
Innovations Syst Softw Eng (xxxx) x:xx–xx
DOI

ORIGINAL PAPER

On the Use of Secret Sharing as a Secure Multi-use Pad

Neil Buckley • Atulya K. Nagar • S. Arumugam

Abstract Secret sharing (SS) is a cryptographic method

proposed independently by Adi Shamir and George

Blakley in 1979 to encode the keys of public-key

cryptography by splitting them into maximally entropic

shares that are distributed to participants, only revealing

the secret when combined. Each new sharing instance,

even of the same key, produces a different set of shares to

distribute anew. This paper investigates SS as an

independent cipher to secure confidential messages

between a limited set of trusted participants by eliminating

the need to redistribute shares. A participant's master share

is permanently fixed and unlimited temporary shares are

created and combined with it to reveal new messages.

Security is argued against specific and general attacks.

Keywords secret sharing · cryptography ·
cybersecurity

This research was funded by Higher Education Institutional
Research (HEIR) and Liverpool Hope University. The work is
patent pending, application number GB1504243.5. The authors

declare no conflict of interest in this research.

N. Buckley
Liverpool Hope University, England
e-mail: 08008783@hope.ac.uk
Corresponding author, tel.: 0151-291-3143

A.K. Nagar
Liverpool Hope University, England
e-mail: nagara@hope.ac.uk

S. Arumugam
Kalasalingam Unversity, India
email: s.arumugam.klu@gmail.com

1 Introduction

Secret Sharing (SS) was developed by Shamir[20] and

Blakley[5] as a solution to the secure distribution of keys

in public-key cryptography. In Shamir's Secret Sharing

(SSS), there are n shares, any k of which can combine to

reveal the secret. Each share is maximally entropic,

revealing no information about the secret, even with

infinite computation.

As proved in [20], it is information-theoretically secure,

not relying on computational problems such as prime

factorisation, so various uses have been proposed and

developed, such as secure multi-party computation (MPC).

However, each encoding produces a set of new shares to be

distributed to participants via potentially non-secure

channels, and it is possible for a hacker to intercept

sufficient shares. This makes SSS in its original form

impractical for use, by itself, in messaging systems. Such

systems include email, SMS or any textual messaging

service. Indeed, emails often lack security [16],

necessitating extra encryption (commonly RSA [19]), and

with the introduction of quantum computation such as the

D-Wave 2 [7], stronger security is desired.

This paper proposes SSS to secure messages between a

limited set of trusted users. The need to distribute all

shares for every message is eliminated with a collection of

fixed master shares held by all users. These are distributed

only once, after they have been generated (here analogous

to key generation). Each transmission creates a temporary

"transient" share, sent over the network and combined with

the recipient's master share to reveal the message. As

such, although only (2, 2)-SSS (i.e. where a threshold of

two shares are required out of a total of two shares) is used

in this paper, the advantage of SSS is its ability to form

access structures, potentially involving multiple users in a

secure transmission. The contributions of this paper are as

follows:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hope's Institutional Research Archive

https://core.ac.uk/display/46601381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

● Equations are derived from the standard SSS

model for the generation of transient share

elements using master share elements and

message characters.

● Algorithms are proposed for the creation of

master and transient shares that correctly combine

to reveal any required confidential message, as

well as to decode it on receipt.

● Multi-use master shares are made possible, with

statistical linguistic analysis prevented with

message and share obfuscation.

● Preliminary revocation and addition methods are

suggested.

The remainder of this paper is organised as follows:

Section 2 reviews prior secret sharing literature. Section 3

details Shamir's secret sharing. Section 4 proposes secure

messaging, including key generation in 4.1, encoding in

4.2 and decoding in 4.3. Section 5 demonstrates secure

transmission of messages using these algorithms and

discusses various attacks. Finally, Section 6 concludes the

study and suggests further research directions.

2 Related Work

In 1979, two methods for the secure secret sharing of

cryptographic keys were devised independently in [20] and

[5]. In both, the secret can be in character string format,

which is converted to numeric format using ASCII values.

In Blakley’s method, each share is an (1)n -hyperplane

with the secret encoded into the unique coordinate in n-

dimensional space at which planes intersect.

Shamir’s SS reduces space complexity versus Blakley’s

method (since each share in the latter must be at least k

times larger than the secret) by encoding the secret into the

constant terms of k randomly selected coordinates of an

(1)n -degree polynomial. A line, for example, encodes a

(2, 2)-SS scheme, since two points are required to

reconstruct it and derive its constant term. It therefore

benefits from perfect information-theoretic security, as

fewer than k points on a (1)k -degree curve can be

coordinates on any of an infinitude of (1)k -degree

polynomials (assuming real-valued coefficients).

Prior practical application of SSS has been in the

concealment of graphical information, whether it is

personal bitmap images while in transit via a network, or

highly confidential imagery, such as medical images and

biometric data. In [21], SSS is used to bring about

threshold access structures for sharing graphical medical

data, such that shares are held by a large number of

professionals. Ref. [1] similarly proposes a method for the

concealment of biometrics.

SSS is not the only form of secret sharing applicable to

image data. The most well-known method is visual

cryptography, developed by Naor and Shamir [18] to build

shares that can be printed onto transparent sheets and

physically stacked to visually reveal the secret. Although

less computationally costly than SSS, which does not

permit visual decoding, reconstruction is extremely lossy.

Similarly, the random grids method of [11], improved in

[22], results in the same kind of shares but benefits from

smaller shares and lack of complicated rulebooks.

Circles, as opposed to polynomials, are used in [10] to

bring about (3, n)-SS, but only allow threshold access

structures, i.e. those representable by fully connected

(hyper)graphs, are allowed (as in Figure 1a). The Chinese

Remainder Theorem (CRT) can be used to bring about

general access, and was first proposed in [3], whose work

has since become known as the Asmuth-Bloom method.

Interestingly, this was used in [12] as an alternative to SSS

for threshold access, as they proved it more efficient.

The present proposal is comparable to the one-time-pad

used in the 1960s Cold War era to transmit messages with

(at least in principle) information-theoretic security, using

random numbers known only to the sender and receiver.

That technique does not however allow for expansion into

more complex access structures, unlike secret sharing.

Effectively, as shown below, such structures allow the

secret to be revealed to specified user subsets, whereas

other subsets gain no information about the secret message.

 (a) (b)

Figure 1. Secret sharing access structures shown as

graphs. (a) (3, 3)-SS. (b) Five-share general graph access

structure.

Revocation and addition of keys is here analogous to

deletion and creation of shares in such a way that security

and integrity are maintained. In conventional SSS, new

shares are created by simply selecting unused points on the

curve and dealing them, but deleting a participant involves

removing his/her knowledge of the scheme, hence

changing the polynomial. This was solved in [9] by using

SSS along with CRT, Vandermonde matrices and "virtual

automaton" to enable entering and leaving schemes at will

and changing the secret on the fly.

Security in SS has been the subject of much study.

Despite being information-theoretically secure, if k is less

than n, an adversary having fewer than k shares can indeed

narrow the list of potential secrets from the infinite to the

finite. In the author's prior work [6], additional

alphanumeric keys were suggested to vary the polynomial

term used to encode a respective character, and in [8],

different entropic metrics are compared with Kolmogorov

complexity [14] in the context of SS to show equivalence

between these security metrics and they prove that all

entropy metrics are maximal if shares are uniformly

randomly generated.

As pointed out in [16], email is inherently non-secure,

with the vast majority of email servers leaving messages

open to interception and reading of plaintext. Although

public-key cryptography is sometimes used, they

developed a more efficient protocol, SMEMail. Similarly,

an SS solution to messaging security based on

computationally secure SS was given in [13], which

addresses the problem of creating smaller share sizes with

efficient MPC. However, their proposal relies on

computationally secure symmetric ciphers. Secret sharing

is indeed integral in maintaining perfect security in MPC.

In this, the idea is to compute
1 2(, ,...)y f x x , making the

result public but concealing the function arguments, shares

of which are then distributed.

Shamir's SS has similarly found use in secure multi-

cloud, distributing data across servers as random shares. In

most cases, such data is first encrypted, then the crypto-

keys are shared, but recent work such as [17] has suggested

sharing both data and keys. If the data is too large, it is

seen as more efficient to merely share keys to the data, but

[2] developed a system called CloudStash to share all data,

using low-cost cloud storage and multi-threading to

improve fault-tolerance. They show that sharing small

files is more efficient than sharing keys, and even large

files do not incur significant cost.

3 Background to Secret Sharing

Guide to Notation

, 1,..., ,ip i P is the collection of participants.

, 1,..., ,is i S is the collection of characters

comprising the message.
M

H is the collection of master shares.
M M

i HH is the master share held by
ip .

TH is the transient share conveying a respective message

between two participants.

Share elements are denoted using square brackets. For

example, []T iH is the value of the ith element in the

transient share, or [,]T j iH is the value of the red channel

bitmap pixel in the ith column of the jth row.

, (or), are resp. lower and upper bounds

of TH elements.

()random X returns a random member of set X, but if it

has a trailing superscript, a random matrix of given

dimensions is returned.

 is a constant known to all pP , such that

, 1,...,ix i i n

For simplicity in this section, we consider splitting a

secret number s into shares , 1,...,i i nH , where n is the

number of shares. Any k of these must be combined to

reveal the secret. This is a threshold (k, n)-SSS scheme,

the simplest of which is a (2, 2)-SSS. This sharing

requires polynomial,

1
1

1

, ({ ,..., })
k

k i

i i

i

y r x s r random

 (1)

where each
ir lies within arbitrarily chosen

coefficient bounds , .

The dealer randomly selects distinct points

(,), 1,...,i ix y i n on y and hands one to each participant.

Combining k of these reveals the coefficients, notably s.

Shares of s are thus defined as,

(,), 1,...,i i ix y i n H (2)

Letting
ix i eliminates x-coordinates, decreasing

network overhead. In the results presented in this paper,

1 .

The secret can be decoded using Lagrangian

interpolation. Coordinates in (2) are used to calculate,

,i

j qual

j X i X j i

x x
y y X

x x

 (3)

where qual is a qualified subset of share indices. The

result of (3) is expanded to a polynomial of degree 1k .

The coefficients of the terms in 1 2, ,...,k kx x x are ignored

(as they are random), but the constant is decoded as the

secret.

If the secret is a message, each character is converted

into its ASCII numeric code, which is encoded separately

into its own shares. In this case, the ith share of the jth

character is denoted (,) j

i ix y . If
ix i , it can simply be

denoted () j

iy . That is,
1() ,..., ()i i iy y H .

4 Proposed Method

In this section, the method for multi-use master share

textual secret sharing is proposed. Section 4.1 discusses

initialisation, i.e. creation and dealing of master shares, and

Section 4.2 discusses the encoding of messages, whereby a

transient share is created and transmitted following two

obfuscation operations. Finally, Section 4.4 briefly

discusses revocation.

4.1 Key Generation

In the present proposal, the keys are analogous to the

master shares. The dealer DP designates as the

currently known number of trusted participants and

generates a master share for each one. Algorithm 1

summarises key generation.

Algorithm 1: Key Generation through the Creation of

Master Shares

Inputs:

Outputs:
M

H

Procedure:

Set as the maximum message length

 0, 255

 w

For 1,...,i , Do

 3(,...,)M w w

i random H

Store
M

iH as an RGB bitmap image

End For

 1(,...,)M M M

H H H

In the present proposal, shares are stored in raw bitmap

files, wherein the value of each pixel in the red channel is

the respective share element, as in Figure 2. (Note that

lthough this share format is comparable to visual

cryptography, bitmaps are used here for the convenience of

having different channels for encoding and seeding.)

The green and blue channels are also randomised but it

is beneficial to leave these for seeding, which prevents

known-plaintext attacks. Furthermore, to prevent related-

key attacks, all members of
M

H must be unique and

randomly different from all other members. Furthermore,

to maintain immunity from interception,
M

H can never be

transmitted via the network, but handed over in person.

Figure 2. The use of pixel-randomised icons to store

and transmit shares as images.

4.2 Message Encoding

4.2.1 Obfuscation Functions

Encoding uses an obfuscated copy of a respective user's

master share, allowing it to be securely used multiple times

without the possibility of interceptors analysing the

repeated use of the same or similar numbers to apply

linguistic analysis to them. Algorithm 2 carries out this

operation before transmitting a message to the ith

participant. It uses any cryptographically secure pseudo-

random number generator (CSPRNG) initially seeded by

the current Unix Timestamp (UT). (UT is only input, as

opposed to sampled anew, when called later by Algorithm

4 to decode the message.) Shares are contained in the red

channel of bitmaps, a row and column index to locate an

element.

Algorithm 2: Master Share Obfuscation

Inputs: ,M

i H , optionally UT

Outputs: M

i H

Procedure:

Sample UT if not provided as input.

1seed UT

2 0seed

w width of bitmap holding
M

iH

Set numPixels //5 IS A GOOD VALUE

Seed PRNG with
1seed .

Record the date and time components of the UT.

For 1,...,j numPixels , do,

 (mod)nextj PRNG w

 (mod)nexti PRNG w

2 2seed seed 24-bit colour value at [,]M

i x yH

End For

Seed PRNG with
2seed .

For 1,...,j w , do,

 For 1,...,k w , do,

 [,] [,] 256.M M

i i nextj k j k PRNG H H

 [,] [,](mod 1)M M

i ij k j k H H

 End For

End For

There are two stages of pseudo-random number

generation. The first relies on UT, which is known to an

interceptor, who can calculate the pixel positions.

However, their values have never been transmitted, hence

cannot be known by that individual, and cannot be

guessed, as argued in Section 5.2. Furthermore, using a

bitmap's red channel leaves other channels never used

directly in any prior encoding, so their additional 16

collective bits can be added to the existing 8 bits of the red

channel to form a 24-bit number. An arbitrary number of

pixel values are collected in this way and summed to

produce a secondary seed. The temporarily altered master

share M

i H is generated by a modular sum of random

numbers based on this seed.

Given in Section 4.2.2 is the equation for deriving a

transient share element from a master share element based

on SSS. Repeated use of this equation results in

approximately 20% negative correlation between message

character ASCII code and transient share element, as well

as a mean P-value too small to have confidence in the null

hypothesis. This correlation is eliminated by obfuscation

of character values and their order, as in Algorithm 3.

Algorithm 3: Message Obfuscation

Inputs: , M

iS H , UT used in Algorithm 2

Outputs: S (obfuscated message)

Procedure:

secondsUT seconds value from UT

seed 24-bit colour value at [1,1] 100.M

i secondsUTH

Seed PRNG with the calculated value above

Permutate the order of elements in 1 ,...,
S

s s //BASED

ON SEEDED PRNG

Reseed PRNG with the calculated value above

For 1,...,j S , do,

 js numeric ASCII code of jth character in S

 If 94js , then 255j js s , End If

1 ([0,...,10])r random // SEEDED PRNG

2 ([7,..., 7])r random / SEEDED PRNG

 1j js s r

 Rotate bits of js by
2r positions

End For

1 ,...,
S

s s S

As with share obfuscation, the present operation uses

information unknown to an interceptor. Note that the seed

is taken from the top-left master share pixel, but the system

can use any pixel (preferably one never used for encoding),

as long as the position is consistent and known to all

participants. The value 94 is selected based on the authors'

experimental observation that this is approximately the

mean ASCII value of characters comprising passages of

text (seemingly varying little in different Roman alphabet

languages).

4.2.2 Creation of Transient Shares

Conventional SSS creates the entire share set anew each

time a secret is encoded, but in this paper, each user retains

a permanent master share, , {1,..., }M

i i H , of which the

sender creates an obfuscated version M

i H before

transmission.

If
ix i , each master share element

 [], 1,...,M

i j j H is the coordinate 1, () jy on a

Cartesian plane. Coordinate []T jH must be calculated

such that an adjoining line crosses the vertical axis at

jy s . Any number of lines can pass through []M

i jH to

cross any required point on the y-axis, hence allowing

reuse of master shares. Figure 3 demonstrates the concept.

Here, the intersection point of the two lines is an element a

user's master share, and the other two points can be

considered elements of transient shares for two different

messages.

Figure 3. Intersecting lines encoding different ASCII

codes simultaneously in two shares.

The gradient of Line 2 for
1 2x x x is

2

2 1

2

2 1

y y

x x

.

Since the vertical axis intersect is the constant, the gradient

of Line 2 for
10 x x is 1

1

iy s

x

. Since these gradients

are of the same line, they are equal. Furthermore, 1 1,x y

and
is are known, and selecting a value for

2

2x , the value

of
2

2y becomes,

2 2

2 2 1 1 2

2

1

()
, 1,...,ix y s x x

y i
x

 (4)

If () j

ix i (in Figure 3, 4),
2 1() 2()i ix x , this

further reduces (4) to,
2

2 1 2 12 2 , 1,...,j

ix x y y s i (5)

Using either of these equations produces an TH that is

maximally entropic. Note in (5) that the ASCII value,

effectively a constant, is subtracted from twice
1y , a

random number, so
2

2y must also be random. However, it

is clear that larger values of
is will tend to produce

smaller values of
2y , requiring the use of M

i H and S

respectively output by Algorithm 2 and Algorithm 3.

Figure 4 summarises encoding and transmission,

wherein
Ap sends a confidential message to

Bp . Note that

the message date and time of creation is also transmitted,

along with . The latter is necessary for the recipient to

determine how many bitmap pixels to decode as ASCII

values.

Figure 4. Summary of encoding and transmission

4.3 Message Decoding

Decoding reverses encoding, but alters the recipient

master share in the same way as during encoding, hence

Algorithm 2 is called. The method is described in

Algorithm 4.

Algorithm 4: Message Decoding

Inputs: TH , received UT,

Outputs: S

Procedure:

Derive M

i H from
M

iH using Alg. 2 with UT as input

S

secondsUT seconds value from received UT

seed 24-bit value at [1,1] 100.M

i secondsUTH

Seed PRNG with the calculated value above

For 1,...,j , do,

1 2, 2x x , where

1 2,x x

 1 2[], []M T

iy j y j H H , where
1 2,y x

 2 1

2 1

y y
m

x x

1 1c y mx

1 ([0,...,10])r random // SEEDED PRNG

2 ([7,..., 7])r random // SEEDED PRNG

 Rotate bits of c
2r positions

1c c r

 If 94c , then 255c c , End If

 Convert c to ASCII character and append to S

End For

Reseed PRNG with the calculated value above

1,..., randomly permutated // SEEDED PRNG

,temp S concatenated as two columns

Sort temp in ascending order by first column

S transpose of second column of temp

Convert ASCII values of S to characters and display the

decoded message

Algorithm 3 cannot be executed during decoding, as its

operations must happen in reverse. Furthermore, to

reverse the permutation, the recipient must use the same

seed to permutate 1,..., and equate S element indices to

those values, reordering the characters to recreate the

message sent by
Ap .

1.1 Remarks on Revocation

A new trusted recipient requires a master share that is

either new or currently not in use. The latter simply

requires the dealer to create more shares than participants

during initialisation. In this case, all current participants

must be made aware of the value of i for
M M

i HH

corresponding to the newcomer. This can happen in a pre-

agreed manner of blanket emailing (using master shares)

the requisite details to current participants.

This proposal is intended for a limited number of trusted

users (given that
M

H is provided to all users in its

entirety). It is possible to generate
M

iH from 1

M

iH in a

similar way that transient shares are created, by using pixel

data in
M

iH to seed PRNGs for the creation of 1

M

iH . As

this data has never been transmitted and assumed unknown

to an interceptor, 1

M

iH is by extension unknown. This

therefore provides a mechanism for the creation of master

shares for newcomers, but still requires a blanket email to

inform all current users of the addition.

Removal of a user must be orchestrated by D and

involve the cooperation of all remaining users. It is not

enough to remove the leaving user's details from the

scheme, as that person must still be assumed to have access

to
M

H and be able to use it to send messages. It is

therefore necessary to permanently alter all shares in
M

H

for all participants except the leaver. D organises this by

sending seeding data through the system to all remaining

users, which they can each use in combination with data

from their current master shares, to pseudo-randomly

generate and permanently store new shares.

Although these are randomly different from the old ones

and an outsider still has no access to any of the data, the

process is deterministic. Hence, all participants calculate

and store the same share set. (Indeed, this process can be

regularly executed to continually alter
M

H , so that a

message received, for example, the previous day, cannot be

decoded the following day using the same master share.)

5 Results and Discussion

5.1 Simulation Results

The parameters used here are 0, 255, 1 ,

with shares stored as 100 100 -pixel bitmaps with a red,

green and blue channel. Master shares are randomly

initialised, and the first 10 elements of the respective

colour channels of 1

MH and 2

MH are as follows:

1

(161,174,181,20,112,165,250,54,73,0,...) ,

(147,2,29,91,25,116,204,168,9,155,...) ,

(78,74,181,80,78,169,4,133,230,108,...)

red

M green

blue

H

2

(89,106,254,22,145,144,185,99,125,246,...) ,

(33,220,116,91,249,218,88,238,204,22,...) ,

(85,222,251,110,104,130,18,229,173,57,...)

red

M green

blue

H

These shares and those of any other participants

comprise set
M

H , which is physically handed to all

participants. At time 10:40:29 on date 14/04/2015, the

following short message is typed by
Ap to be transmitted

to
Bp . Given also is the resulting ASCII value sequence.

"Hello, how are you today?"

 {72, 101, 108, 108, 111, 44, 32, 104, 111, 119, 32, 97,

114, 101, 32, 121, 111, 117, 32, 116, 111, 100, 97, 121,

63}

Therefore, 25 .
Ap knows that,

2 [1,...,]M H {89, 106, 254, 22, 145, 144, 185, 99, 125,

246, 209, 205, 124, 154, 94, 247, 216, 63, 119, 217, 31,

214, 226, 3, 55}
red

.

Ap sets the pseudo-random seed to the current date-

time (UT), randomly selects five pixels from 2

MH and

sums their 24-bit values to produce seed 19558611. He

then uses Algorithm 2 to produce altered recipient master

share red channel:

 2

M H {93,197,214,186,168,71,85,30,135,209,...}
red

He seeds PRNG in Algorithm 3 based on
secondsUT and

the 24-bit pixel value at 2 [1,1]MH and runs the algorithm to

create obfuscated message S {100, 62, 13, 122, 10, 248,

73, 168, 204, 232,...}.

As , x-coordinates are fixed, so (5) is used to

produce transient share T H {86, 332, 415, 250, 326, -

106, 97, -108, 66, 186}. These values are normalised to lie

within {0,...,255} and remaining pixel values are padded

with random numbers.

This share is transmitted to
Bp via email or other

messaging system, along with UT and . It is crucial to

note the recipient has access to the same 2

MH and UT as

the sender, therefore seeds Algorithm 3 with the same

value to produce 2

M H . She then interpolates respective

coordinates in her master share and the received transient

share, as follows:

Table 1. Calculation of line equations from master and

transient shares

Master

Share

Values

Transient

Share

Values

Line Equations

89 86 y=-3m+92

106 332 y=226m-120

254 415 y=161m+93

22 250 y=228m-206

145 326 y=181m-36

144 -106 y=-250m+394

185 97 y=-88m+273

99 -108 y=-207m+306

125 66 y=-59m+184

246 186 y=-60m+306

PRNG is re-seeded with the aforementioned value, and

the constants of the line equations in Table 1 are randomly

altered as in Algorithm 4 to produce the message "H

e?lytur wl oaohaode,yo". This was originally permutated

based on seed
24

2, [1,1]M bits

secondsUT H , so she randomly

permutates sequence 1,..., based on this to produce

(1, 2, 17, 15, 24, 4, 21, 13, 6, 9, 14, 23, 11, 3, 8, 12, 22, 18,

25, 5, 20, 7, 19, 16, 10). This and the ASCII values of S

are transposed, column-wise concatenated, and the

resulting 25 2 matrix sorted by in ascending order.

She extracts the S column, transposes it and converts its

values to their character equivalents to produce the original

confidential message, S that was sent by
Ap .

5.2 Security Analysis

This analysis will begin with definitions of specific

attack types, then argue security against those attacks and

general attacks, such as cipher-text-only.

5.2.1 Specific Attack Definitions

Definition 1: Exploitation of Common Elements in

Transient Shares

Without Algorithm 2 to map ()M M

i i H H when

sending a message to the ith participant, two messages,
1

is

and
2

is , sent at different times, produce identical versions

of TH . Moreover, different messages containing common

characters at the same position indices produce identical
TH elements at those positions. Taking account of (5) and

Figure 3, this attack is defined by the following procedure:

 1)
1

2 12 iy y s and
2

2 12 iy y s .

 2)

1

2

1
2

iy s
y

 and

2

2

1
2

iy s
y

 .

 3)
1 2

2 2i iy s y s .

 4) He rearranges this to derive:
2 1

2 2i is y y s .

 5) He assumes that
2

is contains a string of the one

character most likely to be found in the message, for

example the letter "e".

 6) He calculates the resulting
2

is based on the equation

in step 4.

 7) He eliminates his assumptions about
1

is at all

position indices where an "unlikely" message character

has been derived in
2

is (as explained below).

 8) He repeats steps 5, 6 and 7 for the second most likely

character. He can either leave the already assumed

characters as they are, or create new assumptions, some

of which might overwrite the previous ones.

 9) He continues with assumed characters of descending

likelihood, until enough information about the messages

is gained to make intelligent guesses as to their contents.

Definition 2: Exploitation of the Correlation Between

Share and Message

Conventionally, when two shares are generated, they are

individually statistically equivalent to randomly generated

sequences, but if one share is generated using (4) or (5)

without obfuscation, a significant negative correlation

(approximately 20%) results between TH and S.

An interceptor of TH , knowing this correlation exists,

correctly assumes that smaller transient share elements are

more likely to encode larger ASCII values and vice versa.

He determines the range of values in TH and decides

which values to categorise as small and large. (For

instance, small values could be those below half the mean.)

According to [15], "r", "s" and "t" occur with a

frequency of 21% in the English language and "e", "a" and

"d" occur with a frequency of 25.1%, so he assumes small

share values to encode one of the former and large values

to encode one of the latter. He might add the space

character (ASCII value 32) to the latter, as it occurs with a

frequency of 19.2% in English. Although most of these

assumptions would be incorrect, he now has a "hook" into

the ciphertext that can allow him to carry out further

statistical linguistic analysis.

5.2.2 Generic Attacks

Ciphertext Attacks

This attack succeeds if the interceptor accesses

sufficient transient shares to decipher the plaintext or

derive the correct master share to combine with the present

(or future) transient shares to reveal the plaintext. Without

obfuscation, [], 1,...,T j j H with the jth character

identical across the respective messages, are coordinates

on a line that pass through the coordinate given in
M

iH for

the ith recipient. Those transient share elements therefore

lie on the same line, which can easily be interpolated to

retrieve js .

Only two intercepted ciphertexts are required, as

respective transient share elements
2y and

2y are equal,

allowing step 3 of Definition 1 to execute. However,

Algorithm 2 randomly alters both these values using seeds

calculated from UT and
M

iH . The latter has never been

seen by the interceptor, so he cannot directly calculate the

seed.

Even if the interceptor can predict the correct seed, he

cannot execute the second loop in Algorithm 2, as he has

no knowledge of
M

iH . He can attempt a brute-force guess

at its structure, but because share elements are nothing but

polynomial coordinates,
2

2y can be swapped with
1y in (5)

to produce a version of
M

iH to encode any message up to

 characters. Therefore, any brute-force (or otherwise)

guess at
M

iH is as good as any other guess.

Since the interceptor has no access to
M

iH , and both

shares are needed, by definition, to decode the message,

the method is secure against ciphertext attacks.

Known-plaintext Attacks

This attack succeeds if the interceptor obtains a

sufficient number of pairs of transient shares and

corresponding plaintexts to gain information about future

messages by indirect calculation or by constructing

knowledge of the ith recipient's master share to directly

decode those messages. The method presented in this

study assumes trusted users who divulge no information

about shares or messages to outsiders, but if the interceptor

illegally gains access to the requisite messages, he can

attempt the attack.

He swaps the vertical coordinates in (5) to calculate

[] 2 [] , 1,...,M T

i jj j s j H H . Without Algorithm 2,

this allows him to decode all future messages up to

characters, but each future message is encoded using

 M

i H , mapped using
2seed . However, with the use of

the red channel of bitmaps to carry shares and the 24-bit

RGB values for seeding, he only has knowledge of a

randomly obfuscated version of part of the red channel.

He has however no knowledge of the information used to

calculate
2seed nor of the original master share on which

it is applied.

As discussed in the context of ciphertext attacks, any

guess he makes as to the structure of the master share is no

better than any other guess. Furthermore, all successive

interceptions of shares and their plaintexts likewise only

reveal obfuscated data about the red channel with no

information about the other channels. Neither the original

master share nor future messages can thus be obtained,

preventing the attack.

Chosen-plaintext Attacks

The chosen-plaintext attack succeeds if the hacker is

able to successfully encode a message of his choosing into

a transient share, so that he can gain information about the

key. However, the cryptographic key is analogous to
M

iH ,

to which the outsider does not have access, by the

definition of the method. Therefore, he cannot attempt this

attack.

Similarly, the chosen ciphertext attack succeeds if the

hacker successfully decodes a message from a chosen

master share. This is again not possible, by the definition

of the method. He can of course derive the correct shares

for a plaintext of his choosing, or the correct

complementary share and message, given one share, but

this is simply the creation of a new SS scheme, bearing no

information about the actual master share.

Adaptive Chosen-plaintext and -ciphertext Attacks

For either of these attacks to succeed, the hacker must

first carry out a chosen-plaintext (or chosen-ciphertext)

attack and adapt future attempts based on the results of

previous attempts. However, as already discussed, neither

of these attacks is possible, so no adaptation can occur.

Related-key Attacks

The interceptor attempts this attack by obtaining

transient shares encoded using
1 2

, ,...M M

i iH H encoding the

same message and exploiting similarities between the

master shares to derive those shares and combine them

with intercepted transient shares to decode messages. As

discussed in Section 4.1, all members of
M

H must be

unique and randomly different from each other, avoiding

similarities and rendering the attack moot.

The security against this attack furthermore follows

from that of ciphertext attacks, which is equivalent in the

present method to attempting to exploit similarities

between different obfuscated versions of the same master

share.

Frequency Analysis Attacks

This attack succeeds if the interceptor exploits varying

frequencies of TH elements to derive the plaintext based

on known linguistic character frequencies. As []M

i jH

is a random number, the resulting []T jH given by (5) is

also random, so different instances of the same character

are differently encoded with a random relationship

between the encodings, so trivial forms of this type of

analysis are not possible.

However, the specific attack given in Definition 2 can

be attempted by exploiting the correlation between S and
TH with knowledge of linguistic structure. However,

Algorithm 3 not only pseudo-randomly alters the ASCII

values of all characters, but shuffles them, destroying any

resemblance to a language.

Furthermore, as in Algorithm 2, the PRNG is seeded

from UT and
M

iH . As discussed previously, the

interceptor can attempt to guess the structure of this share

by brute-force or otherwise, but any message up to length

 can be encoded using a respective master share, so all

possible guesses have equal value.

1.2 Comparative Analysis

1.2.1 Comparisons with Other SS Work

To the best of the authors' knowledge, this is the first

study proposing textual secret sharing using SSS as an

independent method for confidential messaging, so the

following analysis compares this study to other secret

sharing research. The most important criterion is master

share capability, but also highlighted are access structures,

rulebooks (for example basis matrices of visual

cryptography), whether a transmitted signal contains an

encrypted version of the message (as opposed to a

maximally entropic share of it), and the ability to add

and/or delete users.

Table 2. Comparative analysis between this study and prior secret sharing work

Study Master

Shares

Possible

Threshold

Access

General

Access

Rulebooks

Required

Trans.

Contains

Encrypted

Message

Addition/

Deletion

[20] No Yes No No No* Yes/No

[5] No No No No No* Yes/No

[21] No Yes No No No* Yes/No

[1] No Yes No No No* Yes/No

[18] No Yes No Yes No* No

[11] Yes No No No No No

[22] Yes Yes No No No No

[10] No Yes No No No* Yes/No

[3] No Yes Yes No No* Yes/No

[9] Yes Yes Yes No No Yes

[16] n/a n/a n/a No Yes Yes

[2] No Yes No Yes No* Yes

[6] No Yes No Yes Yes No

[17] No Yes No No No* Yes

present

proposal

Yes Yes No No No Yes

*Note that although the secret sharing methods in Table

2 necessarily produce maximally entropic shares

impossible to individually decipher, those that lack master

share capability necessitate the transmission of all shares,

likely at different times to the respective users. In this

case, enough intercepted shares of the same secret leak that

secret. Equivalently, the Cloud applications in [2] and [17]

are vulnerable if the various Cloud servers are

simultaneously infiltrated.

The proposed method does not currently support access

structure. Although they not need for a straight-forward

communication between two individuals, they would be

useful for more complex communications, for example if

the recipient requires both her own and her manager's

master share to decode the message.

6 Conclusion and Further Work

This paper has proposed Shamir's Secret Sharing, an

information-theoretically secure cipher, as an independent

method to secure textual messages such that the

transmitted signal only contains a random share of the

message. Each participant is handed a copy (itself

optionally encrypted) of the master share set. The sender

uses the data in the recipient's master share and message

data to generate a transient share for transmission. The

recipient combines this with her master share to reveal the

message. Master shares are fully reusable, because each

transient share results from two levels of random

obfuscation, with the PRNG seeded from data in the

recipient's master share. By definition, an outsider has not

seen this, but might attempt to guess it by brute force or

otherwise. However, he can derive a share that correctly

decodes any sequence of characters from the intercepted

transient share, so all guesses have equal value.

An advantage of secret sharing is access structures, as

shown in [3] for sharing data and [4] for sharing images.

This study is limited to (2, 2) schemes, but ongoing work

focuses master and transient shares for access structures,

such that third parties can be involved in decoding.

Further work will also address trust among users. This

will use both conventional ciphers to encrypt
M

H , as well

as use SS to share
M

H data between participants, such that

the system combines shares of shares across the network

before those shares, in turn, combine with the transient

share to decode the message.

References

[1] Aldosary, S., Howells, G. A robust multimodal

biometric security system using the polynomial curve

technique within Shamir’s Secret Sharing algorithm,

Proceedings of Third International Conference on

Emerging Security Technologies, 2012; 66-69

[2] Alsolami, F., Boult, T. CloudStash: Using Secret-

Sharing Scheme to Secure Data, Not Keys, in Multi-

Clouds, Proceedings of 11th International Conference

on Information Technology: New Generations, 2014;

315-320

[3] Asmuth, M., Bloom, J. A modular approach to key

safeguarding. IEEE Transactions on Information

Theory 1983, 29, 566-584

[4] Ateniese, G., Blundo, C., De Santis,A. Constructions

and Bounds for Visual Cryptography. Automata,

Languages and Programming 1996, volume 1099,

416-428

[5] Blakley, G.R. Safeguarding cryptographic keys,

Proceedings of the National Computer Conference,

1979; 313-317

[6] Buckley, N., Nagar, A.K., Arumugam, S. Key-based

Steganographic Textual Secret Sharing, Proceedings

of Third International Conference on Soft Computing

for Problem Solving, 2014; 25-34

[7] Daemen, J., D-Wave Systems, 2014,

http://www.dwavesys.com/ d-wave-two-system

[8] Dai, S., Guo, D. Comparing Security Notions of

Secret Sharing Schemes. MDPI Entropy 2015, 17,

1135-1145

[9] Dolev, S., Lahiani, L., Yung, M. Secret swarm unit:

Reactive k-secret sharing. Ad Hoc Networks 2012,

10, 1291-1305

[10] Ge, L., Tang, S. Sharing Multi-secret Based on Circle

Properties, Proceedings of 2008 International

Conference on Computational Intelligence and

Security, 2008; 340-344

[11] Kafri, O., Keren, E. Image encryption by multiple

random grids. Optical Letters 1987, 12, 377-379

[12] Kaya, K., Selcuk, A.A. Threshold Cryptography

Based on Asmuth-Bloom Secret Sharing.2007, 1-20

[13] Kikuchi, R., Chida, K., Ikarashi, D., Hamada, K.,

Takahashi, K. Secret Sharing Schemes with

Conversion Protocol to Achieve Short Share-Size and

Extendibility to Multiparty Computation. In Visual

Cryptography and Secret Image Sharing; Boyd, C. &

Simpson, L., Eds; Publisher: Springer-Verlag, 2013;

pp. 419-434

[14] Kolmogorov, A.N. Three approaches to the

quantitative definition of information. International

Journal of Computer Mathematics 1968, 2, 157-168

[15] Micka, P., 2008, http://en.algoritmy.net/ article/

40379/Letter-frequency-English

[16] Mohsen, T. SMEmail – A New Protocol for the

Secure E-mail in Mobile Environments, Proceedings

of the Australian Telecommunications Networks and

Applications Conference (ATNAC'08), 2008; 39-44

[17] Muhil, M., Krishna, U.H., Kumar, R.K., Mary Anita,

E.A. Securing Multi-Cloud using Secret Sharing

Algorithm, Proceedings of 2nd International

Symposium on Big Data and Cloud Computing

(ISBCC’15), 2015; 421-426

[18] Naor, M., Shamir, A. Visual Cryptography,

Proceedings of EUROCRYPT 1994, 1994; 1-12

[19] Rivest, R.L., Shamir, A., Adleman, L. A Method for

Obtaining Digital Signatures and Public-Key

Cryptosystems. Communications of the ACM 1978,

21, 120-126

[20] Shamir, A. How to Share a Secret. Communications

of the ACM 1979, 22, 612-613

[21] Ulutas, M., Ulutas, G., Nabiyev, V.V. Medical image

security and EPR hiding using Shamir’s secret

sharing scheme. The Journal of Systems and Software

2011, 84, 341-353

[22] Wu, X., Sun, W. Improving the visual quality of

random grid-based visual secret sharing. Signal

Processing 2013, 93, 977-995

