC).  

However, each encoding produces a set of new shares to be 

distributed to participants via potentially non-secure 

channels, and it is possible for a hacker to intercept 

sufficient shares.  This makes SSS in its original form 

impractical for use, by itself, in messaging systems.  Such 

systems include email, SMS or any textual messaging 

service.  Indeed, emails often lack security [16], 

necessitating extra encryption (commonly RSA [19]), and 

with the introduction of quantum computation such as the 

D-Wave 2 [7], stronger security is desired.  

This paper proposes SSS to secure messages between a 

limited set of trusted users.  The need to distribute all 

shares for every message is eliminated with a collection of 

fixed master shares held by all users.  These are distributed 

only once, after they have been generated (here analogous 

to key generation).  Each transmission creates a temporary 

"transient" share, sent over the network and combined with 

the recipient's master share to reveal the message.  As 

such, although only (2, 2)-SSS (i.e. where a threshold of 

two shares are required out of a total of two shares) is used 

in this paper, the advantage of SSS is its ability to form 

access structures, potentially involving multiple users in a 

secure transmission.  The contributions of this paper are as 

follows:  
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● Equations are derived from the standard SSS 

model for the generation of transient share 

elements using master share elements and 

message characters.  

● Algorithms are proposed for the creation of 

master and transient shares that correctly combine 

to reveal any required confidential message, as 

well as to decode it on receipt.  

● Multi-use master shares are made possible, with 

statistical linguistic analysis prevented with 

message and share obfuscation.  

● Preliminary revocation and addition methods are 

suggested.  

The remainder of this paper is organised as follows:  

Section 2 reviews prior secret sharing literature.  Section 3 

details Shamir's secret sharing.  Section 4 proposes secure 

messaging, including key generation in 4.1, encoding in 

4.2 and decoding in 4.3.  Section 5 demonstrates secure 

transmission of messages using these algorithms and 

discusses various attacks.  Finally, Section 6 concludes the 

study and suggests further research directions. 

 

2 Related Work  

 

In 1979, two methods for the secure secret sharing of 

cryptographic keys were devised independently in [20] and 

[5].  In both, the secret can be in character string format, 

which is converted to numeric format using ASCII values.  

In Blakley’s method, each share is an ( 1)n -hyperplane 

with the secret encoded into the unique coordinate in n-

dimensional space at which planes intersect.  

Shamir’s SS reduces space complexity versus Blakley’s 

method (since each share in the latter must be at least k 

times larger than the secret) by encoding the secret into the 

constant terms of k randomly selected coordinates of an 

( 1)n -degree polynomial.  A line, for example, encodes a 

(2, 2)-SS scheme, since two points are required to 

reconstruct it and derive its constant term.  It therefore 

benefits from perfect information-theoretic security, as 

fewer than k points on a ( 1)k  -degree curve can be 

coordinates on any of an infinitude of ( 1)k  -degree 

polynomials (assuming real-valued coefficients).  

Prior practical application of SSS has been in the 

concealment of graphical information, whether it is 

personal bitmap images while in transit via a network, or 

highly confidential imagery, such as medical images and 

biometric data.  In [21], SSS is used to bring about 

threshold access structures for sharing graphical medical 

data, such that shares are held by a large number of 

professionals.  Ref. [1] similarly proposes a method for the 

concealment of biometrics.  

SSS is not the only form of secret sharing applicable to 

image data.  The most well-known method is visual 

cryptography, developed by Naor and Shamir [18] to build 

shares that can be printed onto transparent sheets and 

physically stacked to visually reveal the secret.  Although 

less computationally costly than SSS, which does not 

permit visual decoding, reconstruction is extremely lossy.  

Similarly, the random grids method of [11], improved in 

[22], results in the same kind of shares but benefits from 

smaller shares and lack of complicated rulebooks.  

Circles, as opposed to polynomials, are used in [10] to 

bring about (3, n)-SS, but only allow threshold access 

structures, i.e. those representable by fully connected 

(hyper)graphs, are allowed (as in Figure 1a).  The Chinese 

Remainder Theorem (CRT) can be used to bring about 

general access, and was first proposed in [3], whose work 

has since become known as the Asmuth-Bloom method.  

Interestingly, this was used in [12] as an alternative to SSS 

for threshold access, as they proved it more efficient.  

The present proposal is comparable to the one-time-pad 

used in the 1960s Cold War era to transmit messages with 

(at least in principle) information-theoretic security, using 

random numbers known only to the sender and receiver.  

That technique does not however allow for expansion into 

more complex access structures, unlike secret sharing.  

Effectively, as shown below, such structures allow the 

secret to be revealed to specified user subsets, whereas 

other subsets gain no information about the secret message.  

 

 (a)  (b)  

Figure 1.  Secret sharing access structures shown as 

graphs.  (a) (3, 3)-SS.  (b) Five-share general graph access 

structure.  

 

Revocation and addition of keys is here analogous to 

deletion and creation of shares in such a way that security 

and integrity are maintained.  In conventional SSS, new 

shares are created by simply selecting unused points on the 

curve and dealing them, but deleting a participant involves 

removing his/her knowledge of the scheme, hence 

changing the polynomial.  This was solved in [9] by using 

SSS along with CRT, Vandermonde matrices and "virtual 

automaton" to enable entering and leaving schemes at will 

and changing the secret on the fly.  

Security in SS has been the subject of much study.  

Despite being information-theoretically secure, if k is less 

than n, an adversary having fewer than k shares can indeed 

narrow the list of potential secrets from the infinite to the 

finite.  In the author's prior work [6], additional 

alphanumeric keys were suggested to vary the polynomial 

term used to encode a respective character, and in [8], 



different entropic metrics are compared with Kolmogorov 

complexity [14] in the context of SS to show equivalence 

between these security metrics and they prove that all 

entropy metrics are maximal if shares are uniformly 

randomly generated.  

As pointed out in [16], email is inherently non-secure, 

with the vast majority of email servers leaving messages 

open to interception and reading of plaintext.  Although 

public-key cryptography is sometimes used, they 

developed a more efficient protocol, SMEMail.  Similarly, 

an SS solution to messaging security based on 

computationally secure SS was given in [13], which 

addresses the problem of creating smaller share sizes with 

efficient MPC.  However, their proposal relies on 

computationally secure symmetric ciphers.  Secret sharing 

is indeed integral in maintaining perfect security in MPC.  

In this, the idea is to compute 
1 2( , ,...)y f x x , making the 

result public but concealing the function arguments, shares 

of which are then distributed.  

Shamir's SS has similarly found use in secure multi-

cloud, distributing data across servers as random shares.  In 

most cases, such data is first encrypted, then the crypto-

keys are shared, but recent work such as [17] has suggested 

sharing both data and keys.  If the data is too large, it is 

seen as more efficient to merely share keys to the data, but 

[2] developed a system called CloudStash to share all data, 

using low-cost cloud storage and multi-threading to 

improve fault-tolerance.  They show that sharing small 

files is more efficient than sharing keys, and even large 

files do not incur significant cost.  

 

3 Background to Secret Sharing  

 

Guide to Notation  

, 1,..., ,ip i    P  is the collection of participants. 

, 1,..., ,is i    S  is the collection of characters 

comprising the message. 
M

H  is the collection of master shares. 
M M

i HH  is the master share held by 
ip . 

TH  is the transient share conveying a respective message 

between two participants. 

Share elements are denoted using square brackets.  For 

example, [ ]T iH  is the value of the ith element in the 

transient share, or [ , ]T j iH  is the value of the red channel 

bitmap pixel in the ith column of the jth row. 

, (    or ),   are resp. lower and upper bounds 

of TH  elements. 

( )random X  returns a random member of set X, but if it 

has a trailing superscript, a random matrix of given 

dimensions is returned. 

  is a constant known to all pP , such that 

, 1,...,ix i i n    

 

For simplicity in this section, we consider splitting a 

secret number s into shares , 1,...,i i nH , where n is the 

number of shares.  Any k of these must be combined to 

reveal the secret.  This is a threshold (k, n)-SSS scheme, 

the simplest of which is a (2, 2)-SSS.  This sharing 

requires polynomial,  

1
1

1

, ({ ,..., })
k

k i

i i

i

y r x s r random  


 



 
   
 
  (1) 

where each 
ir   lies within arbitrarily chosen 

coefficient bounds ,  .  

The dealer randomly selects distinct points 

( , ), 1,...,i ix y i n  on y and hands one to each participant.  

Combining k of these reveals the coefficients, notably s.  

Shares of s are thus defined as,  

( , ), 1,...,i i ix y i n H     (2) 

Letting 
ix i  eliminates x-coordinates, decreasing 

network overhead.  In the results presented in this paper, 

1  .  

The secret can be decoded using Lagrangian 

interpolation.  Coordinates in (2) are used to calculate,  

,i

j qual

j X i X j i

x x
y y X

x x   

 
  

  
    (3) 

where qual  is a qualified subset of share indices.  The 

result of (3) is expanded to a polynomial of degree 1k  .  

The coefficients of the terms in 1 2, ,...,k kx x x   are ignored 

(as they are random), but the constant is decoded as the 

secret.  

If the secret is a message, each character is converted 

into its ASCII numeric code, which is encoded separately 

into its own shares.  In this case, the ith share of the jth 

character is denoted ( , ) j

i ix y .  If 
ix i , it can simply be 

denoted ( ) j

iy .  That is, 
1( ) ,..., ( )i i iy y H . 

 

4 Proposed Method  

 

In this section, the method for multi-use master share 

textual secret sharing is proposed.  Section 4.1 discusses 

initialisation, i.e. creation and dealing of master shares, and 

Section 4.2 discusses the encoding of messages, whereby a 

transient share is created and transmitted following two 

obfuscation operations.  Finally, Section 4.4 briefly 

discusses revocation.  

 

4.1 Key Generation  

 

In the present proposal, the keys are analogous to the 

master shares.  The dealer DP  designates   as the 

currently known number of trusted participants and 

generates a master share for each one.  Algorithm 1 

summarises key generation.  



 

Algorithm 1: Key Generation through the Creation of 

Master Shares  

Inputs:     

Outputs:  
M

H   

Procedure: 

Set  as the maximum message length   

 0, 255     

 w   
 

  

For 1,...,i  , Do   

   3( ,..., )M w w

i random     H   

Store 
M

iH as an RGB bitmap image   

End For   

 1( ,..., )M M M

H H H   

  

In the present proposal, shares are stored in raw bitmap 

files, wherein the value of each pixel in the red channel is 

the respective share element, as in Figure 2.  (Note that 

lthough this share format is comparable to visual 

cryptography, bitmaps are used here for the convenience of 

having different channels for encoding and seeding.)  

The green and blue channels are also randomised but it 

is beneficial to leave these for seeding, which prevents 

known-plaintext attacks.  Furthermore, to prevent related-

key attacks, all members of 
M

H  must be unique and 

randomly different from all other members.  Furthermore, 

to maintain immunity from interception, 
M

H  can never be 

transmitted via the network, but handed over in person.  

 

 
Figure 2.  The use of pixel-randomised icons to store 

and transmit shares as images.  

4.2 Message Encoding  

 

4.2.1 Obfuscation Functions  

 

Encoding uses an obfuscated copy of a respective user's 

master share, allowing it to be securely used multiple times 

without the possibility of interceptors analysing the 

repeated use of the same or similar numbers to apply 

linguistic analysis to them.  Algorithm 2 carries out this 

operation before transmitting a message to the ith 

participant.  It uses any cryptographically secure pseudo-

random number generator (CSPRNG) initially seeded by 

the current Unix Timestamp (UT).  (UT is only input, as 

opposed to sampled anew, when called later by Algorithm 

4 to decode the message.)  Shares are contained in the red 

channel of bitmaps, a row and column index to locate an 

element.  

 

Algorithm 2: Master Share Obfuscation  

Inputs:  ,M

i H , optionally UT  

Outputs:   M

i H   

Procedure: 

Sample UT if not provided as input.  

1seed UT   

2 0seed    

w   width of bitmap holding 
M

iH   

Set numPixels //5 IS A GOOD VALUE  

Seed PRNG with 
1seed .  

Record the date and time components of the UT.  

     

For 1,...,j numPixels , do,  

   (mod )nextj PRNG w   

   (mod )nexti PRNG w   

   
2 2seed seed   24-bit colour value at [ , ]M

i x yH   

End For  

Seed PRNG with 
2seed .  

     

For 1,...,j w , do,  

   For 1,...,k w , do,  

        [ , ] [ , ] 256.M M

i i nextj k j k PRNG  H H   

         [ , ] [ , ]( mod 1)M M

i ij k j k    H H   

   End For  

End For  

 

There are two stages of pseudo-random number 

generation.  The first relies on UT, which is known to an 

interceptor, who can calculate the pixel positions.  

However, their values have never been transmitted, hence 

cannot be known by that individual, and cannot be 

guessed, as argued in Section 5.2.  Furthermore, using a 

bitmap's red channel leaves other channels never used 

directly in any prior encoding, so their additional 16 

collective bits can be added to the existing 8 bits of the red 

channel to form a 24-bit number.  An arbitrary number of 

pixel values are collected in this way and summed to 

produce a secondary seed.  The temporarily altered master 



share  M

i H  is generated by a modular sum of random 

numbers based on this seed.  

Given in Section 4.2.2 is the equation for deriving a 

transient share element from a master share element based 

on SSS.  Repeated use of this equation results in 

approximately 20% negative correlation between message 

character ASCII code and transient share element, as well 

as a mean P-value too small to have confidence in the null 

hypothesis.  This correlation is eliminated by obfuscation 

of character values and their order, as in Algorithm 3.  

 

Algorithm 3: Message Obfuscation  

Inputs:  , M

iS H , UT used in Algorithm 2  

Outputs:  S  (obfuscated message)  

Procedure: 

secondsUT   seconds value from UT  

seed   24-bit colour value at [1,1] 100.M

i secondsUTH   

Seed PRNG with the calculated value above  

Permutate the order of elements in  1 ,...,
S

s s   //BASED 

ON SEEDED PRNG  

Reseed PRNG with the calculated value above  

     

For 1,...,j S , do,  

   js   numeric ASCII code of jth character in S  

   If 94js  , then 255j js s   , End If  

   
1 ([0,...,10])r random  // SEEDED PRNG  

   
2 ([ 7,..., 7])r random    / SEEDED PRNG  

   1j js s r     

   Rotate bits of js   by 
2r  positions  

End For      

1 ,...,
S

s s   S   

 

As with share obfuscation, the present operation uses 

information unknown to an interceptor.  Note that the seed 

is taken from the top-left master share pixel, but the system 

can use any pixel (preferably one never used for encoding), 

as long as the position is consistent and known to all 

participants.  The value 94 is selected based on the authors' 

experimental observation that this is approximately the 

mean ASCII value of characters comprising passages of 

text (seemingly varying little in different Roman alphabet 

languages).  

4.2.2 Creation of Transient Shares  

 

Conventional SSS creates the entire share set anew each 

time a secret is encoded, but in this paper, each user retains 

a permanent master share, , {1,..., }M

i i H , of which the 

sender creates an obfuscated version  M

i H  before 

transmission.  

If 
ix i , each master share element 

  [ ], 1,...,M

i j j  H  is the coordinate  1, ( ) jy  on a 

Cartesian plane.  Coordinate [ ]T jH  must be calculated 

such that an adjoining line crosses the vertical axis at 

jy s .  Any number of lines can pass through [ ]M

i jH  to 

cross any required point on the y-axis, hence allowing 

reuse of master shares.  Figure 3 demonstrates the concept.  

Here, the intersection point of the two lines is an element a 

user's master share, and the other two points can be 

considered elements of transient shares for two different 

messages.  

 

 
Figure 3.  Intersecting lines encoding different ASCII 

codes simultaneously in two shares.  

The gradient of Line 2 for 
1 2x x x   is 

2

2 1

2

2 1

y y

x x




.   

Since the vertical axis intersect is the constant, the gradient 

of Line 2 for 
10 x x   is 1

1

iy s

x


.  Since these gradients 

are of the same line, they are equal.  Furthermore,  1 1,x y  

and 
is  are known, and selecting a value for 

2

2x , the value 

of 
2

2y  becomes,  

2 2

2 2 1 1 2

2

1

( )
, 1,...,ix y s x x

y i
x


 

   (4) 

If ( ) j

ix i   (in Figure 3, 4  ), 
2 1( ) 2( )i ix x , this 

further reduces (4) to,  
2

2 1 2 12 2 , 1,...,j

ix x y y s i       (5) 

Using either of these equations produces an TH  that is 

maximally entropic.  Note in (5) that the ASCII value, 

effectively a constant, is subtracted from twice 
1y , a 

random number, so 
2

2y  must also be random.  However, it 

is clear that larger values of 
is  will tend to produce 

smaller values of 
2y , requiring the use of  M

i H  and S  

respectively output by Algorithm 2 and Algorithm 3.  



Figure 4 summarises encoding and transmission, 

wherein 
Ap  sends a confidential message to 

Bp .  Note that 

the message date and time of creation is also transmitted, 

along with  .  The latter is necessary for the recipient to 

determine how many bitmap pixels to decode as ASCII 

values.  

 

 

 

 
Figure 4.  Summary of encoding and transmission  

 

4.3 Message Decoding  

 

Decoding reverses encoding, but alters the recipient 

master share in the same way as during encoding, hence 

Algorithm 2 is called.  The method is described in 

Algorithm 4.  

Algorithm 4: Message Decoding  

Inputs:  TH , received UT,    

Outputs:  S   

Procedure: 

Derive  M

i H  from 
M

iH  using Alg. 2 with UT as input  

S    

secondsUT   seconds value from received UT  

seed   24-bit value at [1,1] 100.M

i secondsUTH   

Seed PRNG with the calculated value above  

     

For 1,...,j  , do,  

   
1 2, 2x x   , where 

1 2,x x    

      1 2[ ], [ ]M T

iy j y j   H H , where 
1 2,y x    

   2 1

2 1

y y
m

x x





  

   
1 1c y mx    

   
1 ([0,...,10])r random  // SEEDED PRNG  

   
2 ([ 7,..., 7])r random    // SEEDED PRNG  

   Rotate bits of c  
2r  positions  

   
1c c r    

   If 94c  , then 255c c  , End If  

   Convert c to ASCII character and append to S  



End For  

Reseed PRNG with the calculated value above  

1,...,   randomly permutated // SEEDED PRNG  

,temp S  concatenated as two columns  

Sort temp in ascending order by first column  

S  transpose of second column of temp  

Convert ASCII values of S  to characters and display the 

decoded message  

 

Algorithm 3 cannot be executed during decoding, as its 

operations must happen in reverse.  Furthermore, to 

reverse the permutation, the recipient must use the same 

seed to permutate 1,...,  and equate S  element indices to 

those values, reordering the characters to recreate the 

message sent by 
Ap .  

1.1 Remarks on Revocation  

A new trusted recipient requires a master share that is 

either new or currently not in use.  The latter simply 

requires the dealer to create more shares than participants 

during initialisation.  In this case, all current participants 

must be made aware of the value of i for 
M M

i HH  

corresponding to the newcomer.  This can happen in a pre-

agreed manner of blanket emailing (using master shares) 

the requisite details to current participants.  

This proposal is intended for a limited number of trusted 

users (given that 
M

H  is provided to all users in its 

entirety).  It is possible to generate 
M

iH  from 1

M

iH  in a 

similar way that transient shares are created, by using pixel 

data in 
M

iH  to seed PRNGs for the creation of 1

M

iH .  As 

this data has never been transmitted and assumed unknown 

to an interceptor, 1

M

iH  is by extension unknown.  This 

therefore provides a mechanism for the creation of master 

shares for newcomers, but still requires a blanket email to 

inform all current users of the addition.  

Removal of a user must be orchestrated by D and 

involve the cooperation of all remaining users.  It is not 

enough to remove the leaving user's details from the 

scheme, as that person must still be assumed to have access 

to 
M

H  and be able to use it to send messages.  It is 

therefore necessary to permanently alter all shares in 
M

H  

for all participants except the leaver.  D organises this by 

sending seeding data through the system to all remaining 

users, which they can each use in combination with data 

from their current master shares, to pseudo-randomly 

generate and permanently store new shares.  

Although these are randomly different from the old ones 

and an outsider still has no access to any of the  data, the 

process is deterministic.  Hence, all participants calculate 

and store the same share set.  (Indeed, this process can be 

regularly executed to continually alter 
M

H , so that a 

message received, for example, the previous day, cannot be 

decoded the following day using the same master share.) 

 

5 Results and Discussion  

 

5.1 Simulation Results  

 

The parameters used here are 0, 255, 1     , 

with shares stored as 100 100 -pixel bitmaps with a red, 

green and blue channel.  Master shares are randomly 

initialised, and the first 10 elements of the respective 

colour channels of 1

MH  and 2

MH  are as follows:  

1

(161,174,181,20,112,165,250,54,73,0,...) ,

(147,2,29,91,25,116,204,168,9,155,...) ,

(78,74,181,80,78,169,4,133,230,108,...)

red

M green

blue

 
 

  
 
 

H  

2

(89,106,254,22,145,144,185,99,125,246,...) ,

(33,220,116,91,249,218,88,238,204,22,...) ,

(85,222,251,110,104,130,18,229,173,57,...)

red

M green

blue

 
 

  
 
 

H   

These shares and those of any other participants 

comprise set 
M

H , which is physically handed to all 

participants.  At time 10:40:29 on date 14/04/2015, the 

following short message is typed by 
Ap  to be transmitted 

to 
Bp .  Given also is the resulting ASCII value sequence.  

"Hello, how are you today?" 

 {72, 101, 108, 108, 111, 44, 32, 104, 111, 119, 32, 97, 

114, 101, 32, 121, 111, 117, 32, 116, 111, 100, 97, 121, 

63}  

Therefore, 25  .  
Ap  knows that,  

2 [1,..., ]M  H {89, 106, 254, 22, 145, 144, 185, 99, 125, 

246, 209, 205, 124, 154, 94, 247, 216, 63, 119, 217, 31, 

214, 226, 3, 55} 
red

.  

Ap  sets the pseudo-random seed to the current date-

time (UT), randomly selects five pixels from 2

MH  and 

sums their 24-bit values to produce seed 19558611.  He 

then uses Algorithm 2 to produce altered recipient master 

share red channel:  

 2

M  H {93,197,214,186,168,71,85,30,135,209,...} 
red

  

He seeds PRNG in Algorithm 3 based on 
secondsUT  and 

the 24-bit pixel value at 2 [1,1]MH  and runs the algorithm to 

create obfuscated message  S {100, 62, 13, 122, 10, 248, 

73, 168, 204, 232,...}.  

As   , x-coordinates are fixed, so (5) is used to 

produce transient share T H  {86, 332, 415, 250, 326, -

106, 97, -108, 66, 186}.  These values are normalised to lie 

within {0,...,255} and remaining pixel values are padded 

with random numbers.  

This share is transmitted to 
Bp  via email or other 

messaging system, along with UT and  .  It is crucial to 

note the recipient has access to the same 2

MH  and UT as 

the sender, therefore seeds Algorithm 3 with the same 



value to produce  2

M H .  She then interpolates respective 

coordinates in her master share and the received transient 

share, as follows:  

 

Table 1.  Calculation of line equations from master and 

transient shares  

Master 

Share 

Values 

Transient 

Share 

Values 

Line Equations 

89 86 y=-3m+92 

106 332 y=226m-120 

254 415 y=161m+93 

22 250 y=228m-206 

145 326 y=181m-36 

144 -106 y=-250m+394 

185 97 y=-88m+273 

99 -108 y=-207m+306 

125 66 y=-59m+184 

246 186 y=-60m+306 

 

PRNG is re-seeded with the aforementioned value, and 

the constants of the line equations in Table 1 are randomly 

altered as in Algorithm 4 to produce the message "H 

e?lytur wl  oaohaode,yo".  This was originally permutated 

based on seed 
24

2, [1,1]M bits

secondsUT H , so she randomly 

permutates sequence 1,...,  based on this to produce  

(1, 2, 17, 15, 24, 4, 21, 13, 6, 9, 14, 23, 11, 3, 8, 12, 22, 18, 

25, 5, 20, 7, 19, 16, 10).  This and the ASCII values of S  

are transposed, column-wise concatenated, and the 

resulting 25 2  matrix sorted by   in ascending order.  

She extracts the S  column, transposes it and converts its 

values to their character equivalents to produce the original 

confidential message, S  that was sent by 
Ap .  

 

5.2 Security Analysis  

 

This analysis will begin with definitions of specific 

attack types, then argue security against those attacks and 

general attacks, such as cipher-text-only.  

 

5.2.1 Specific Attack Definitions  

 

Definition 1:  Exploitation of Common Elements in 

Transient Shares  

Without Algorithm 2 to map ( )M M

i i H H  when 

sending a message to the ith participant, two messages, 
1

is  

and 
2

is , sent at different times, produce identical versions 

of TH .  Moreover, different messages containing common 

characters at the same position indices produce identical 
TH  elements at those positions.  Taking account of (5) and 

Figure 3, this attack is defined by the following procedure:  

   1)  
1

2 12 iy y s   and 
2

2 12 iy y s   .  

   2)  

1

2

1
2

iy s
y


   and 

2

2

1
2

iy s
y

 
 .  

   3)  
1 2

2 2i iy s y s    .  

   4)  He rearranges this to derive:  
2 1

2 2i is y y s   .  

   5)  He assumes that 
2

is  contains a string of the one 

character most likely to be found in the message, for 

example the letter "e".  

   6)  He calculates the resulting 
2

is  based on the equation 

in step 4.  

   7)  He eliminates his assumptions about 
1

is  at all 

position indices where an "unlikely" message character 

has been derived in 
2

is  (as explained below).  

   8)  He repeats steps 5, 6 and 7 for the second most likely 

character.  He can either leave the already assumed 

characters as they are, or create new assumptions, some 

of which might overwrite the previous ones.  

   9)  He continues with assumed characters of descending 

likelihood, until enough information about the messages 

is gained to make intelligent guesses as to their contents.  

 

Definition 2:  Exploitation of the Correlation Between 

Share and Message  

Conventionally, when two shares are generated, they are 

individually statistically equivalent to randomly generated 

sequences, but if one share is generated using (4) or (5) 

without obfuscation, a significant negative correlation 

(approximately 20%) results between TH  and S.  

An interceptor of TH , knowing this correlation exists, 

correctly assumes that smaller transient share elements are 

more likely to encode larger ASCII values and vice versa.  

He determines the range of values in TH  and decides 

which values to categorise as small and large.  (For 

instance, small values could be those below half the mean.)  

According to [15], "r", "s" and "t" occur with a 

frequency of 21% in the English language and "e", "a" and 

"d" occur with a frequency of 25.1%, so he assumes small 

share values to encode one of the former and large values 

to encode one of the latter.  He might add the space 

character (ASCII value 32) to the latter, as it occurs with a 

frequency of 19.2% in English.  Although most of these 

assumptions would be incorrect, he now has a "hook" into 

the ciphertext that can allow him to carry out further 

statistical linguistic analysis.  

 

5.2.2 Generic Attacks  

 

Ciphertext Attacks  

This attack succeeds if the interceptor accesses 

sufficient transient shares to decipher the plaintext or 

derive the correct master share to combine with the present 

(or future) transient shares to reveal the plaintext.  Without 



obfuscation, [ ], 1,...,T j j H  with the jth character 

identical across the respective messages, are coordinates 

on a line that pass through the coordinate given in 
M

iH  for 

the ith recipient.  Those transient share elements therefore 

lie on the same line, which can easily be interpolated to 

retrieve js .  

Only two intercepted ciphertexts are required, as 

respective transient share elements 
2y  and 

2y   are equal, 

allowing step 3 of Definition 1 to execute.  However, 

Algorithm 2 randomly alters both these values using seeds 

calculated from UT and 
M

iH .  The latter has never been 

seen by the interceptor, so he cannot directly calculate the 

seed.  

Even if the interceptor can predict the correct seed, he 

cannot execute the second loop in Algorithm 2, as he has 

no knowledge of 
M

iH .  He can attempt a brute-force guess 

at its structure, but because share elements are nothing but 

polynomial coordinates, 
2

2y  can be swapped with 
1y  in (5) 

to produce a version of 
M

iH  to encode any message up to 

  characters.  Therefore, any brute-force (or otherwise) 

guess at 
M

iH  is as good as any other guess.  

Since the interceptor has no access to 
M

iH , and both 

shares are needed, by definition, to decode the message, 

the method is secure against ciphertext attacks.  

 

Known-plaintext Attacks  

This attack succeeds if the interceptor obtains a 

sufficient number of pairs of transient shares and 

corresponding plaintexts to gain information about future 

messages by indirect calculation or by constructing 

knowledge of the ith recipient's master share to directly 

decode those messages.  The method presented in this 

study assumes trusted users who divulge no information 

about shares or messages to outsiders, but if the interceptor 

illegally gains access to the requisite messages, he can 

attempt the attack.  

He swaps the vertical coordinates in (5) to calculate 

[ ] 2 [ ] , 1,...,M T

i jj j s j   H H .  Without Algorithm 2, 

this allows him to decode all future messages up to   

characters, but each future message is encoded using 

 M

i H , mapped using 
2seed .  However, with the use of 

the red channel of bitmaps to carry shares and the 24-bit 

RGB values for seeding, he only has knowledge of a 

randomly obfuscated version of part of the red channel.  

He has however no knowledge of the information used to 

calculate 
2seed  nor of the original master share on which 

it is applied.  

As discussed in the context of ciphertext attacks, any 

guess he makes as to the structure of the master share is no 

better than any other guess.  Furthermore, all successive 

interceptions of shares and their plaintexts likewise only 

reveal obfuscated data about the red channel with no 

information about the other channels.  Neither the original 

master share nor future messages can thus be obtained, 

preventing the attack.  

 

Chosen-plaintext Attacks  

The chosen-plaintext attack succeeds if the hacker is 

able to successfully encode a message of his choosing into 

a transient share, so that he can gain information about the 

key.  However, the cryptographic key is analogous to 
M

iH , 

to which the outsider does not have access, by the 

definition of the method.  Therefore, he cannot attempt this 

attack.  

Similarly, the chosen ciphertext attack succeeds if the 

hacker successfully decodes a message from a chosen 

master share.  This is again not possible, by the definition 

of the method.  He can of course derive the correct shares 

for a plaintext of his choosing, or the correct 

complementary share and message, given one share, but 

this is simply the creation of a new SS scheme, bearing no 

information about the actual master share.  

 

Adaptive Chosen-plaintext and -ciphertext Attacks  

For either of these attacks to succeed, the hacker must 

first carry out a chosen-plaintext (or chosen-ciphertext) 

attack and adapt future attempts based on the results of 

previous attempts.  However, as already discussed, neither 

of these attacks is possible, so no adaptation can occur.  

 

Related-key Attacks  

The interceptor attempts this attack by obtaining 

transient shares encoded using 
1 2

, ,...M M

i iH H  encoding the 

same message and exploiting similarities between the 

master shares to derive those shares and combine them 

with intercepted transient shares to decode messages.  As 

discussed in Section 4.1, all members of 
M

H  must be 

unique and randomly different from each other, avoiding 

similarities and rendering the attack moot.  

The security against this attack furthermore follows 

from that of ciphertext attacks, which is equivalent in the 

present method to attempting to exploit similarities 

between different obfuscated versions of the same master 

share.  

 

Frequency Analysis Attacks  

This attack succeeds if the interceptor exploits varying 

frequencies of TH  elements to derive the plaintext based 

on known linguistic character frequencies.  As   [ ]M

i jH  

is a random number, the resulting [ ]T jH  given by (5) is 

also random, so different instances of the same character 

are differently encoded with a random relationship 



between the encodings, so trivial forms of this type of 

analysis are not possible.  

However, the specific attack given in Definition 2 can 

be attempted by exploiting the correlation between S  and 
TH  with knowledge of linguistic structure.  However, 

Algorithm 3 not only pseudo-randomly alters the ASCII 

values of all characters, but shuffles them, destroying any 

resemblance to a language.  

Furthermore, as in Algorithm 2, the PRNG is seeded 

from UT and 
M

iH .  As discussed previously, the 

interceptor can attempt to guess the structure of this share 

by brute-force or otherwise, but any message up to length 

  can be encoded using a respective master share, so all 

possible guesses have equal value.  

1.2 Comparative Analysis  

1.2.1 Comparisons with Other SS Work  

To the best of the authors' knowledge, this is the first 

study proposing textual secret sharing using SSS as an 

independent method for confidential messaging, so the 

following analysis compares this study to other secret 

sharing research.  The most important criterion is master 

share capability, but also highlighted are access structures, 

rulebooks (for example basis matrices of visual 

cryptography), whether a transmitted signal contains an 

encrypted version of the message (as opposed to a 

maximally entropic share of it), and the ability to add 

and/or delete users.  

 

 

Table 2.  Comparative analysis between this study and prior secret sharing work  

Study Master 

Shares 

Possible 

Threshold 

Access 

General 

Access 

Rulebooks 

Required 

Trans. 

Contains 

Encrypted 

Message 

Addition/ 

Deletion 

[20] No Yes No No No* Yes/No 

[5] No No No No No* Yes/No 

[21] No Yes No No No* Yes/No 

[1] No Yes No No No* Yes/No 

[18] No Yes No Yes No* No 

[11] Yes No No No No No 

[22] Yes Yes No No No No 

[10] No Yes No No No* Yes/No 

[3] No Yes Yes No No* Yes/No 

[9] Yes Yes Yes No No Yes 

[16] n/a n/a n/a No Yes Yes 

[2] No Yes No Yes No* Yes 

[6] No Yes No Yes Yes No 

[17] No Yes No No No* Yes 

present 

proposal 

Yes Yes No No No Yes 

 

*Note that although the secret sharing methods in Table 

2 necessarily produce maximally entropic shares 

impossible to individually decipher, those that lack master 

share capability necessitate the transmission of all shares, 

likely at different times to the respective users.  In this 

case, enough intercepted shares of the same secret leak that 

secret.  Equivalently, the Cloud applications in [2] and [17] 

are vulnerable if the various Cloud servers are 

simultaneously infiltrated. 

The proposed method does not currently support access 

structure.  Although they not need for a straight-forward 

communication between two individuals, they would be 

useful for more complex communications, for example if 

the recipient requires both her own and her manager's 

master share to decode the message.  

 

 

 

6 Conclusion and Further Work  

 

This paper has proposed Shamir's Secret Sharing, an 

information-theoretically secure cipher, as an independent 

method to secure textual messages such that the 

transmitted signal only contains a random share of the 

message.  Each participant is handed a copy (itself 

optionally encrypted) of the master share set.  The sender 

uses the data in the recipient's master share and message 

data to generate a transient share for transmission.  The 

recipient combines this with her master share to reveal the 

message.  Master shares are fully reusable, because each 

transient share results from two levels of random 

obfuscation, with the PRNG seeded from data in the 

recipient's master share.  By definition, an outsider has not 

seen this, but might attempt to guess it by brute force or 

otherwise.  However, he can derive a share that correctly 



decodes any sequence of characters from the intercepted 

transient share, so all guesses have equal value.  

An advantage of secret sharing is access structures, as 

shown in [3] for sharing data and [4] for sharing images.  

This study is limited to (2, 2) schemes, but ongoing work 

focuses master and transient shares for access structures, 

such that third parties can be involved in decoding.  

Further work will also address trust among users.  This 

will use both conventional ciphers to encrypt 
M

H , as well 

as use SS to share 
M

H  data between participants, such that 

the system combines shares of shares across the network 

before those shares, in turn, combine with the transient 

share to decode the message. 

 

References  

[1]  Aldosary, S., Howells, G. A robust multimodal 

biometric security system using the polynomial curve 

technique within Shamir’s Secret Sharing algorithm, 

Proceedings of Third International Conference on 

Emerging Security Technologies, 2012; 66-69 

[2]  Alsolami, F., Boult, T. CloudStash: Using Secret-

Sharing Scheme to Secure Data, Not Keys, in Multi-

Clouds, Proceedings of 11th International Conference 

on Information Technology: New Generations, 2014; 

315-320 

[3]  Asmuth, M., Bloom, J. A modular approach to key 

safeguarding. IEEE Transactions on Information 

Theory 1983, 29, 566-584 

[4]  Ateniese, G., Blundo, C., De Santis,A. Constructions 

and Bounds for Visual Cryptography. Automata, 

Languages and Programming 1996, volume 1099, 

416-428 

[5]  Blakley, G.R. Safeguarding cryptographic keys, 

Proceedings of the National Computer Conference, 

1979; 313-317 

[6]  Buckley, N., Nagar, A.K., Arumugam, S. Key-based 

Steganographic Textual Secret Sharing, Proceedings 

of Third International Conference on Soft Computing 

for Problem Solving, 2014; 25-34 

[7]  Daemen, J., D-Wave Systems, 2014, 

http://www.dwavesys.com/ d-wave-two-system 

[8]  Dai, S., Guo, D. Comparing Security Notions of 

Secret Sharing Schemes. MDPI Entropy 2015, 17, 

1135-1145 

[9]  Dolev, S., Lahiani, L., Yung, M. Secret swarm unit: 

Reactive k-secret sharing. Ad Hoc Networks 2012, 

10, 1291-1305 

[10] Ge, L., Tang, S. Sharing Multi-secret Based on Circle 

Properties, Proceedings of 2008 International 

Conference on Computational Intelligence and 

Security, 2008; 340-344 

[11] Kafri, O., Keren, E. Image encryption by multiple 

random grids. Optical Letters 1987, 12, 377-379 

[12] Kaya, K., Selcuk, A.A. Threshold Cryptography 

Based on Asmuth-Bloom Secret Sharing.2007, 1-20 

[13] Kikuchi, R., Chida, K., Ikarashi, D., Hamada, K., 

Takahashi, K. Secret Sharing Schemes with 

Conversion Protocol to Achieve Short Share-Size and 

Extendibility to Multiparty Computation. In Visual 

Cryptography and Secret Image Sharing; Boyd, C. & 

Simpson, L., Eds; Publisher: Springer-Verlag, 2013; 

pp. 419-434 

[14] Kolmogorov, A.N. Three approaches to the 

quantitative definition of information. International 

Journal of Computer Mathematics 1968, 2, 157-168 

[15] Micka, P., 2008, http://en.algoritmy.net/ article/ 

40379/Letter-frequency-English 

[16] Mohsen, T. SMEmail – A New Protocol for the 

Secure E-mail in Mobile Environments, Proceedings 

of the Australian Telecommunications Networks and 

Applications Conference (ATNAC'08), 2008; 39-44 

[17] Muhil, M., Krishna, U.H., Kumar, R.K., Mary Anita, 

E.A. Securing Multi-Cloud using Secret Sharing 

Algorithm, Proceedings of 2nd International 

Symposium on Big Data and Cloud Computing 

(ISBCC’15), 2015; 421-426 

[18] Naor, M., Shamir, A. Visual Cryptography, 

Proceedings of EUROCRYPT 1994, 1994; 1-12 

[19] Rivest, R.L., Shamir, A., Adleman, L. A Method for 

Obtaining Digital Signatures and Public-Key 

Cryptosystems. Communications of the ACM 1978, 

21, 120-126 

[20] Shamir, A. How to Share a Secret. Communications 

of the ACM 1979, 22, 612-613 

[21] Ulutas, M., Ulutas, G., Nabiyev, V.V. Medical image 

security and EPR hiding using Shamir’s secret 

sharing scheme. The Journal of Systems and Software 

2011, 84, 341-353 

[22] Wu, X., Sun, W. Improving the visual quality of 

random grid-based visual secret sharing. Signal 

Processing 2013, 93, 977-995 

 


