70 research outputs found

    Secret Message Transmission by HARQ with Multiple Encoding

    Full text link
    Secure transmission between two agents, Alice and Bob, over block fading channels can be achieved similarly to conventional hybrid automatic repeat request (HARQ) by letting Alice transmit multiple blocks, each containing an encoded version of the secret message, until Bob informs Alice about successful decoding by a public error-free return channel. In existing literature each block is a differently punctured version of a single codeword generated with a Wyner code that uses a common randomness for all blocks. In this paper instead we propose a more general approach where multiple codewords are generated from independent randomnesses. The class of channels for which decodability and secrecy is ensured is characterized, with derivations for the existence of secret codes. We show in particular that the classes are not a trivial subset (or superset) of those of existing schemes, thus highlighting the novelty of the proposed solution. The result is further confirmed by deriving the average achievable secrecy throughput, thus taking into account both decoding and secrecy outage.Comment: Proc. Int. Conference on Communications (ICC) 201

    Coding with Scrambling, Concatenation, and HARQ for the AWGN Wire-Tap Channel: A Security Gap Analysis

    Full text link
    This study examines the use of nonsystematic channel codes to obtain secure transmissions over the additive white Gaussian noise (AWGN) wire-tap channel. Unlike the previous approaches, we propose to implement nonsystematic coded transmission by scrambling the information bits, and characterize the bit error rate of scrambled transmissions through theoretical arguments and numerical simulations. We have focused on some examples of Bose-Chaudhuri-Hocquenghem (BCH) and low-density parity-check (LDPC) codes to estimate the security gap, which we have used as a measure of physical layer security, in addition to the bit error rate. Based on a number of numerical examples, we found that such a transmission technique can outperform alternative solutions. In fact, when an eavesdropper (Eve) has a worse channel than the authorized user (Bob), the security gap required to reach a given level of security is very small. The amount of degradation of Eve's channel with respect to Bob's that is needed to achieve sufficient security can be further reduced by implementing scrambling and descrambling operations on blocks of frames, rather than on single frames. While Eve's channel has a quality equal to or better than that of Bob's channel, we have shown that the use of a hybrid automatic repeat-request (HARQ) protocol with authentication still allows achieving a sufficient level of security. Finally, the secrecy performance of some practical schemes has also been measured in terms of the equivocation rate about the message at the eavesdropper and compared with that of ideal codes.Comment: 29 pages, 10 figure

    Increasing Physical Layer Security through Scrambled Codes and ARQ

    Full text link
    We develop the proposal of non-systematic channel codes on the AWGN wire-tap channel. Such coding technique, based on scrambling, achieves high transmission security with a small degradation of the eavesdropper's channel with respect to the legitimate receiver's channel. In this paper, we show that, by implementing scrambling and descrambling on blocks of concatenated frames, rather than on single frames, the channel degradation needed is further reduced. The usage of concatenated scrambling allows to achieve security also when both receivers experience the same channel quality. However, in this case, the introduction of an ARQ protocol with authentication is needed.Comment: 5 pages, 4 figures; Proc. IEEE ICC 2011, Kyoto, Japan, 5-9 June 201

    Radio Access for Ultra-Reliable Communication in 5G Systems and Beyond

    Get PDF

    Achievable secrecy enchancement through joint encryption and privacy amplification

    Get PDF
    In this dissertation we try to achieve secrecy enhancement in communications by resorting to both cryptographic and information theoretic secrecy tools and metrics. Our objective is to unify tools and measures from cryptography community with techniques and metrics from information theory community that are utilized to provide privacy and confidentiality in communication systems. For this purpose we adopt encryption techniques accompanied with privacy amplification tools in order to achieve secrecy goals that are determined based on information theoretic and cryptographic metrics. Every secrecy scheme relies on a certain advantage for legitimate users over adversaries viewed as an asymmetry in the system to deliver the required security for data transmission. In all of the proposed schemes in this dissertation, we resort to either inherently existing asymmetry in the system or proactively created advantage for legitimate users over a passive eavesdropper to further enhance secrecy of the communications. This advantage is manipulated by means of privacy amplification and encryption tools to achieve secrecy goals for the system evaluated based on information theoretic and cryptographic metrics. In our first work discussed in Chapter 2 and the third work explained in Chapter 4, we rely on a proactively established advantage for legitimate users based on eavesdropper’s lack of knowledge about a shared source of data. Unlike these works that assume an errorfree physical channel, in the second work discussed in Chapter 3 correlated erasure wiretap channel model is considered. This work relies on a passive and internally existing advantage for legitimate users that is built upon statistical and partial independence of eavesdropper’s channel errors from the errors in the main channel. We arrive at this secrecy advantage for legitimate users by exploitation of an authenticated but insecure feedback channel. From the perspective of the utilized tools, the first work discussed in Chapter 2 considers a specific scenario where secrecy enhancement of a particular block cipher called Data Encryption standard (DES) operating in cipher feedback mode (CFB) is studied. This secrecy enhancement is achieved by means of deliberate noise injection and wiretap channel encoding as a technique for privacy amplification against a resource constrained eavesdropper. Compared to the first work, the third work considers a more general framework in terms of both metrics and secrecy tools. This work studies secrecy enhancement of a general cipher based on universal hashing as a privacy amplification technique against an unbounded adversary. In this work, we have achieved the goal of exponential secrecy where information leakage to adversary, that is assessed in terms of mutual information as an information theoretic measure and Eve’s distinguishability as a cryptographic metric, decays at an exponential rate. In the second work generally encrypted data frames are transmitted through Automatic Repeat reQuest (ARQ) protocol to generate a common random source between legitimate users that later on is transformed into information theoretically secure keys for encryption by means of privacy amplification based on universal hashing. Towards the end, future works as an extension of the accomplished research in this dissertation are outlined. Proofs of major theorems and lemmas are presented in the Appendix

    Rate Adaptation for Incremental Redundancy Secure HARQ

    No full text
    International audienceThis paper studies secure communication based on incremental redundancy (INR) secure hybrid automatic retrans-mission request (HARQ) protocol over block-fading wiretap channels. The transmitter has no instantaneous channel state information (CSI) available from either main channel or the eavesdropper channel, hence the coding rates cannot be adapted to instantaneous channel conditions. We investigate the outage performance for two schemes of INR secure HARQ protocols: case 1) when there exists two reliable multi-bit feedback channels from both legitimate receiver and eavesdropper to the transmitter carrying a function of outdated CSI, case 2) when there is a multi-bit feedback channel only from legitimate receiver. In both cases, we demonstrate that using the information carried via multi-bit feedback channels, the transmitter can adapt the coding rates in order to achieve a better secrecy throughput using a smaller number of transmissions comparing to the ACK/NACK feedback channel model. For some parameters, our rate adaptation protocol achieves a strictly positive secrecy throughput whereas it is equal to zero for the protocol with ACK/NACK feedback. We show that for some set of parameters, the loss of secrecy throughput between case 1 and case 2 is very small compared to the gain provided by both protocols

    Confidentiality-Preserving Control of Uplink Cellular Wireless Networks Using Hybrid ARQ

    Full text link

    Dynamic control of wireless networks with confidential communications

    Get PDF
    Future wireless communication systems are rapidly transforming to satisfy everincreasing and varying mobile user demands. Cross-layer networking protocols have the potential to play a crucial role in this transformation by jointly addressing the requirements of user applications together with the time-varying nature of wireless networking. As wireless communications becoming an integral and crucial part of our daily lives with many of our personal data is being shared via wireless transmissions, the issue of keeping personal transactions confidential is at the forefront of any network design. Wireless communications is especially prone to attacks due to its broadcast nature. The conventional cryptographical methods can only guarantee secrecy with the assumption that it is computationally prohibitive for the eavesdroppers to decode the messages. On the other hand, information-theoretical secrecy as defined by Shannon in his seminal work has the potential to provide perfect secrecy regardless of the computational power of the eavesdropper. Recent studies has shown that information-theoretical secrecy is possible over noisy wireless channels. In this thesis, we aim to design simple yet provably optimal cross-layer algorithms taking into account information-theoretical secrecy as a Quality of Service (QoS) requirement. Our work has the potential to improve our understanding the interplay between the secrecy and networking protocols. In most of this thesis, we consider a wireless cellular architecture, where all nodes participate in communication with a base station. When a node is transmitting a confidential messages, other legitimate nodes are considered as eavesdroppers, i.e., all eavesdroppers are internal. We characterize the region of achievable open and confidential data rate pairs for a single and then a multi-node scenario. We define the notion of confidential opportunistic scheduler, which schedules a node that has the largest instantaneous confidential information rate, with respect to the best eavesdropper node, which has the largest mean cross-channel rate. Having defined the operational limits of the system, we then develop dynamic joint scheduling and flow control algorithms when perfect and imperfect channel state information (CSI) is available. The developed algorithms are simple index policies, in which scheduling and flow control decisions are given in each time instant independently. In real networks, instantaneous CSI is usually unavailable due to computational and communication overheads associated with obtaining this information. Hence, we generalize our model for the case where only the distributions of direct- and crosschannel CSI are available at the transmitter. In order to provide end-to-end reliability, Hybrid Automatic Retransmission reQuest (HARQ) is employed. The challenge of using HARQ is that the dynamic control policies proposed in the preceding chapter are no longer optimal, since the decisions at each time instant are no longer independent. This is mainly due to the potential of re-transmitting a variant of the same message successively until it is decoded at the base station. We solve this critical issue by proposing a novel queuing model, in which the messages transmitted the same number of times previously are stored in the same queue with scheduler selecting a head-of-line message from these queues. We prove that with this novel queuing model, the dynamic control algorithms can still be optimal. We then shift our attention to providing confidentiality in multi-hop wireless networks, where there are multiple source-destination pairs communicating confidential messages, to be kept confidential from the intermediate nodes. For this case, we propose a novel end-to-end encoding scheme, where the confidential information is encoded into one very long message. The encoded message is then divided into multiple packets, to be combined at the ultimate destination for recovery, and being sent over different paths so that each intermediate node only has partial view of the whole message. Based on the proposed end-to-end encoding scheme, we develop two different dynamic policies when the encoded message is finite and asymptotically large, respectively. When the encoded message has finite length, our proposed policy chooses the encoding rates for each message, based on the instantaneous channel state information, queue states and secrecy requirements. Also, the nodes keep account of the information leaked to intermediate nodes as well the information reaching the destination in order to provide confidentiality and reliability. We demonstrate via simulations that our policy has a performance asymptotically approaching that of the optimal policy with increasing length of the encoded message. All preceding work assumes that the nodes are altruistic and/or well-behaved, i.e., they cooperatively participate into the communication of the confidential messages. In the final chapter of the thesis, we investigate the case with non-altruistic nodes, where non-altruistic nodes provide a jamming service to nodes with confidential communication needs and receiving in turn the right to access to the channel. We develop optimal resource allocation and power control algorithms maximizing the aggregate utility of both nodes with confidential communication needs as well as the nodes providing jamming service
    • …
    corecore