1,452 research outputs found

    Second-order analysis and numerical approximation for bang-bang bilinear control problems

    Get PDF
    We consider bilinear optimal control problems whose objective functionals do not depend on the controls. Hence, bang-bang solutions will appear. We investigate sufficient secondorder conditions for bang-bang controls, which guarantee local quadratic growth of the objective functional in L1 . In addition, we prove that for controls that are not bang-bang, no such growth can be expected. Finally, we study the finite-element discretization and prove error estimates of bang-bang controls in L1 -norms.The first author was partially supported by the Spanish Ministerio de Economía Industria y Competitividad under research projects MTM2014-57531-P and MTM2017-83185-P. The second author was partially supported by DFG under grant Wa 3626/1-1

    Total variation regularization of multi-material topology optimization

    Get PDF
    This work is concerned with the determination of the diffusion coefficient from distributed data of the state. This problem is related to homogenization theory on the one hand and to regularization theory on the other hand. An approach is proposed which involves total variation regularization combined with a suitably chosen cost functional that promotes the diffusion coefficient assuming prespecified values at each point of the domain. The main difficulty lies in the delicate functional-analytic structure of the resulting nondifferentiable optimization problem with pointwise constraints for functions of bounded variation, which makes the derivation of useful pointwise optimality conditions challenging. To cope with this difficulty, a novel reparametrization technique is introduced. Numerical examples using a regularized semismooth Newton method illustrate the structure of the obtained diffusion coefficient.

    Optimal Active Control and Optimization of a Wave Energy Converter

    No full text

    Optimal control and robust estimation for ocean wave energy converters

    No full text
    This thesis deals with the optimal control of wave energy converters and some associated observer design problems. The first part of the thesis will investigate model predictive control of an ocean wave energy converter to maximize extracted power. A generic heaving converter that can have both linear dampers and active elements as a power take-off system is considered and an efficient optimal control algorithm is developed for use within a receding horizon control framework. The optimal control is also characterized analytically. A direct transcription of the optimal control problem is also considered as a general nonlinear program. A variation of the projected gradient optimization scheme is formulated and shown to be feasible and computationally inexpensive compared to a standard nonlinear program solver. Since the system model is bilinear and the cost function is not convex quadratic, the resulting optimization problem is shown not to be a quadratic program. Results are compared with other methods like optimal latching to demonstrate the improvement in absorbed power under irregular sea condition simulations. In the second part, robust estimation of the radiation forces and states inherent in the optimal control of wave energy converters is considered. Motivated by this, low order H∞ observer design for bilinear systems with input constraints is investigated and numerically tractable methods for design are developed. A bilinear Luenberger type observer is formulated and the resulting synthesis problem reformulated as that for a linear parameter varying system. A bilinear matrix inequality problem is then solved to find nominal and robust quadratically stable observers. The performance of these observers is compared with that of an extended Kalman filter. The robustness of the observers to parameter uncertainty and to variation in the radiation subsystem model order is also investigated. This thesis also explores the numerical integration of bilinear control systems with zero-order hold on the control inputs. Making use of exponential integrators, exact to high accuracy integration is proposed for such systems. New a priori bounds are derived on the computational complexity of integrating bilinear systems with a given error tolerance. Employing our new bounds on computational complexity, we propose a direct exponential integrator to solve bilinear ODEs via the solution of sparse linear systems of equations. Based on this, a novel sparse direct collocation of bilinear systems for optimal control is proposed. These integration schemes are also used within the indirect optimal control method discussed in the first part.Open Acces

    Order reduction and eigenstructure assignment for nonsmooth vibrating systems: a nonlinear normal modes approach

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2002Two related problems are addressed in this thesis. The first one is for order reduction of conservative vibrating systems with piecewise linear nonsmooth nonlinearities of arbitrary dimension. Linear-based, PMM-based and LELSM-based order reduction transformations are applied. The technique is applied to multi-degree-of-freedom systems with nonsmooth clearance, deadzone, bang-bang, and saturation nonlinearities. The resulting approximate frequencies are compared with those obtained from numerical simulations. The second technique is eigenstructure assignment of n-degree-of-freedom conservative vibrating systems with nonsmooth nonlinearities. Three distinct control strategies which utilize methods for approximating the NNM frequencies and mode shapes are employed. First, PMM for approximating NNM frequencies is used to determine n constant actuator gains for eigenvalue placement. Second, an approximate single-degree-of-freedom reduced model is found with one actuator gain for the mode to be controlled. The third strategy allows the frequencies and mode shapes (eigenstructure) to be placed by using a full n x n matrix of actuator gains and employing LELSM for approximating NNM frequencies and mode shapes
    corecore