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ABSTRACT

Two related problems are addressed in this thesis.

The first one is for order reduction of conservative vibrating systems with piecewise 

linear nonsmooth nonlinearities of arbitrary dimension. Linear-based, PMM-based and 

LELSM-based order reduction transformations are applied. The technique is applied to 

multi-degree-of-freedom systems with nonsmooth clearance, deadzone, bang-bang, and 

saturation nonlinearities. The resulting approximate frequencies are compared with those

obtained from numerical simulations.

The second technique is eigenstructure assignment of w-degree-of-freedom 

conservative vibrating systems with nonsmooth nonlinearities. Three distinct control 

strategies which utilize methods for approximating the NNM frequencies and mode 

shapes are employed. First, PMM for approximating NNM frequencies is used to 

determine n constant actuator gains for eigenvalue placement. Second, an approximate 

single-degree-of-freedom reduced model is found with one actuator gain for the mode to 

be controlled. The third strategy allows the frequencies and mode shapes (eigenstructure) 

to be placed by using a full n x nmatrix of actuator gains and employing LELSM for 

approximating NNM frequencies and mode shapes.
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CHAPTER 1 

INTRODUCTION

Nonsmooth nonlinearities exist in many mechanical systems either by design or as the 

result of wear or failure. In particular, nonlinear systems in which the force-displacement 

curves are piecewise linear include bilinear systems with a nonvanishing clearance (i.e. 

gap between the equilibrium and crossing boundaries) and systems with symmetric 

nonlinearities such as deadzone, saturation, and bang-bang. These systems are of great 

importance in the modeling of such phenomena as joint dynamics (Gaul and Lenz, 1997), 

turbines and compressors subjected to casing rub (Choy 1989), rotor-bearing

systems with deadzone (Flowers and Wu, 1996), and transmission gears with backlash 

(Slotine and Li, 1991). Two problems related to these systems are addressed here: order 

reduction and eigenstructure assignment. Accurate reduced order models of large 

dimensional nonsmooth systems are an invaluable aid in the design and control of many 

vibrating systems. In such systems, periodic motions take place on curved invariant 

manifolds and are called nonlinear normal modes (NNMs). Such reduced order models are 

approximations to the actual NNMs of the full model. Important contributions to the 

subject of NNMs in nonsmooth systems include the studies of Zuo and Cumier (1994), 

Chen and Shaw (1996), Chati et al. (1997), and Butcher (1999). In the latter paper the 

BNM frequencies of a nonsmooth bilinear system with nonvanishing clearance were 

approximated using three analytical techniques which are based on the well-known 

bilinear frequency relation. The results were compared with those obtained from
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numerical simulations of the actual NNM motions.

The subject of order reduction of nonsmooth systems has received little attention, 

however. Rhee and Burton (2000) applied a previously-developed linear-based Guyan- 

like reduction procedure which preserves the exact eigenstructure of the linearized model 

(Burton and Young, 1994; Burton and Rhee, 2000) to the cases of deadzone and bang- 

bang nonlinearities in a two degree-of-freedom vibrating system. The frequencies of the 

reduced models were compared with those of the actual NNMs in the full model obtained 

by direct numerical simulation. The method has the advantages that the coordinates of the 

reduced order model are a subset of the original physical coordinates and the form of the 

nonsmooth nonlinearity is retained in the reduced model. However, the nonlinearity is not 

accounted for in the transformation since it is linear-based. Consequently, the reduced 

models’ frequencies were shown to differ significantly from the NNM frequencies of the 

full model. An alternate method pursued by Jiang et al (2001) and based on the concept of 

invariant manifolds involves obtaining a nonsmooth Galerkin-based order reduction 

transformation which utilizes the NNMs. This had been previously accomplished for 

smooth nonlinearities (Shaw and Pierre, 1993; Shaw 1999; Burton and Rhee, 2000; 

Pesheck et al., 2002). For vibrating systems with a nonsymmetric clearance nonlinearity, 

which have been studied by R. J. Comparin and R. Singh (1900), M. D. Todd and L. N. 

Virgin (1996), two different methods for obtaining reduced order models which more 

accurately track the original modes of the full systems than does the linear-based reduced 

model were applied by Butcher (2001). The resulting reduced models were improved from 

the linear-based versions for certain parameter ranges.
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Here, a technique for order reduction of vibrating systems with symmetric nonsmooth 

nonlinearities of arbitrary dimension is proposed. First, the linear-based order reduction 

transformation used by Rhee and Burton (2000) is applied. It is shown that when only one 

master coordinate is retained, the exact frequency of the reduced order model may be 

derived analytically and used to approximate the nonlinear normal mode (NNM) 

frequency of the full model. In this context, the linear-based order reduction procedure 

serves as yet another method for approximating the true NNM frequencies as in (Butcher, 

1999), and the resulting frequencies are compared with those obtained from the previous 

techniques based on the bilinear frequency relation and the exact ones obtained by 

numerical simulation of the full model. Second, this result is in turn used to construct 

improved reduced order models whose frequencies are much closer approximations to the 

NNM frequencies for the full model than those obtained via the linear-based 

transformation. For this purpose, two of the previous approximation techniques (called 

the piecewise modal method and local equivalent linear stiffness method) are utilized to 

obtain more accurate frequencies than those obtained from the linear-based order 

reduction. The technique is applied to systems with symmetric deadzone, bang-bang, and 

saturation nonlinearities. It is shown via direct simulation that the dynamics of the 

improved reduced models are much better at tracking the NNMs of the full models than 

those obtained via the linear-based transformation.

The problem of eigenstructure assignment for linear multi-degree-of-freedom 

vibrating systems has been covered by Inman (1989). The two problems considered were 

eigenvalue (pole) placement, in which the frequencies are shifted to preselected values via
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constant-gain proportional feedback, and eigenstructure assignment, in which the use of 

feedback allows the eigenfrequencies as well as the mode shapes (eigenvectors) to be 

specified. If one desires to implement these techniques for nonsmooth piecewise linear 

systems, however, the application of constant-gain proportional feedback is not 

straightforward due to the fact that the exact NNM manifolds and frequencies of the 

uncontrolled system are not known. While it may be possible to implement gain switching 

(Stengel, 1994) at the crossing boundaries or various nonlinear control strategies that have 

been suggested for such systems (Slotine and Li, 1991), these may be difficult to 

accomplish in practice because of the inaccuracies caused by control delays or sensor 

errors. Also, constant-gain linear controllers are much easier to implement and are more 

cost-effective in practical applications. These issues are at the heart of a need to reconsider 

possible strategies for implementing constant-gain proportional state feedback control for 

systems with nonsmooth nonlinearities, and this issue is addressed here by considering the 

special case of conservative vibrating systems and position feedback.

Here, three strategies for eigenstructure assignment (the first two result in eigenvalue 

placement only) of such systems are proposed which utilize two of the methods, the 

piecewise modal method (PMM) and the local equivalent linear stiffness method 

(LELSM), for approximating the NNM frequencies and mode shapes used by Butcher 

(1999). The first strategy requires determining n constant actuator gains for an n degree- 

of-freedom system while the second involves finding an approximate single-degree-of- 

freedom reduced order model with one actuator gain for the mode to be controlled. The 

order reduction method used here is that of Rhee and Burton (2000) and preserves the
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exact eigenstructure of one of the linear subregions. The third strategy allows the designer 

to specify the entire eigenstructure (frequencies and mode shapes) by using a full 

matrix of constant actuator gains. These techniques are applied to a two degree-of-free- 

dom system with a bilinear clearance nonlinearity and the controlled system is numeri­

cally simulated. The resulting frequencies and mode shapes are then compared for 

accuracy with the desired ones.
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Chapter 2

Nonlinear Normal Modes

Since the first investigations of nonlinear normal modes (NNMs) by R. M. Rosenberg 

(1962), it has been a subject of much investigation for various nonlinear systems (Vakakis 

et al, 1996). In nonlinear vibrating systems, nonlinear normal modes are motions that are 

periodic in time and occur along the invariant manifolds in the configuration or phase 

space. NNMs are the nonlinear equivalent of linear normal modes, but unlike linear 

systems, superposition does not apply. It’s important to know NNM frequencies since the 

forced system is resonant at these frequencies. For n-degree-of-freedom linear systems, 

normal modes are represented as orthogonal eigenvectors (straight perpendicular lines 

which intersect at the origin) in the n-dimensional configuration space, Fig. 1(a) shows a 2- 

degree-of-freedom linear system in configuration space. For n-degree-of-freedom 

nonlinear systems, the NNMs are represented as closed curves in the n-dimensional 

configuration space. These curves are the projections of higher dimensional invariant 

manifolds in the 2n-dimensional phase space. The curves are tangent to the linearized 

system’s eigenvectors at the origin as in Fig. 1(b). In general, the NNM frequencies depend 

on the total energy or amplitude. All motions that are not NNMs are generally 

quasiperiodic as in Fig.2. It is shown in this thesis that NNMs enable a reduced order 

model to be obtained which is more accurate than one obtained via a linear-based order 

reduction transformation.

If the phase space manifold or the vector field are differentiable everywhere, then the
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Figure 1: a) Normal modes of a linear system in configuration space. 
(b)Normal modes of a smooth nonlinear system in configuration space.



xl xc=1.25

Figure 2: A quasiperiodic vibrating system with clearance nonlinearity
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dynamical system is smooth (e.g. quadratic or cubic nonlinearities); otherwise it is 

nonsmooth.

Consider the following equations of motion for a smooth nonlinear system:

2
d x

d t 2
2

dy_ 

dt2

dV
dx

dV
~dy

(1)

The potential energy of this conservative system is v V(x,y), and the total energy is 

given by

d A 2 + (dy'2-
dtJ \dt

+ V(x,y) = h (2)

Let y=f(x) represent the invariant NNM manifold. Using the chain rule,

2 2 , 2 dy _ dydx d_y_ d y  (dx\ + fdy \ d  x
Jt dxdt dxA d t)  2 (3)

Substituting (1) into the second of (3), we obtain

J V  = d y f d x Y  
dy dx2 WC dxdx

(4)

Substituting the first of (3) into (2), yields

1 (dx 
2 \J t

1 +
m

+ V(x,y) = h (5)
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dxSolving (5) for J and substituting into (4), we obtain

2 ( h - V ) ^  + 
dx

, (d y )2l ( d v  dy dV] = 0
\dx) Jvdy dxdxs (6)

Equation (6)(a 2nd order nonlinear o.d.e.) can be used to find the invariant manifold 

y=f(x).

Fig.3 shows an example of a smooth nonlinear system (Month and Rand, 1977). For 

spring k3, kx, f  = 8 + yt53 , k2 is coupling spring, /  = 83 . Therefore, the total potential energy 

is

T / /  1 2  J .  1 /  4  ^  1 l\ 4  a . 1 2  J .  1 7 4V ( x , y )  =  - x  + - k x  + - { x - y )  + - y (7)

For this system, the NNM plot as straight line segment as y=cx. This is called “similar 

normal mode”, substituting y=cx and (7) in (6) yields

dV _  dydV_ -x* ( 1 -  c)3 + cx + kc^x3 -  c(x + kx3 1 -  c)3) = 0
dy dxox

(8)

or

which gives

c4 + ( k - 2 ) ( c 3-  c) -  1 = 0

c4 + (k~2)(c3- c ) ~  1 = 0

(9)

(10)

If k<4, then only two similar NNMs are present with slopes of ±1 in the x-y configuration
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Figure 3: A smooth nonlinear vibrating system.



space. If k>4, then two additional NNMs are present.

From the example above, we can find out some additional characteristics of NNMs for 

smooth systems:

1. Frequency depends upon amplitude A and the slope of the line segment 

corresponding to the NNM depends upon the amplitude of vibration (although this is not 

true above).

2. The presence of higher harmonics will generally cause NNM to plot as curved lines 

segment through origin (called a “nonsimilar normal mode”).

3. The shape of curved line segment which represent NNM will typically change with 

amplitude of vibration.

4. The end point of the line segment (curved or straight) represents places where the 

kinetic energy is zero.

5. x and y vanish simultaneously twice per cycle (corresponding to passage through 

the origin of x-y plan)

6. Both ^  and ^  vanish twice/cycle (corresponding to end point of line segment).

Nonlinear nonsmooth systems maybe piecewise linear. Such a system is comprised of 

separate linear subregions. If there are two linear subregions, the system is bilinear with 

one switching boundary. If there are three linear subregions, the system is trilinear with 

two switching boundaries.

NNMs for nonsmooth systems have different characteristics from those for smooth 

systems. For a bilinear system, some of the differences are listed as follows:

1. While the motions associated with most initial conditions of bilinear systems are
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quasiperiodic or even chaotic, the motions of bilinear normal modes (BNMs) are periodic 

in time. Hence, resonance occurs when the system is forced at the associated frequencies 

or, since the motions are in general not sinusoidal, integral multiples of these frequencies.

2. The trajectories of BNMs in the configuration space are open curves (instead of 

straight lines as in the linear case), which, in contrast to NNMs of smooth nonlinear 

systems, neither pass through the origin nor are orthogonal at their intersection. Although 

the displacements do not vanish simultaneously, they do reach their maxima and minima 

at the same time, however.

3. If the clearance is zero, then the BNM frequencies are constant and independent of 

the energy level since the nonlinearity is concentrated at the origin. For a non-zero 

clearance, however, the frequencies depend on the energy (initial amplitude).

4. For weak non-linearities, the number of structurally stable BNMs is generally equal 

to the number of linear modes for non-resonant cases. Unlike the case for smooth non­

linear systems, sufficient conditions for the existence and uniqueness of normal modes for 

bilinear systems are not available (although a necessary condition is given by Chen and 

Shaw(1996). As the strength of non-linearity increases, therefore, additional BNMS which 

have increasingly more complicated motions may occur along with regions of chaotic 

behavior.
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CHAPTER 3

EXAMPLES OF NONSMOOTH NONLINEARITIES

Four nonlinearities are considered in this paper.

3.1 Bilinear Clearance Nonlinearity
A n-degree-of-freedom system with clearance nonlinearity is shown in Fig.4 and can

be described by the equations below. It’s a bilinear system, is the nonlinear term.

WjXj + k lx l - k xx 2 + /(*i) = 0

m2x 2 + (k x + k2)x2 - k xX \ - k 2x 2 = 0

The asymmetric bilinear stiffness of the first mass is plotted in Fig. 5 in which it is seen 

that the overall domain is divided into two distinct linear subregions in which the total 

energy is always conserved. Since the clearance xc is not restricted to be positive, a 

negative clearance, or interference, is also allowed. Since the masses’ positions are 

measured from equilibrium, penetration into the second subregion is made only when the 

energy of the system is sufficient such that the clearance is traversed by the first mass, i.e. 

x x > xc Otherwise if the energy is insufficient for contact with the free spring, then the 

system remains in the first linear subregion. In the case of interference, the energy must be 

sufficient for the first subregion to be obtained (i.e. < otherwise the system remains

continuously in contact with the free spring.

mnx n + {kn_ x+ k n)xn- k n_ xxn_ x = 0 (11)
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Figure 4: An n-degree-of-freedom Bilinear Vibrating System With a 
Clearance Nonlinearity
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(a)

(b)

Figure 5: Force versus displacement of the first mass for the 
cases of a) clearance and b) interference
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The scaled variables

kf  „ .  E  M S
K\ A/

CO-i
a = 7 1 + kc

(12)
are now introduced where co_ and co+ are the linear frequencies of vibration of m i (with m2 

held still) in the first and second linear subregions, respectively. As was explained by 

Butcher (1999), the total period of the single degree-of-freedom version of equation (11)

* l< * c
m xl + k x x+ /(* j)  = 0 /(* ,)

x x> xc

can be found by integrating over the closed path T as

(13)

T = Adt = 2 —  dx_ + 2 + — dx+ (14)
;  J-X„ x~- x  x +

2 .2 2
in terms of the closed orbits in the phase plane + x_ = x0 and

a 2(x+ - x e)2 + x 2+ = x 02- x cxe where xe = (1 -  l / a 2)xc from which the

velocities in the above integrals are determined. The initial displacement magnitude is xq 

and

" . - Z f ' X ' - Q - H  <15>V a  a

is the penetration distance into the second subregion (Butcher, 1999). The dimensionless 

parameter p = xJ xq must lie in the interval [-1,1] if the clearance boundary is crossed.
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Evaluation of these integrals yields the oscillation period from which the frequency is 

found as

Q = 2© ©j ©+( 1 + ^sin 5pJ + © , 2 . - 1  1 —  sin
7t a J l _  p \ l - \

\  rJ a

\-i

(16)

When the clearance vanishes (p =0), equation (16) becomes the well-known “bilinear 

frequency relation” (BFR)

Q =
2 © ©.

CO _|_ +  co_
(17)

which has appeared in several studies of bilinear systems which do not contain a clearance 

(Shaw and Holmes, 1983). Fig. 6 shows the numerical simulations in configuration space

of first and second BNMs with a 2 = 2 and x=-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, for the 

two-degree-of-freedom system with clearance nonlinearity. The 1st and last cases are 

linear, the solid closed curves are the equipotential boundaries with and without the 

nonlinear spring. In a few of the cases, 3 NNMs are present simultaneously.

3.2 Symmetric Deadzone and Saturation Nonlinearities

Next, consider the n-degree-of-freedom vibrating system in Fig. 4 where the clearance 

is replaced with a symmetric deadzone or saturation nonlinearity of the form
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Figure 6: Numerical simulations in configuration space of BNMs for the 
two-degree-of-freedom system with clearance nonlinearity with a 2 =2 and 
xc=a) 2.0 (linear) b) 1.5 c) 1.0 d) 0.5 e) 0.0 f) -0.5 g) -1.0 h) -1.5 i) -2.0 
(linear). The solid closed curves are the equipotential boundaries with and 
without the nonlinear spring.



20

0;  | * i |< * c

/(* i )  = < kc(x \ ~ x c)’ x \ > xc or 
£c(x, + x c) ;x ,  < -x c

(18)

respectively. The stiffness of the first mass is plotted in Fig. 7 for both cases in which it is 

seen that the overall domain is divided into three distinct linear subregions. Since the 

masses’ positions are measured from equilibrium, penetration of the first mass into the 

first and third subregion is made only when the energy of the system is sufficient such that 

the clearance is traversed by the first mass, i.e. Xj or Xj < - x c Otherwise if the

energy is insufficient for m xto reach xc or , then the system remains in the second

linear subregion and the solution is easily obtained. The scaled variables in equation (12) 

are now introduced where co. (or co+) is the linear frequency of m x (with m2 held still) in 

the second subregion and co+ (or co.) is the frequency in the first and third subregions for

deadzone (or saturation, respectively).

The total period of the single degree-of-freedom version of equation (11) and (18) can 

again be found by integrating over the closed path T as

2 2 2 2 
where the velocities are found from the phase plane + = (x0 -  x e) and

a 2(x+ - x e)2 + x+ = cc2(x0- x e)2 where xe = ( l - l / a 2)xc for deadzone. This

yields the exact frequency as
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(a)

(b)

Figure 7: Force versus displacement of the first mass for
a) deadzone and b) saturation nonlinearities



where p = xJxQ, x 0  is the initial displacement magnitude, and p lies in the interval [0,1]. 

For saturation, the substitutions co + <-» co_ and a  —» 1 / a  are made in equation (20) to 

obtain

Q  =  co_ co

-l

2oo_ _J
 sinn

p(2-p) + ^S-JL 
a

: + 00
i 2 . -11 -  - s in  71 (21)

Fig. 8 shows the Numerical simulations in configuration space of first and second 

NNMs for the 2 dof system with deadzone nonlinearity(a2 = 2) at xc = 0,0.5,1.25 and 2.0 . 

Fig. 9 shows the Numerical simulations in configuration space of first and second NNMs 

for the saturation nonlinearity at = o, 0.25,0.75 and 1.25 , the 1st and last figures in each

case are purely linear.

3.3 Bang-bang Nonlinearity

Finally, consider the system in Fig. 4 where a bang-bang nonlinearity defined by

/(*  i) =
-8 ; (* ,<() )  

5; ( ^ > 0 )
(22)

replaces the clearance. The discontinuous stiffness of the first mass (with the others held 

still) is shown in Fig. 10 in which it is seen that the linear frequency is the same in both 

subregions. However, crossing of the discontinuity will occur regardless of the amplitude



23

Figure 8: Numerical simulations in configuration space of NNMs for the 
two degree-of-freedom system with deadzone nonlinearity with o r  and 
xc= a) 0.0 (linear) b) 0.5 c) 1.25 d) 2.0 (linear). The solid closed curves are 
the equipotential boundaries with and without the nonlinear spring.
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x2

-2 -1 0 1 2 - 2  -1 0  1 2

Figure 9: Numerical simulations in configuration space of NNMs for the 
two degree-of-freedom system with saturation nonlinearity with a - =2 and 
xc= a) 0.0 (lineai*) b) 0.25 c) 0.75 d) 1.25 (linear). The solid closed curves 
are the equipotential boundaries with and without the nonlinear spring.
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Figure 10: Force versus displacement for bang-bang nonlinearity
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of oscillation. By integrating over the closed path as

T  = A dt =  4 f ° —  dx (23)
J Jo x -

in terms of the closed orbits (jc -  8/eo2)2 + /co2 = (x0 + 8/co2)2 , the exact 

frequency for the single-degree-of-freedom system is found as

Q = ----------- ------------r  (24)
2 . - i f

co

l - - s i n  ,
71 p + co '

where co is the frequency in both discontinuous linear subregions and p = 5 / x 0 . Fig. 11

shows the numerical simulations in configuration space of first and second NNMs for the 

2 dof system with bang-bang nonlinearity at 8 = 0,0.25,0.5 and 0.875 . The 1st case is 

linear.
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x2

-2 - 1 0  1 2  -2 - 1 0  1 2

Figure 11: Numerical simulations in configuration space of NNMs for the two 
degree-of-freedom system with bang-bang nonlinearity with 5 = a) 0.0 (linear)
b) 0.25 c) 0.5 d) 0.875. The solid closed curves are the equipotential boundaries 
with and without the nonlinear spring.
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CHAPTER 4 

APPROXIMATION OF NNM FREQUENCIES AND MODE SHAPES

Two approximation techniques are used in this paper, Piecewise Modal Method 

(PMM) and Local Equivalent Linear Stiffness Method (LELSM).

4.1 Piecewise Model Method (PMM)
Chati et al (1997) first utilized the bilinear frequency relation (BFR), which is exact

for only one degree-of-freedom, in order to approximate BNM frequencies of a multi- 

degree-of-freedom system. For this purpose, two separate sets of eigenfrequencies were 

computed (one set for each linear subregion) while the BFR was employed with each pair 

to approximate the BNM frequency in the ith mode via

2 0 ^ ,  (25) 
CO + ,  +  <■>.,

No clearance was present in that work. In a recent study, the effects of clearance and 

interference in BNM frequencies were investigated (Butcher, 1999). One method being 

used is called the piecewise modal method, which directly extended the use of the bilinear 

frequency relation as used in the prior paper in order to incorporate the effects of 

clearance. This technique approximates the BNM manifold as the piecewise union of the 

separate eigenvectors in the two linear subregions joined at the boundary.

For the multiple degree-of-freedom system, the approximate BNM frequency in the /th 

mode is found by direct analogy to equation (16) as
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where

Y i=
«>+,■ (27)

is the ratio of frequencies in the rth mode in the two linear subregions.

For deadzone, this relation is found by direct analogy to equation (20) as

Q = co_;. 2 . - l  -sm •+ i 1 2 • -*1 -  -sm
71 J  p(2 -  p) + (p -  1 )2y,2 Ji[- n Y,2 -P(Y ,2 -1 )^J

(28)

while for saturation it is found by analogy to equation (21) as

M-l

For bang-bang, the PMM relation for the rth NNM frequency is found by analogy with 

equation (24) as

a  =i f  \
i 2 • - 11 -  -s in  n

(30)

v p  +  CO -
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4.2 Local Equivalent Linear Stiffness Method (LELSM)

The Local Equivalent Linear Stiffness Method (LELSM) is developed by Butcher 

(1999). It was suggested there that only a single element = (Q/co.)2 (using the 

normalized frequency of equation (16), for example) on the main diagonal of an 

equivalent linear stiffness matrix Keq should be affected by the presence of the 

nonlinearity while the remaining elements should remain unchanged from those in The 

eigenvalue problem with matrices M  and Keq then yields the approximate NNM 

frequencies and mode shapes. For a n-degree-of-freedom system, since n different p 

values (and hence keq and Keq) result from each mode having a different initial condition 

for the same energy level, it is necessary to compute a Keq, which is valid for all modes, as

Ke q = U  d ia g { Q \ , . . . , d n) U X (31)

from the n frequencies and eigenvectors which comprise U corresponding to the n 

individual equivalent stiffness matrices. The method can be easily implemented for higher 

dimensional systems.

For a normalized 2-degree-of-freedom system with clearance, deadzone, saturation, or 

bang-bang nonlinearity, we have

K« -
K q - '  
-1 2

(32)

where kpn = Q2. Here, Q is the exact frequency of the single degree-of-freedom systemct/

with nonsmooth stiffness given by equations (16,20,21,24) in which co. or co is set to the



frequency of this system in the first subregion while keq is the equivalent linear stiffness 

which causes that system to vibrate with the same frequency. The solution of the

eigenvalue problem | K eq -  Q ;2|  = 0 then yields the approximate NNM frequencies Q, 

in each mode. For the limiting linear cases (p = ±1 for clearance; p = 0, 1 for deadzone 

and saturation; p = 0 for bang-bang) the results are exact.
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CHAPTER 5 

ORDER REDUCTION

5.1 Linear Based Order Reduction

Consider the system of n second order differential equations in structural form

Mx + Kx + F(x)  = 0 (33)

where the nonsmooth nonlinearity F(x)is isolated to the first m coordinates and m 

equations, i.e.

K x ) ~  |>,(*,) 0 ... o]r  (34)

wher efj(xj), i=l,...,mare piecewise linear functions. It is desired to reduce equation (33) to

a set of m master coordinates, eliminating the s=n-m slave coordinates. For this purpose,

32

the displacement vector x is partitioned as T T 
x m Xs

T
. The linear part of (33) is

Mx + Kx = 0 (35)

whose eigenfrequencies <Dj and eigenvectors <j>j are easily obtained. Typically the modes

with the lowest frequencies are retained in the reduced order model.

To construct the reduced model, let the nx mtransformation matrix ® be defined as

cj) =
T

(36)
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in which Im is the m x m identity matrix and the (n-m) x m matrix T is found by iterating 

the following equation (Burton and Young, 1994; Burton and Rhee, 2000)

-lkss~(mssT+ mSm)imrnJ + mn , j ' \ ksm~ ims J  (37)

where the linear mass and stiffness matrices are partitioned as

/  = mms K =
bmm kms

_msrn mss_ ^sm

Applying the transformation

(38)

(39)

to equation (33) and premultiplying by <£ yields

+ Kx + f(x  ) = 0m m m* (40)

in which the reduced mx mmass and stiffness matrices and m x 1 nonlinear vector are 

given by

Er -  9 TM 9 k  = <»TK<f f i Xm> -  [/l ( l | ) ... 

It should be noted that equation (39) implies a relationship

x„ = Tx„

(41)

(42)

between the master/slave coordinates and that the retained coordinates are a subset of the 

original physical coordinates. Also, it was shown in (Burton and Young, 1994; Burton and 

Rhee, 2000) that T preserves the exact eigenstructure of equation (35). Equation (39) is 

thus a Guyan-like order reduction transformation which accounts for the inertia as well as
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stiffness effects. When the mass terms are set to zero in equation (37), the traditional 

Guyan reduction transformation T = -k~lksm is produced (Guyan, 1965).

If only one master coordinate is retained 1), then <!> = <))} (the eigenvector 

corresponding to the retained mode normalized such that the first element is one) and 

equations (39) and (40) become

are the z'th modal frequency of equation (35) and the reduced nonlinear coefficient for the 

z'th mode. It can be seen that the form of the nonsmooth nonlinearity is retained in the 

reduced model which utilizes a subset of the original physical coordinates. It is desirable 

that the dynamics of the reduced model are close to that of the z'th nonlinear normal mode 

of the original full model (equation 33)). However, Rhee and Burton (2000) found that the 

nonlinear frequencies of equation (44) for deadzone and bang-bang nonlinearities in a two 

degree-of-freedom system differed from the NNM frequencies of the full model which 

were obtained by numerical integration. This error is shown later.

For a bilinear clearance nonlinearity, the z'th linear frequency in the second subregion

(43)

and

x ,  +  cofjc, +  P / ( x , )  =  0 (44)

respectively where

(45)
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is C0+J. = y _ i+ $ ikc in terms of the rth linear frequency in the first subregion, for 

linear-based order reduction at different modes, P;- is always a constant, which we can get

from equation (45), so the approximate NNM frequency can be solved for equation (26). 

In Fig. 12, the approximate BNM frequencies in both modes of the 2-degree-of-freedom 

version of equation (10) obtained from the linear-based reduced model as well as the

PMM and LELSM methods from (Butcher, 1999) are plotted versus p for a?=2 along with 

the exact BNM frequencies found by direct numerical simulation of the full 2-dof system. 

As was shown in (Butcher, 1999), for this value of a , two separate branches of NNMs 

exist for mode 1.

5.2 Improved Order Reduction via PMM

Although the linear based reduced order model has a similar oscillation amplitude as 

the Xj coordinate in the full model, the frequency is not the same as the rth NNM 

frequency. An alternate value of Pj, however, could result in an improvement in the 

frequency. Let us try to find an improved value of Pj in the reduced model of equation (44) 

via PMM for each of these nonlinearities. Since both sets of linear frequencies can be 

easily determined, the improved value of Pj can be found easily as

p. = I ((02+ . _ C02.) (46)

which is independent of the value of p. Equation (44) along with the value of P; computed 

above is the reduced model obtained from PMM for clearance, deadzone, and saturation 

nonlinearities. In Fig. 13 and 14, it is seen that PMM offers improvement for deadzone
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x2/xl

x2/xl

Figure 12: Frequencies of reduced order models of the 2-dof system with 

clearance nonlinearity in a) mode 1 and b) mode 2
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Figure 13: Frequencies of reduced order models of the 2-dof system with 

deadzone nonlinearity in a) mode 1 and b) mode 2 computed via the linear 

-based reduction (short-dashed), PMM (solid), LELSM (long-dashed), and 

numerical simulation of the full model (dots) for a  =2.
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P

Figure 14: Frequencies of reduced order models of the 2-dof system with 

saturation nonlinearity in a) mode 1 and b) mode 2 computed via the linear 

-based reduction (short-dashed), PMM (solid), LELSM (long-dashed), and 

numerical simulation of the full model (dots) for a  =2.
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and saturation over a limited range of p in both modes.

For bang-bang, equation (30) was used to estimate the NNM frequencies in Fig. 15 via 

PMM. To use PMM in the reduced model of equation (44), equation(30) becomes

n , - <»/

i 2 • - 11 -  -  sin
7T

Pip
(47)

^ . p  + CO,2/

It is seen from equations (30) and (47) that we must set pj=l which again is independent of 

the value of p. It is seen in Fig. 15 that the corresponding reduced models will be improved 

over the linear-based reduced models only in the first mode.

5.3 Improved Order Reduction via LELSM

In order to use another estimate of the NNM frequency Qj, let us solve for the first Pj

in equation (26) using the relation y,(P,) = ^oo2,- + P,-A:c/ g>_,- . This yields

(48)

for the clearance nonlinearity. Equation (48) is a transcendental equation for pj which can 

be solved numerically once Qj is estimated in some way. (Note that in the case p = 0 , 

the Pj’s on the right disappear and equation (48) can be solved analytically). Similarly, 

equations (29) and (30) yield
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P

Figure 15: Frequencies of reduced order models of the 2-dof system with 

bang-bang nonlinearity in a) mode 1 and b) mode 2 computed via the linear- 

based reduction (short-dashed), PMM (solid), LELSM (long-dashed), and 

numerical simulation of the full model (dots).
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■-V

(49)

and

(50)

for deadzone and saturation, respectively. For a bang-bang nonlinearity, equation (47) 

yields

(51)

As can be seen from Fig. 13, 14, 15, this method can possibly be used to obtain 

improved reduced order models whose frequencies are more accurate than those obtained
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from the linear-based reduced models for clearance (mode 2), deadzone (both modes), 

saturation (both modes), and bang-bang (both modes) nonlinearities. For this purpose, 

equations (49-51) are used to find p, once the NNM frequency n, has been estimated via 

LELSM.

5.4 Examples

5.4.1 Deadzone Nonlinearity

As an example of a system with deadzone nonlinearity, the equations of motion for the 

two degree-of-freedom version of equation (18) are considered where

The linear mode shapes are ^  = (1.0 0.618)T and ((>2 = (1.0 -1.618)1 and the modal 

frequencies are co;=0.618 and ©2=1.618. The linear-based order reduction transformation 

of equation (43) was employed in Rhee and Burton (2000) which results in the reduced 

model of equation (44) where (3^=0.724 in the first mode and P2=0.276 in the second. The 

effectiveness of the reduced order models was assessed in the former study by comparison 

of the frequency-amplitude dependence obtained by numerical integration of the reduced 

and full models. We compare the two models for equation (18a) by finding the exact BNM 

frequencies as well as the approximate frequencies from the various reduced order 

models.

To find the exact frequencies by numerical integration, the two BNMs can be located 

by simulating the motion for a variety of initial conditions along the equipotential 

boundary



corresponding to some chosen energy level. Through trial and error, the correct initial 

conditions which yield periodic motion can be located by examining the motion in the 

configuration space. This is shown in Fig. 8 where the free spring has the same stiffness as

the coupling springs (kc= 1 or a  = 2) and the total energy is for several different 

values for the clearance xc. The first (a) and last (d) plots correspond to the two linear 

subregions p=0 and 1, respectively. Unlike the clearance case, the number of NNMs is 

equal to the number of degrees of freedom for all values of p.

For the case xc = 0.5 (Fig.8b), the exact first modal frequency is found to be 0.862 

rad/s. Using equation (20), the approximate nonlinear frequency obtained from the linear- 

based reduced model is 0.880 rad/s.

An improved reduced model can be obtained via LELSM. The equivalent linear 

stiffness matrix in this method is given by equation (32), where keq is found from

(52)

7 T-.2 2keq = Q. = (D_ 2 . -1 -sin Ifi 2 • ~l(- -  1 — sin aV 7i V (53)
- n  V ( p - l ) 2<x2 + p ( 2 - p )  “  "  a 2 - p ( a 2- 1

with a 2 = 2, co_=l, and p=0.363. The relation | K eq -  Q ;2|  = 0 results in an approximate 

frequency of Q|=0.864. Equation (49) is then used to obtain Pj=0.671 for the 

corresponding improved reduced order model. Comparisons of exact, linear-based, and 

improved results are in the time series plots in Fig. 16 for x 1 and Fig. 17 for x 2 . As seen
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Table 1: NNM frequencies for the Deadzone nonlinearity obtained from 
reduced order models and exact numerical simulations.

DOFn mode i P

Pi

linear
based improved

linear
based improved exact

2 1 1 0 0.724 0.618 1.052 1.0 1.0

2 1 1 0.208 0.724 0.694 0.956 0.927 0.926

2 1 1 0.363 0.724 0.671 0.880 0.864 0.862

2 1 1 0.429 0.724 0.681 0.848 0.836 0.834

2 1 1 0.489 0.724 0.689 0.818 0.810 0.806

2 1 1 0.545 0.724 0.697 0.790 0.784 0.781

2 1 1 0.598 0.724 0.704 0.764 0.761 0.757

2 1 1 0.699 0.724 0.717 0.717 0.716 0.712

2 1 1 0.798 0.724 0.727 0.675 0.675 0.672

2 2 1 0 0.276 0.382 1.701 1.732 1.732

2 2 1 0.225 0.276 0.349 1.678 1.693 1.693

2 2 1 0.349 0.276 0.331 1.665 1.675 1.675

2 2 1 0.482 0.276 0.313 1.653 1.657 1.657

2 2 1 0.629 0.276 0.296 1.640 1.641 1.641

2 2 1 0.786 0.276 0.285 1.628 1.628 1.628
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<N — O — <N• i

X

Figure 16: Time series of x l of reduced order models of deadzone 
nonlinearity in the first mode computed via the linear-based reduction 
(dotted), LELSM (dashed), and numerical simulation of the full model 
(solid) for c r  = 2 and xc = 0.5.



46

O

(NX

Figure 17: Time series of x2 of reduced order models of deadzone 
nonlinearity in the first mode computed via the linear-based reduction 
(dotted), LELSM (dashed), and numerical simulation of the full model 
(solid) for a 2 = 2 and xc = 0.5.
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here and in Table 1, the improved reduced model obtained via LELSM results in a 

significant improvement in the NNM frequency over the linear-based reduced model. 

Table 1 also lists the exact and approximate NNM frequencies (found via the linear-based 

reduction and LELSM) for several values of p along with the corresponding p values for 

the reduced models in first and second modes.

5.4.2 Saturation Nonlinearity

As an example of a system with saturation nonlinearity, the equations of motion for the 

two degree-of-freedom version of equation (11) and (18) are again considered where 

m 1 =m2~^\=^2= 1 • The linear mode shapes and frequencies are identical to the clearance 

and deadzone cases while the linear-based transformation results in the reduced model of 

equation (44) with the same values for Pi and P2. To find the exact frequencies by 

numerical integration, the two BNMs are located by simulating the motion for a variety of 

initial conditions along the equipotential boundary

for E=1 and a2 = 2. In Fig. 9, The first (a) and last (d) plots correspond to the two linear 

subregions p=0 and 1, respectively. Again, the number of NNMs is equal to the number of 

degrees of freedom for all values of p as in the deadzone case.

For the case of xc =0.75 (Fig. 9c), the exact first modal frequency is found to be 0.950 

rad/s. Using equation (21), the approximate nonlinear frequency obtained from the linear-

E  =
( * 2  +  ( * i  ~ x 2 ) 2 +  k cx 21) / 2 ; 

(x\ + (X j- X 2)2 + Kcxc2) /2 ;

C

(54)
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based reduced model is 0.986 rad/s. An improved reduced model can be obtained via 

LELSM. The equivalent linear stiffness matrix in this method is given by equation (32) 

where keq is found from equation (21) as

frequency of Qj=0.951. Equation (50) is then used to obtain P) =0.640 for the 

corresponding improved reduced order model. Comparisons of exact, linear-based, and 

improved results are in the time series plots in Fig. 18 for x, and Fig. 19 for x 2 As seen

here and in Table 2, the improved reduced model obtained via LELSM represents a 

significant improvement in the NNM frequency over the linear-based reduced model. 

Table 2 also lists the exact and approximate NNM frequencies (found via the linear-based 

reduction and LELSM) for several values of p along with the corresponding p values for 

the reduced models in first and second modes.

5.4.3 Bang-bang Nonlinearity

For the bang-bang nonlinearity, the equations of motion for the two degree-of-freedom 

version of equations (11) and (22) are considered where m\=m2 =k\=k2 =\. The linear 

mode shapes and frequencies are identical to the previous cases while the linear-based 

order reduction transformation results in the reduced model of equation (44) with the same

-2

co_ — sin
7 ta

(55)

with a 2 = 2, ©.=!, and p=0.709. The relation | Keq -  Q (2|  = 0 results in an approximate
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Figure 18: Time series of xl of reduced order models of saturation 
nonlinearity in the first mode computed via the linear-based reduction 
(dotted), LELSM (dashed), and numerical simulation of the full model 
(solid) for o r = 2 and xc = 0.75.
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(NX

Figure 19: Time series of x2 of reduced order models of saturation 
nonlinearity in the first mode computed via the linear-based reduction 
(dotted), LELSM (dashed), and numerical simulation of the full model 
(solid) for o r = 2 and xc = 0.75.
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Table 2: NNM frequencies for the Saturation nonlinearity obtained from 
reduced order models and exact numerical simulations.

D OFn mode i k c P

Pi « /

linear
based improved linear

based improved exact

2 1 1 0.073 0.724 0.720 0.670 0.670 0.669

2 1 1 0.166 0.724 0.710 0.730 0.728 0.726

2 1 1 0.278 0.724 0.691 0.795 0.788 0.787

2 1 1 0.408 0.724 0.678 0.862 0.849 0.847

2 1 1 0.554 0.724 0.657 0.928 0.904 0.903

2 1 1 0.709 0.724 0.640 0.986 0.951 0.950

2 1 1 0.862 0.724 0.625 1.030 0.984 0.984

2 1 1 1.0 0.724 0.618 1.052 1.0 1.0

2 2 1 0.253 0.276 0.308 1.645 1.648 1.648

2 2 1 0.476 0.276 0.334 1.667 1.677 1.677

2 2 1 0.682 0.276 0.355 1.684 1.703 1.703

2 2 1 0.877 0.276 0.377 1.697 1.725 1.724

2 2 1 1.0 0.276 0.382 1.701 1.732 1.732
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values for Pi and P2. The exact frequencies can be found by numerical simulation along 

with the equipotential boundary

for E=l. In Fig. 11, the first (a) plot corresponds to the linear subregion p=0. Like the 

deadzone and saturation cases, the number of NNMs is equal to the number of degrees-of- 

freedom for the range of p shown.

For the case of 8=0.5 (Fig. 11c), the exact first modal frequency is found to be 0.868 

rad/s. Using equation (47), the approximate nonlinear frequency obtained from the linear- 

based reduced model is 0.889 rad/s. As Fig. 15 shows, an improved reduced model can be 

obtained via LELSM. The equivalent linear stiffness matrix in this method is given by 

equation (32) where keq is found from equation (24) as

frequency of fij=0.872. Equation (50) is then used to obtain pj=0.672 for the 

corresponding improved reduced order model. Comparisons of exact, linear-based, and 

improved results are in the time series plots in Fig. 20 for x x and Fig. 21 for x 2 . As seen 

here and in Table 3, which also lists the exact and approximate NNM frequencies (found

E  =
(x2 + (x i - * 2 )2)/2  -  Sxj;

2 2 (x2 + (x 1 - x 2) ) / 2  + 8x 1; Xi > 0

Xi < 0

(56)

2
2 CO (57)

with oo=l and p=0.450. The relation \ k  = 0 results in an approximate
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Figure 20: Time series of x l of reduced order models of bang-bang 
nonlinearity in the first mode computed via the linear-based reduction 
(dotted), LELSM (dashed), and numerical simulation of the full model 
(solid) for 6=0.5.
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<N CM

<NX

Figure 21: Time series of x2 of reduced order models of bang-bang 
nonlinearity in the first mode computed via the linear-based reduction 
(dotted), LELSM (dashed), and numerical simulation of the full model 
(solid) for 8=0.5.
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Table 3: NNM frequencies for the Bang-bang nonlinearity obtained from 
reduced order models and exact numerical simulations.

DOFn P mode i
Pf

linear
based improved linear

based improved exact

2 1 0.074 1 0.724 0.717 0.671 0.670 0.670

2 1 0.169 1 0.724 0.706 0.733 0.730 0.729

2 1 0.292 1 0.724 0.691 0.805 0.797 0.795

2 1 0.450 1 0.724 0.670 0.889 0.872 0.868

2 1 0.658 1 0.724 0.641 0.988 0.953 0.949

2 1 0.948 1 0.724 0.598 1 . 1 1 2 1.043 1.038

2 1 1.456 1 0.724 0.522 1.300 1.152 1.145

2 1 2.180 1 0.724 0.427 1.529 1.241 1.234

2 1 0.131 2 0.276 0.291 1.632 1.633 1.633

2 1 0.254 2 0.276 0.305 1.645 1.648 1.648

2 1 0.370 2 0.276 0.319 1.658 1.664 1.664

2 1 0.482 2 0.276 0.334 1.669 1.680 1.680

2 1 0.694 2 0.276 0.363 1.692 1.714 1.714

2 1 0.901 2 0.276 0.392 1.713 1.751 1.752

2 1 1.108 2 0.276 0.423 1.734 1.792 1.793

2 1 1.320 2 0.276 0.454 1.755 1.837 1.838

2 1 1.543 2 0.276 0.485 1.777 1.888 1.889

2 1 1.783 2 0.276 0.518 1.800 1.944 1.94
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via the linear-based reduction and LELSM) for several additional values of p along with 

the corresponding p values for the reduced models in first and second modes, the 

improved reduced model obtained via LELSM is extremely accurate. For all values of p 

in both modes, LELSM gives much better approximations than the linear-based model.

5.4.4 Reduction to Multi-Mode Reduced Models

While the examples discussed thus far involve obtaining a single degree-of-freedom 

reduced model corresponding to a single NNM, it is also possible to reduce a large-order 

system down to two or more degrees of freedom with dynamics approximating that of 

multiple NNMs. For this purpose, the LELSM method is used to obtain an equivalent 

linear stiffness matrix which approximates the NNM frequencies invariant manifolds 

of the full model. Since the ability to approximate curved manifolds with straight 

eigenvectors (lines) becomes less accurate the more curved the manifold becomes, this 

procedure is more successful for symmetric nonlinearities such as deadzone, saturation, 

and bang-bang than for asymmetric ones such as a bilinear clearance. The approximate 

LELSM frequencies resulting from the 2 x 2 equivalent stiffness matrices has already been 

shown for a two degree-of-freedom system with these nonlinearities in Fig. 13,14, and 15. 

In Fig. 22-24 the slopes of the LELSM eigenvectors for the same systems are shown in 

both modes versus the parameter p along with the slopes of the best-fit lines determined 

by least-squares regression analysis of the numerically integrated NNM manifolds. It is 

seen in these figures that the LELSM matrix is very accurate in approximating the 

manifolds. This characteristic allows us to obtain a multi-mode reduced model which
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0 . 2  0 . 4  0 . 6  0 . 8

p

Figure 22: Slopes o f the LELSM  eigenvectors (long-dashed) o f the 2-dof 

system w ith deadzone nonlinearity in a) mode 1 and b) mode 2  for ot2 = 2  

For comparison, the slopes o f  the best fit lines determined via least squares 

regression o f the numerically simulated NNM  manifolds are also shown 

(dots).
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Figure 23: Slopes o f the LELSM  eigenvectors (long-dashed) o f the 2-dof
2

system with saturation nonlinearity in a) mode 1 and b) mode 2  for a  

For comparison, the slopes o f the best fit lines determined via least squares 

regression o f  the numerically simulated NNM  manifolds are also shown 

(dots).
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Figure 24: Slopes o f the LELSM  eigenvectors (long-dashed) o f  the 2-dof 

system with bang-bang nonlinearity in a) mode 1 and b) mode 2. For 

comparison, the slopes o f the best fit lines determined via least squares 

regression o f the numerically simulated NNM  manifolds are also shown 

(dots).

P
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accurately approximates the true NNM manifolds projected onto the space of retained 

coordinates.

As an illustration, we choose the four degree-of-freedom system with a deadzone 

nonlinearity of the form

Jc +

1 - 1 0 0 / (*  l)
- 1 2 - 1 0 x  + 0

0 - 1 2 - 1 0

0 0 - 1 2 _ 0

= 0 (58)

where f(x j) i s  given by equation (18) with 1 and 1.25. It is desired to reduce 

equation (58) to two degrees-of-freedom. First, the linear-based order reduction in 

equations (36-39) is implemented by transforming equation (58) via

x  =

1 0

0 1

-1 1.8794 
-1 1.5321

(59)

This results in the reduced order model

3.0 -3.4115
-3.4115 6.8794

+m
3.0 -3.4115 x +m

/ ( x ,) = 0
-3.4115 4.2412_ 0

(60)

As explained previously, the transformation of equation (59) preserves the exact 

eigenstructure of the linear part of equation (58).

On the other hand, an equivalent linear stiffness matrix corresponding to the full 

model may be obtained before the reduction process by first computing the values of the
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parameter p in each mode corresponding to a given energy level. Since the amplitude of 

coordinate xj depends on the mode for a given energy level, a separate p; must be 

computed for the z'th mode. By solving for the intersections of the eigenvectors of the 

stiffness matrix in equation (58) with the equipotential boundaries corresponding to a total 

energy of E=1 (which are computed similarly to equation (52)), the approximate 

amplitudes of in modes 1-4 are obtained as 2.115, 0.816, 0.396, and 0.172, respectively. 

It is thus apparent that only the first mode penetrates into the second linear subregion. 

Consequently, we obtain p M  =0.591, 1.0, 1.0, 1.0. The equivalent stiffness matrix is then

computed by assembling separate eigenvectors and eigenfrequencies as

K = U d ia g (0 A m 2, 1.02,1.53212, 1.87942) t /_1 (61)eq

where the first frequency (0.4645) and the first eigenvector in U ((0.5640, 0.5982, 0.4957, 

0.2798)1) are found from those for the first mode in the approximate linear system

X  +

ke q - l  0 0 

- 1 2 - 1 0  

0 - 1 2 - 1  

0 0 - 1 2

x = 0 (62)

where kpa is obtained as 1.289 using the values pj=0.591 and a 2 -  2 in equation (20) inc q

conjunction with the LELSM method. However, equation (62) represents the

dynamics in the first mode. Since it was seen that the other modes remain in the first 

subregion, the remaining frequencies (1.0, 1.5321, 1.8794) and eigenvectors in U 

((0.5774, 0., -0.5774, -0.5774)1; (0.4285, -0.5774, -0.2280, 0.6565)1; (0.2280, -0.5774,
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0.6565, -0.4285)t ) correspond to those in the stiffness matrix in equation (58).

Thus equation (58) can be replaced by an equivalent linear system with the stiffness 

matrix computed from equation (61) as

1.080 -0.9051 0.0705 0.0375
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

The reason that Keq is not symmetric is due to the fact that the eigenvector extracted from 

equation (62) is not orthogonal to the remaining ones extracted from the linear part of 

equation (58). Hence, this procedure accurately captures an important trait of NNMs of 

nonsmooth systems: in general, they are not orthogonal at their intersection (Zuo and 

Cumier, 1994). The eigenstructure-preserving transformation

1 0

* =  0 1
-1 1.7714
-1  1.4106

then results in the reduced order linear system (with asymmetric stiffness matrix)

3.0 -3.1820
-3.1820 6.1278

Thus, equation (65) has the exact lowest eigenfrequencies (0.4781 and 1.0) from equation

(63) while the (non-orthogonal) mode shapes ((0.5640, 0.5982)T and (0.5774, 0.0)T) are 

exact projections of those in equation (63) onto the coordinates xm. For comparison, the

x  + 3.0 -2.9094
m

-3.1820 3.7151
x = 0m (65)

(64)
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LELSM method can be used to estimate the actual NNM frequency of equation (60) in the 

first mode as 0.4820 while the corresponding eigenvector (0.5640, 0.5589)T approximates 

the curved manifold as a straight line. Because the nonlinearity is not present in the second 

mode, its frequency and eigenvector are identical with those of equation (65).

While equation (65) is an accurate reduced model in the sense that the NNM 

frequencies and mode shapes are well-approximated by the linear eigenstructure, it may 

be preferable to obtain a reduced model in the form

3.0 -3.4115 X + m
3.0 -3.4115

x m + P
f (* \ )

-3.4115 6.8794_ -3.4115 4.2412_ 0

which retains the linear part of equation (60) (obtained from the linear-based 

transformation) as well as a form of the original nonsmooth nonlinearity (multiplied by a 

parameter P) as did the single degree-of-freedom reduced models obtained previously. For 

such a model, it is desired to find a P which results in a model that more accurately 

represents the actual NNM dynamics that does the linear-based model (in which P=l). To 

accomplish this, at least two strategies are possible. First, equation (49) can be solved 

numerically for P=0.3806 in terms of Q , = 0.4781 and co_j = 0.3473 (the lowest

frequency of the linear part of equation (58)). The approximate frequency and mode shape 

of mode 1 in the resulting model in equation (66) can be approximated via LELSM as 

0.4082 and (0.5640, 0.5181)1, respectively, which are not as good as in the linear-based 

reduced model in this case.

The second approach is to try to find a stiffness matrix K eq of the form
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K eq =
keq -3.4115 

-3.4115 4.2412
(67)

which, when used in conjunction with the mass matrix in equation (60), results in (almost) 

the same eigenstructure as in equation (65). This is just the reverse of the LELSM method. 

In this case, keq was found as 3.281 which forces the lowest frequency to be identical with 

that (0.4781) from equation (65). Then, a value of P=0.962 was found for which equation 

(66) has (nearly) the same NNM frequency in the first mode. The LELSM mode shape

was determined as (0.5640, 0.5562)1. Thus, the reduced model in equation (66) with this 

value of P is more accurate than with the previously computed value of P, and also more 

accurate than the linear-based reduced model in equation (60) when compared with the 

frequencies in equation (65).
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CHAPTER 6

EIGENSTRUCTURE ASSIGNMENT

6.1 Linear System
For a linear system, two techniques are widely used for eigenstructure assignment.

6.1.1 Eigenvalue Placement
Consider the system of n second order differential equations in structural form

where the uncontrolled system is on the left hand side and Bu(t) is the control term. We 

assume that the controller has n actuators so that the matrix has full rank. For simplicity 

we set it to B = I, the n-dimensional identity matrix. So for the uncontrolled part of (68), 

we can solve for the natural frequencies coj, co2 -..co;- . Suppose now that it is desired to

change the natural frequencies to Qj, Q 2 . f2( , The control force is chosen to be 

proportional to the displacements so that we have the constant gain feedback control law

Furthermore, the gain matrix Gis yielding n control gains to be found. So equation (68) 

becomes

Mx + Kx = ) (68)

u(t) = -G x(t) (69)

\fx  + (K + G )x  = C (70)

s i
where =



we’ve already known that the natural frequencies are Q j, f i2-• • ^  > s0 we can so v̂e ôr ^  

in (70), it’s the controlled gain matrix.

6.1.2 Full Eigenstructure Placement

For the system represented by (68), not only we can change eigenvalues, we can also

change eigenstructure.

For a desired system which has eigenstructure(eigenvalues and eigenvectors) that is

designed

k + M~01K0x = 0 (71)

in equation (68), set

u(t) = -  G) (72)

where Gis a full gain matrix.then we got

l + M ~ \K  + BG)x = C (73)

Comparing equations (71) and (73), solve for equation (44) becomes the designed 

system.

6.2 Nonsmooth Systems

6.2.1 Eigenvalue Placement via Pmm and N Constant Gains

Consider the system of n second order differential equations in structural form

Mx + Kx + F(x) = B u(t) (74)

66
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where the uncontrolled system is on the left hand side and the nonsmooth nonlinearity 

F(x) is piecewise linear and isolated to the first coordinate and equation, i.e. F(x)=(F(x1) 0

. . .  0)T. We assume that the controller has n actuators so that the matrix B  has full rank. 

For simplicity we set it to B  = I, the n-dimensional identity matrix. The control force is 

chosen to be proportional to the displacements so that we have the constant gain feedback 

control law

u(t) = -Gx(75)

Furthermore, the gain matrix G is assumed to be diagonal thus yielding n control gains to 

be found.

In equation (26), if we divide the top and bottom by — , we obtain

Q  =  ©_/(p,-,y (76)

where

(77)

The uncontrolled version of equation (74) has frequencies co.; and co+i in the first and 

second linear subregions, respectively, and overall NNM frequencies Qj. It is these which

we desire to shift to some other specified values, denoted by Q ; . If we can solve for the



corresponding shifted frequencies in either linear subregion, then it is straightforward to 

solve for the required control gains. To accomplish this, equation (76) is solved as

oM = (78)
f(Pr Yi)

where all terms with a hat represent the desired controlled values. However, because we

do not know the value of y,- (the ratio of the controlled linear rth mode frequencies in the

two subregions) a priori, we must approximate by using the uncontrolled value, and 

equation (78) becomes

= (79)
/(P,-> Y,-)

After solving for the controlled linear frequencies via equation (79), the control gains 

necessary to achieve them may be found from a variety of methods. The approach taken 

here is to write the characteristic equations of the desired system and the controlled system 

and to equate coefficients of like monomial powers to yield n algebraic equations for the n

gains, which can then be solved. Then it is necessary to determine the updated value of y,- 

so that one can determine the actual controlled frequencies via

Q, = ©_/(P;> y,) (80)

Setting y,• -> y;- , equation (79) may be iterated repeatedly until the control gains are found 

which result in NNM frequencies sufficiently close to the desired values via equation (80).

68
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6.2.2 Eigenvalue Placement Via Order Reduction And One Constant Gain

TReconsider the system in equation (68) in which the matrix 1 0 . . .  0) corresponds

to only one actuator. The scalar control force is chosen to be proportional to the 

displacement of Xj as u(t)=-gx\ where g  is the unknown control gain to be found. To 

accomplish this, we reduce equation (68) to one master coordinate, eliminating the n-1 

slave coordinates. The linear uncontrolled part of (68) is

whose eigenfrequencies ccq and eigenvectors ^  are easily obtained. Typically the mode 

with the lowest frequency is retained in the reduced order model. To construct the reduced 

model, we follow Burton and Young (1994), Burton and Rhee (2000), and Rhee and 

Burton (2000) and perform the transformation x = <j>(-JC| to equation (68) where (j)l is the 

eigenvector corresponding to the retained mode normalized such that the first element is 

one. Premultiplying by <J>t T and normalizing the mass to unity yields

It can be seen that the form of the nonsmooth nonlinearity is retained in the reduced model 

which utilizes a subset of the original physical coordinates.

Mx + Kx = 0 (81)

X x +  co jx j +  p , F ( x j )  =  p , w ( 0 (82)

where

U f a ,
CO • = ------— ------- -

I . T _ ..

(83)



For the single degree-of-freedom reduced model in equation (82) with F(x\) given in 

equation (13), the uncontrolled frequencies in the two linear subregions are co_,- = co/- and

co+/ = V®2/ + PA- (84)

(ji is the ratio of these) and NNM frequency Qj in the mode of interest. Again, we desire to

shift the latter to some other specified value, denoted by Q / , by implementing feedback 

control. Equation (79) is used to solve for the corresponding controlled frequency in the 

first linear subregion while using the uncontrolled value for y,-. Bringing the control force 

in equation (82) over to the left hand side, this frequency is also expressed as

© -/=  7 ® -/+ P iS (85)

from which the required gain is solved as

g = (86)

One can then determine the updated value of y,- and the actual controlled frequency via

equation (80). Setting y, -> y ■ , equations (89) and (86) may be iterated repeatedly until

the control gain is found which results in a NNM frequency sufficiently close to the 

desired value.

6.2.3 Eigenstructure Assignment Via Lelsm And Full Gain Matrix
Again reconsider equation (74-75) in which no restrictions on the dimensions of B  or

G are made. It is desired to calculate the gain matrix G such that the controlled nonlinear

70
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system has the approximate desired frequencies and mode shapes of a redesigned linear 

system

Thus, this problem of eigenstructure assignment goes further than specifying the 

frequencies alone (eigenvalue placement). Also, although the NNM modes of the 

controlled and uncontrolled systems are not straight eigenvectors as in the linear case, the 

desired eigenvectors of equation (87) are usually quite similar to the actual curved NNM 

manifolds of the controlled system, while a regression analysis can be used to assess the 

accuracy.

In order to implement linear eigenstructure assignment, the Local Equivalent Linear 

Stiffness Method (LELSM) developed by Butcher (1999) is used to incorporate the effects

of the nonlinear term F(x).It was suggested there that only a single element = (Q/co.) 

(using the normalized frequency of equation (16), for example, on the main diagonal of an 

equivalent linear stiffness matrix K eq should be affected by the presence of the 

nonlinearity while the remaining elements should remain unchanged from those in K . The 

eigenvalue problem with matrices M  and K eq then yields the approximate NNM 

frequencies and mode shapes. Here, since n different p values (and hence keq and K eq) 

result from each mode having a different initial condition for the same energy level, it is 

necessary to compute K eq as

M qX +  K qX =  0 (87)

Keq = U d ia g (Q 2l, . . . , Q 2n1 (88)
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from the n frequencies and eigenvectors corresponding to the n individual equivalent 

stiffness matrices. The method can be easily implemented for higher dimensional systems. 

Proceeding as in Inman (1989), the closed loop system becomes

c + M~l(Keq + BG)x = C (89)

Premultiplying equation (87) by M0* and comparing with equation (89) yields the gain 

matrix as

! = BIM (M 0lK 0-M ~ lK ei(90)

in which B1 represents the left generalized inverse of B. Thus, if  this value of the gain 

matrix is implemented the resulting closed-loop system will have a response similar to 

that of the design set in equation (87). It should be pointed out that only mode shapes that 

satisfy certain criteria can be placed according to the linear theory (Andry et al, 1983).

6.2.4 Example: A 2-dof System With A Bilinear Clearance Nonlinearity

As an example of the first two strategies, the two-degree-of-freedom system with a 

bilinear clearance nonlinearity is considered. Equations (74-75) are given as

m lx l + &j(x, - x 2) + F (x{) = - g lx l (
F {xx) = \

m 2x 2 +  ( k l + k2)x2- k lx l =  - g 2x 2( k c ( x x - x c) ;  x, >xc 

where g\ and g2 are the constant control gains. We consider the case of m ]=m2 =kx=k2=\

while xc=0.5 and k =  1 ( a  = J 2 ).The linear uncontrolled mode shapes in the first
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subregion (with F(xj)=0) are <t>i = (1.0 0.618)T and <j>2 = (1-0 -1.618)T and the modal 

frequencies are <x>_;=0.618 and co_^=l .618. The frequencies in the second subregion are 

co+;=1.0 and co+2=1.732.

To find the exact BNM frequencies for the uncontrolled system, the two BNMs can be 

located by simulating the motion for a variety of initial conditions along the equipotential 

boundary

corresponding to some chosen energy level. Through trial and error, the correct initial 

conditions which yield periodic motion can be located by examining the motion in the 

configuration space. This is shown in Fig. 6(d) where the total energy of the uncontrolled 

system is E=\.For this case the first BNM has initial condition (xj, x2)=(-2.0,-1.0), 

P]=0.25 and frequency Q/=0.717 while the second (p2= 1 .0 , £22=1.618) is identical to the

linear frequency. It is desired to shift these frequencies to £21 =0.85 and Q2=1.65 by 

implementing the position feedback control technique with two constant gains 

corresponding to the diagonal elements of the gain matrix G (with B=I) in equation (74). 

The Piecewise Modal Method (PMM) via equation (77) is used with the uncontrolled 

values for y t =1.618 and y2=1.070 to obtain / ( pj, yj) =1.166 and / ( p 2> y2) = 1- Following 

Section 6.2.1, the corresponding desired linear frequencies are found via equation (79) as 

co_i =0.729 and co_2=1.65.

x, > x

x, <x

C

C

(92)
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To solve for the gains, the characteristic equations of the desired and controlled 

systems in the first linear subregion are equated as

det 1 + g i - A .  -1
—1 2 + g2 — X

= (A, -  0.7292)(A.— 1.652) (93)

Collecting like powers in X yields two equations for the gains:

-(3  + S x+ g 2) = "3 .255  

1 + 2g 1 + g 2 + g 1g2 = L450  (94)

from which g j= 0 .182 and g2=0.073 (the other solution results in negative gains and is

ignored). To find the actual values for Q ;, the controlled frequencies in the second 

subregion are found from

det
2.182- co+ i -1

2.073 -  co+ 7

= 0 (95)

from which co+ \y2 =1.061, 1.769 which yields y i> 2 = 1 -455, 1.072. The actual controlled

BNM frequencies are found from equation (80) to be Qi, 2 =0.823, 1.65.

It is seen that the first BNM frequency has shifted but is not the desired value, while 

the second frequency has become the desired value since it is a purely linear mode. To 

compute better gain values (and hence achieve a controlled frequency in the first mode

that is closer to the desired value), we make the substitution ,• —» y( and iterate equations

(79-80) repeatedly until the desired accuracy is achieved. Table 4 shows the results for



Table 4: Comparison of theoretical and exact controlled NNM
frequencies.

Controller Iteration Si Q i Exact Wj

PMM/ 2 gains

Uncontrolled 
frequencies: 
0.717, 1.618

Desired 
frequencies: 
0.850, 1.650

1 0.182,
0.073

0.823,
1.650

2 0.243,
0.046

0.843,
1.650

3 0.260,
0.039

0.848,
1.650

4 0.266
0.035

0.850,
1.650

0.865,
1.653

Order Red./ 1 gain

Uncontrolled 
frequencies: 
0.717, 1.618 

Desired 
frequency: 0.850

1 0.187 0.827

2 0.227 0.847

3 0.233 0.849

4 0.235 0.850 0.846,
1.643
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four iterations in which the final gain values are gj=0.266 and g2=0.035, resulting in 

NNM frequencies exactly equal to the desired values according to PMM. However, it 

must be recalled that PMM is an approximate technique, so in order to assess the accuracy 

the actual controlled BNM frequencies must be found by numerical integration. To this 

end, the control energy is computed as 0.55 (yielding a total energy of 1.55). Fig. 25 

shows the controlled BNMs found in this way where the frequencies are 0.865 and 1.653. 

Hence the control strategy has succeeded in shifting the frequencies to within 11% of the 

desired values as compared with the uncontrolled system.

Next we control the same problem of equation (91) using the position feedback with 

order reduction and one constant gain. Referring to equation (68) in which the matrix 

B=( 1 0 . . .  0)T corresponds to one actuator and where g  is the unknown control

gain to be found, it is obvious that we set g x=g and g2=0 in equation (91). It is desired to

design g  in order to shift the first BNM frequency to Qi =0.85. Using the transformation

x \ 1.0

X 2 0.618

the single degree-of-freedom reduced order model of equation (82) is obtained where 

co^O.618 and p,=0.724. Following Section 4, the corresponding desired linear frequency

is  f o u n d  v i a  e q u a t io n  (79) w i t h  yj = V0^6182 + 0.724/0.618 — 1.702 as co_i 0.719.

The gain is found via equation (86) as g=(0.719^-0.618^)/0.724=0.187. The actual 

controlled value of y x = Vo.7192 + 0.724/0.719 = 1.549 is then used to compute the
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xl xc=0.5

Figure 25: Numerical simulations in configuration space of the controlled 
BNMs (using the PMM strategy) for the system with a bilinear clearance 
nonlinearity.
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actual BNM frequency of 0.827 via equation (80). Making the substitution y,- -> y(- and

iterating equations (79) and (86), the desired frequency is achieved in four iterations as 

shown in Table 4. Although the final gain of g=0.235 causes the reduced model to have 

the desired frequency, the fact that the reduced model is an approximation to the dynamics 

in mode 1 means that the accuracy of the controlled BNM frequencies must be found by 

numerical integration. To this end, the control energy is computed as 0.47 (yielding a total 

energy of 1.47). Fig. 26 shows the controlled BNMs found in this way where the 

frequencies are 0.846 and 1.643. Hence the control strategy has succeeded in shifting the 

first BNM frequency to within 3% of the desired value as compared with the uncontrolled 

system. Finally, Fig. 27 contains time series of the uncontrolled, controlled via PMM, and 

controlled via order reduction systems along with a linear oscillation with the desired 

frequency for comparison.

6.2.5 Example 2: A 2-DOF System with a Symmetric Deadzone Nonlinearity

As an example of the last strategy for eigenstructure assignment, a two-degree-of- 

freedom system with a symmetric deadzone nonlinearity is considered. Equations (74-75) 

are given as

where the full matrix of control gains is seen on the right hand side. Here, the case 

m i=m2=kl=k2= \,x c=l.25, and k =\(a = J 2 )  is considered. From equation (20), we can

m xx x + & i(x i-x 2) + F (x {) -----

m 2x 2 + (k l +k2)x2 - k lx l =
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x l xc=0.5

Figure 26: Numerical simulations in configuration space of the controlled 
BNMs (using the order reduction strategy) for the system with a bilinear 
clearance nonlinearity.
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Figure 27: Time series of the uncontrolled (long-dashed), controlled 
via PMM (short-dashed), controlled via order reduction (dotted), and 
sinusoidal (with the desired frequency - solid) responses of the first 
NNM for the system with a bilinear clearance nonlinearity.



get the exact frequency of deadzone.

The normalized mode shapes in the first subregion are <j>j = (0.851 0.526)7 and <|>2 =

(0.526 -0.851 )T and the modal frequencies are the same as those in the last example. 

Fig. 28 shows the numerically integrated NNMs of the uncontrolled system in the 

configuration space along with the equipotential boundaries for 1. For this case the first 

BNM has initial condition (xb x2)=(-1.789, -1.128), p, =0.699 and frequency Q ;=0.712. 

Using a regression analysis, the approximate slope of the curved NNM manifold in mode 

1 was found as 0.665, which is 0.047 more than the linear slope of 0.618. The second 

mode (p2=1.0, Q2=1.618) is identical to the linear frequency and mode shape. A s s u m i n g  n

actuators such that B = I in equation (74), it is desired to shift the frequencies to Qi =0.85

and Q2=1.65 and the mode shapes to (jq = (1 1 )T and <t>2 = (1 -1)T by implementing the 

position feedback control technique with full gain matrix from Section 7.2.3.

The equivalent linear stiffness matrix Keq is found from equation (87) where the

frequencies co,=0.705, oo2=1.618 and eigenvectors «!=(0.833, 0.554)1, h2=(0.526 -

0.851) (which comprise the columns of U) are found from the eigenvalues and 

eigenvectors of

keq_1 (98) 
- 1 2 _

with keq found in equation (37). I.e. co j and u x are found with p^O.699 while co2 and w2 

are found with p2=1.0. (Note that the eigenvalues and eigenvectors of equation (102) are

81
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Figure 28: Numerical simulations in configuration space of the uncontrolled 
NNMs with or = 2 and xc = 1.25 for a two-degree-of-freedom system with 
a symmetic deadzone nonlinearity. The dashed lines indicate the desired 
mode shapes.
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identical with those for the entire system found via LELSM since M =/ in this case.) 

Equation (88) then yields the equivalent stiffness matrix as

0.833 0.526 
0.554 -0.851

0.705 0

0 1.618:

0.833 0.526 
0.554 -0.851

1.115 -0.929 
- 1.0 2.0

(99)

The desired system of equation (87) satisfies M 0=I and

=
0.724 0.707 
0.690 -0.707

0.850 0

0 1.650"

0.724 0.690 
0.707 -0.707

1.740 -1.0 
-1 .0  1.705

(100)

Note that the first eigenvector has a slope of 0.953, which is 0.047 less than the desired 

slope of 1.0. (Recall that the approximate slope of the mode 1 manifold for the 

uncontrolled system was 0.047 more than the linear slope of 0.618.) Because only linearly 

orthogonal mode shapes can be placed (Andry et al, 1983), it is necessary to account for 

the effect of the nonlinearity as in the uncontrolled system. The gain matrix can therefore 

be found from equation (90) to be

G = 0.625 -0.071 
0 -0.295

(101)

By finding the best fit lines through the curved NNM manifolds using least-squares 

regression, the accuracy of the controlled system may be found via numerical simulation. 

Table 5 shows how the results compare to the desired frequencies and mode shapes. The 

control energy is computed as 0.741 (yielding a total energy of 1.741) while Fig. 29 shows 

the controlled NNMs found via numerical integration with frequencies of 0.834 and 1.643.
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Table 5: Controlled and uncontrolled NNM frequencies and
mode shapes for Example 2

Uncontrolled Desired Controlled

NNM
Frequencies

Q j  =  0 . 7 1 2  

Q 2  =  1 . 6 1 8

Q l  =  0 . 8 5  

Q 2  -  1 . 6 5

Q l  =  0 . 8 3 4  

Q 2  =  1 . 6 4 3

NNM
Mode shapes 
via regression

t |J | ~  ( 0 .665)  

-  ( - 1.61& )

* •  -  (1 ) 

■ CO
= (o.98s) 

° 2  "  ( - I . O O 4)
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x l xc=1.25

Figure 29: Numerical simulations in configuration space of the controlled 
NNMs (using the LELSM strategy) for the two-degree-of-freedom system 
with a symmetric deadzone nonlinearity. The dashed lines indicate the 
desired mode shapes.
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Hence the control strategy has succeeded in shifting the first NNM frequency to within 

12% of the desired value and the second mode’s frequency to within 22% of the desired 

value. A regression analysis on the controlled first NNM yields the slope as 0.988 (a 

change of 4% o f the desired value of 1.0) while the exact slope of the second mode is - 

1.004, which has changed from the desired value by less than 1%. Finally, Fig. 30 shows a 

time series of the uncontrolled and controlled system along with a linear oscillation with 

the desired frequency for comparison.

We should point out that the convergence of these techniques depends on the ability of 

PMM, order reduction, or LELSM to converge in approximating the NNM frequencies 

(see Butcher (1999) for further discussion). Thus, the best parameter choices to ensure 

convergence are those that result in weak nonlinearities (e.g. kc small). However, the range

of possible clearance (xc) values is not limited by these methods, unlike in previous 

strategies (e.g. Chati et al. (1997); Zuo and Cumier (1994)). Finally, for nonlinearities 

such as bang-bang where acturator limits result in gain saturation, one must carry out the 

analysis to see if  the desired poles are adequate or must be moved to a more realizable 

place. In such cases, several iterations of pole placement may be necessary.
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<N — O  —i fNi i

X

Figure 30: Time series of the uncontrolled (long-dashed), controlled 
via LELSM (dotted), and sinusoidal (with the desired frequency - 
solid) responses of the first NNM for the system with a deadzone 
nonlinearity.



CHAPTER 7

CONCLUSIONS

A technique for order reduction of nonsmooth trilinear systems with a deadzone and 

saturation nonlinearities and biliinear system with bangbang nonlinearity has been 

presented. First, a linear based order reduction transformation was applied to obtain a 

reduced order model whose frequency approximates the nonlinear normal mode (NNM) 

frequency of the full model. By employing the local equivalent linear stiffness method 

(LELSM), improved reduced order models whose frequencies are better approximations 

to those were obtained via linear-based order reduction. The frequencies of the resulting 

reduced order models were compared with those obtained from direct numerical 

simulations of the NNM dynamics in the configuration space and as a time series. The 

reduced order models obtained from the present technique use a subset of the original 

physical coordinates and contain the form of the nonsmooth nonlinearity of the full model.

Three techniques for eigenstructure assignment of multi-degree-of-freedom 

conservative vibrating systems with nonsmooth nonlinearities have been shown. By 

utilizing previous methods (PMM, LELSM, and order reduction) for approximating the 

NNM frequencies and mode shapes, these techniques result in either eigenvalue (pole) 

placement or full eigenstructure assignment. The strategies utilize either one actuator gain 

for the mode to be controlled (for order reduction), n actuator gains for n degrees of 

freedom (using PMM), or a full n x nmatrix of actuator gains (using LELSM). These 

strategies are implemented via constant-gain proportional position feedback and thus do
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not require the use of gain switching or a nonlinear control law. The techniques were 

applied to a two degree-of-freedom system with a bilinear clearance nonlinearity.

Future work will be considering more vibrating systems with different nonlinearities, 

and also extend the method to make it get better approximations for multi-degree of 

freedom systems.
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APPENDICES

PROGRAM DEADZONE
* THIS PROGRAM USES A RK(4,4) SUBTROUTINE TO INTEGRATE THE 

EQUATIONS
* FOR A PIECEWISE LINEAR SPRING-MASS SYSTEM.
*

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
DIMENSION X(6), D l(6), D2(6), D3(6), TSl(lOO)
PI=4.D0*DATAN(1 .DO)

*
* INITIALIZE TIME, READ INPUT FILE, AND OPEN OUTPUT FILE
*

T=0.D0 
DTI =0.01 DO 
NEQ=6 
NO=0 
ener=l.d0

alsq=2 .d0
OPEN (UNIT=9,FILE='deadzone .in')

READ(9,*)X( 1 ),X(3),X(2),X(4),XC,ALPHA 
CLOSE(9)
*K1*XA=(K1+KC)*X(1); K l= l ; KC=(ALPHA**2-1)*K1
*XA IS THE AMPLITUDE WITHOUT XC
*XA=(K 1 +KC)*X( 1 )/K 1
KC=ALPHA* *2-1
XA=(1+KC)*X(1)
RHO=-XC/XA 
DT2=DT 1 /ALPHA
DPLUS=DSQRT(I.DO-RHO**2*(1.DO-1.DO/ALPHA**2))/ALPHA-RHO/
ALPHA**2
DTV=DSQRT(1 ,DO-RHO**2*(1 ,DO-ALPHA**2))/ALPHA-RHO 
TOUT=l.d0*50.0D0

IF((X(1).LE.XC).AND.(X(1).GE.(-XC)))THEN 
STIFF=1.D0 
F 1=0.DO 
DT=DT1 

ELSEIF(X(1).LT.(-XC))THEN 
STIFF=ALPH A * * 2 
F1=-(ALPHA**2-1.D0)*XC 
DT=DT2 

ELSE
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STIFF=ALPHA* *2 
F 1 =(ALPHA* *2-1 ,DO)*XC 
DT=DT2 

ENDIF

IT0P=1
ICT=1
OPEN (UNIT=7 ,FILE-deadzone .out', STATU S='UNKNO WN')
WRITE(7, * )X( 1) ,X(3)

*
* CHECK FOR PIECEWISE STIFFNESS BOUNDARY CLOSURE AND INTEGRATE
EQUATIONS
*

B=1
60CDT=ABS((XC-X(1))/X(2))

ECDT=ABS((-XC-X( 1 ))/X(2))
A=X(2)
C=A*B
IF (((XC.EQ.2.DO).OR.(XC.EQ.(-

2 .DO))).AND.(((C.LT.O.DO).AND.(A.GT.B)).OR.((A.EQ.O.DO).AND.(B.LT.O.DO))))
THEN

TS1(ICT)=T
ICT=ICT+1

ENDIF
B=A

IF((STIFF.NE. 1 .D0).AND.(ECDT.LT.DT).AND.(X(2).GT.0.D0)) THEN 
CALL SWITCH2TH(T,ECDT,NEQ,X,D 1,STIFF,F1)
STIFF=1.D0
F1=0.D0
DT=DT1
ITOP=l

ELSEIF((STIFF.EQ. 1 .D0).AND.(CDT.LT.DT).AND.(X(2).GT.0.D0)) THEN 
CALL SWITCH(T,CDT,NEQ,X,D 1,STIFF,F1)
TS1(ICT)=T
ICT=ICT+1
STIFF=ALPHA* *2
F1=(ALPHA**2-1.D0)*XC
ITOP=0
DT=DT2

ELSEIF((STIFF.NE. 1 .D0).AND.(CDT.LT.DT).AND.(X(2).LT.0.D0)) THEN 
CALL SWITCH(T,CDT,NEQ,X,D 1,STIFF,F1)
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STIFF=1.D0
F1=0.D0
DT=DT1
IT0P=1

ELSEIF((STIFF.EQ. 1 .DO).AND.(ECDT.LT.DT).AND.(X(2).LT.0.D0)) THEN 
CALL SWITCH2TH(T,ECDT,NEQ,X,D 1 ,STIFF,F1 )
STIFF=ALPHA* *2 
F 1 =-(ALPHA**2- 1 .DO)*XC 
DT=DT1 
ITOP=l 

ELSE
CALL RK4(T,DT,NEQ,X,D1 ,D2,D3,STIFF,FI)

ENDIF
N O N O +1
WRITE(7,*)X( 1 ),X(3)

*

* LOOP TO FINAL TIME
*

IF (T.GE.TOUT) THEN 
CLOSE(7)
OPEN(UNIT=l 1 ,FILE='SPLS.LOG')

AVFREQ=6.D0*PI/(TS 1 (4)-TS 1(1))
WRITE( 11 ,*)TS 1 (1 ),TS 1 (2),TS 1 (3),TS 1 (4)
WRITE( 11 ,*)TS 1 (2)-TS 1 (1 ),TS 1 (3)-TS 1 (2),TS 1 (4)-TS 1 (3)
WRITE( 11 ,*)'AVFREQ=', AVFREQ 
CLOSE(ll)
STOP'PROGRAM COMPLETE'

ELSE 
GOTO 60 

ENDIF 
END

SUBROUTINE SWITCH(T,CDT,NEQ,X,D 1 ,STIFF,F1 )
*

* EULER INTEGRATION OF EQUATIONS AT THE SWITCHING PLANE
*

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION X(6),D1(6)

*
CALL DERIV(T,X,D 1,STIFF,F1)



* MOVE THE STATES FORWARD ONE INTEGRATION STEP
*

DO 88 1=1,NEQ 
88 X(I)=X(I)+CDT*D 1 (I)

T=T+CDT
RETURN
END

SUBROUTINE SWITCH2TH(T,ECDT,NEQ,X,D1,STIFF,F1)
*
* EULER INTEGRATION OF EQUATIONS AT THE SWITCHING PLANE
*

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION X(6), D l(6)

*
CALL DERIV(T,X,D 1,STIFF,F1)

*
* MOVE THE STATES FORWARD ONE INTEGRATION STEP
*

DO 88 1=1,NEQ 
88 X(I)=X(I)+ECDT * D1 (I)

T=T+ECDT
RETURN
END

SUBROUTINE RK4(T,DELTAT, NEQ, X,D1,D2,D3,STIFF,FI)
*
* 4TH ORDER RK INTEGRATOR -  FIXED STEP SIZE -  TAKES
* INTEGRATION STEPS OF SIZE DELTAT.
*

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION X(6), D l(6), D2(6), D3(6)

*
* TAKE ONE INTEGRATION STEP - REQUIRES 4 CALLS TO DERIV
*

CALL DERIV(T,X,D 1, STIFF,F1)
DO 101 1= 1,NEQ 

D 1 (I)=D 1 (I) * DELTAT 
101 D2(I) = X(I) + 0.5D0 * D1(I)

*
TT = T + 0.5D0 * DELTAT 
CALL DERIV(TT,D2,D3,STIFF,FI)
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DO 1021= 1.NEQ 
D3(I)=D3(I)*DELTAT 
D 1 (I)=D 1 (I)+2.D0*D3(I)

102 D2(I)=X(I)+0.5 DO * D3 (I)
*

DO 103 1= 1,NEQ 
D3(I)=D3(I)*DELTAT 
D 1 (I)=D 1 (I)+2.D0*D3(I)

103 D2(I)=X(I)+D3(I)
*

T-T+DELTAT
CALL DERIV(T,D2,D3,STIFF,FI)

*

* MOVE THE STATES FORWARD ONE INTEGRATION STEP
*

DO 104 1=1, NEQ
104 X(I)=X(I)+(D 1 (I)+D3 (I) * DELTAT)/6. DO

*

RETURN
END

*

SUBROUTINE DERIV(T,X,DX,STIFF,F1)
*

* THIS SUBROUTINE GENERATES THE EQUATIONS OF MOTION.
*

IMPLICIT DOUBLE PRECISION (A-H.O-Z)
DIMENSION X(6), DX(6)

*
DX(1) = X(2)
DX(2) = -STIFF*X( 1 )+X(3)+F 1 
DX(3) = X(4)
DX(4) = X(1)-2.D0*X(3)
DX(5) = 0.
DX(6) = 0.
CWRITE(7,*)"V 1 =",DX(1), " A1=",DX(2), " V2=",DX(3), " A2=",DX(4)

*
RETURN
END



program potential for deadzone

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
ener=l.dO
alsq=2 .d0
xc=0.625d0
dx=0.005d0

open(unit=7,file-pot.out',status-unknown') 
xmax=(2.dO*(alsq-l.dO)*xc+dsqrt(4.dO*(2.dO*alsq-l.dO)*ener 

>-2 .d0*(alsq-l.d0)*xc**2))/(2 .d0*alsq-l.d0) 
xmin=-xmax 
x=xmin
write(7,*)(x-dx),(x-dx)/2.d0
write(7,*)(x-dx),(x-dx)/2.d0+(5.d0*dx)
write(7,*)(x-dx),(x-dx)/2.dO-(5.dO*dx)

5 yl=-(-x+dsqrt(4.d0*ener-2.d0*(alsq-l.d0)*(-x-xc)**2-(-x)**2))/2.d0
y2=-(-x-dsqrt(4.d0*ener-2.d0*(alsq-l.d0)*(-x-xc)**2-(-x)**2))/2.d0 
write(7,*)x,yl 
write(7,*)x,y2 
x=x+dx
if (x.le.(-xc)) goto 5

10 y 1 =(x-dsqrt(4.d0*ener-x* *2))/2 ,d0
y2=(x+dsqrt(4.d0*ener-x**2))/2.d0 
write(7,*)x,yl 
write(7,*)x,y2 
x=x+dx
if (x.le.xc) goto 10

20 yl=(x+dsqrt(4.d0*ener-2.d0*(alsq-l .d0)*(x-xc)**2-x**2))/2.d0
y2=(x-dsqrt(4.d0*ener-2.d0*(alsq-l.d0)*(x-xc)**2-x**2))/2.d0 
write(7,*)x,yl 
write(7,*)x,y2 
x=x+dx
if (x.le.xmax) goto 20
write(7,*)x,x/2.d0
write(7,*)x,x/2.d0+(5.d0*dx)
write(7,*)x,x/2.d0-(5.d0*dx)
write(7,*)x,x/2.d0+(10.d0*dx)
write(7,*)x,x/2.d0-( 10.d0*dx)
write(7, *)x,x/2. d0+( 14. dO * dx)



write(7,*)x,x/2.d0-(14.d0*dx)

close(7)

open(unit=8,file='eigvec 1 .out',status='unknown') 
open(unit=9,file-eigvec2.out',status-unknown')

write(8,*)-1.9465,-1.2030 
write(8,*)xc,0.61803d0*xc 
write(8,*) 1.9465,1.9465-0.3 81966*xc

if(xc.gt.0.4595) then 
write(9,*)-0.4595,0.7435 
write(9,*)0.4595,-0.7435 

elseif(xc.lt.-0.4595) then 
write(9,*)-1., 1 .-0.61803*xc 
write(9,*) 1.,-1 .-0.61803 *xc 

else
write(9,*)-0.4595,0.7435 
write(9, *)xc,-1.61803 *xc 
write(9,*) 1.,-1 .-0.61803 *xc 

endif

stop'complete'
end
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* THIS PROGRAM USES A RK(4,4) SUBTROUTINE TO INTEGRATE THE 
EQUATIONS
* FOR A PIECEWISE LINEAR SPRING-MASS SYSTEM.
*

IMPLICIT DOUBLE PRECISION(A-L,M-Z)
DIMENSION X(6), D l(6), D2(6), D3(6), TSl(lOO)
PI=4.D0*DATAN( 1 .DO)

*
* INITIALIZE TIME, READ INPUT FILE, AND OPEN OUTPUT FILE
*

T=0.D0
DT=0.001D0
NEQ=6
OPEN(UNIT=9,FILE='deadzone.in')
READ(9,*)X( 1 ),X(2),X(4),XC 
CLOSE(9)

ener=1 .666d0
alsq=2 .d0

TOUT=5.D0*10.D0
ITOP=l
ICT=1
OPEN (UNIT=7,FILE-deadzonecontrol. out', STATU S-UNKNOWN') 

c X(3)=0.5*(1.19153*X(l)+2.11252*dsqrt(1.71-X(l)**2-1.02641*X(l)*
C XC-0.513204*XC**2))

X(3)=0.5*(1.19153*X(l)+1.47392*dsqrt(3.51278-X(l)**2))
WRITE(7, * )X( 1) ,X(3)

*
* CHECK FOR PIECEWISE STIFFNESS BOUNDARY CLOSURE AND INTEGRATE
EQUATIONS
*
* GET SEVERAL PERIOD TO CALCULATE FREQUENCY 

XX1=X(1)
60 XX2AXX1

XX1=X(1)
IF (((XXI *XX2).LT.0.D0) ,AND.(XX1 .GT.0.D0))THEN 

TS1 (ICT)=T 
ICT=ICT+1

ELSEIF(((XX1*XX2).EQ.O.DO).AND.(XX1.EQ.O.DO).AND.(XX2.LT.O.DO))THEN 
TS 1 (ICT)=T 
ICT=ICT+1 

ENDIF

PROGRAM deadzonecontrol
*

R A S M U S O h i  L I B K A r t Y
ONlVERSSTX.pg ALASKA-FAIR^AIMKI



CALL RK4(T,DT,NEQ,X,D1,D2,D3,XC) 

WRITE(7, *)X( 1 ),X(3)

* LOOP TO FINAL TIME
*

IF (T.GE.TOUT) THEN 
CLOSE(7)
OPEN(UNIT=l 1 ,FILE='deadzone. log') 
AVFREQ=6.D0*PI/(TS 1 (4)-TS 1 ( 1))
WRITE( 11 ,*)TS 1 (2)-TS 1 (1 ),TS 1 (3)-TS 1 (2) ,TS 1 (4)-TS 1 (3)
WRITE( 1 1  ,*)'AVFREQ=',AVFREQ
CLOSE(ll)
STOP'PROGRAM COMPLETE'

ELSE 
GOTO 60 

ENDIF 
END

SUBROUTINE RK4(T,DELTAT, NEQ, X,D1,D2,D3,XC)
*

* 4TH ORDER RK INTEGRATOR -  FIXED STEP SIZE -  TAKES
* INTEGRATION STEPS OF SIZE DELTAT.
*

IMPLICIT DOUBLE PRECISION (A-L, M-Z)
DIMENSION X(6), D l(6), D2(6), D3(6)

*

* TAKE ONE INTEGRATION STEP - REQUIRES 4 CALLS TO DERIV
*

CALL DERIV(T,X,D 1 ,XC)
DO 101 1= 1,NEQ 

D 1 (I)=D 1 (I)* DELTAT
101 D2(I) = X(I) + 0.5D0 * D1(I)
*

TT = T + 0.5D0 * DELTAT 
CALL DERIV(TT,D2 ,D3 ,XC)
DO 1021= 1,NEQ 

D3 (I)=D3 (I) * DELTAT 
D 1 (I)=D 1 (I)+2. DO * D3 (I)

102 D2(I)=X(I)+0. 5D0 * D3 (I)
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CALL DERIV(TT,D2,D3,XC)
DO 103 1= 1,NEQ 

D3 (I)=D3 (I) * DELTAT 
D 1 (I)=D 1 (I)+2. DO * D3 (I)

103 D2(I)=X(I)+D3 (I)
*

T=T+DELTAT
CALL DERIV(T,D2,D3 ,XC)

*
* MOVE THE STATES FORWARD ONE INTEGRATION STEP
*

DO 104 1=1,NEQ
104 X(I)=X(I)+(D 1 (I)+D3 (I) * DELTAT)/6. DO
*

RETURN
END

SUBROUTINE DERIV(T,X,DX,XC)
*

* THIS SUBROUTINE GENERATES THE EQUATIONS OF MOTION.
*

IMPLICIT DOUBLE PRECISION (A-L,M-Z)
DIMENSION X(6), DX(6)

*

IF(X(1).LE.(-XC))THEN
DX(2)=-2.56843D0*X(1)+1.10507*X(3)-XC

ELSEIF((X(1).GT.(-XC)).AND.(X(1).LE.XC))THEN
DX(2)=-1.56843D0*X(1)+1.10507*X(3)

ELSE
DX(2)=-2.56843D0*X(1)+1.10507*X(3)+XC

ENDIF
*

DX(1) = X(2)
DX(3) = X(4)
DX(4) = 0.975934D0*X(1)-1.74657D0*X(3)
DX(5) = 0.D0 
DX(6) = 0.D0

*
RETURN
END
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* THIS PROGRAM USES A RK(4,4) SUBTROUTINE TO INTEGRATE THE 
EQUATIONS
* FOR A PIECEWISE LINEAR SPRING-MASS SYSTEM.
*

IMPLICIT DOUBLE PRECISION(A-L,M-Z)
DIMENSION X(6), D l(6), D2(6), D3(6), TS 1(100)
PI=4.D0*DATAN( 1 .DO)

*

* INITIALIZE TIME, READ INPUT FILE, AND OPEN OUTPUT FILE
*

T=0.D0
DT=0.001D0
NEQ=6
OPEN(UNIT=9,FILE='SATURATION.IN')
READ(9,*)X( 1 ),X(3),X(2),X(4),XC 
CLOSE(9)
TOUT=6.DO*7.3DO
ITOP=l
ICT=1
OPEN(UNIT=7,FILE='SATURATION.OUT',STATUS-UNKNOWN') 
WRITE(7,*)X( 1 ),X(3)

PROGRAM SATURATION
*

* CHECK FOR PIECEWISE STIFFNESS BOUNDARY CLOSURE AND INTEGRATE 
EQUATIONS

* GET SEVERAL PERIOD TO CALCULATE FREQUENCY

XX1=X(1)
60 XX2=XX1 

XX1=X(1)
IF(((XX1 *XX2).LT.0.D0).AND.(XX1 ,GT.0.D0))THEN 

TS1(ICT)=T 
ICT=ICT+1

ELSEIF(((XX1*XX2).EQ.0.D0).AND.(XX1.EQ.0.D0).AND.(XX2.LT.0.D0))THEN
TS1(ICT)=T
ICT=ICT+1

ENDIF
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WRITE(7, * )X( 1) ,X(3)
*

* LOOP TO FINAL TIME
*

IF (T.GE.TOUT) THEN 
CLOSE(7)
OPEN(UNIT=l 1 ,FILE-SATURATION.LOG') 
AVFREQ=6.D0*PI/(TS 1 (4)-TS 1(1))
WRITE( 11, *)TS 1 (2)-TS 1 (1 ),TS 1 (3)-TS 1 (2),TS 1 (4)-TS 1 (3)
WRITE( 11 ,*)'AVFREQ-,AVFREQ
CLOSE(ll)
STOP’PROGRAM COMPLETE'

ELSE 
GOTO 60 

ENDIF 
END

SUBROUTINE RK4(T,DELTAT, NEQ, X,D1,D2,D3,XC)
*
* 4TH ORDER RK INTEGRATOR -  FIXED STEP SIZE -  TAKES
* INTEGRATION STEPS OF SIZE DELTAT.
*

IMPLICIT DOUBLE PRECISION (A-L, M-Z)
DIMENSION X(6), D l(6), D2(6), D3(6)

*
* TAKE ONE INTEGRATION STEP - REQUIRES 4 CALLS TO DERIV
*

CALL DERIV(T,X,D 1 ,XC)
DO 101 I = 1,NEQ 

D1(I)=D 1(1)* DELTAT
101 D2(I) = X(I) + 0.5D0 * D1(I)
*

TT = T + 0.5D0 * DELTAT 
CALL DERIV(TT,D2 ,D3 ,XC)
DO 1021= 1,NEQ 

D3(I)=D3(I)*DELTAT 
D 1 (I)=D 1 (I)+2.D0*D3(I)

102 D2(I)=X(I)+0.5D0*D3(I)
*

CALL DERIV(TT,D2,D3 ,XC)
DO 103 1= 1,NEQ 

D3(I)=D3(I)*DELTAT 
D 1 (I)=D 1 (I)+2.D0*D3(I)



103 D2(I)=X(I)+D3(I)
*

T=T+DELTAT
CALL DERIV(T,D2,D3,XC)

*
* MOVE THE STATES FORWARD ONE INTEGRATION STEP
*

DO 104 1=1,NEQ
104 X(I)=X(I)+(D 1 (I)+D3 (I) *DELTAT)/6. DO 

*
RETURN
END

SUBROUTINE DERIV(T,X,DX,XC)
*
* THIS SUBROUTINE GENERATES THE EQUATIONS OF MOTION.
*

IMPLICIT DOUBLE PRECISION (A-L,M-Z)
DIMENSION X(6), DX(6)

*
IF(X(1).LE.(-XC))THEN 

DX(2)=-X( 1 )+X(3)+XC 
ELSEIF((X(1).GT.(-XC)).AND.(X(1).LE.XC))THEN 

DX(2)=-2.D0*X( 1 )+X(3)
ELSE

DX(2)=-X( 1 )+X(3)-XC 
ENDIF

*
DX(1) = X(2)
DX(3) = X(4)
DX(4) = X(1)-2.D0*X(3)
DX(5) = 0.D0 
DX(6) = 0.D0

*

RETURN
END
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* THIS PROGRAM USES A RK(4,4) SUBTROUTINE TO INTEGRATE THE 
EQUATIONS
* FOR A PIECEWISE LINEAR SPRING-MASS SYSTEM.
*

IMPLICIT DOUBLE PRECISION(A-L,M-Z)
DIMENSION X(6), D l(6), D2(6), D3(6), TSl(lOO)
PI=4.D0*DATAN(1 .DO)

*
* INITIALIZE TIME, READ INPUT FILE, AND OPEN OUTPUT FILE
*

T=0.D0
DT=0.0005D0
NEQ=6
OPEN(UNIT=9,FILE='bangbang.in')
READ(9,*)X( 1 ),X(3),X(2),X(4),DELTA 
CLOSE(9)
TOUT=5.DO*7.3DO
ITOP=l
ICT=1
OPEN(UNIT=7,FILE-BANGBANG.OUT',STATUS-UNKNOWN') 
WRITE(7,*)X(1),X(3)

*
* CHECK FOR PIECEWISE STIFFNESS BOUNDARY CLOSURE AND INTEGRATE 
EQUATIONS

PROGRAM BANGBANG
*

* GET SEVERAL PERIOD TO CALCULATE FREQUENCY

XX1=X(1)
60 XX2=XX1 

XX1=X(1)
IF(((XX1*XX2).LT.O.DO).AND.(XX1.GT.O.DO))THEN

TS1(ICT)=T
ICT=ICT+1

ELSEIF(((XX1*XX2).EQ.O.DO).AND.(XX1.EQ.O.DO).AND.(XX2.LT.O.DO))THEN
TS1(ICT)=T
ICT=ICT+1

ENDIF
* CHANGE THE VALUE OF DEL AT THE MOMENT XI CROSS ZERO

IF(X(1).LE.0.D0)THEN
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DEL=-DELTA
ELSEIF(X(1).GT.0.D0)THEN

DEL=DELTA
ENDIF

CALL RK4(T,DT,NEQ,X,D 1 ,D2,D3 ,DEL)
WRITE(7,*)X( 1 ),X(3)
*
* LOOP TO FINAL TIME
*

IF (T.GE.TOUT) THEN 
CLOSE(7)
OPEN(UNIT=l 1 ,FILE='BANGBANG.LOG') 
AVFREQ=6.D0*PI/(TS1(4)-TS1(1))
WRITE( 11 ,*)TS 1 (2)-TS 1 (1 ),TS 1 (3)-TS 1 (2),TS 1 (4)-TS 1 (3)
WRITE( 11 ,*)'AVFREQ=',AVFREQ
CLOSE(ll)
STOP'PROGRAM COMPLETE'

ELSE 
GOTO 60 

ENDIF 
END

SUBROUTINE RK4(T,DELTAT, NEQ, X,D1,D2,D3,DEL)
*
* 4TH ORDER RK INTEGRATOR -  FIXED STEP SIZE -  TAKES
* INTEGRATION STEPS OF SIZE DELTAT.
*

IMPLICIT DOUBLE PRECISION (A-L, M-Z)
DIMENSION X(6), D l(6), D2(6), D3(6)

*
* TAKE ONE INTEGRATION STEP - REQUIRES 4 CALLS TO DERIV
*

CALL DERIV(T,X,D1,DEL)
DO 101 1= 1,NEQ

D 1 (I)=D 1 (I)* DELTAT
101 D2(I) = X(I) + 0.5D0 * D1(I)
*

TT = T + 0.5D0 * DELTAT 
CALL DERIV(TT,D2,D3 ,DEL)
DO 1021= 1,NEQ 

D3 (I)=D3 (I) * DELTAT 
D 1 (I)=D 1 (I)+2.D0*D3(I)
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102 D2(I)=X(I)+0.5D0*D3(I)
*

CALL DERIV(TT,D2 ,D3 ,DEL)
DO 103 1= 1,NEQ 

D3(I)=D3(I)*DELTAT 
D 1 (I)=D 1 (I)+2.D0*D3(I)

103 D2(I)=X(I)+D3(I)
*

T=T+DELTAT
CALL DERIV(T,D2,D3 ,DEL)

*
* MOVE THE STATES FORWARD ONE INTEGRATION STEP
*

DO 104 1=1,NEQ
104 X(I)=X(I)+(D 1 (I)+D3 (I) *DELTAT)/6. DO 
*
RETURN
END

SUBROUTINE DERIV(T,X,DX,DEL)
*
* THIS SUBROUTINE GENERATES THE EQUATIONS OF MOTION.
*

IMPLICIT DOUBLE PRECISION (A-L,M-Z)
DIMENSION X(6), DX(6)

*
DX(1) = X(2)
DX(2) = -X(1)+X(3)-DEL 
DX(3) = X(4)
DX(4) = X(1)-2.D0*X(3)
DX(5) = 0.D0 
DX(6) = 0.D0

*

RETURN
END



PROGRAM REGRESSION

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
DIMENSION X(600), Y(600)
*

* INITIALIZE TIME, READ INPUT FILE, AND OPEN OUTPUT FILE
*

OPEN (UNIT=9,FILE='deadzoneregression. in')
N=444 
N1=0 

5 N1=N1+1
READ(9,*)X(N1),Y(N1)
IF(N1.LT.N) THEN 

GOTO 5 
ENDIF 
CLOSE(9)

*
SUMX=0
SUMY=0
SUMXY=0
SUMX2=0
ST=0
SR=0

*
N2=0 

10 N2=N2+1
SUMX=SUMX+X(N2)
SUMY=SUMY+Y(N2)
SUMXY=SUMXY+X(N2)*Y(N2)
SUMX2=SUMX2+X(N2) * * 2 
IF(N2.LT.N) THEN 

GOTO 10 
ENDIF

*
XM=SUMX/N
YM=SUMY/N
A 1 =(N * SUMX Y-SUMX* SUMY)/(N * SUMX2-SUMX * * 2)
A0=YM-A1 * XM 
N3=0 

20 N3=N3+1
ST=ST+(Y(N3)-YM)**2 
SR=SR+(Y(N3)-A1 *X(N3)-A0)**2 
IF(N3.LT.N)THEN
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GOTO 20 
ENDIF
SYX=(SR/(N-2))**0.5
R2=(ST-SR)/ST

*

OPEN(UNIT=7,FILE='deadzoneregression.out',STATUS='UNKNOWN')
WRITE(7, *) A. 1 =', A 1 7A0=\A0,' 7ST=',ST,' ','SR=',SR,' ','SYX=',SYX,'

7R2=',R2
CLOSE(7)
*
END


