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SECOND-ORDER ANALYSIS AND NUMERICAL APPROXIMATION
FOR BANG-BANG BILINEAR CONTROL PROBLEMS\ast 
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Abstract. We consider bilinear optimal control problems whose objective functionals do not
depend on the controls. Hence, bang-bang solutions will appear. We investigate sufficient second-
order conditions for bang-bang controls, which guarantee local quadratic growth of the objective
functional in L1. In addition, we prove that for controls that are not bang-bang, no such growth
can be expected. Finally, we study the finite-element discretization and prove error estimates of
bang-bang controls in L1-norms.
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1. Introduction. In this article, we consider optimal control problems of the
following type: Minimize the cost functional

(1.1) j(y, u) :=
1

2
\| y  - yd\| 2L2(\Omega )

subject to the elliptic equation

(1.2) Ly + b(y) + \chi \omega uy = f

and control constraints

(1.3) \alpha \leq u \leq \beta .

Here, \Omega \subset \BbbR n is a bounded domain with Lipschitz boundary, L is a second-order ellip-
tic operator, and b is a monotone nonlinearity. The presence of the nonlinear coupling
\chi \omega uy motivates us to call this problem ``bilinear""; sometimes the term ``control affine
problem"" is used. Many important processes in engineering, biology, socio-economics,
and ecology may be modeled by bilinear systems; see [5] and [21]. This bilinear
coupling complicates the analysis considerably.

Since j does not depend explicitly on the control, a typical situation is one in
which locally optimal controls \=u are of bang-bang type, that is, \=u(x) \in \{ \alpha , \beta \} for
a.a. x \in \Omega . However, no simple conditions are known that ensure this property for
optimal control of elliptic equations, and singular parts may appear. In this paper,
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4204 E. CASAS, D. WACHSMUTH, AND G. WACHSMUTH

we will assume that the considered reference control \=u is bang-bang. If the objective
functional satisfies a growth condition with respect to the L1-norm, then the optimal
control has to be bang-bang, as we show in subsection 2.1.

We are interested in sufficient second-order optimality conditions and discretiza-
tion error estimates for problem (1.1)--(1.3). To this end, we develop an abstract
framework in section 2. The analysis relies on a structural assumption on the behav-
ior of the reduced gradient on the active set. This allows us to prove a second-order
condition; see Theorem 2.4. The abstract results are then applied in section 3 to
bilinear distributed and bilinear boundary control problems for elliptic equations.

In addition, we investigate the discretization of the original problems using finite
elements. Here, we show that under the sufficient second-order condition, we obtain
an error estimate of the type

(1.4) \| \=u - \=uh\| L1 \leq c h;

see Theorem 4.4. This extends earlier results for linear-quadratic bang-bang problems
[13, 31] and regularized nonlinear control problems [2, 7].

To motivate the abstract theory, let us consider an optimal control problem with
the elliptic differential equation

 - \Delta y + \chi \omega yu = f

on \Omega with f \in L2(\Omega ) and supplied with homogeneous Dirichlet boundary conditions.
Let us suppose that the lower control bound \alpha is nonnegative. Let us define \scrU ad :=
\{ u \in L\infty (\omega ) : \alpha \leq u \leq \beta a.e. in \omega \} . Then for every feasible control u \in \scrU ad, the
elliptic equation has a unique solution yu \in H1(\Omega ) by the Lax--Milgram theorem. In
addition, yu \in L\infty (\Omega ) holds by regularity results for elliptic equations. Hence, we can
introduce the reduced objective function J : \scrU ad \rightarrow \BbbR via

J(u) := j(yu, u).

In order to derive error estimates of the type (1.4), growth conditions on the functional
near the locally optimal control \=u of the type

J(\=u) + \nu \| u - \=u\| L1(\Omega ) \leq J(u) \forall u \in Uad : \| u - \=u\| L1(\Omega )

are indispensable. In subsection 2.1 we show that such a growth condition can be
satisfied only if the control is bang-bang. This is due to the fact that the reduced cost
functional J is weak* sequentially continuous from \scrU ad \subset L\infty (\omega ) to \BbbR . Note that the
presence of an additional regularization term \| u\| 2L2(\omega ) in the objective j would yield

only weak* lower semicontinuity of the reduced objective J .
In our analysis we rely on an assumption on the behavior of the adjoint state on

the active set; see (2.5) and (3.12). This enables us to obtain the lower bound

J \prime (\=u)(u - \=u) \geq \kappa \| u - \=u\| 2L1(\omega ) \forall u \in \scrU ad;

cf. Theorem 2.3. Here, it is necessary to choose \omega with positive distance to the
Dirichlet boundary \partial \Omega . We comment on this in Remark 3.4.

In order to perform a second-order analysis of the optimal control problem, we
will use the following differentiability properties. The control-to-state-map u \mapsto \rightarrow yu
and, consequently, the reduced objective J are twice continuously differentiable with
respect to u in L\infty (\Omega ). The second derivative of J is given by

J \prime \prime (u)(v1, v2) =

\int 
\Omega 

zv1 zv2 dx - 
\int 
\omega 

\varphi u

\bigl( 
v1 zv2 + v2 zv1

\bigr) 
dx,
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SECOND-ORDER ANALYSIS FOR BILINEAR CONTROL PROBLEMS 4205

where zvi are the solutions of the linearized state equation

 - \Delta zv + \chi \omega u zv + \chi \omega v yu = 0

with v = vi, and the adjoint state \varphi u solves

 - \Delta \varphi u + \chi \omega u\varphi u = yu  - yd;

see Theorem 3.2. Using these formulas and standard regularity results for elliptic
partial differential equations (PDEs), one can check that J \prime \prime (u) can be extended from
L\infty (\Omega )2 to Lq(\Omega )2 for some q \in (1,\infty ) close to 1. Due to the presence of the bilinear
terms v1 zv2 and v2 zv1 in J \prime \prime , it is not possible to work with q = 1. If the control
appears linearly in the PDE, then an analysis of the optimal control problem in L1(\omega )
is possible. This strategy was applied in our previous paper [10]. In addition, one
obtains a continuity property of J \prime \prime in weaker norms. For the precise calculations, we
refer the reader to subsection 3.1, where we consider a PDE in the general setting
(1.2).

These properties of the reduced objective J are our starting point for the abstract
setting in section 2. Indeed, it will be sufficient that the reduced objective J satisfies
these differentiability properties in order to derive second-order optimality conditions
and approximation error estimates. Therefore, we are not only able to produce results
for the control problem (1.1)--(1.3), but our abstract setting is also applicable to many
other problems. We outline the applicability to a bilinear boundary control problem
in subsection 3.2, and we expect that the abstract setting also applies to other bilinear
control problems; see the examples at the end of [10, section 3].

Let us comment on the existing literature for bang-bang control problems. The
present paper continues our research on bang-bang problems. It extends earlier works
[8, 10], which focused on problems with the control appearing linearly, to the bilinear
case. In the literature on control problems governed by ordinary differential equations
(ODEs) there are many contributions dealing with second-order conditions in the
bang-bang case, e.g., [15, 17, 18, 20, 22, 23, 24]. In these contributions one typically
assumes that the (differentiable) switching function \sigma : [0, T ] \rightarrow \BbbR has finitely many
zeros. Our structural assumption (2.5) can be considered as an extension to the
distributed parameter case.

Bilinear control problems for time-dependent equations were studied, e.g., in [4, 3];
see also the references in these papers. By means of the Goh transform, the bilinear
control problem is transferred into a problem where the control appears linearly. It
is an open problem whether the idea of Goh transform can be applied to control of
elliptic (and thus time-independent) equations.

2. Abstract framework. Throughout this section we assume that (X,\scrB , \eta ) is
a finite and complete measure space. We consider the abstract optimization problem

(P)
minimize J(u)

subject to u \in \scrU ad,

where

(2.1) \scrU ad = \{ u \in L\infty (X) : \alpha \leq u(x) \leq \beta a.e. in X\} 

with  - \infty < \alpha < \beta < +\infty , and J : \scrU ad \rightarrow \BbbR is a given function.
In what follows, we will denote the open ball with respect to the Lp(X)-norm of

radius r > 0 around v \in Lp(X) by Bp
r (v).
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4206 E. CASAS, D. WACHSMUTH, AND G. WACHSMUTH

2.1. A negative result in the non--bang-bang case. In this subsection, we
prove that we cannot expect any growth of the objective if the optimal control is not
of bang-bang type.

Theorem 2.1. Let us assume that the measure space (X,\scrB , \eta ) is additionally
separable and nonatomic. Suppose that \=u is a local minimizer of (P) in the sense
of L1(X), which is not bang-bang. Further, we assume that J is weak* sequentially
continuous from L\infty (X) to \BbbR . Then, there exists \delta 0 > 0 such that for any \delta \in (0, \delta 0]
and for any \varepsilon > 0, there exists u \in \scrU ad with

(2.2) \| u - \=u\| L1(X) = \delta and J(u) \leq J(\=u) + \varepsilon .

Before proving the theorem, we give some remarks and an auxiliary lemma. First,
the theorem implies that a growth of type

J(u) \geq J(\=u) + \nu \| u - \=u\| \gamma Lp(X) \forall u \in \scrU ad \cap B1
\delta (\=u)

for some \nu , \delta , \gamma > 0 and p \in [1,\infty ] is impossible. Indeed, let us argue by contradiction.
Without loss of generality, we can assume that the above growth holds for some \delta < \delta 0.
Then, according to the theorem, for every \varepsilon > 0 there exists u\varepsilon \in \scrU ad such that (2.2)
holds. This implies with the assumed growth condition and H\"older's inequality that

\delta = \| u\varepsilon  - \=u\| L1(X) \leq \eta (X)1 - 
1
p \| u\varepsilon  - \=u\| Lp(X)

\leq \eta (X)1 - 
1
p

\Bigl( J(u\varepsilon ) - J(\=u)

\nu 

\Bigr) 1/\gamma 
\leq \eta (X)1 - 

1
p

\nu 1/\gamma 
\varepsilon 1/\gamma .

Finally, making \varepsilon \rightarrow 0 we get a contradiction.
Furthermore, even a growth of type f(\| u - \=u\| Lp(X)) cannot be satisfied, as long

as f is a nondecreasing function and f(t) > 0 for t > 0.
Recall that the measure space is nonatomic if, for all A \in \scrB with \eta (A) > 0, there

is B \in \scrB with B \subset A and 0 < \eta (B) < \eta (A). The measure space is called separable if
there is a countable subset \{ An\} \subset \scrB such that

\forall A \in \scrB and \forall \varepsilon > 0 \exists An : \eta 
\bigl( 
(A \setminus An) \cup (An \setminus A)

\bigr) 
< \varepsilon 

holds. It is easy to check that this is equivalent to the separability of Lp(X) for all
p \in [1,\infty ). In particular, all regular Borel measures are separable measures.

Before proving the theorem, we need to state a lemma.

Lemma 2.2. Let the measure space (X,\scrB , \eta ) be as in Theorem 2.1. Let a mea-
surable set B \subset X be given. Then, there exists a sequence \{ vk\} \subset L\infty (X) such that

vk(x) = 0 for a.a. x \in X \setminus B, vk(x) \in \{  - 1, 1\} for a.a. x \in B, and vk
\ast 
\rightharpoonup 0 in L\infty (X).

Proof. We define the set

\BbbF = \{ v \in L2(B) : v(x) \in \{  - 1, 1\} for a.a. x \in B\} .

Then, according to [25, Proposition 6.4.19], we have

\BbbF w
= \{ v \in L2(B) : v(x) \in [ - 1, 1] for a.a. x \in B\} ,

where \BbbF w
is the closure of \BbbF with respect to the weak topology of L2(B). The space

L2(B) is reflexive and separable since (X,\scrB , \eta ) is assumed to be separable. Hence,
the weak topology is metrizable on the bounded set \BbbF w

. Thus, there is a sequence
\{ vk\} \subset L2(B) with vk \in \BbbF and vk \rightharpoonup 0 in L2(B). Since \{ vk\} is bounded in L\infty (B),

the density of L2(B) in L1(B) implies vk
\ast 
\rightharpoonup 0 in L\infty (B). Finally, the result follows if

vk is extended by 0 to X.
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Now we are in position to prove Theorem 2.1.

Proof of Theorem 2.1. Since \=u is not bang-bang, the set B = \{ x \in X : \alpha + \rho \leq 
\=u \leq \beta  - \rho \} has positive measure for some \rho > 0. We apply Lemma 2.2 and obtain a
sequence \{ vk\} \subset L\infty (X) with the properties stated in Lemma 2.2. Set \delta 0 = \rho \eta (B).
Then, given \delta \leq \delta 0, we consider the controls uk = \=u + \delta 

\eta (B)vk and obtain uk \in \scrU ad.

Moreover, we have \| uk  - \=u\| L1(X) = \delta for all k. The weak* sequential continuity
of J implies J(uk) \rightarrow J(\=u). Thus, for any \varepsilon > 0 there exists k\varepsilon \geq 1 such that
J(uk) - J(\=u) < \varepsilon for all k \geq k\varepsilon , which implies (2.2).

2.2. Second-order analysis. In this section, we consider the second-order anal-
ysis of problem (P). To this end, let \=u \in \scrU ad be a fixed control. We make the following
assumptions on J and \=u.

(H1) The functional J can be extended to an L\infty (X)-neighborhood \scrA of \scrU ad. It
is twice continuously Fr\'echet differentiable with respect to L\infty (X) in this
neighborhood. Moreover, we assume that \=u satisfies the first-order condition
J \prime (\=u)(u - \=u) \geq 0 for all u \in \scrU ad.

(H2) The second derivative J \prime \prime (\=u) : L\infty (X)2 \rightarrow \BbbR can be extended continuously
to Lq(X)2 for some q \in [1, 3/2). In particular, there is a constant C > 0
such that

(2.3) | J \prime \prime (\=u)(v1, v2)| \leq C \| v1\| Lq(X) \| v2\| Lq(X)

holds for all v1, v2 \in L\infty (X).

(H3) For each \varepsilon > 0 there is \delta \varepsilon > 0 such that

(2.4)
\bigm| \bigm| [J \prime \prime (u\theta ) - J \prime \prime (\=u)](u - \=u)2

\bigm| \bigm| \leq \varepsilon \| u - \=u\| 2L1(X)

holds for all u \in \scrU ad \cap B1
\delta \varepsilon 
(\=u), u\theta = \=u+ \theta (u - \=u), and any 0 \leq \theta \leq 1.

(H4) There exists a function \=\psi \in L1(X) such that J \prime (\=u) v =
\int 
X

\=\psi v d\eta for all
v \in L\infty (X).

(H5) There exists a constant K > 0 such that

(2.5) \eta (\{ x \in X : | \=\psi (x)| \leq \varepsilon \} ) \leq K \varepsilon 

is satisfied for all \varepsilon > 0.

We will see below that (H3) is satisfied for bilinear elliptic control problems in
the case of distributed controls (for dimensions n \leq 3) and for boundary controls (for
dimension n = 2).

The conditions (H1), (H4), and (H5) imply that \=u is a bang-bang control. In fact,
we have

(2.6) \=\psi (x) > 0 \Rightarrow \=u(x) = \alpha and \=\psi (x) < 0 \Rightarrow \=u(x) = \beta 

for a.a. x \in X. Together with (H5), this yields \=u(x) \in \{ \alpha , \beta \} for a.a. x \in X.
Under the previous assumptions, we can prove some sufficient second-order op-

timality conditions for the local optimality of a given bang-bang control \=u. To this
end, we introduce the following cone of critical directions: For every \tau > 0, we define

(2.7) C\tau 
\=u :=

\bigl\{ 
v \in L2(X) : v(x) = 0 if | \=\psi (x)| > \tau and v satisfies (2.8)

\bigr\} D
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with

(2.8) v(x)

\Biggl\{ 
\geq 0 if \=u(x) = \alpha 

\leq 0 if \=u(x) = \beta 
for a.a. x \in X.

Before establishing the second-order conditions, we state the following result,
whose proof can be found in [10, Proposition 2.7].

Theorem 2.3. Let us assume that (H1), (H4), and (H5) hold; then

(2.9) J \prime (\=u)(u - \=u) \geq \kappa \| u - \=u\| 2L1(X) \forall u \in \scrU ad,

where \kappa = (4(\beta  - \alpha )K) - 1.

The next theorem provides a second-order condition which allows us to prove a
quadratic growth of the objective J in the neighborhood of \=u. In particular, \=u is
a strict local solution under this assumption. Note that condition (2.10) is slightly
weaker than the corresponding results [10, Theorems 2.8 and 3.3], which required
\kappa \prime < \kappa in (2.10). This improvement has been possible by some slightly more refined
estimates in the proof.

Theorem 2.4. Suppose that the above assumptions (H1)--(H5) are satisfied. Let
\kappa be as in Theorem 2.3. Further, assume that

(2.10) \exists \tau > 0, \exists \kappa \prime < 2\kappa : J \prime \prime (\=u)v2 \geq  - \kappa \prime \| v\| 2L1(X) \forall v \in C\tau 
\=u .

Then, there exist \nu > 0 and \delta > 0 such that

(2.11) J(\=u) + \nu \| u - \=u\| 2L1(X) \leq J(u) \forall u \in \scrU ad \cap B1
\delta (\=u).

The following lemma will be used to prove this theorem.

Lemma 2.5. Suppose that the above assumptions (H1)--(H5) are satisfied. Let \kappa 
be as in Theorem 2.3. Further, we assume that there exist \tau > 0 and \kappa \prime \geq 0 such that

(2.12) J \prime \prime (\=u)v2 \geq  - \kappa \prime \| v\| 2L1(X) \forall v \in C\tau 
\=u .

Then, for every \gamma \in (0, 3\kappa ), there is a \delta > 0 such that

(2.13) J \prime (\=u)(u - \=u)+ J \prime \prime (u\theta )(u - \=u)2 \geq (\kappa  - \kappa \prime  - \gamma )\| u - \=u\| 2L1(X) \forall u \in \scrU ad \cap B1
\delta (\=u),

where u\theta = \=u+ \theta (u - \=u) and 0 \leq \theta \leq 1 is arbitrary.

Proof. We follow the idea of the proofs of [10, Theorems 2.8 and 3.3]. First, we
note that (2.3) implies that

| J \prime \prime (\=u)(v1, v2)| \leq C \| v1\| 1/qL1(X) \| v2\| 
1/q
L1(X) \| v1\| 

(q - 1)/q
L\infty (X) \| v2\| (q - 1)/q

L\infty (X)(2.14)

holds for all v1, v2 \in L\infty (X). Now, let u \in \scrU ad with \| u - \=u\| L1(X) \leq \delta be given, where
\delta > 0 will be specified later. We define

u1(x) :=

\Biggl\{ 
\=u(x) if x \in X\tau ,

u(x) otherwise
and u2(x) :=

\Biggl\{ 
u(x) - \=u(x) if x \in X\tau ,

0 otherwise,

where X\tau = \{ x \in X : | \=\psi (x)| > \tau \} . Then we have that u = u1+u2, (u1 - \=u) \in C\tau 
\=u , and

| u1  - \=u| \leq | u - \=u| a.e. in X. Let \gamma \in (0, 3\kappa ) be given. Now, we can use (2.12), (2.14),
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and Young's inequality (with exponents s = 2 q and s\prime = 2q/(2q  - 2)) to obtain for
generic positive constants C

J \prime \prime (\=u)(u - \=u)2 = J \prime \prime (\=u)(u1  - \=u)2 + 2 J \prime \prime (\=u)(u1  - \=u, u2) + J \prime \prime (\=u)u22

\geq  - \kappa \prime \| u1  - \=u\| 2L1(X)  - C \| u1  - \=u\| 1/qL1(X) \| u2\| 
1/q
L1(X)  - C \| u2\| 2/qL1(X)

\geq  - 
\Bigl( 
\kappa \prime +

\gamma 

3

\Bigr) 
\| u1  - \=u\| 2L1(X)  - C \| u2\| 2/(2q - 1)

L1(X)  - C \| u2\| 2/qL1(X).

Owing to the construction of u1 and u2, we have for \delta small enough

(2.15) J \prime \prime (\=u)(u - \=u)2 \geq  - 
\Bigl( 
\kappa \prime +

\gamma 

3

\Bigr) 
\| u - \=u\| 2L1(X)  - C\| u - \=u\| \=qL1(X\tau )

with \=q = min(2/(2q  - 1), 2/q) = 2/(2q  - 1) > 1 since 1 \leq q < 3/2. Next, we use
Theorem 2.3 and (2.6) to infer

J \prime (\=u)(u - \=u) =
\Bigl( 
1 - \gamma 

3\kappa 

\Bigr) 
J \prime (\=u)(u - \=u) +

\gamma 

3\kappa 
J \prime (\=u)(u - \=u)

\geq 
\Bigl( 
\kappa  - \gamma 

3

\Bigr) 
\| u - \=u\| 2L1(X) +

\gamma 

3\kappa 

\int 
X\tau 

| \=\psi | | u - \=u| d\eta 

\geq 
\Bigl( 
\kappa  - \gamma 

3

\Bigr) 
\| u - \=u\| 2L1(X) +

\gamma \tau 

3\kappa 
\| u - \=u\| L1(X\tau ).(2.16)

Furthermore, assumption (H3) implies

(2.17)
\bigm| \bigm| [J \prime \prime (u\theta ) - J \prime \prime (\=u)] (u - \=u)2

\bigm| \bigm| \leq \gamma 

3
\| u - \=u\| 2L1(X)

if \delta is chosen small enough. Now, by adding the inequalities (2.15), (2.16), and (2.17),
we have

J \prime (\=u)(u - \=u) + J \prime \prime (u\theta )(u - \=u)2 \geq (\kappa  - \kappa \prime  - \gamma ) \| u - \=u\| 2L1(X)

+
\gamma \tau 

3\kappa 
\| u - \=u\| L1(X\tau )  - C\| u - \=u\| \=qL1(X\tau )

.

Note that the sum of the terms on the second line is nonnegative if \delta is small enough
since \=q > 1.

Now we are in position to prove Theorem 2.4.

Proof of Theorem 2.4. Let \tau > 0 and \kappa \prime < 2\kappa be given such that (2.10) is satis-
fied. Without loss of generality, we assume that \kappa \prime \geq 0. We choose \gamma \in (0, 2\kappa  - \kappa \prime ).
We apply Lemma 2.5 and get \delta > 0 such that (2.13) holds. Now, we choose an
arbitrary u \in \scrU ad \cap B1

\delta (\=u). Using a Taylor expansion, we get

J(u) - J(\=u) = J \prime (\=u)(u - \=u) +
1

2
J \prime \prime (u\theta )(u - \=u)2

for u\theta = \=u + \theta (u  - \=u) and 0 \leq \theta \leq 1. Now, we apply (2.9) from Theorem 2.3 and
(2.13) to conclude that

J(u) - J(\=u) =
1

2
J \prime (\=u)(u - \=u) +

1

2
J \prime (\=u)(u - \=u) +

1

2
J \prime \prime (u\theta )(u - \=u)2

\geq \kappa 

2
\| u - \=u\| 2L1(X) +

1

2
(\kappa  - \kappa \prime  - \gamma ) \| u - \=u\| 2L1(X)

\geq 1

2
(2\kappa  - \kappa \prime  - \gamma ) \| u - \=u\| 2L1(X).

Since \nu := (2\kappa  - \kappa \prime  - \gamma )/2 > 0, the assertion follows.
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4210 E. CASAS, D. WACHSMUTH, AND G. WACHSMUTH

2.3. Approximation results. The rest of this section is dedicated to the nu-
merical approximation of the optimization problem (P). To this end, we make the
following assumptions. First, we fix an approximation of the underlying set X.

(D1) There is a sequence of measurable subsets Xh \subset X such that \eta (X \setminus Xh) \rightarrow 0
as h\rightarrow 0.

We define the following two notions of convergence associated with the approximation
Xh of X. For a sequence uh \in L1(Xh) and u \in L1(X), we say that uh \rightarrow u in L1(X)
if and only if \| uh  - u\| L1(Xh) \rightarrow 0 as h \rightarrow 0. Similarly, for a sequence uh \in L\infty (Xh)

and u \in L\infty (X), we say that uh
\ast 
\rightharpoonup u in L\infty (X) if and only if

\int 
Xh

v uh d\eta \rightarrow 
\int 
X
v u d\eta 

as h \rightarrow 0 for all v \in L1(X). Due to \eta (Xh \setminus X) \rightarrow 0, both notions of convergence

are equivalent to (uh + f \chi X\setminus Xh
) \rightarrow u in L1(X) and (uh + f \chi X\setminus Xh

)
\ast 
\rightharpoonup u in L\infty (X),

respectively, where f \in L\infty (X) is an arbitrary but fixed extension of uh.
Next, we state assumptions to define the approximation of our problem (P).

(D2) The sets \scrU ad,h \subset L\infty (Xh) are closed, convex, and contained in the set
\{ uh \in L\infty (Xh) : \alpha \leq uh \leq \beta a.e. in Xh\} . Moreover, for every u \in \scrU ad

there exists a sequence uh \in \scrU ad,h such that uh \rightarrow u in L1(X) as h\rightarrow 0.

(D3) \{ Jh\} h is a sequence of functions Jh : \scrU ad,h  - \rightarrow \BbbR that are weakly lower
semicontinuous with respect to the L2(X) topology.

(D4) The following properties hold for sequences uh \in \scrU ad,h and u \in \scrU ad:

If uh
\ast 
\rightharpoonup u in L\infty (X), then J(u) \leq lim inf

h\rightarrow 0
Jh(uh);(2.18)

if uh \rightarrow u in L1(X), then J(u) = lim
h\rightarrow 0

Jh(uh).(2.19)

(D5) The functions Jh have C1 extensions Jh : \scrA h  - \rightarrow \BbbR , where \scrA h \subset L\infty (Xh)
is a neighborhood of \scrU ad,h. Moreover, for all uh \in \scrU ad,h and for all u \in \scrU ad,
J \prime 
h(uh) and J \prime (u) are linear and continuous forms on L1(Xh) and L1(X),

respectively. Hence, there exist elements \psi h \in L\infty (Xh), \psi \in L\infty (X) such
that the following identifications hold: J \prime 

h(uh) = \psi h and J \prime (u) = \psi .

Now, we define the approximating problems

(Ph)
minimize Jh(uh)

subject to uh \in \scrU ad,h.

First, we state a lemma which provides a partial converse to (D2).

Lemma 2.6. Let us assume that (D1) and (D2) hold. Let uh \subset \scrU ad,h be a sequence

with uh
\ast 
\rightharpoonup u in L\infty (X) for some u \in L\infty (X). Then, u \in \scrU ad holds. If, additionally,

\| uh  - \=u\| L1(Xh) \leq \delta for some \=u \in \scrU ad, for some \delta > 0, and for all h > 0, then we get
\| u - \=u\| L1(X) \leq \delta .

Proof. We argue by contradiction. Assume that u \leq \beta is not satisfied a.e. on
X. Then, there is a measurable set B \subset X with \eta (B) > 0 and \varepsilon > 0 such that
u \geq \beta + \varepsilon a.e. in B. If h is small enough, we have \eta (X \setminus Xh) < \eta (B)/2, and hence
\eta (B \cap Xh) > \eta (B)/2. Together with uh \leq \beta , this implies\int 

Xh

\chi B (uh  - u) d\eta =

\int 
B\cap Xh

(uh  - u) d\eta \leq 
\int 
B\cap Xh

[\beta  - (\beta + \varepsilon )] d\eta \leq  - 1

2
\eta (B) \varepsilon ,

which contradicts uh
\ast 
\rightharpoonup u in L\infty (X). Similar arguments can be used if u \geq \alpha is

violated.
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It remains to check the second assertion. By extending uh with \=u on X \setminus Xh, we

get uh
\ast 
\rightharpoonup u in L\infty (X), in particular, uh \rightharpoonup u in L1(X). Now, the assertion follows

from the weak lower semicontinuity of the norm of L1(X).

The following theorem proves that (Ph) realizes a convergent approximation of
(P).

Theorem 2.7. Let us assume that (D1)--(D4) hold. Then for every h, the prob-
lem (Ph) has at least a global solution \=uh. Furthermore, if \{ \=uh\} h is a sequence of

global solutions of (Ph), and \=uh
\ast 
\rightharpoonup \~u in L\infty (X), then \~u is a global solution of (P).

Conversely, if \=u is a bang-bang strict local minimum of (P) in the L1(X) sense, then
there exists a sequence \{ \=uh\} h of local minimizers of problems (Ph) in the sense of
L1(Xh) such that \=uh \rightarrow \=u in L1(X).

Proof. The existence of a global solution \=uh of (Ph) follows from the boundedness,
convexity, and closedness of \scrU ad,h and from the weak lower semicontinuity of Jh; see
assumptions (D2) and (D3). Now, consider a subsequence, denoted in the same way,

such that \=uh
\ast 
\rightharpoonup \~u in L\infty (X). Since \=uh \in \scrU ad,h for every h, the inclusion \~u \in \scrU ad holds

by Lemma 2.6. Furthermore, given an element u \in \scrU ad, according to assumption (D2)
we can take a sequence \{ uh\} h with uh \in \scrU ad,h such that uh \rightarrow u in L1(X). Then,
using (D4) and the global optimality of every \=uh, we infer

J(\~u) \leq lim inf
h\rightarrow 0

Jh(\=uh) \leq lim sup
h\rightarrow 0

Jh(\=uh) \leq lim sup
h\rightarrow 0

Jh(uh) = J(u).

Hence, \~u is a solution of (P).
Conversely, we assume that \=u is a bang-bang strict local minimum of (P). Then,

there exists \delta > 0 such that

J(\=u) < J(u) \forall u \in \scrU ad \cap B1
\delta (\=u) with \=u \not = u.

Then, we consider the problems

(P\delta ,h)
minimize Jh(uh)

subject to uh \in \scrU ad,h and \| uh  - \=u\| L1(Xh) \leq \delta .

From (D2) we deduce the existence of a sequence \{ uh\} h with uh \in \scrU ad,h such that
uh \rightarrow \=u strongly in L1(X). Hence, for every h small enough we have that uh \in 
\scrU ad,h \cap B1

\delta (\=u). Therefore, the feasible set of (P\delta ,h) is not empty for every h small
enough, and arguing as before we have that (P\delta ,h) has a solution \=uh for every h
small enough. Moreover, the sequence \{ \=uh\} is bounded in L\infty (X). Thus, there exists
a weak* converging subsequence. Additionally, for any subsequence converging to
\~u in L\infty (X) weak*, we get that \~u \in \scrU ad \cap B1

\delta (\=u) by Lemma 2.6, and as above,
J(\~u) \leq J(\=u). The strict local optimality of \=u in \scrU ad \cap B1

\delta (\=u) implies that \~u = \=u.
Moreover, we conclude that the whole sequence \{ \=uh\} h converges to \=u in L\infty (X)
weak*. In addition, by using the bang-bang property of \=u, we get

\| \=uh - \=u\| L1(Xh) =

\int 
\{ x\in Xh:\=u(x)=\alpha \} 

(\=uh - \=u) d\eta +

\int 
\{ x\in Xh:\=u(x)=\beta \} 

(\=u - \=uh) d\eta \rightarrow 0 as h\rightarrow 0.

From here we get that \| \=uh - \=u\| L1(Xh) < \delta for all h small enough. Hence, \=uh is a local
minimum of (Ph) for every small h.
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We finish this section by proving an estimate of \=uh - \=u in terms of the order of the
approximations of \=u by elements of \scrU ad,h and J \prime by J \prime 

h. To perform this estimate, it
will be beneficial to use a specific extension \^uh of a discrete control uh \in \scrU ad,h to X.
In fact, we set \^uh(x) = uh(x) for x \in Xh and \^uh(x) = \=u(x) for x \in X \setminus Xh. Then, for
every uh \in \scrU ad,h, this extension \^uh belongs to \scrU ad, hence \^uh \in \scrA as well. Moreover,
this specific extension of the elements uh is quite convenient for the derivation of the
error estimate. We will also see in section 4 below, that this will not impede the
applicability of our abstract framework to derive discretization error estimates for
optimal control problems.

Theorem 2.8. Let us assume that (H1)--(H5) and (D1)--(D5) hold. Additionally,
we suppose that \=u satisfies the second-order condition (2.10) with \kappa \prime \in (0, \kappa ). Let
\{ \=uh\} h be a sequence of local solutions of problems (Ph) converging to \=u in L1(X).
Then, for \gamma = (\kappa  - \kappa \prime )/2 we obtain that the estimate

\| \=uh  - \=u\| 2L1(Xh)
\leq \gamma + 1

\gamma 2
\| J \prime 

h(\=uh) - J \prime (\^\=uh)\| 2L\infty (Xh)

+
1

\gamma 
inf

uh\in \scrU ad,h

\Bigl( 
\| uh  - \=u\| 2L1(Xh)

+ 2J \prime (\^\=uh)(\^uh  - \=u)
\Bigr) 

(2.20)

holds for all h small enough, where \^\=uh and \^uh denote the extensions of \=uh and uh by
\=u to X, respectively.

Proof. Let uh \in \scrU ad,h, and denote by \^uh its extension to X by \=u. Since \=uh is
a local minimum of (Ph), J

\prime 
h(\=uh)(uh  - \=uh) \geq 0. Due to (D5) this inequality can be

written in the form

(2.21) J \prime (\^\=uh)(\^\=uh  - \=u) \leq [J \prime 
h(\=uh) - J \prime (\^\=uh)](\chi Xh

(\^uh  - \^\=uh)) + J \prime (\^\=uh)(\^uh  - \=u).

Note that our choice of extension is crucial for the above rearrangement. Next, we
rewrite the left-hand side, and by the mean value theorem and by denoting u\theta =
\=u+ \theta h(\^\=uh  - \=u) with 0 \leq \theta h \leq 1, we infer

J \prime (\^\=uh)(\^\=uh  - \=u) = J \prime (\=u)(\^\=uh  - \=u) + [J \prime (\^\=uh) - J \prime (\=u)](\^\=uh  - \=u)

= J \prime (\=u)(\^\=uh  - \=u) + J \prime \prime (u\theta )(\^\=uh  - \=u)2.

Taking \gamma = (\kappa  - \kappa \prime )/2 in Lemma 2.5, we get for h small enough

\gamma \| \=uh  - \=u\| 2L1(Xh)
= \gamma \| \^\=uh  - \=u\| 2L1(X) \leq J \prime (\^\=uh)(\^\=uh  - \=u).

This estimate is now used in (2.21). After applying Young's inequality we obtain

\gamma \| \=uh  - \=u\| 2L1(Xh)
\leq \| J \prime 

h(\=uh) - J \prime (\^\=uh)\| L\infty (Xh)\| uh  - \=uh\| L1(Xh) + J \prime (\^\=uh)(\^uh  - \=u)

\leq \| J \prime 
h(\=uh) - J \prime (\^\=uh)\| L\infty (Xh)

\bigl( 
\| uh  - \=u\| L1(Xh) + \| \=u - \=uh\| L1(Xh)

\bigr) 
+ J \prime (\^\=uh)(\^uh  - \=u)

\leq 
\biggl( 
1

2
+

1

2\gamma 

\biggr) 
\| J \prime 

h(\=uh) - J \prime (\^\=uh)\| 2L\infty (Xh)
+

1

2
\| uh  - \=u\| 2L1(Xh)

+
\gamma 

2
\| \=uh  - \=u\| 2L1(Xh)

+ J \prime (\^\=uh)(\^uh  - \=u).

From this inequality we deduce

\| \=uh  - \=u\| 2L1(Xh)
\leq \gamma + 1

\gamma 2
\| J \prime 

h(\=uh) - J \prime (\^\=uh)\| 2L\infty (Xh)

+
1

\gamma 
\| uh  - \=u\| 2L1(Xh)

+
2

\gamma 
J \prime (\^\=uh)(\^uh  - \=u).
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Since uh is an arbitrary element of \scrU ad,h, this inequality implies (2.20).

In section 4 we will provide precise estimates for the right-hand side of (2.20) for
some distributed optimal control problems, including bilinear controls.

3. Second-order analysis for bilinear control problems. In this section, we
apply the second-order analysis results proved in the abstract framework in section 2
to the study of some optimal control problems. The first part of this section will be
devoted to the analysis of a bilinear distributed control problem associated with a
semilinear elliptic equation. In the second part, we will consider a bilinear Neumann
control problem.

In what follows, \Omega denotes a bounded open subset of \BbbR n, 1 \leq n \leq 3, with a
Lipschitz boundary \Gamma . In \Omega we consider the elliptic partial differential operator

(3.1) Ay =  - 
n\sum 

i,j=1

\partial xj [aij\partial xiy] + a0y,

where aij , a0 \in L\infty (\Omega ) and a0 \geq 0 in \Omega . Associated with this operator, the usual
bilinear form a : H1(\Omega )\times H1(\Omega )  - \rightarrow \BbbR is defined as

(3.2) a(y, z) =

\int 
\Omega 

\Biggl( 
n\sum 

i,j=1

aij(x)\partial xi
y(x)\partial xj

z(x) + a0(x)y(x)z(x)

\Biggr) 
dx.

Let \Gamma D be a closed subset of \Gamma , possibly empty, and set \Gamma N = \Gamma \setminus \Gamma D. We define the
space

V = \{ y \in H1(\Omega ) : y = 0 on \Gamma D\} ,
equipped with the usual norm of H1(\Omega ) and the operator L : V  - \rightarrow V \ast via

\langle Ly, z\rangle = a(y, z) \forall y, z \in V,

and we assume its coercivity.

(A1) We assume the existence of \alpha > 0 such that

n\sum 
i,j=1

aij(x) \xi i \xi j \geq \alpha | \xi | 2 \forall \xi \in \BbbR n

holds for a.a. x \in \Omega . Further, we assume
\int 
\Omega 
a0 dx \not = 0 in the case when the

surface measure of \Gamma D is zero.

Note that (A1) implies

(3.3) \exists \Lambda > 0 such that \Lambda \| y\| 2V \leq a(y, y) \forall y \in V.

Moreover, we consider a Carath\'eodory function b : \Omega \times \BbbR  - \rightarrow \BbbR of class C2 with
respect to the second variable, such that the following assumptions are satisfied.

(A2) We assume that b(\cdot , 0) = 0,

\partial b

\partial y
(x, y) \geq 0 for a.a. x \in \Omega and \forall y \in \BbbR ,

and that for all M > 0 there exists a constant Cb,M > 0 such that the
boundedness estimate\bigm| \bigm| \bigm| \bigm| \partial b\partial y (x, y)

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \partial 2b\partial y2
(x, y)

\bigm| \bigm| \bigm| \bigm| \leq Cb,M for a.e. x \in \Omega and \forall | y| \leq M,
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and that for all \varepsilon > 0 and M > 0 there exists \rho \varepsilon ,M > 0 such that for
a.e. x \in \Omega ,\bigm| \bigm| \bigm| \bigm| \partial 2b\partial y2

(x, y2) - 
\partial 2b

\partial y2
(x, y1)

\bigm| \bigm| \bigm| \bigm| < \varepsilon and \forall | y1| , | y2| \leq M with | y2  - y1| < \rho \varepsilon ,M

are satisfied. In what follows we use the notation

b\prime =
\partial b

\partial y
and b\prime \prime =

\partial 2b

\partial y2
.

3.1. A bilinear distributed control problem. In this section, we consider
the state equation

(3.4) Ly + b(\cdot , y) + \chi \omega uy = f in V \ast ,

where \omega is an open subset of \Omega , and u and f satisfy the following assumptions.

(A3) We fix \=p > n, and \=p\prime = \=p/(\=p  - 1) is its conjugate. We assume that f \in 
W 1,\=p\prime 

(\Omega )\ast .

(A4) We assume that u \in \scrA , where the open set \scrA \subset L\infty (\omega ) is given by

\scrA =

\biggl\{ 
v \in L\infty (\omega ) : \exists \varepsilon v > 0 such that v(x) >  - \Lambda 

2
+ \varepsilon v for a.a. x \in \omega 

\biggr\} 
,

where \Lambda was introduced in (A1).

Assumption (A3) is used to obtain the boundedness of the states; see Theorem 3.1
below. The set \scrA from assumption (A4) is an open neighborhood of \scrU ad in L\infty (\Omega ).
This is required to state the differentiability properties of the control-to-state map
and of the reduced objective.

In the next theorem, we analyze the equation (3.4).

Theorem 3.1. The following statements hold.

(1) For any u \in \scrA there exists a unique solution yu \in Y := V \cap L\infty (\Omega ) of the
state equation (3.4). Moreover, there exists a constant C such that

(3.5) \| yu\| Y = \| yu\| L\infty (\Omega ) + \| yu\| V \leq C \forall u \in \scrA .

(2) The control-to-state mapping G : \scrA  - \rightarrow Y defined by G(u) = yu is of class
C2. Here, \scrA is equipped with the L\infty (\Omega )-norm. Moreover, for v \in L\infty (\Omega ),
zv = G\prime (u) v is the unique solution of

(3.6) Lzv + b\prime (\cdot , yu) zv + \chi \omega u zv + yu \chi \omega v = 0,

and given v1, v2 \in L2(\Omega ), wv1,v2 = G\prime \prime (u)(v1, v2) is the unique solution of

(3.7)
Lwv1,v2 + b\prime (\cdot , yu)wv1,v2 + \chi \omega uwv1,v2

+ b\prime \prime (\cdot , yu) zv1 zv2 + \chi \omega v1 zv2 + \chi \omega v2 zv1 = 0,

where zvi = G\prime (u) vi, i = 1, 2.

Proof. For the proof of existence and uniqueness of a solution of (3.4) in Y, first
we observe that the linear operator L + \chi \omega u is coercive in V for all u \in \scrA due to
the fact that u \geq  - \Lambda 

2 and to assumption (A1). Then, the arguments are standard;

D
ow

nl
oa

de
d 

11
/2

0/
18

 to
 1

93
.1

44
.1

99
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SECOND-ORDER ANALYSIS FOR BILINEAR CONTROL PROBLEMS 4215

see, for instance, [30, section 4.1]. We recall that the boundedness of y needed in
this proof is a consequence of Stampacchia's result [29, Theorem 4.2]. To prove the
differentiability of the mapping G, we use the implicit function theorem as follows.
We define

Y\=p = \{ y \in Y : Ly \in W 1,\=p\prime 
(\Omega )\ast \} ,

which is a Banach space when it is endowed with the graph norm. Now, we consider
the mapping \scrL : Y\=p \times \scrA  - \rightarrow W 1,\=p\prime 

(\Omega )\ast given by

\scrL (y, u) = Ly + b(\cdot , y) + \chi \omega uy  - f.

From assumption (A2) we get that \scrL is of class C2 and that

\partial \scrL 
\partial y

(yu, u)z = Lz + b\prime (\cdot , yu)z + \chi \omega uz

defines an isomorphism between Y\=p and W 1,\=p\prime 
(\Omega )\ast for all u \in \scrA . Indeed, it is obvious

that \partial \scrL 
\partial y (yu, u) : Y\=p  - \rightarrow W 1,\=p\prime 

(\Omega )\ast is a continuous linear mapping. The bijectivity is a

consequence of the Lax--Milgram theorem and, once again, [29, Theorem 4.2]. Hence,
a straightforward application of the implicit function theorem implies that G is of
class C2 and that (3.6) and (3.7) hold.

Associated with the state equation (3.4) is the bilinear distributed control problem

(BDP)
minimize J(u) =

1

2
\| yu  - yd\| 2L2(\Omega )

subject to u \in \scrU ad,

where
\scrU ad = \{ u \in L\infty (\omega ) : \alpha \leq u(x) \leq \beta for a.a. x \in \omega \} 

with 0 \leq \alpha < \beta <\infty . For yd we assume the following.

(A5) yd \in L2(\Omega ) holds.

This problem is included in the abstract framework considered in section 2 by
taking X = \omega and \eta equal to the Lebesgue measure.

The next theorem is an immediate consequence of Theorem 3.1 and the chain
rule.

Theorem 3.2. The reduced objective J : \scrA \rightarrow \BbbR is twice Fr\'echet differentiable,
and the first and second derivatives are given by

J \prime (u) v =

\int 
\Omega 

(yu  - yd) zv dx =  - 
\int 
\omega 

\varphi u yu v dx,(3.8)

J \prime \prime (u)(v1, v2) =

\int 
\Omega 

\bigl[ 
zv1 zv2 + (yu  - yd)wv1,v2

\bigr] 
dx(3.9)

=

\int 
\Omega 

\bigl[ 
(1 - \varphi u b

\prime \prime (\cdot , yu)) zv1 zv2
\bigr] 
dx - 

\int 
\omega 

\varphi u

\bigl( 
v1 zv2 + v2 zv1

\bigr) 
dx,(3.10)

where \varphi u \in Y is the unique solution of

(3.11) L\ast \varphi u + b\prime (\cdot , yu)\varphi u + \chi \omega u\varphi u = yu  - yd in V \ast ,

and yu, zv1 , zv2 , wv1,v2 are defined as in Theorem 3.1.
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4216 E. CASAS, D. WACHSMUTH, AND G. WACHSMUTH

Using Theorems 3.1 and 3.2 we infer the next result by standard arguments.

Theorem 3.3. (BDP) has at least one global solution. Moreover, any local solu-
tion \=u in the sense of Lp(\omega ), for some p \in [1,\infty ], satisfies

(3.12)

\int 
\omega 

\=\varphi \=y(u - \=u) dx \leq 0 \forall u \in \scrU ad,

where \=y and \=\varphi are the state and adjoint state, respectively, corresponding to \=u.

In the rest of this subsection, \=u will denote a fixed element of \scrU ad satisfying (3.12).
We are going to apply the results obtained in the abstract framework in section 2. To
this end, we observe that (H1) obviously holds with X = \omega , and (H4) is fulfilled with
\=\psi =  - ( \=\varphi \=y)| \omega . Assumption (H5) is formulated in our setting as follows: There exists
a constant K such that

(3.13) | \{ x \in \omega : | \=\varphi (x)\=y(x)| \leq \varepsilon \} | \leq K\varepsilon \forall \varepsilon > 0,

where | \cdot | denotes the Lebesgue measure in \omega . Then, (2.9) holds.

Remark 3.4. We remark that (3.13) does not hold in a neighborhood of the
boundary \Gamma D due to the fact that \=y = \=\varphi = 0 on \Gamma D. Hence, the assumption (3.13)
implies that the distance between \omega and \Gamma D must be strictly positive. However, in
the pure Neumann case, we can take \omega = \Omega .

For the second-order analysis, we introduce the cone C\tau 
\=u as in (2.7). The rest of

this section is devoted to proving that the quadratic growth condition (2.11) holds
under the second-order condition (2.10). To do this, we apply Theorem 2.4. Therefore,
we need only verify that assumptions (H2) and (H3) hold. The following lemma will
be used for this verification.

Lemma 3.5. Given c \in L\infty (\Omega ) with c \geq 0, we consider the equation

(3.14) Ly + cy = f in V \ast .

Then, the following statements hold:

\| y\| L6(\Omega ) \leq CL\| f\| L6/5(\Omega ) \forall f \in L6/5(\Omega ),(3.15)

\forall p > d

2
, p \geq 1, \exists Cp > 0 : \| y\| L\infty (\Omega ) \leq Cp\| f\| Lp(\Omega ) \forall f \in Lp(\Omega ),(3.16)

\forall p \in [1, 3) \exists Cp > 0 : \| y\| Lp(\Omega ) \leq Cp\| f\| L1(\Omega ) \forall f \in V \ast \cap L1(\Omega ),(3.17)

where y \in V denotes the unique solution of (3.14).

Proof. Inequality (3.15) is an immediate consequence of the continuous embed-
dings V \subset L6(\Omega ) and L6/5(\Omega ) \subset V \ast for n \leq 3. Inequality (3.16) is proved in [29,
Theorem 4.2]. We argue by transposition to prove (3.17). For an arbitrary g \in Lp\prime 

(\Omega )
with 1

p + 1
p\prime = 1, we denote by z \in V the solution of the adjoint equation

L\ast z + c z = g in V \ast .

Since p\prime > 3
2 , we can apply again (3.16) to the adjoint equation and obtain

\| z\| L\infty (\Omega ) \leq Cp\prime \| g\| Lp\prime (\Omega ).
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Now, we have \int 
\Omega 

y g dx = \langle y, L\ast z + c z\rangle V,V \ast 

= \langle z, L y + c y\rangle V,V \ast =

\int 
\Omega 

z f dx

\leq \| z\| L\infty (\Omega ) \| f\| L1(\Omega ) \leq Cp\prime \| g\| Lp\prime (\Omega ) \| f\| L1(\Omega ).

This implies \| y\| Lp(\Omega ) \leq Cp\prime \| f\| L1(\Omega ).

Of course, better estimates can be obtained in the previous lemma for dimensions
n < 3, but we do not need them here.

Remark 3.6. Let us show that the solution zv of (3.6) satisfies the estimates
(3.15)--(3.17) for f =  - \chi \omega vyu. It is enough to take c(x) = b\prime (x, yu(x)) + \chi \omega (x)u(x).
Note that c(x) \geq 0 due to \=u \geq \alpha \geq 0. Moreover, using (3.5), we get that \{ yu\} u\in \scrU ad

is
uniformly bounded in L\infty (\Omega ). Hence, the mentioned estimates for zv can be written
in terms of the norm of v in \omega .

Additionally, if u1, u2 \in \scrU ad, then the estimates (3.15)--(3.17) are valid for e =
yu2

 - yu1
in terms of u2  - u1. Indeed, subtracting the equations for yu2

and yu1
, and

using the mean value theorem, we get that

Le+ b\prime (\cdot , y\theta )e+ \chi \omega u1e = \chi \omega (u1  - u2)yu2
in V \ast ,

where y\theta = yu1 + \theta (yu2  - yu1) for some measurable function 0 \leq \theta (x) \leq 1. Now, we
apply Lemma 3.5 with c(x) = b\prime (x, y\theta (x)) +\chi \omega (x)u1(x) and f = \chi \omega (u1  - u2)yu2 , and
we observe that yu2

is bounded in L\infty (\Omega ).
The same comments apply to the difference of the adjoint states \phi = \varphi u2

 - \varphi u1
.

Indeed, \phi satisfies the equation

L\ast \phi + b\prime (\cdot , yu1
)\phi + \chi \omega u1\phi = [b\prime (\cdot , yu1

) - b\prime (\cdot , yu2
)]\varphi u2

+ \chi \omega (u1  - u2)\varphi u2
+ (yu2

 - yu1
) in V \ast .

Besides the fact that \varphi u2 \in L\infty (\Omega ), we have with assumption (A2) that

\| b\prime (\cdot , yu2
) - b\prime (\cdot , yu1

)\| Lr(\Omega ) \leq C\| yu2
 - yu1

\| Lr(\Omega ) \forall r \geq 1.

Then, we apply the convenient inequality of Lemma 3.5 to estimate \| yu2  - yu1\| Lr(\Omega )

in terms of \| u2  - u1\| Lp(\omega ).

Verification of (H2). We prove that (H2) holds with q = 6
5 . Since \=\varphi and b(\cdot , \=y)

are bounded functions, according to the expression for J \prime \prime in (3.10) we need only the
estimates \int 

\Omega 

| zv1zv2 | dx \leq \| zv1\| L2(\Omega )\| zv2\| L2(\Omega )

(3.17)

\leq C\| v1\| L1(\omega )\| v2\| L1(\omega ) \leq C| \omega | 1/3\| v1\| L6/5(\omega )\| v2\| L6/5(\omega )

and \int 
\omega 

| v1zv2 | dx \leq \| v1\| L6/5(\omega )\| zv2\| L6(\Omega )

(3.15)

\leq C\| v1\| L6/5(\omega )\| v2\| L6/5(\omega ).

Hence, (H2) holds with q = 6/5.
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Verification of (H3). Let us fix \varepsilon > 0. For some \delta that we will specify later, we
take u \in \scrU ad \cap B1

\delta (\=u), and set u\theta = \=u + \theta (u  - \=u) for some \theta \in [0, 1]. Let us denote
v = u - \=u, y\theta = G(u\theta ), z\theta = G\prime (u\theta )v, and \varphi \theta as the adjoint state corresponding to u\theta .
Analogously, we denote by (\=y, \=z, \=\varphi ) the associated functions to \=u. With this notation,
from (3.10) we obtain

[J \prime \prime (u\theta ) - J \prime \prime (\=u)]v2 =

\int 
\Omega 

\bigl[ 
(1 - \varphi \theta b

\prime \prime (\cdot , y\theta ))z2\theta  - (1 - \=\varphi b\prime \prime (\cdot , \=y))\=z2
\bigr] 
dx

 - 2

\int 
\omega 

(\varphi \theta vz\theta  - \=\varphi v\=z) dx

=

\int 
\Omega 

[(1 - \=\varphi b\prime \prime (\cdot , \=y))](z2\theta  - \=z2) dx+

\int 
\Omega 

( \=\varphi  - \varphi \theta )b
\prime \prime (\cdot , y\theta )z2\theta dx

+

\int 
\Omega 

\=\varphi [b\prime \prime (\cdot , \=y) - b\prime \prime (\cdot , y\theta )]z2\theta dx - 2

\int 
\omega 

(\varphi \theta  - \=\varphi )vz\theta dx - 2

\int 
\omega 

\=\varphi v(z\theta  - \=z) dx.

We have to estimate these five integrals, which we denote by I1--I5. From our as-
sumption (A2) and (3.5) we deduce that y\theta , \=y, b

\prime \prime (\cdot , y\theta ), and b\prime \prime (\cdot , \=y) are bounded by a
constant independent of \theta \in [0, 1] and u \in \scrU ad. Moreover, from [29, Theorem 4.2] or,
alternatively, (3.16) and (A5), we infer the uniform boundedness of the adjoint states
\varphi \theta and \=\varphi .

As further preparation, we provide an estimate for the difference e = z\theta  - \=z. By
taking the difference of the equations (3.6) corresponding to z\theta and \=z, we find that e
solves the equation

Le+ b\prime (\cdot , \=y)e+ \chi \omega \=ue = (b\prime (\cdot , \=y) - b\prime (\cdot , y\theta ))z\theta + \chi \omega (\=u - u\theta )z\theta + \chi \omega (\=y  - y\theta )v.

Owing to Lemma 3.5, we can estimate \| e\| L6(\Omega ) by the L6/5(\Omega )-norm of the right-hand
side. Together with H\"older's inequality, this gives the estimate

\| z\theta  - \=z\| L6(\Omega ) \leq CL\| b\prime (\cdot , \=y) - b\prime (\cdot , y\theta )\| L12/5(\Omega )\| z\theta \| L12/5(\Omega )

+ CL\| \=u - u\theta \| L3/2(\omega )\| z\theta \| L6(\Omega ) + CL\| \=y  - y\theta \| L6(\Omega )\| v\| L3/2(\omega ).

Now, we can use (A2) and Remark 3.6, and we arrive at

\| z\theta  - \=z\| L6(\Omega ) \leq C\| \=u - u\theta \| L1(\omega )\| v\| L1(\omega ) + C\| \=u - u\theta \| L3/2(\omega )\| v\| L6/5(\omega )

+ C\| \=u - u\theta \| L6/5(\omega )\| v\| L3/2(\omega ).

Using u\theta  - \=u = \theta v, and taking into account that \| u\theta  - \=u\| L1(\omega ) \leq \| v\| L1(\omega ) \leq \delta and
that

(3.18) \| v\| Lq(\omega ) \leq \| v\| 1/qL1(\omega )\| v\| 
1 - 1/q
L\infty (\omega ) \leq C\| v\| 1/qL1(\omega ),

for \delta \leq 1 the above estimate becomes

(3.19) \| z\theta  - \=z\| L6(\Omega ) \leq C\| v\| 3/2L1(\omega ).

Now, we are in position to estimate the above integrals. For the first integral, we have

| I1| =
\bigm| \bigm| \bigm| \int 

\Omega 

[(1 - \=\varphi b\prime \prime (\cdot , \=y))](z2\theta  - \=z2) dx
\bigm| \bigm| \bigm| 

\leq \| 1 - \=\varphi b\prime \prime (\cdot , \=y)\| L\infty (\Omega )\| z\theta + \=z\| L2(\Omega )\| z\theta  - \=z\| L2(\Omega ) \leq C \| v\| L1(\omega )\| v\| 
3/2
L1(\omega ),
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where we used Remark 3.6 and (3.19). Next,

| I2| =
\bigm| \bigm| \bigm| \int 

\Omega 

( \=\varphi  - \varphi \theta )b
\prime \prime (\cdot , y\theta )z2\theta dx

\bigm| \bigm| \bigm| \leq C \| \=\varphi  - \varphi \theta \| L6(\Omega )\| b\prime \prime (\cdot , y\theta )\| L\infty (\Omega )\| z\theta \| 2L6(\Omega )

\leq C \| v\| 3L6/5(\omega ) \leq C \| v\| 5/2L1(\omega ),

where again Remark 3.6 and (3.18) have been utilized. For the next integral, we
remark that \| b\prime \prime (\cdot , \=y) - b\prime \prime (\cdot , y\theta )\| L\infty (\Omega ) can be estimated by any small positive number
if \| \=y  - y\theta \| L\infty (\Omega ) is small enough; cf. (A2). For this, it is sufficient that \delta is small
enough since u\theta \in B1

\delta (\=u) \cap \scrU ad; see again Remark 3.6. This, along with (3.17), leads
to the estimate

| I3| =
\bigm| \bigm| \bigm| \int 

\Omega 

\=\varphi [b\prime \prime (\cdot , \=y) - b\prime \prime (\cdot , y\theta )]z2\theta dx
\bigm| \bigm| \bigm| \leq \| \=\varphi \| L\infty (\Omega )\| b\prime \prime (\cdot , \=y) - b\prime \prime (\cdot , y\theta )\| L\infty (\Omega )\| z\theta \| 2L2(\Omega )

\leq \varepsilon 

5
\| v\| 2L1(\omega ).

Finally, by using similar arguments we obtain the estimates

| I4| =
\bigm| \bigm| \bigm| \int 

\omega 

(\varphi \theta  - \=\varphi )vz\theta dx
\bigm| \bigm| \bigm| \leq \| \varphi \theta  - \=\varphi \| L6(\Omega )\| v\| L3/2(\omega )\| z\theta \| L6(\Omega )

\leq C\| v\| L6/5(\omega )\| v\| L3/2(\omega )\| v\| L6/5(\omega ) \leq C\| v\| 7/3L1(\omega )

and

| I5| =
\bigm| \bigm| \bigm| \int 

\omega 

\=\varphi v(z\theta  - \=z) dx
\bigm| \bigm| \bigm| \leq \| \=\varphi \| L\infty (\Omega )\| v\| L6/5(\omega )\| z\theta  - \=z\| L6(\Omega )

\leq C\| v\| L6/5(\omega )\| v\| 
3/2
L1(\omega ) \leq C\| v\| 7/3L1(\omega ),

where we used additionally (3.19). Putting these inequalities together, we obtain the
desired estimate\bigm| \bigm| [J \prime \prime (u\theta ) - J \prime \prime (\=u)]v2

\bigm| \bigm| \leq | I1| + | I2| + | I3| + | I4| + | I5| \leq \varepsilon \| u - \=u\| 2L1(\omega )

if \delta > 0 is chosen small enough. Hence, we verified (H3) in our current setting.
Application of Theorem 2.4. We have verified that the assumptions (H1)--(H4) are

satisfied in the setting of the bilinear distributed control problem (BDP). Thus, we
can apply Theorem 2.4, and we obtain the following sufficient second-order condition.

Theorem 3.7. Let us assume that (A1)--(A5) are satisfied. Moreover, we suppose
that there is a constant K > 0 such that (3.13) holds and that there exist \tau > 0 and
\kappa \prime < 2\kappa such that

(3.20) J \prime \prime (\=u)v2 \geq  - \kappa \prime \| v\| 2L1(\omega ) \forall v \in C\tau 
\=u ,

where \kappa = (4(\beta  - \alpha )K) - 1. Then, there exist \nu > 0 and \delta > 0 such that

J(\=u) + \nu \| u - \=u\| 2L1(\omega ) \leq J(u) \forall u \in \scrU ad \cap B1
\delta (\=u).

3.2. A bilinear boundary control problem. In this subsection we assume
that n = 2. We outline the main steps necessary to transfer the analysis of subsec-
tion 3.1 to a bilinear boundary control problem. We follow the notation introduced in
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the beginning of section 3 and assume that (A1)--(A3) hold. Further, we take \omega = \Gamma N

equipped with the surface measure. We define the operator S\omega : L2(\omega )  - \rightarrow V \ast by

\langle S\omega (g), z\rangle =
\int 
\omega 

g(x)z(x) dx \forall z \in V,

where we are denoting the trace of z on \omega by z as well. It is well known that there
exists a constant C\omega depending on \Omega such that

(3.21) \| z\| L2(\omega ) \leq C\omega \| z\| V \forall z \in V.

Now, we consider the state equation

(3.22) Ly + b(\cdot , y) + S\omega (uy) = f in V \ast ,

with u \in \scrA . Here, \scrA is defined as

\scrA =

\biggl\{ 
v \in L\infty (\omega ) : \exists \varepsilon v > 0 such that v(x) >  - \Lambda 

2C2
\omega 

+ \varepsilon v for a.a. x \in \omega 

\biggr\} 
,

where \Lambda is as introduced in (A1). From the assumptions (A1) and (A3) along with
(3.21) we get

\langle Ly, y\rangle + \langle S\omega (uy), y\rangle \geq \Lambda \| y\| 2V  - \Lambda 

2C2
\omega 

\| y\| 2L2(\omega ) \geq 
\Lambda 

2
\| y\| 2V \forall y \in V.

Then, Theorem 3.1 holds with the obvious modifications. In particular, the equa-
tions (3.6) and (3.7) are modified as follows:

(3.23) Lzv + b\prime (\cdot , yu)zv + S\omega (uzv) + S\omega (vyu) = 0

and

(3.24)
Lwv1,v2

+ b\prime (\cdot , yu)wv1,v2 + S\omega (uwv1,v2
)

+ b\prime \prime (\cdot , yu) zv1 zv2 + S\omega (v1 zv2) + S\omega (v2 zv1) = 0.

Associated with the state equation (3.4) is the bilinear boundary control problem

(BBP)
minimize J(u) =

1

2
\| yu  - yd\| 2L2(\Omega )

subject to u \in \scrU ad,

where
\scrU ad = \{ u \in L\infty (\omega ) : \alpha \leq u(x) \leq \beta for a.a. x \in \omega \} 

with 0 \leq \alpha < \beta < \infty . We suppose that yd satisfies the assumption (A5). Then,
Theorem 3.2 holds, and we need only change the adjoint state equation (3.11) by

(3.25) L\ast \varphi u + b\prime (\cdot , yu)\varphi u + S\omega (u\varphi u) = yu  - yd in V \ast .

We also have that Theorem 3.3 holds. To get the sufficient second-order conditions,
we assume that (3.13) is fulfilled. Then, to check that Theorems 2.3 and 2.4 hold we
need to check that assumptions (H1)--(H5) are satisfied. As in subsection 3.1, it is
enough to verify (H2) and (H3). To this end, we will use the following lemma.
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Lemma 3.8. Let c \in L\infty (\Omega ) be nonnegative, and let u \in \scrA . For (f, g) \in L2(\Omega )\times 
L2(\omega ) let y \in V be the solution of the equation

(3.26) Ly + cy + S\omega (uy) = f + S\omega (g) in V \ast .

Then, for every p \in [1,\infty ) and q > 1 there exist constants Cp and Mq independent of
(f, g), c, and u such that

\| y\| Lp(\Omega ) \leq Cp

\bigl( 
\| f\| L1(\Omega ) + \| g\| L1(\omega )

\bigr) 
,(3.27)

\| y\| L\infty (\Omega ) \leq Mq

\bigl( 
\| f\| Lq(\Omega ) + \| g\| Lq(\omega )

\bigr) 
.(3.28)

Proof. Since L1(\Omega ) and L1(\omega ) are subspaces of the space of real and regular Borel
measures in \Omega and \omega , respectively, we can apply the well-known results for measures
to deduce that the solution y of (3.26) satisfies

\| y\| W 1,s(\Omega ) \leq Cs

\bigl( 
\| f\| L1(\Omega ) + \| g\| L1(\omega )

\bigr) 
for every s \in [1, n

n - 1 ) and some constant Cs independent of (f, g), c, and u; see, for
instance, [1, 6] or [19].

Since we have assumed n = 2, for every p \in [1,\infty ) there exists s < n
n - 1 such that

W 1,s(\Omega ) \subset Lp(\Omega ), and hence (3.27) follows from the above estimate. The estimate
(3.28) is proved in [1, Theorem 2].

Hence, though simpler estimates can be used, the estimates used in subsection 3.1
are valid to verify (H2) and (H3). As a consequence, we obtain a second-order suffi-
cient condition analogously to Theorem 3.7 in the distributed case.

Finally, we mention that the same technique cannot be used to address the case
n > 2. The verification of (H2) and (H3) for bilinear boundary control problems in
more than two spatial dimensions remains an open problem.

4. Numerical approximation of distributed control problems. In this
section, we consider the boundary value problem

(4.1)

\biggl\{ 
Ay + b(\cdot , y) + \chi \omega uy = f in \Omega ,
y = 0 on \Gamma ,

where A is given by (3.1) with coefficients aij \in C0,1(\=\Omega ) satisfying the ellipticity
condition

n\sum 
i,j=1

aij(x)\xi i\xi j \geq \Lambda | \xi | 2 \forall x \in \Omega and \forall \xi \in \BbbR n.

We also assume that a0 \in L\infty (\Omega ), a0 \geq 0, b satisfies the assumption (A2), and
f \in L\=p(\Omega ) with \=p > n. We follow the notation introduced in section 3. Hence, by
Theorem 3.1 we know that (4.1) has a unique solution yu \in Y = H1

0 (\Omega ) \cap L\infty (\Omega ) for
all u \in \scrA .

We also introduce the adjoint state equation associated to the control u:

(4.2)

\biggl\{ 
A\ast \varphi + b\prime (\cdot , yu)\varphi + \chi \omega u\varphi = yu  - yd in \Omega ,
\varphi = 0 on \Gamma .

Now, we consider the control problem (BDP) associated to (4.1). Here we suppose
that yd \in L\=p(\Omega )\cap L2(\Omega ). We also assume that \=\omega \subset \Omega . If this condition does not hold,
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then the assumption (3.13) can be fulfilled only in some extreme cases. This is due
to the fact that \=y and \=\varphi vanish on \Gamma , and hence the \{ x \in \Omega : | \=y(x) \=\varphi (x)| \leq \varepsilon \} contains
a strip along the boundary with a measure of order

\surd 
\varepsilon . The situation is different for

Neumann boundary problems.
Since assumptions (A1)--(A5) are satisfied, Theorems 3.2 and 3.3 are valid for the

control problem (BDP) associated to the state equation (4.1). In what follows, \=u will
denote a local solution of (BDP) satisfying the regularity condition (3.13). Therefore,
Theorem 3.7 holds as well.

The goal of this section is to prove error estimates for the numerical approximation
of (BDP) based on a finite-element discretization. To this end, we assume that \Omega is
convex and \Gamma is of class C1,1. Therefore, we have additional regularity for the states
yu and adjoint states \varphi u for every u \in \scrA , namely yu, \varphi u \in W 2,\=p(\Omega ) \cap W 1,\=p

0 (\Omega ); see
[16, Chapter 2]. Since \=p > n, we have thatW 2,\=p(\Omega ) \subset C1(\=\Omega ). If n = 2, this regularity
holds for a convex and polygonal domain \Omega assuming that the coefficients aij are
of class C1 in \=\Omega . In dimension n = 3, the regularity result is valid for rectangular
parallelepipeds under the same C1 regularity of the coefficients; see [16, Chapter 4]
and [12, Corollary 3.14].

Let \{ \scrT h\} h>0 be a quasi-uniform family of triangulations of \=\Omega ; see [11]. We set
\Omega h = \cup T\in \scrT h

T , with \Omega h and \Gamma h its interior and boundary, respectively. We assume
that the vertices of \scrT h placed on the boundary \Gamma h are also points of \Gamma , and there exists
a constant C\Gamma > 0 such that dist(x,\Gamma ) \leq C\Gamma h

2 for every x \in \Gamma h. This always holds if
\Gamma is a C2 boundary and n = 2. From this assumption we know [27, section 5.2] that

(4.3) | \Omega \setminus \Omega h| \leq C\Omega h
2,

where | \cdot | denotes the Lebesgue measure. Let us denote by \scrT \omega ,h the family of all
elements T \in \scrT h such that T \subset \=\omega . We set \=\omega h =

\bigcup 
T\in \scrT \omega ,h

T, and \omega h is its interior. We

also assume that | \omega \setminus \omega h| \leq C\omega h
p\omega with p\omega > n/2.

We define the following spaces associated with this triangulation:

\scrU h = \{ uh \in L\infty (\omega h) : uh| T \in \scrP 0(T ) \forall T \in \scrT \omega ,h\} ,
Yh = \{ yh \in C(\=\Omega ) : yh| T \in \scrP 1(T ) \forall T \in \scrT h and yh = 0 in \=\Omega \setminus \Omega h\} ,

where \scrP k(T ) denotes the polynomial of degree k in T with k = 0, 1. Now, for every
u \in \scrA we consider the discrete system of nonlinear equations

find yh \in Yh such that \forall zh \in Yh,

a(yh, zh) +

\int 
\Omega 

[b(\cdot , yh) + \chi \omega h
uyh]zh dx =

\int 
\Omega 

fzh dx,(4.4)

where the bilinear form a is as defined in (3.2). Using our assumptions on b and the
ellipticity of the operator y \rightarrow Ay + \chi \omega uy, we see that the existence and uniqueness
of a solution of (4.4) follows by standard arguments. This solution will be denoted
by yh(u). We also consider the discrete adjoint state equation

find \varphi h \in Yh such that \forall zh \in Yh,

a(zh, \varphi h) +

\int 
\Omega 

[b\prime (\cdot , yh(u)) + \chi \omega h
u]\varphi hzh dx =

\int 
\Omega 

(yh(u) - yd)zh dx.(4.5)

The solution of this adjoint equation is denoted by \varphi h(u).
The following approximation results are needed for the numerical analysis of the

discrete control problem.
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Lemma 4.1. Let u \in \scrA fulfill \| u\| L\infty (\omega ) \leq M , and let y, yh, \varphi , and \varphi h be the
solutions of (4.1), (4.4), (4.2), and (4.5), respectively. Then, for some constant C
depending on M we have

(4.6) \| y  - yh\| L\infty (\Omega ) + \| \varphi  - \varphi h\| L\infty (\Omega ) \leq Ch.

Proof. Let us denote uh = \chi | \omega h
u and by yuh

its continuous associated state. From
Lemma 3.5 and Remark 3.6, and using the classical L\infty -estimates for finite-element
approximations, see [2, 9, 26, 28], we get

\| y  - yh\| L\infty (\Omega ) \leq \| y  - yuh
\| L\infty (\Omega ) + \| yuh

 - yh\| L\infty (\Omega )

\leq C1(\| u - uh\| Lp\omega (\omega ) + h2 - n/\=p| log h| ) \leq Ch,

where we have used that | \omega \setminus \omega h| \leq C\omega h
p\omega . From this estimate we deduce the

corresponding estimate for \varphi  - \varphi h by using similar arguments.

Finally, we define the discrete control problem

(BDPh)
minimize Jh(uh) =

1

2
\| yh(uh) - yd\| 2L2(\Omega h)

+
\alpha h

2
\| uh\| 2L2(\omega h)

subject to uh \in \scrU ad,h,

where

\scrU ad,h = \{ uh \in \scrU h : \alpha \leq uh(x) \leq \beta for a.a. x \in \omega h\} .

Moreover, we included a Tikhonov parameter \alpha h \geq 0 and require \alpha h \rightarrow 0 as h \rightarrow 0.
This regularization term is beneficial for the numerical solution of (BDPh), and we
will prove that the choice \alpha h = c h yields the same order of convergence as \alpha h = 0;
see (4.9) below.

Let us check that these approximations of (BDP) fit into the framework described
in subsection 2.3. To this end, we have to check the assumptions (D1)--(D5). Taking
X = \omega , Xh = \omega h, and \eta = Lebesgue measure in \omega , (D1) follows from our assumption
| \omega \setminus \omega h| \rightarrow 0 as h\rightarrow 0.

Assumption (D2) is immediate. Indeed, it is enough to observe that given u \in \scrU ad

we can take uh as the projection of u on \scrU h,

(4.7) \Pi hu = uh =
\sum 

T\in \scrT \omega ,h

uT\chi T with uT =
1

T

\int 
T

u dx,

where \chi T denotes the characteristic function of T . It is well known that uh \rightarrow u
strongly in Lp(\omega ) under the assumption u \in Lp(\omega ); see [14].

Now, (D3) is obvious. (D4) is a straightforward consequence of the following
lemma.

Lemma 4.2. If uh \rightharpoonup u weakly in L1(\omega ) with uh \in \scrA \cap \scrU h and u \in \scrA , and there
exists a constant M > 0 such that \| uh\| L\infty (\omega h) \leq M for all h > 0, then yh(uh) \rightarrow yu
and \varphi h(uh) \rightarrow \varphi u in L\infty (\Omega ) as h\rightarrow 0 strongly, and J(u) = limh\rightarrow 0 Jh(uh).

Proof. Let us extend every uh to \omega by setting uh(x) = 0 for all x \in \omega \setminus \omega h. From
(4.6) we get

\| yu - yh(uh)\| L\infty (\Omega ) \leq \| yu - yuh
\| L\infty (\Omega )+\| yuh

 - yh(uh)\| L\infty (\Omega ) \leq \| yu - yuh
\| L\infty (\Omega )+Ch.
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Now, we prove that \| yu  - yuh
\| L\infty (\Omega ) \rightarrow 0 as h \rightarrow 0. Since \| uh\| L\infty (\omega ) \leq M for

all h > 0, then \{ yuh
\} h is bounded in W 2,\=p(\Omega ). Using the compactness of the em-

bedding W 2,\=p(\Omega ) \subset L\infty (\Omega ), we deduce the convergence yuh
\rightarrow \~y in L\infty (\Omega ) along a

subsequence. Let us show that the limit \~y equals yu. Recall that yuh
solves

Lyuh
+ b(\cdot , yuh

) + \chi \omega uhyuh
= f in V \ast .

The convergence of yuh
implies Lyuh

\rightharpoonup L\~y in V \ast , b(\cdot , yuh
) \rightarrow b(\cdot , \~y) in L\infty (\Omega ), and

\chi \omega uhyuh
\rightharpoonup \chi \omega u\~y in L1(\Omega ). Thus, for z \in V \cap L\infty (\Omega ), we infer

\langle L\~y + b(\cdot , \~y) + \chi \omega u\~y, z\rangle = \langle f, z\rangle .

By density, this holds for all z \in V, and thus \~y = yu. In particular, the limit is
unique, and thus the entire sequence yuh

converges to yu in L\infty (\Omega ) as h \rightarrow 0. The
convergence Jh(uh) \rightarrow J(u) follows easily by using \alpha h \rightarrow 0.

To check (D5) we take

\scrA h =

\biggl\{ 
v \in L\infty (\omega h) : \exists \varepsilon v > 0 such that v(x) >  - \Lambda 

2
+ \varepsilon v for a.a. x \in \omega h

\biggr\} 
.

It is easy to prove that Jh : \scrA h  - \rightarrow \BbbR is of class C2 and its first derivative is given by

(4.8) J \prime 
h(u)v =  - 

\int 
\omega h

\varphi h(u)yh(u) v dx+\alpha h

\int 
\omega h

u v dx \forall u \in \scrA h and \forall v \in L\infty (\omega h),

where yh(u) and \varphi h(u) are the solutions of (4.4) and (4.5), respectively. Hence, it is
enough to take \psi h =  - (\varphi h(u)yh(u))| \omega h

+ \alpha h u. Concerning the function J : \scrA \rightarrow \BbbR ,
we already know that it is of class C2 (Theorem 3.2), and according to (3.8) we can
take \psi =  - (\varphi uyu)| \omega .

Therefore, Theorems 2.7 and 2.8 hold. Observe that Theorem 2.7 is formulated
as follows.

Theorem 4.3. Assume that (A1)--(A5) hold. For every h, the problem (BDPh)
has at least a global solution \=uh. If \{ \=uh\} h is a sequence of global solutions of (BDPh)

and \=uh
\ast 
\rightharpoonup \~u in L\infty (\omega ), then \~u is a global solution of (BDP). Conversely, if \=u is

a bang-bang strict local minimum of (BDP) in the L1(\omega ) sense, then there exists
a sequence \{ \=uh\} h of local minimizers of problems (BDPh) with respect to the same
topology such that \=uh \rightarrow \=u in L1(\omega ).

Now, we apply Theorem 2.8 to get the following result.

Theorem 4.4. Assume that (A1)--(A5) hold. Additionally, we suppose that (3.13)
is fulfilled and \=u satisfies the second-order condition (3.20) with \kappa \prime \in (0, \kappa ). Let \{ \=uh\} h
be a sequence of local solutions of problems (BDPh) converging to \=u in L1(\omega ). Then,
there exists a constant C independent of h such that

(4.9) \| \=u - \=uh\| L1(\omega h) \leq C (h+ \alpha h).

Proof. To prove this theorem we will estimate the three terms in the right-hand
side of (2.20). First, we observe that

(4.10)
\| J \prime 

h(\=uh) - J \prime (\^\=uh)\| L\infty (Xh) = \| \=\varphi h\=yh  - \varphi \^\=uh
y\^\=uh

+ \alpha h uh\| L\infty (\omega h)

\leq \| \=\varphi h\=yh  - \varphi \^\=uh
y\^\=uh

\| L\infty (\omega h) + C0 \alpha h,
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where \=yh and \=\varphi h are the discrete state and adjoint state associated with \=uh, and y\^\=uh

and \varphi \^\=uh
are the continuous state and adjoint state corresponding to \^\=uh, which is the

extension of \=uh to \omega by \=u. Now, using Lemma 4.1 we obtain

\| \=\varphi h\=yh  - \varphi \^\=uh
y\^\=uh

\| L\infty (\omega h) \leq \| \=\varphi h\| L\infty (\omega h)\| \=yh  - y\^\=uh
\| L\infty (\omega h)

+ \| y\^\=uh
\| L\infty (\omega h)\| \=\varphi h  - \varphi \^\=uh

\| L\infty (\omega h) \leq C1h.(4.11)

Now, we estimate the second term of (2.20). To this end, we take uh as the
projection of \=u on \scrU h; see (4.7). Since \=u is bang-bang by assumption, it holds that
\=u = uh on all elements, where \=u is constant. It remains to estimate | uh  - \=u| on
elements T , where \=u takes the values \alpha and \beta on some points of T . Let us denote the
family of such elements by \scrT h,\=u. Let us take T \in \scrT h,\=u. This means that \=\varphi \=y changes
the sign in T . Since \=\varphi \=y is continuous in \=\Omega , there exists a point \xi T \in T such that
\=\varphi (\xi T )\=y(\xi T ) = 0. Since \=\varphi \=y \in W 2,\=p(\Omega ) \subset C1(\=\Omega ), we get the existence of constant \=L
such that

| \=\varphi (x)\=y(x)| = | \=\varphi (x)\=y(x) - \=\varphi (\xi T )\=y(\xi T )| \leq \=L| x - \xi T | \leq \=Lh \forall x \in T.

This inequality implies that\bigcup 
T\in \scrT h,\=u

T \subset \{ x \in \omega h : | \=\varphi (x)\=y(x)| \leq \=Lh\} .

This, along with (3.13), leads to \sum 
T\in \scrT h,\=u

| T | \leq K \=Lh.

Hence, we infer

(4.12) \| uh  - \=u\| L1(\omega h) =
\sum 

T\in \scrT h,\=u

\| uh  - \=u\| L1(T ) \leq (\beta  - \alpha )K \=Lh = C2h.

We finish the proof with the estimate of the third term of (2.20). Note that by
construction it holds that \^uh = \=u on \omega \setminus \omega h. Using that uh is the projection of \=u, we
get with (3.8) and (4.12) that

| J \prime (\^\=uh)(\^uh  - \=u)| =
\bigm| \bigm| \bigm| \int 

\omega 

\varphi \^\=uh
y\^\=uh

(\^uh  - \=u) dx
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \int 

\omega h

\varphi \^\=uh
y\^\=uh

(uh  - \=u) dx
\bigm| \bigm| \bigm| 

=
\bigm| \bigm| \bigm| \int 

\omega h

(\varphi \^\=uh
y\^\=uh

 - \Pi h(\varphi \^\=uh
y\^\=uh

))(uh  - \=u) dx
\bigm| \bigm| \bigm| 

\leq \| \varphi \^\=uh
y\^\=uh

 - \Pi h(\varphi \^\=uh
y\^\=uh

)\| L\infty (\omega h)\| uh  - \=u\| L1(\omega h)

\leq Ch\| \varphi \^\=uh
y\^\=uh

\| C1(\=\Omega )C2h \leq C3h
2.(4.13)

Here, we used that \{ \varphi \^\=uh
\} and \{ y\^\=uh

\} are uniformly bounded inW 2,p(\Omega ). Finally, (4.9)
follows from (2.20), (4.10)--(4.13), and Young's inequality.
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