4,420 research outputs found

    Wide tuning-range planar filters using lumped-distributed coupled resonators

    Get PDF

    Theory and design of mixed lumped-distributed cross-coupled filters with applications to linear phase shifter and tunable filters

    Get PDF
    Using cross-coupled networks of a new concept, transmission zeros were efficiently located in the complex frequency-domain. With this approach, the group delay and attenuation slope of the circuit network can be controlled to get both sharp rejection characteristics and linear phase slopes. In order to achieve this performance, various types of combline filters are suggested. Various simulation tools (commercial linear circuit and E-M simulators), as well as the developed pole-zero locator program, were used to design a new class of cross-coupled networks. In particular, the polezero locator program can be used to extract an equivalent circuit of the topology that is established from ether EM-simulated data or measured data. A new cross-coupled quasi-elliptic combline bandpass filter is presented, borrowing the distributed implementation of the capacitance (a top surface metalized dielectric block added as an applique to the top of the circuit), which was conventionally used without metalization to enhance the directivity of the microstrip couplers. The required cross coupling value was achieved by changing the substrate thickness, dielectric constant and area of the top surface metallization of the dielectric block. Effectively, an inhomogeneous transmission line was used to achieve source-load direct crosscoupling with at least one additional transmission zero. The first application presented, is a new type of reflection-type analog phase shifter using tunable short-terminated combline filters (STCL). An asymptotically approached 360-degree total phase shift is obtained, with a large linear range and an insertion loss of less than -1.5 dB over the full phase shift range at 5 GHz. The second approach presented, which is a new concept, is a tunable finite-transmission-zero filter, taking advantage of the unavoidable frequency dependence of each coupling. In order to obtain such a performance, ferroelectric or ferromagnetic stacked substrates are suggested for tuning the extra transmission zeros as well as the center frequency

    When Compactness Meets Flexibility: Basic Coaxial SIW Filter Topology for Device Miniaturization, Design Flexibility, Advanced Filtering Responses, and Implementation of Tunable Filters

    Full text link
    [EN] Substrate integrated waveguide (SIW) technology [1], [2] is a well established and successful approach for implementing planar microwave filters with very stringent requirements in terms of quality (Q) factor and also with the ability to integrate into a system. Optimized SIW filters can reach a Q factor of 200-800 using low-loss substrates and standard fabrication procedures [3]. Furthermore, packaging and electromagnetic (EM) shielding, power-handling capabilities, and low-cost batch manufacturing are other broadly recognized strengths of this approach. However, SIW filters are still larger than most of their planar counterparts; in addition, advanced topologies are not always easy to accommodate, and filter reconfigurability usually leads to very complex implementation [4]-[6]Martínez Pérez, JD.; Sirci, S.; Boria Esbert, VE.; Sánchez-Soriano, MÁ. (2020). When Compactness Meets Flexibility: Basic Coaxial SIW Filter Topology for Device Miniaturization, Design Flexibility, Advanced Filtering Responses, and Implementation of Tunable Filters. IEEE Microwave Magazine. 21(6):58-78. https://doi.org/10.1109/MMM.2020.2979155S587821

    Satellite analog FDMA/FM to digital TDMA conversion

    Get PDF
    The results of a study which investigated design issues regarding the use of analog to digital (A/D) conversion on board a satellite are presented. The need for A/D, and of course D/A as well, conversion arose from a satellite design which required analog FDMA/FM up and down links to/from a digitally modulated intersatellite link. There are also some advantages when one must interconnect a large number of various spot beams which are using analog, and therefore cannot take advantage of SS/TDMA switching among the beams, thus resulting in low fill factors. Various tradeoffs were performed regarding the implementation of on-board A/D processing, including mass, power, and costs. The various technologies which were considered included flash ADCs, surface acoustic wave (SAW) devices, and digital signal processing (DSP) chips. Impact analyses were also performed to determine the effect on ground stations to convert to digital if the A/D approach were not implemented

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Comb-Based Radio-Frequency Photonic Filters with Rapid Tunability and High Selectivity

    Get PDF
    Photonic technologies have received considerable attention for enhancement of radio-frequency (RF) electrical systems, including high-frequency analog signal transmission, control of phased arrays, analog-to-digital conversion, and signal processing. Although the potential of radio-frequency photonics for implementation of tunable electrical filters over broad RF bandwidths has been much discussed, realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for RF photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability, and bandwidth reconfiguration. In one configuration tuning of the RF passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes comb spectra, resulting in Gaussian RF filter lineshapes exhibiting extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.Comment: Updated the submission with the most recent version of the pape

    Design and performance of the ADMX SQUID-based microwave receiver

    Get PDF
    The Axion Dark Matter eXperiment (ADMX) was designed to detect ultra-weakly interacting relic axion particles by searching for their conversion to microwave photons in a resonant cavity positioned in a strong magnetic field. Given the extremely low expected axion-photon conversion power we have designed, built and operated a microwave receiver based on a Superconducting QUantum Interference Device (SQUID). We describe the ADMX receiver in detail as well as the analysis of narrow band microwave signals. We demonstrate the sustained use of a SQUID amplifier operating between 812 and 860 MHz with a noise temperature of 1 K. The receiver has a noise equivalent power of 1.1x10^-24 W/sqrt(Hz) in the band of operation for an integration time of 1.8x10^3 s.Comment: 8 pages, 12 figures, Submitted to Nuclear Inst. and Methods in Physics Research,
    corecore