9,758 research outputs found

    Algebraic transformations of Gauss hypergeometric functions

    Full text link
    This article gives a classification scheme of algebraic transformations of Gauss hypergeometric functions, or pull-back transformations between hypergeometric differential equations. The classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function. The other transformations are considered more thoroughly in a series of supplementing articles.Comment: 29 pages; 3 tables; Uniqueness claims and Remark 7.1 clarified by footnotes; formulas (28), (29) correcte

    Darboux evaluations of algebraic Gauss hypergeometric functions

    Full text link
    This paper presents explicit expressions for algebraic Gauss hypergeometric functions. We consider solutions of hypergeometric equations with the tetrahedral, octahedral and icosahedral monodromy groups. Conceptually, we pull-back such a hypergeometric equation onto its Darboux curve so that the pull-backed equation has a cyclic monodromy group. Minimal degree of the pull-back coverings is 4, 6 or 12 (for the three monodromy groups, respectively). In explicit terms, we replace the independent variable by a rational function of degree 4, 6 or 12, and transform hypergeometric functions to radical functions.Comment: The list of seed hypergeometric evaluations (in Section 2) reduced by half; uniqueness claims explained; 34 pages; Kyushu Journal of Mathematics, 201

    Bivariate second--order linear partial differential equations and orthogonal polynomial solutions

    Get PDF
    In this paper we construct the main algebraic and differential properties and the weight functions of orthogonal polynomial solutions of bivariate second--order linear partial differential equations, which are admissible potentially self--adjoint and of hypergeometric type. General formulae for all these properties are obtained explicitly in terms of the polynomial coefficients of the partial differential equation, using vector matrix notation. Moreover, Rodrigues representations for the polynomial eigensolutions and for their partial derivatives of any order are given. Finally, as illustration, these results are applied to specific Appell and Koornwinder orthogonal polynomials, solutions of the same partial differential equation.Comment: 27 page

    Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations

    Full text link
    We give the exact expressions of the partial susceptibilities χd(3)\chi^{(3)}_d and χd(4)\chi^{(4)}_d for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, 3F2([1/3,2/3,3/2],[1,1];z)_3F_2([1/3,2/3,3/2],\, [1,1];\, z) and 4F3([1/2,1/2,1/2,1/2],[1,1,1];z)_4F_3([1/2,1/2,1/2,1/2],\, [1,1,1]; \, z) hypergeometric functions. By solving the connection problems we analytically compute the behavior at all finite singular points for χd(3)\chi^{(3)}_d and χd(4)\chi^{(4)}_d. We also give new results for χd(5)\chi^{(5)}_d. We see in particular, the emergence of a remarkable order-six operator, which is such that its symmetric square has a rational solution. These new exact results indicate that the linear differential operators occurring in the nn-fold integrals of the Ising model are not only "Derived from Geometry" (globally nilpotent), but actually correspond to "Special Geometry" (homomorphic to their formal adjoint). This raises the question of seeing if these "special geometry" Ising-operators, are "special" ones, reducing, in fact systematically, to (selected, k-balanced, ...) q+1Fq_{q+1}F_q hypergeometric functions, or correspond to the more general solutions of Calabi-Yau equations.Comment: 35 page
    corecore