9,260 research outputs found

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Crypto-Verifying Protocol Implementations in ML

    Get PDF
    We intend to narrow the gap between concrete implementations and verified models of cryptographic protocols. We consider protocols implemented in F#, a variant of ML, and verified using CryptoVerif, Blanchet's protocol verifier for computational cryptography. We experiment with compilers from F# code to CryptoVerif processes, and from CryptoVerif declarations to F# code. We present two case studies: an implementation of the Otway-Rees protocol, and an implementation of a simplified password-based authentication protocol. In both cases, we obtain concrete security guarantees for a computational model closely related to executable code

    Quantum-noise--randomized data-encryption for WDM fiber-optic networks

    Full text link
    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650Mbps data encryption through a 10Gbps data-bearing, in-line amplified 200km-long line. In our protocol, legitimate users (who share a short secret-key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performance criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.Comment: Version 2: Some errors have been corrected and arguments refined. To appear in Physical Review A. Version 3: Minor corrections to version

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Implementing a protected zone in a reconfigurable processor for isolated execution of cryptographic algorithms

    Get PDF
    We design and realize a protected zone inside a reconfigurable and extensible embedded RISC processor for isolated execution of cryptographic algorithms. The protected zone is a collection of processor subsystems such as functional units optimized for high-speed execution of integer operations, a small amount of local memory, and general and special-purpose registers. We outline the principles for secure software implementation of cryptographic algorithms in a processor equipped with the protected zone. We also demonstrate the efficiency and effectiveness of the protected zone by implementing major cryptographic algorithms, namely RSA, elliptic curve cryptography, and AES in the protected zone. In terms of time efficiency, software implementations of these three cryptographic algorithms outperform equivalent software implementations on similar processors reported in the literature. The protected zone is designed in such a modular fashion that it can easily be integrated into any RISC processor; its area overhead is considerably moderate in the sense that it can be used in vast majority of embedded processors. The protected zone can also provide the necessary support to implement TPM functionality within the boundary of a processor

    The Crypto-democracy and the Trustworthy

    Full text link
    In the current architecture of the Internet, there is a strong asymmetry in terms of power between the entities that gather and process personal data (e.g., major Internet companies, telecom operators, cloud providers, ...) and the individuals from which this personal data is issued. In particular, individuals have no choice but to blindly trust that these entities will respect their privacy and protect their personal data. In this position paper, we address this issue by proposing an utopian crypto-democracy model based on existing scientific achievements from the field of cryptography. More precisely, our main objective is to show that cryptographic primitives, including in particular secure multiparty computation, offer a practical solution to protect privacy while minimizing the trust assumptions. In the crypto-democracy envisioned, individuals do not have to trust a single physical entity with their personal data but rather their data is distributed among several institutions. Together these institutions form a virtual entity called the Trustworthy that is responsible for the storage of this data but which can also compute on it (provided first that all the institutions agree on this). Finally, we also propose a realistic proof-of-concept of the Trustworthy, in which the roles of institutions are played by universities. This proof-of-concept would have an important impact in demonstrating the possibilities offered by the crypto-democracy paradigm.Comment: DPM 201

    Secure Communication using Identity Based Encryption

    Get PDF
    Secured communication has been widely deployed to guarantee confidentiality and\ud integrity of connections over untrusted networks, e.g., the Internet. Although\ud secure connections are designed to prevent attacks on the connection, they hide\ud attacks inside the channel from being analyzed by Intrusion Detection Systems\ud (IDS). Furthermore, secure connections require a certain key exchange at the\ud initialization phase, which is prone to Man-In-The-Middle (MITM) attacks. In this paper, we present a new method to secure connection which enables Intrusion Detection and overcomes the problem of MITM attacks. We propose to apply Identity Based Encryption (IBE) to secure a communication channel. The key escrow property of IBE is used to recover the decryption key, decrypt network traffic on the fly, and scan for malicious content. As the public key can be generated based on the identity of the connected server and its exchange is not necessary, MITM attacks are not easy to be carried out any more. A prototype of a modified TLS scheme is implemented and proved with a simple client-server application. Based on this prototype, a new IDS sensor is developed to be capable of identifying IBE encrypted secure traffic on the fly. A deployment architecture of the IBE sensor in a company network is proposed. Finally, we show the applicability by a practical experiment and some preliminary performance measurements

    Efficient Implementation on Low-Cost SoC-FPGAs of TLSv1.2 Protocol with ECC_AES Support for Secure IoT Coordinators

    Get PDF
    Security management for IoT applications is a critical research field, especially when taking into account the performance variation over the very different IoT devices. In this paper, we present high-performance client/server coordinators on low-cost SoC-FPGA devices for secure IoT data collection. Security is ensured by using the Transport Layer Security (TLS) protocol based on the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite. The hardware architecture of the proposed coordinators is based on SW/HW co-design, implementing within the hardware accelerator core Elliptic Curve Scalar Multiplication (ECSM), which is the core operation of Elliptic Curve Cryptosystems (ECC). Meanwhile, the control of the overall TLS scheme is performed in software by an ARM Cortex-A9 microprocessor. In fact, the implementation of the ECC accelerator core around an ARM microprocessor allows not only the improvement of ECSM execution but also the performance enhancement of the overall cryptosystem. The integration of the ARM processor enables to exploit the possibility of embedded Linux features for high system flexibility. As a result, the proposed ECC accelerator requires limited area, with only 3395 LUTs on the Zynq device used to perform high-speed, 233-bit ECSMs in 413 ”s, with a 50 MHz clock. Moreover, the generation of a 384-bit TLS handshake secret key between client and server coordinators requires 67.5 ms on a low cost Zynq 7Z007S device
    • 

    corecore